mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	Use ASSERTs on the log intent item refcounts so that we fail noisily if anyone tries to double-free the item. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
		
			
				
	
	
		
			558 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			558 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
 | 
						|
 * All Rights Reserved.
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License as
 | 
						|
 * published by the Free Software Foundation.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it would be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write the Free Software Foundation,
 | 
						|
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 */
 | 
						|
#include "xfs.h"
 | 
						|
#include "xfs_fs.h"
 | 
						|
#include "xfs_format.h"
 | 
						|
#include "xfs_log_format.h"
 | 
						|
#include "xfs_trans_resv.h"
 | 
						|
#include "xfs_bit.h"
 | 
						|
#include "xfs_mount.h"
 | 
						|
#include "xfs_trans.h"
 | 
						|
#include "xfs_trans_priv.h"
 | 
						|
#include "xfs_buf_item.h"
 | 
						|
#include "xfs_extfree_item.h"
 | 
						|
#include "xfs_log.h"
 | 
						|
#include "xfs_btree.h"
 | 
						|
#include "xfs_rmap.h"
 | 
						|
 | 
						|
 | 
						|
kmem_zone_t	*xfs_efi_zone;
 | 
						|
kmem_zone_t	*xfs_efd_zone;
 | 
						|
 | 
						|
static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
 | 
						|
{
 | 
						|
	return container_of(lip, struct xfs_efi_log_item, efi_item);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
xfs_efi_item_free(
 | 
						|
	struct xfs_efi_log_item	*efip)
 | 
						|
{
 | 
						|
	kmem_free(efip->efi_item.li_lv_shadow);
 | 
						|
	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
 | 
						|
		kmem_free(efip);
 | 
						|
	else
 | 
						|
		kmem_zone_free(xfs_efi_zone, efip);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This returns the number of iovecs needed to log the given efi item.
 | 
						|
 * We only need 1 iovec for an efi item.  It just logs the efi_log_format
 | 
						|
 * structure.
 | 
						|
 */
 | 
						|
static inline int
 | 
						|
xfs_efi_item_sizeof(
 | 
						|
	struct xfs_efi_log_item *efip)
 | 
						|
{
 | 
						|
	return sizeof(struct xfs_efi_log_format) +
 | 
						|
	       (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
 | 
						|
}
 | 
						|
 | 
						|
STATIC void
 | 
						|
xfs_efi_item_size(
 | 
						|
	struct xfs_log_item	*lip,
 | 
						|
	int			*nvecs,
 | 
						|
	int			*nbytes)
 | 
						|
{
 | 
						|
	*nvecs += 1;
 | 
						|
	*nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is called to fill in the vector of log iovecs for the
 | 
						|
 * given efi log item. We use only 1 iovec, and we point that
 | 
						|
 * at the efi_log_format structure embedded in the efi item.
 | 
						|
 * It is at this point that we assert that all of the extent
 | 
						|
 * slots in the efi item have been filled.
 | 
						|
 */
 | 
						|
STATIC void
 | 
						|
xfs_efi_item_format(
 | 
						|
	struct xfs_log_item	*lip,
 | 
						|
	struct xfs_log_vec	*lv)
 | 
						|
{
 | 
						|
	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
 | 
						|
	struct xfs_log_iovec	*vecp = NULL;
 | 
						|
 | 
						|
	ASSERT(atomic_read(&efip->efi_next_extent) ==
 | 
						|
				efip->efi_format.efi_nextents);
 | 
						|
 | 
						|
	efip->efi_format.efi_type = XFS_LI_EFI;
 | 
						|
	efip->efi_format.efi_size = 1;
 | 
						|
 | 
						|
	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
 | 
						|
			&efip->efi_format,
 | 
						|
			xfs_efi_item_sizeof(efip));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Pinning has no meaning for an efi item, so just return.
 | 
						|
 */
 | 
						|
STATIC void
 | 
						|
xfs_efi_item_pin(
 | 
						|
	struct xfs_log_item	*lip)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The unpin operation is the last place an EFI is manipulated in the log. It is
 | 
						|
 * either inserted in the AIL or aborted in the event of a log I/O error. In
 | 
						|
 * either case, the EFI transaction has been successfully committed to make it
 | 
						|
 * this far. Therefore, we expect whoever committed the EFI to either construct
 | 
						|
 * and commit the EFD or drop the EFD's reference in the event of error. Simply
 | 
						|
 * drop the log's EFI reference now that the log is done with it.
 | 
						|
 */
 | 
						|
STATIC void
 | 
						|
xfs_efi_item_unpin(
 | 
						|
	struct xfs_log_item	*lip,
 | 
						|
	int			remove)
 | 
						|
{
 | 
						|
	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
 | 
						|
	xfs_efi_release(efip);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Efi items have no locking or pushing.  However, since EFIs are pulled from
 | 
						|
 * the AIL when their corresponding EFDs are committed to disk, their situation
 | 
						|
 * is very similar to being pinned.  Return XFS_ITEM_PINNED so that the caller
 | 
						|
 * will eventually flush the log.  This should help in getting the EFI out of
 | 
						|
 * the AIL.
 | 
						|
 */
 | 
						|
STATIC uint
 | 
						|
xfs_efi_item_push(
 | 
						|
	struct xfs_log_item	*lip,
 | 
						|
	struct list_head	*buffer_list)
 | 
						|
{
 | 
						|
	return XFS_ITEM_PINNED;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The EFI has been either committed or aborted if the transaction has been
 | 
						|
 * cancelled. If the transaction was cancelled, an EFD isn't going to be
 | 
						|
 * constructed and thus we free the EFI here directly.
 | 
						|
 */
 | 
						|
STATIC void
 | 
						|
xfs_efi_item_unlock(
 | 
						|
	struct xfs_log_item	*lip)
 | 
						|
{
 | 
						|
	if (lip->li_flags & XFS_LI_ABORTED)
 | 
						|
		xfs_efi_item_free(EFI_ITEM(lip));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The EFI is logged only once and cannot be moved in the log, so simply return
 | 
						|
 * the lsn at which it's been logged.
 | 
						|
 */
 | 
						|
STATIC xfs_lsn_t
 | 
						|
xfs_efi_item_committed(
 | 
						|
	struct xfs_log_item	*lip,
 | 
						|
	xfs_lsn_t		lsn)
 | 
						|
{
 | 
						|
	return lsn;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The EFI dependency tracking op doesn't do squat.  It can't because
 | 
						|
 * it doesn't know where the free extent is coming from.  The dependency
 | 
						|
 * tracking has to be handled by the "enclosing" metadata object.  For
 | 
						|
 * example, for inodes, the inode is locked throughout the extent freeing
 | 
						|
 * so the dependency should be recorded there.
 | 
						|
 */
 | 
						|
STATIC void
 | 
						|
xfs_efi_item_committing(
 | 
						|
	struct xfs_log_item	*lip,
 | 
						|
	xfs_lsn_t		lsn)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is the ops vector shared by all efi log items.
 | 
						|
 */
 | 
						|
static const struct xfs_item_ops xfs_efi_item_ops = {
 | 
						|
	.iop_size	= xfs_efi_item_size,
 | 
						|
	.iop_format	= xfs_efi_item_format,
 | 
						|
	.iop_pin	= xfs_efi_item_pin,
 | 
						|
	.iop_unpin	= xfs_efi_item_unpin,
 | 
						|
	.iop_unlock	= xfs_efi_item_unlock,
 | 
						|
	.iop_committed	= xfs_efi_item_committed,
 | 
						|
	.iop_push	= xfs_efi_item_push,
 | 
						|
	.iop_committing = xfs_efi_item_committing
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate and initialize an efi item with the given number of extents.
 | 
						|
 */
 | 
						|
struct xfs_efi_log_item *
 | 
						|
xfs_efi_init(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	uint			nextents)
 | 
						|
 | 
						|
{
 | 
						|
	struct xfs_efi_log_item	*efip;
 | 
						|
	uint			size;
 | 
						|
 | 
						|
	ASSERT(nextents > 0);
 | 
						|
	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
 | 
						|
		size = (uint)(sizeof(xfs_efi_log_item_t) +
 | 
						|
			((nextents - 1) * sizeof(xfs_extent_t)));
 | 
						|
		efip = kmem_zalloc(size, KM_SLEEP);
 | 
						|
	} else {
 | 
						|
		efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
 | 
						|
	}
 | 
						|
 | 
						|
	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
 | 
						|
	efip->efi_format.efi_nextents = nextents;
 | 
						|
	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
 | 
						|
	atomic_set(&efip->efi_next_extent, 0);
 | 
						|
	atomic_set(&efip->efi_refcount, 2);
 | 
						|
 | 
						|
	return efip;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Copy an EFI format buffer from the given buf, and into the destination
 | 
						|
 * EFI format structure.
 | 
						|
 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
 | 
						|
 * one of which will be the native format for this kernel.
 | 
						|
 * It will handle the conversion of formats if necessary.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
 | 
						|
{
 | 
						|
	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
 | 
						|
	uint i;
 | 
						|
	uint len = sizeof(xfs_efi_log_format_t) + 
 | 
						|
		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);  
 | 
						|
	uint len32 = sizeof(xfs_efi_log_format_32_t) + 
 | 
						|
		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);  
 | 
						|
	uint len64 = sizeof(xfs_efi_log_format_64_t) + 
 | 
						|
		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);  
 | 
						|
 | 
						|
	if (buf->i_len == len) {
 | 
						|
		memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
 | 
						|
		return 0;
 | 
						|
	} else if (buf->i_len == len32) {
 | 
						|
		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
 | 
						|
 | 
						|
		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
 | 
						|
		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
 | 
						|
		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
 | 
						|
		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
 | 
						|
		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
 | 
						|
			dst_efi_fmt->efi_extents[i].ext_start =
 | 
						|
				src_efi_fmt_32->efi_extents[i].ext_start;
 | 
						|
			dst_efi_fmt->efi_extents[i].ext_len =
 | 
						|
				src_efi_fmt_32->efi_extents[i].ext_len;
 | 
						|
		}
 | 
						|
		return 0;
 | 
						|
	} else if (buf->i_len == len64) {
 | 
						|
		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
 | 
						|
 | 
						|
		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
 | 
						|
		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
 | 
						|
		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
 | 
						|
		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
 | 
						|
		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
 | 
						|
			dst_efi_fmt->efi_extents[i].ext_start =
 | 
						|
				src_efi_fmt_64->efi_extents[i].ext_start;
 | 
						|
			dst_efi_fmt->efi_extents[i].ext_len =
 | 
						|
				src_efi_fmt_64->efi_extents[i].ext_len;
 | 
						|
		}
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	return -EFSCORRUPTED;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Freeing the efi requires that we remove it from the AIL if it has already
 | 
						|
 * been placed there. However, the EFI may not yet have been placed in the AIL
 | 
						|
 * when called by xfs_efi_release() from EFD processing due to the ordering of
 | 
						|
 * committed vs unpin operations in bulk insert operations. Hence the reference
 | 
						|
 * count to ensure only the last caller frees the EFI.
 | 
						|
 */
 | 
						|
void
 | 
						|
xfs_efi_release(
 | 
						|
	struct xfs_efi_log_item	*efip)
 | 
						|
{
 | 
						|
	ASSERT(atomic_read(&efip->efi_refcount) > 0);
 | 
						|
	if (atomic_dec_and_test(&efip->efi_refcount)) {
 | 
						|
		xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
 | 
						|
		xfs_efi_item_free(efip);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
 | 
						|
{
 | 
						|
	return container_of(lip, struct xfs_efd_log_item, efd_item);
 | 
						|
}
 | 
						|
 | 
						|
STATIC void
 | 
						|
xfs_efd_item_free(struct xfs_efd_log_item *efdp)
 | 
						|
{
 | 
						|
	kmem_free(efdp->efd_item.li_lv_shadow);
 | 
						|
	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
 | 
						|
		kmem_free(efdp);
 | 
						|
	else
 | 
						|
		kmem_zone_free(xfs_efd_zone, efdp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This returns the number of iovecs needed to log the given efd item.
 | 
						|
 * We only need 1 iovec for an efd item.  It just logs the efd_log_format
 | 
						|
 * structure.
 | 
						|
 */
 | 
						|
static inline int
 | 
						|
xfs_efd_item_sizeof(
 | 
						|
	struct xfs_efd_log_item *efdp)
 | 
						|
{
 | 
						|
	return sizeof(xfs_efd_log_format_t) +
 | 
						|
	       (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
 | 
						|
}
 | 
						|
 | 
						|
STATIC void
 | 
						|
xfs_efd_item_size(
 | 
						|
	struct xfs_log_item	*lip,
 | 
						|
	int			*nvecs,
 | 
						|
	int			*nbytes)
 | 
						|
{
 | 
						|
	*nvecs += 1;
 | 
						|
	*nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is called to fill in the vector of log iovecs for the
 | 
						|
 * given efd log item. We use only 1 iovec, and we point that
 | 
						|
 * at the efd_log_format structure embedded in the efd item.
 | 
						|
 * It is at this point that we assert that all of the extent
 | 
						|
 * slots in the efd item have been filled.
 | 
						|
 */
 | 
						|
STATIC void
 | 
						|
xfs_efd_item_format(
 | 
						|
	struct xfs_log_item	*lip,
 | 
						|
	struct xfs_log_vec	*lv)
 | 
						|
{
 | 
						|
	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
 | 
						|
	struct xfs_log_iovec	*vecp = NULL;
 | 
						|
 | 
						|
	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
 | 
						|
 | 
						|
	efdp->efd_format.efd_type = XFS_LI_EFD;
 | 
						|
	efdp->efd_format.efd_size = 1;
 | 
						|
 | 
						|
	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
 | 
						|
			&efdp->efd_format,
 | 
						|
			xfs_efd_item_sizeof(efdp));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Pinning has no meaning for an efd item, so just return.
 | 
						|
 */
 | 
						|
STATIC void
 | 
						|
xfs_efd_item_pin(
 | 
						|
	struct xfs_log_item	*lip)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Since pinning has no meaning for an efd item, unpinning does
 | 
						|
 * not either.
 | 
						|
 */
 | 
						|
STATIC void
 | 
						|
xfs_efd_item_unpin(
 | 
						|
	struct xfs_log_item	*lip,
 | 
						|
	int			remove)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * There isn't much you can do to push on an efd item.  It is simply stuck
 | 
						|
 * waiting for the log to be flushed to disk.
 | 
						|
 */
 | 
						|
STATIC uint
 | 
						|
xfs_efd_item_push(
 | 
						|
	struct xfs_log_item	*lip,
 | 
						|
	struct list_head	*buffer_list)
 | 
						|
{
 | 
						|
	return XFS_ITEM_PINNED;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The EFD is either committed or aborted if the transaction is cancelled. If
 | 
						|
 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
 | 
						|
 */
 | 
						|
STATIC void
 | 
						|
xfs_efd_item_unlock(
 | 
						|
	struct xfs_log_item	*lip)
 | 
						|
{
 | 
						|
	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
 | 
						|
 | 
						|
	if (lip->li_flags & XFS_LI_ABORTED) {
 | 
						|
		xfs_efi_release(efdp->efd_efip);
 | 
						|
		xfs_efd_item_free(efdp);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * When the efd item is committed to disk, all we need to do is delete our
 | 
						|
 * reference to our partner efi item and then free ourselves. Since we're
 | 
						|
 * freeing ourselves we must return -1 to keep the transaction code from further
 | 
						|
 * referencing this item.
 | 
						|
 */
 | 
						|
STATIC xfs_lsn_t
 | 
						|
xfs_efd_item_committed(
 | 
						|
	struct xfs_log_item	*lip,
 | 
						|
	xfs_lsn_t		lsn)
 | 
						|
{
 | 
						|
	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Drop the EFI reference regardless of whether the EFD has been
 | 
						|
	 * aborted. Once the EFD transaction is constructed, it is the sole
 | 
						|
	 * responsibility of the EFD to release the EFI (even if the EFI is
 | 
						|
	 * aborted due to log I/O error).
 | 
						|
	 */
 | 
						|
	xfs_efi_release(efdp->efd_efip);
 | 
						|
	xfs_efd_item_free(efdp);
 | 
						|
 | 
						|
	return (xfs_lsn_t)-1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The EFD dependency tracking op doesn't do squat.  It can't because
 | 
						|
 * it doesn't know where the free extent is coming from.  The dependency
 | 
						|
 * tracking has to be handled by the "enclosing" metadata object.  For
 | 
						|
 * example, for inodes, the inode is locked throughout the extent freeing
 | 
						|
 * so the dependency should be recorded there.
 | 
						|
 */
 | 
						|
STATIC void
 | 
						|
xfs_efd_item_committing(
 | 
						|
	struct xfs_log_item	*lip,
 | 
						|
	xfs_lsn_t		lsn)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is the ops vector shared by all efd log items.
 | 
						|
 */
 | 
						|
static const struct xfs_item_ops xfs_efd_item_ops = {
 | 
						|
	.iop_size	= xfs_efd_item_size,
 | 
						|
	.iop_format	= xfs_efd_item_format,
 | 
						|
	.iop_pin	= xfs_efd_item_pin,
 | 
						|
	.iop_unpin	= xfs_efd_item_unpin,
 | 
						|
	.iop_unlock	= xfs_efd_item_unlock,
 | 
						|
	.iop_committed	= xfs_efd_item_committed,
 | 
						|
	.iop_push	= xfs_efd_item_push,
 | 
						|
	.iop_committing = xfs_efd_item_committing
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate and initialize an efd item with the given number of extents.
 | 
						|
 */
 | 
						|
struct xfs_efd_log_item *
 | 
						|
xfs_efd_init(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	struct xfs_efi_log_item	*efip,
 | 
						|
	uint			nextents)
 | 
						|
 | 
						|
{
 | 
						|
	struct xfs_efd_log_item	*efdp;
 | 
						|
	uint			size;
 | 
						|
 | 
						|
	ASSERT(nextents > 0);
 | 
						|
	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
 | 
						|
		size = (uint)(sizeof(xfs_efd_log_item_t) +
 | 
						|
			((nextents - 1) * sizeof(xfs_extent_t)));
 | 
						|
		efdp = kmem_zalloc(size, KM_SLEEP);
 | 
						|
	} else {
 | 
						|
		efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
 | 
						|
	}
 | 
						|
 | 
						|
	xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
 | 
						|
	efdp->efd_efip = efip;
 | 
						|
	efdp->efd_format.efd_nextents = nextents;
 | 
						|
	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
 | 
						|
 | 
						|
	return efdp;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Process an extent free intent item that was recovered from
 | 
						|
 * the log.  We need to free the extents that it describes.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_efi_recover(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	struct xfs_efi_log_item	*efip)
 | 
						|
{
 | 
						|
	struct xfs_efd_log_item	*efdp;
 | 
						|
	struct xfs_trans	*tp;
 | 
						|
	int			i;
 | 
						|
	int			error = 0;
 | 
						|
	xfs_extent_t		*extp;
 | 
						|
	xfs_fsblock_t		startblock_fsb;
 | 
						|
	struct xfs_owner_info	oinfo;
 | 
						|
 | 
						|
	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * First check the validity of the extents described by the
 | 
						|
	 * EFI.  If any are bad, then assume that all are bad and
 | 
						|
	 * just toss the EFI.
 | 
						|
	 */
 | 
						|
	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
 | 
						|
		extp = &efip->efi_format.efi_extents[i];
 | 
						|
		startblock_fsb = XFS_BB_TO_FSB(mp,
 | 
						|
				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
 | 
						|
		if (startblock_fsb == 0 ||
 | 
						|
		    extp->ext_len == 0 ||
 | 
						|
		    startblock_fsb >= mp->m_sb.sb_dblocks ||
 | 
						|
		    extp->ext_len >= mp->m_sb.sb_agblocks) {
 | 
						|
			/*
 | 
						|
			 * This will pull the EFI from the AIL and
 | 
						|
			 * free the memory associated with it.
 | 
						|
			 */
 | 
						|
			set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
 | 
						|
			xfs_efi_release(efip);
 | 
						|
			return -EIO;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
 | 
						|
 | 
						|
	xfs_rmap_skip_owner_update(&oinfo);
 | 
						|
	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
 | 
						|
		extp = &efip->efi_format.efi_extents[i];
 | 
						|
		error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
 | 
						|
					      extp->ext_len, &oinfo);
 | 
						|
		if (error)
 | 
						|
			goto abort_error;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
 | 
						|
	error = xfs_trans_commit(tp);
 | 
						|
	return error;
 | 
						|
 | 
						|
abort_error:
 | 
						|
	xfs_trans_cancel(tp);
 | 
						|
	return error;
 | 
						|
}
 |