mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	Fix compilation on 32 bit platforms (where doing modulus operation
with 64 bit requires extra glibc functions) by truncation.
The jitter for table distribution is limited to a 32 bit value
because random numbers are scaled as 32 bit value.
Also fix some whitespace.
Fixes: 99803171ef ("netem: add uapi to express delay and jitter in nanoseconds")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
		
	
			
		
			
				
	
	
		
			1226 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1226 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * net/sched/sch_netem.c	Network emulator
 | 
						|
 *
 | 
						|
 * 		This program is free software; you can redistribute it and/or
 | 
						|
 * 		modify it under the terms of the GNU General Public License
 | 
						|
 * 		as published by the Free Software Foundation; either version
 | 
						|
 * 		2 of the License.
 | 
						|
 *
 | 
						|
 *  		Many of the algorithms and ideas for this came from
 | 
						|
 *		NIST Net which is not copyrighted.
 | 
						|
 *
 | 
						|
 * Authors:	Stephen Hemminger <shemminger@osdl.org>
 | 
						|
 *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/skbuff.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <linux/rtnetlink.h>
 | 
						|
#include <linux/reciprocal_div.h>
 | 
						|
#include <linux/rbtree.h>
 | 
						|
 | 
						|
#include <net/netlink.h>
 | 
						|
#include <net/pkt_sched.h>
 | 
						|
#include <net/inet_ecn.h>
 | 
						|
 | 
						|
#define VERSION "1.3"
 | 
						|
 | 
						|
/*	Network Emulation Queuing algorithm.
 | 
						|
	====================================
 | 
						|
 | 
						|
	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
 | 
						|
		 Network Emulation Tool
 | 
						|
		 [2] Luigi Rizzo, DummyNet for FreeBSD
 | 
						|
 | 
						|
	 ----------------------------------------------------------------
 | 
						|
 | 
						|
	 This started out as a simple way to delay outgoing packets to
 | 
						|
	 test TCP but has grown to include most of the functionality
 | 
						|
	 of a full blown network emulator like NISTnet. It can delay
 | 
						|
	 packets and add random jitter (and correlation). The random
 | 
						|
	 distribution can be loaded from a table as well to provide
 | 
						|
	 normal, Pareto, or experimental curves. Packet loss,
 | 
						|
	 duplication, and reordering can also be emulated.
 | 
						|
 | 
						|
	 This qdisc does not do classification that can be handled in
 | 
						|
	 layering other disciplines.  It does not need to do bandwidth
 | 
						|
	 control either since that can be handled by using token
 | 
						|
	 bucket or other rate control.
 | 
						|
 | 
						|
     Correlated Loss Generator models
 | 
						|
 | 
						|
	Added generation of correlated loss according to the
 | 
						|
	"Gilbert-Elliot" model, a 4-state markov model.
 | 
						|
 | 
						|
	References:
 | 
						|
	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
 | 
						|
	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
 | 
						|
	and intuitive loss model for packet networks and its implementation
 | 
						|
	in the Netem module in the Linux kernel", available in [1]
 | 
						|
 | 
						|
	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
 | 
						|
		 Fabio Ludovici <fabio.ludovici at yahoo.it>
 | 
						|
*/
 | 
						|
 | 
						|
struct netem_sched_data {
 | 
						|
	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
 | 
						|
	struct rb_root t_root;
 | 
						|
 | 
						|
	/* optional qdisc for classful handling (NULL at netem init) */
 | 
						|
	struct Qdisc	*qdisc;
 | 
						|
 | 
						|
	struct qdisc_watchdog watchdog;
 | 
						|
 | 
						|
	s64 latency;
 | 
						|
	s64 jitter;
 | 
						|
 | 
						|
	u32 loss;
 | 
						|
	u32 ecn;
 | 
						|
	u32 limit;
 | 
						|
	u32 counter;
 | 
						|
	u32 gap;
 | 
						|
	u32 duplicate;
 | 
						|
	u32 reorder;
 | 
						|
	u32 corrupt;
 | 
						|
	u64 rate;
 | 
						|
	s32 packet_overhead;
 | 
						|
	u32 cell_size;
 | 
						|
	struct reciprocal_value cell_size_reciprocal;
 | 
						|
	s32 cell_overhead;
 | 
						|
 | 
						|
	struct crndstate {
 | 
						|
		u32 last;
 | 
						|
		u32 rho;
 | 
						|
	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
 | 
						|
 | 
						|
	struct disttable {
 | 
						|
		u32  size;
 | 
						|
		s16 table[0];
 | 
						|
	} *delay_dist;
 | 
						|
 | 
						|
	enum  {
 | 
						|
		CLG_RANDOM,
 | 
						|
		CLG_4_STATES,
 | 
						|
		CLG_GILB_ELL,
 | 
						|
	} loss_model;
 | 
						|
 | 
						|
	enum {
 | 
						|
		TX_IN_GAP_PERIOD = 1,
 | 
						|
		TX_IN_BURST_PERIOD,
 | 
						|
		LOST_IN_GAP_PERIOD,
 | 
						|
		LOST_IN_BURST_PERIOD,
 | 
						|
	} _4_state_model;
 | 
						|
 | 
						|
	enum {
 | 
						|
		GOOD_STATE = 1,
 | 
						|
		BAD_STATE,
 | 
						|
	} GE_state_model;
 | 
						|
 | 
						|
	/* Correlated Loss Generation models */
 | 
						|
	struct clgstate {
 | 
						|
		/* state of the Markov chain */
 | 
						|
		u8 state;
 | 
						|
 | 
						|
		/* 4-states and Gilbert-Elliot models */
 | 
						|
		u32 a1;	/* p13 for 4-states or p for GE */
 | 
						|
		u32 a2;	/* p31 for 4-states or r for GE */
 | 
						|
		u32 a3;	/* p32 for 4-states or h for GE */
 | 
						|
		u32 a4;	/* p14 for 4-states or 1-k for GE */
 | 
						|
		u32 a5; /* p23 used only in 4-states */
 | 
						|
	} clg;
 | 
						|
 | 
						|
	struct tc_netem_slot slot_config;
 | 
						|
	struct slotstate {
 | 
						|
		u64 slot_next;
 | 
						|
		s32 packets_left;
 | 
						|
		s32 bytes_left;
 | 
						|
	} slot;
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
/* Time stamp put into socket buffer control block
 | 
						|
 * Only valid when skbs are in our internal t(ime)fifo queue.
 | 
						|
 *
 | 
						|
 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
 | 
						|
 * and skb->next & skb->prev are scratch space for a qdisc,
 | 
						|
 * we save skb->tstamp value in skb->cb[] before destroying it.
 | 
						|
 */
 | 
						|
struct netem_skb_cb {
 | 
						|
	u64	        time_to_send;
 | 
						|
};
 | 
						|
 | 
						|
static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
 | 
						|
{
 | 
						|
	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
 | 
						|
	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
 | 
						|
	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
 | 
						|
}
 | 
						|
 | 
						|
/* init_crandom - initialize correlated random number generator
 | 
						|
 * Use entropy source for initial seed.
 | 
						|
 */
 | 
						|
static void init_crandom(struct crndstate *state, unsigned long rho)
 | 
						|
{
 | 
						|
	state->rho = rho;
 | 
						|
	state->last = prandom_u32();
 | 
						|
}
 | 
						|
 | 
						|
/* get_crandom - correlated random number generator
 | 
						|
 * Next number depends on last value.
 | 
						|
 * rho is scaled to avoid floating point.
 | 
						|
 */
 | 
						|
static u32 get_crandom(struct crndstate *state)
 | 
						|
{
 | 
						|
	u64 value, rho;
 | 
						|
	unsigned long answer;
 | 
						|
 | 
						|
	if (state->rho == 0)	/* no correlation */
 | 
						|
		return prandom_u32();
 | 
						|
 | 
						|
	value = prandom_u32();
 | 
						|
	rho = (u64)state->rho + 1;
 | 
						|
	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
 | 
						|
	state->last = answer;
 | 
						|
	return answer;
 | 
						|
}
 | 
						|
 | 
						|
/* loss_4state - 4-state model loss generator
 | 
						|
 * Generates losses according to the 4-state Markov chain adopted in
 | 
						|
 * the GI (General and Intuitive) loss model.
 | 
						|
 */
 | 
						|
static bool loss_4state(struct netem_sched_data *q)
 | 
						|
{
 | 
						|
	struct clgstate *clg = &q->clg;
 | 
						|
	u32 rnd = prandom_u32();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Makes a comparison between rnd and the transition
 | 
						|
	 * probabilities outgoing from the current state, then decides the
 | 
						|
	 * next state and if the next packet has to be transmitted or lost.
 | 
						|
	 * The four states correspond to:
 | 
						|
	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
 | 
						|
	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
 | 
						|
	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
 | 
						|
	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
 | 
						|
	 */
 | 
						|
	switch (clg->state) {
 | 
						|
	case TX_IN_GAP_PERIOD:
 | 
						|
		if (rnd < clg->a4) {
 | 
						|
			clg->state = LOST_IN_BURST_PERIOD;
 | 
						|
			return true;
 | 
						|
		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
 | 
						|
			clg->state = LOST_IN_GAP_PERIOD;
 | 
						|
			return true;
 | 
						|
		} else if (clg->a1 + clg->a4 < rnd) {
 | 
						|
			clg->state = TX_IN_GAP_PERIOD;
 | 
						|
		}
 | 
						|
 | 
						|
		break;
 | 
						|
	case TX_IN_BURST_PERIOD:
 | 
						|
		if (rnd < clg->a5) {
 | 
						|
			clg->state = LOST_IN_GAP_PERIOD;
 | 
						|
			return true;
 | 
						|
		} else {
 | 
						|
			clg->state = TX_IN_BURST_PERIOD;
 | 
						|
		}
 | 
						|
 | 
						|
		break;
 | 
						|
	case LOST_IN_GAP_PERIOD:
 | 
						|
		if (rnd < clg->a3)
 | 
						|
			clg->state = TX_IN_BURST_PERIOD;
 | 
						|
		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
 | 
						|
			clg->state = TX_IN_GAP_PERIOD;
 | 
						|
		} else if (clg->a2 + clg->a3 < rnd) {
 | 
						|
			clg->state = LOST_IN_GAP_PERIOD;
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case LOST_IN_BURST_PERIOD:
 | 
						|
		clg->state = TX_IN_GAP_PERIOD;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/* loss_gilb_ell - Gilbert-Elliot model loss generator
 | 
						|
 * Generates losses according to the Gilbert-Elliot loss model or
 | 
						|
 * its special cases  (Gilbert or Simple Gilbert)
 | 
						|
 *
 | 
						|
 * Makes a comparison between random number and the transition
 | 
						|
 * probabilities outgoing from the current state, then decides the
 | 
						|
 * next state. A second random number is extracted and the comparison
 | 
						|
 * with the loss probability of the current state decides if the next
 | 
						|
 * packet will be transmitted or lost.
 | 
						|
 */
 | 
						|
static bool loss_gilb_ell(struct netem_sched_data *q)
 | 
						|
{
 | 
						|
	struct clgstate *clg = &q->clg;
 | 
						|
 | 
						|
	switch (clg->state) {
 | 
						|
	case GOOD_STATE:
 | 
						|
		if (prandom_u32() < clg->a1)
 | 
						|
			clg->state = BAD_STATE;
 | 
						|
		if (prandom_u32() < clg->a4)
 | 
						|
			return true;
 | 
						|
		break;
 | 
						|
	case BAD_STATE:
 | 
						|
		if (prandom_u32() < clg->a2)
 | 
						|
			clg->state = GOOD_STATE;
 | 
						|
		if (prandom_u32() > clg->a3)
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool loss_event(struct netem_sched_data *q)
 | 
						|
{
 | 
						|
	switch (q->loss_model) {
 | 
						|
	case CLG_RANDOM:
 | 
						|
		/* Random packet drop 0 => none, ~0 => all */
 | 
						|
		return q->loss && q->loss >= get_crandom(&q->loss_cor);
 | 
						|
 | 
						|
	case CLG_4_STATES:
 | 
						|
		/* 4state loss model algorithm (used also for GI model)
 | 
						|
		* Extracts a value from the markov 4 state loss generator,
 | 
						|
		* if it is 1 drops a packet and if needed writes the event in
 | 
						|
		* the kernel logs
 | 
						|
		*/
 | 
						|
		return loss_4state(q);
 | 
						|
 | 
						|
	case CLG_GILB_ELL:
 | 
						|
		/* Gilbert-Elliot loss model algorithm
 | 
						|
		* Extracts a value from the Gilbert-Elliot loss generator,
 | 
						|
		* if it is 1 drops a packet and if needed writes the event in
 | 
						|
		* the kernel logs
 | 
						|
		*/
 | 
						|
		return loss_gilb_ell(q);
 | 
						|
	}
 | 
						|
 | 
						|
	return false;	/* not reached */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* tabledist - return a pseudo-randomly distributed value with mean mu and
 | 
						|
 * std deviation sigma.  Uses table lookup to approximate the desired
 | 
						|
 * distribution, and a uniformly-distributed pseudo-random source.
 | 
						|
 */
 | 
						|
static s64 tabledist(s64 mu, s32 sigma,
 | 
						|
		     struct crndstate *state,
 | 
						|
		     const struct disttable *dist)
 | 
						|
{
 | 
						|
	s64 x;
 | 
						|
	long t;
 | 
						|
	u32 rnd;
 | 
						|
 | 
						|
	if (sigma == 0)
 | 
						|
		return mu;
 | 
						|
 | 
						|
	rnd = get_crandom(state);
 | 
						|
 | 
						|
	/* default uniform distribution */
 | 
						|
	if (dist == NULL)
 | 
						|
		return (rnd % (2 * sigma)) - sigma + mu;
 | 
						|
 | 
						|
	t = dist->table[rnd % dist->size];
 | 
						|
	x = (sigma % NETEM_DIST_SCALE) * t;
 | 
						|
	if (x >= 0)
 | 
						|
		x += NETEM_DIST_SCALE/2;
 | 
						|
	else
 | 
						|
		x -= NETEM_DIST_SCALE/2;
 | 
						|
 | 
						|
	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
 | 
						|
}
 | 
						|
 | 
						|
static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
 | 
						|
{
 | 
						|
	len += q->packet_overhead;
 | 
						|
 | 
						|
	if (q->cell_size) {
 | 
						|
		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
 | 
						|
 | 
						|
		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
 | 
						|
			cells++;
 | 
						|
		len = cells * (q->cell_size + q->cell_overhead);
 | 
						|
	}
 | 
						|
 | 
						|
	return div64_u64(len * NSEC_PER_SEC, q->rate);
 | 
						|
}
 | 
						|
 | 
						|
static void tfifo_reset(struct Qdisc *sch)
 | 
						|
{
 | 
						|
	struct netem_sched_data *q = qdisc_priv(sch);
 | 
						|
	struct rb_node *p = rb_first(&q->t_root);
 | 
						|
 | 
						|
	while (p) {
 | 
						|
		struct sk_buff *skb = rb_to_skb(p);
 | 
						|
 | 
						|
		p = rb_next(p);
 | 
						|
		rb_erase(&skb->rbnode, &q->t_root);
 | 
						|
		rtnl_kfree_skbs(skb, skb);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
 | 
						|
{
 | 
						|
	struct netem_sched_data *q = qdisc_priv(sch);
 | 
						|
	u64 tnext = netem_skb_cb(nskb)->time_to_send;
 | 
						|
	struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
 | 
						|
 | 
						|
	while (*p) {
 | 
						|
		struct sk_buff *skb;
 | 
						|
 | 
						|
		parent = *p;
 | 
						|
		skb = rb_to_skb(parent);
 | 
						|
		if (tnext >= netem_skb_cb(skb)->time_to_send)
 | 
						|
			p = &parent->rb_right;
 | 
						|
		else
 | 
						|
			p = &parent->rb_left;
 | 
						|
	}
 | 
						|
	rb_link_node(&nskb->rbnode, parent, p);
 | 
						|
	rb_insert_color(&nskb->rbnode, &q->t_root);
 | 
						|
	sch->q.qlen++;
 | 
						|
}
 | 
						|
 | 
						|
/* netem can't properly corrupt a megapacket (like we get from GSO), so instead
 | 
						|
 * when we statistically choose to corrupt one, we instead segment it, returning
 | 
						|
 * the first packet to be corrupted, and re-enqueue the remaining frames
 | 
						|
 */
 | 
						|
static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
 | 
						|
				     struct sk_buff **to_free)
 | 
						|
{
 | 
						|
	struct sk_buff *segs;
 | 
						|
	netdev_features_t features = netif_skb_features(skb);
 | 
						|
 | 
						|
	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
 | 
						|
 | 
						|
	if (IS_ERR_OR_NULL(segs)) {
 | 
						|
		qdisc_drop(skb, sch, to_free);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	consume_skb(skb);
 | 
						|
	return segs;
 | 
						|
}
 | 
						|
 | 
						|
static void netem_enqueue_skb_head(struct qdisc_skb_head *qh, struct sk_buff *skb)
 | 
						|
{
 | 
						|
	skb->next = qh->head;
 | 
						|
 | 
						|
	if (!qh->head)
 | 
						|
		qh->tail = skb;
 | 
						|
	qh->head = skb;
 | 
						|
	qh->qlen++;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Insert one skb into qdisc.
 | 
						|
 * Note: parent depends on return value to account for queue length.
 | 
						|
 * 	NET_XMIT_DROP: queue length didn't change.
 | 
						|
 *      NET_XMIT_SUCCESS: one skb was queued.
 | 
						|
 */
 | 
						|
static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 | 
						|
			 struct sk_buff **to_free)
 | 
						|
{
 | 
						|
	struct netem_sched_data *q = qdisc_priv(sch);
 | 
						|
	/* We don't fill cb now as skb_unshare() may invalidate it */
 | 
						|
	struct netem_skb_cb *cb;
 | 
						|
	struct sk_buff *skb2;
 | 
						|
	struct sk_buff *segs = NULL;
 | 
						|
	unsigned int len = 0, last_len, prev_len = qdisc_pkt_len(skb);
 | 
						|
	int nb = 0;
 | 
						|
	int count = 1;
 | 
						|
	int rc = NET_XMIT_SUCCESS;
 | 
						|
 | 
						|
	/* Random duplication */
 | 
						|
	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
 | 
						|
		++count;
 | 
						|
 | 
						|
	/* Drop packet? */
 | 
						|
	if (loss_event(q)) {
 | 
						|
		if (q->ecn && INET_ECN_set_ce(skb))
 | 
						|
			qdisc_qstats_drop(sch); /* mark packet */
 | 
						|
		else
 | 
						|
			--count;
 | 
						|
	}
 | 
						|
	if (count == 0) {
 | 
						|
		qdisc_qstats_drop(sch);
 | 
						|
		__qdisc_drop(skb, to_free);
 | 
						|
		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 | 
						|
	}
 | 
						|
 | 
						|
	/* If a delay is expected, orphan the skb. (orphaning usually takes
 | 
						|
	 * place at TX completion time, so _before_ the link transit delay)
 | 
						|
	 */
 | 
						|
	if (q->latency || q->jitter || q->rate)
 | 
						|
		skb_orphan_partial(skb);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we need to duplicate packet, then re-insert at top of the
 | 
						|
	 * qdisc tree, since parent queuer expects that only one
 | 
						|
	 * skb will be queued.
 | 
						|
	 */
 | 
						|
	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
 | 
						|
		struct Qdisc *rootq = qdisc_root(sch);
 | 
						|
		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
 | 
						|
 | 
						|
		q->duplicate = 0;
 | 
						|
		rootq->enqueue(skb2, rootq, to_free);
 | 
						|
		q->duplicate = dupsave;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Randomized packet corruption.
 | 
						|
	 * Make copy if needed since we are modifying
 | 
						|
	 * If packet is going to be hardware checksummed, then
 | 
						|
	 * do it now in software before we mangle it.
 | 
						|
	 */
 | 
						|
	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
 | 
						|
		if (skb_is_gso(skb)) {
 | 
						|
			segs = netem_segment(skb, sch, to_free);
 | 
						|
			if (!segs)
 | 
						|
				return NET_XMIT_DROP;
 | 
						|
		} else {
 | 
						|
			segs = skb;
 | 
						|
		}
 | 
						|
 | 
						|
		skb = segs;
 | 
						|
		segs = segs->next;
 | 
						|
 | 
						|
		skb = skb_unshare(skb, GFP_ATOMIC);
 | 
						|
		if (unlikely(!skb)) {
 | 
						|
			qdisc_qstats_drop(sch);
 | 
						|
			goto finish_segs;
 | 
						|
		}
 | 
						|
		if (skb->ip_summed == CHECKSUM_PARTIAL &&
 | 
						|
		    skb_checksum_help(skb)) {
 | 
						|
			qdisc_drop(skb, sch, to_free);
 | 
						|
			goto finish_segs;
 | 
						|
		}
 | 
						|
 | 
						|
		skb->data[prandom_u32() % skb_headlen(skb)] ^=
 | 
						|
			1<<(prandom_u32() % 8);
 | 
						|
	}
 | 
						|
 | 
						|
	if (unlikely(sch->q.qlen >= sch->limit))
 | 
						|
		return qdisc_drop(skb, sch, to_free);
 | 
						|
 | 
						|
	qdisc_qstats_backlog_inc(sch, skb);
 | 
						|
 | 
						|
	cb = netem_skb_cb(skb);
 | 
						|
	if (q->gap == 0 ||		/* not doing reordering */
 | 
						|
	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
 | 
						|
	    q->reorder < get_crandom(&q->reorder_cor)) {
 | 
						|
		u64 now;
 | 
						|
		s64 delay;
 | 
						|
 | 
						|
		delay = tabledist(q->latency, q->jitter,
 | 
						|
				  &q->delay_cor, q->delay_dist);
 | 
						|
 | 
						|
		now = ktime_get_ns();
 | 
						|
 | 
						|
		if (q->rate) {
 | 
						|
			struct netem_skb_cb *last = NULL;
 | 
						|
 | 
						|
			if (sch->q.tail)
 | 
						|
				last = netem_skb_cb(sch->q.tail);
 | 
						|
			if (q->t_root.rb_node) {
 | 
						|
				struct sk_buff *t_skb;
 | 
						|
				struct netem_skb_cb *t_last;
 | 
						|
 | 
						|
				t_skb = skb_rb_last(&q->t_root);
 | 
						|
				t_last = netem_skb_cb(t_skb);
 | 
						|
				if (!last ||
 | 
						|
				    t_last->time_to_send > last->time_to_send) {
 | 
						|
					last = t_last;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			if (last) {
 | 
						|
				/*
 | 
						|
				 * Last packet in queue is reference point (now),
 | 
						|
				 * calculate this time bonus and subtract
 | 
						|
				 * from delay.
 | 
						|
				 */
 | 
						|
				delay -= last->time_to_send - now;
 | 
						|
				delay = max_t(s64, 0, delay);
 | 
						|
				now = last->time_to_send;
 | 
						|
			}
 | 
						|
 | 
						|
			delay += packet_time_ns(qdisc_pkt_len(skb), q);
 | 
						|
		}
 | 
						|
 | 
						|
		cb->time_to_send = now + delay;
 | 
						|
		++q->counter;
 | 
						|
		tfifo_enqueue(skb, sch);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * Do re-ordering by putting one out of N packets at the front
 | 
						|
		 * of the queue.
 | 
						|
		 */
 | 
						|
		cb->time_to_send = ktime_get_ns();
 | 
						|
		q->counter = 0;
 | 
						|
 | 
						|
		netem_enqueue_skb_head(&sch->q, skb);
 | 
						|
		sch->qstats.requeues++;
 | 
						|
	}
 | 
						|
 | 
						|
finish_segs:
 | 
						|
	if (segs) {
 | 
						|
		while (segs) {
 | 
						|
			skb2 = segs->next;
 | 
						|
			segs->next = NULL;
 | 
						|
			qdisc_skb_cb(segs)->pkt_len = segs->len;
 | 
						|
			last_len = segs->len;
 | 
						|
			rc = qdisc_enqueue(segs, sch, to_free);
 | 
						|
			if (rc != NET_XMIT_SUCCESS) {
 | 
						|
				if (net_xmit_drop_count(rc))
 | 
						|
					qdisc_qstats_drop(sch);
 | 
						|
			} else {
 | 
						|
				nb++;
 | 
						|
				len += last_len;
 | 
						|
			}
 | 
						|
			segs = skb2;
 | 
						|
		}
 | 
						|
		sch->q.qlen += nb;
 | 
						|
		if (nb > 1)
 | 
						|
			qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
 | 
						|
	}
 | 
						|
	return NET_XMIT_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
/* Delay the next round with a new future slot with a
 | 
						|
 * correct number of bytes and packets.
 | 
						|
 */
 | 
						|
 | 
						|
static void get_slot_next(struct netem_sched_data *q, u64 now)
 | 
						|
{
 | 
						|
	q->slot.slot_next = now + q->slot_config.min_delay +
 | 
						|
		(prandom_u32() *
 | 
						|
			(q->slot_config.max_delay -
 | 
						|
				q->slot_config.min_delay) >> 32);
 | 
						|
	q->slot.packets_left = q->slot_config.max_packets;
 | 
						|
	q->slot.bytes_left = q->slot_config.max_bytes;
 | 
						|
}
 | 
						|
 | 
						|
static struct sk_buff *netem_dequeue(struct Qdisc *sch)
 | 
						|
{
 | 
						|
	struct netem_sched_data *q = qdisc_priv(sch);
 | 
						|
	struct sk_buff *skb;
 | 
						|
	struct rb_node *p;
 | 
						|
 | 
						|
tfifo_dequeue:
 | 
						|
	skb = __qdisc_dequeue_head(&sch->q);
 | 
						|
	if (skb) {
 | 
						|
		qdisc_qstats_backlog_dec(sch, skb);
 | 
						|
deliver:
 | 
						|
		qdisc_bstats_update(sch, skb);
 | 
						|
		return skb;
 | 
						|
	}
 | 
						|
	p = rb_first(&q->t_root);
 | 
						|
	if (p) {
 | 
						|
		u64 time_to_send;
 | 
						|
		u64 now = ktime_get_ns();
 | 
						|
 | 
						|
		skb = rb_to_skb(p);
 | 
						|
 | 
						|
		/* if more time remaining? */
 | 
						|
		time_to_send = netem_skb_cb(skb)->time_to_send;
 | 
						|
		if (q->slot.slot_next && q->slot.slot_next < time_to_send)
 | 
						|
			get_slot_next(q, now);
 | 
						|
 | 
						|
		if (time_to_send <= now &&  q->slot.slot_next <= now) {
 | 
						|
			rb_erase(p, &q->t_root);
 | 
						|
			sch->q.qlen--;
 | 
						|
			qdisc_qstats_backlog_dec(sch, skb);
 | 
						|
			skb->next = NULL;
 | 
						|
			skb->prev = NULL;
 | 
						|
			/* skb->dev shares skb->rbnode area,
 | 
						|
			 * we need to restore its value.
 | 
						|
			 */
 | 
						|
			skb->dev = qdisc_dev(sch);
 | 
						|
 | 
						|
#ifdef CONFIG_NET_CLS_ACT
 | 
						|
			/*
 | 
						|
			 * If it's at ingress let's pretend the delay is
 | 
						|
			 * from the network (tstamp will be updated).
 | 
						|
			 */
 | 
						|
			if (skb->tc_redirected && skb->tc_from_ingress)
 | 
						|
				skb->tstamp = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
			if (q->slot.slot_next) {
 | 
						|
				q->slot.packets_left--;
 | 
						|
				q->slot.bytes_left -= qdisc_pkt_len(skb);
 | 
						|
				if (q->slot.packets_left <= 0 ||
 | 
						|
				    q->slot.bytes_left <= 0)
 | 
						|
					get_slot_next(q, now);
 | 
						|
			}
 | 
						|
 | 
						|
			if (q->qdisc) {
 | 
						|
				unsigned int pkt_len = qdisc_pkt_len(skb);
 | 
						|
				struct sk_buff *to_free = NULL;
 | 
						|
				int err;
 | 
						|
 | 
						|
				err = qdisc_enqueue(skb, q->qdisc, &to_free);
 | 
						|
				kfree_skb_list(to_free);
 | 
						|
				if (err != NET_XMIT_SUCCESS &&
 | 
						|
				    net_xmit_drop_count(err)) {
 | 
						|
					qdisc_qstats_drop(sch);
 | 
						|
					qdisc_tree_reduce_backlog(sch, 1,
 | 
						|
								  pkt_len);
 | 
						|
				}
 | 
						|
				goto tfifo_dequeue;
 | 
						|
			}
 | 
						|
			goto deliver;
 | 
						|
		}
 | 
						|
 | 
						|
		if (q->qdisc) {
 | 
						|
			skb = q->qdisc->ops->dequeue(q->qdisc);
 | 
						|
			if (skb)
 | 
						|
				goto deliver;
 | 
						|
		}
 | 
						|
 | 
						|
		qdisc_watchdog_schedule_ns(&q->watchdog,
 | 
						|
					   max(time_to_send,
 | 
						|
					       q->slot.slot_next));
 | 
						|
	}
 | 
						|
 | 
						|
	if (q->qdisc) {
 | 
						|
		skb = q->qdisc->ops->dequeue(q->qdisc);
 | 
						|
		if (skb)
 | 
						|
			goto deliver;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void netem_reset(struct Qdisc *sch)
 | 
						|
{
 | 
						|
	struct netem_sched_data *q = qdisc_priv(sch);
 | 
						|
 | 
						|
	qdisc_reset_queue(sch);
 | 
						|
	tfifo_reset(sch);
 | 
						|
	if (q->qdisc)
 | 
						|
		qdisc_reset(q->qdisc);
 | 
						|
	qdisc_watchdog_cancel(&q->watchdog);
 | 
						|
}
 | 
						|
 | 
						|
static void dist_free(struct disttable *d)
 | 
						|
{
 | 
						|
	kvfree(d);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Distribution data is a variable size payload containing
 | 
						|
 * signed 16 bit values.
 | 
						|
 */
 | 
						|
 | 
						|
static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
 | 
						|
{
 | 
						|
	struct netem_sched_data *q = qdisc_priv(sch);
 | 
						|
	size_t n = nla_len(attr)/sizeof(__s16);
 | 
						|
	const __s16 *data = nla_data(attr);
 | 
						|
	spinlock_t *root_lock;
 | 
						|
	struct disttable *d;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (n > NETEM_DIST_MAX)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	d = kvmalloc(sizeof(struct disttable) + n * sizeof(s16), GFP_KERNEL);
 | 
						|
	if (!d)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	d->size = n;
 | 
						|
	for (i = 0; i < n; i++)
 | 
						|
		d->table[i] = data[i];
 | 
						|
 | 
						|
	root_lock = qdisc_root_sleeping_lock(sch);
 | 
						|
 | 
						|
	spin_lock_bh(root_lock);
 | 
						|
	swap(q->delay_dist, d);
 | 
						|
	spin_unlock_bh(root_lock);
 | 
						|
 | 
						|
	dist_free(d);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
 | 
						|
{
 | 
						|
	const struct tc_netem_slot *c = nla_data(attr);
 | 
						|
 | 
						|
	q->slot_config = *c;
 | 
						|
	if (q->slot_config.max_packets == 0)
 | 
						|
		q->slot_config.max_packets = INT_MAX;
 | 
						|
	if (q->slot_config.max_bytes == 0)
 | 
						|
		q->slot_config.max_bytes = INT_MAX;
 | 
						|
	q->slot.packets_left = q->slot_config.max_packets;
 | 
						|
	q->slot.bytes_left = q->slot_config.max_bytes;
 | 
						|
	if (q->slot_config.min_delay | q->slot_config.max_delay)
 | 
						|
		q->slot.slot_next = ktime_get_ns();
 | 
						|
	else
 | 
						|
		q->slot.slot_next = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
 | 
						|
{
 | 
						|
	const struct tc_netem_corr *c = nla_data(attr);
 | 
						|
 | 
						|
	init_crandom(&q->delay_cor, c->delay_corr);
 | 
						|
	init_crandom(&q->loss_cor, c->loss_corr);
 | 
						|
	init_crandom(&q->dup_cor, c->dup_corr);
 | 
						|
}
 | 
						|
 | 
						|
static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
 | 
						|
{
 | 
						|
	const struct tc_netem_reorder *r = nla_data(attr);
 | 
						|
 | 
						|
	q->reorder = r->probability;
 | 
						|
	init_crandom(&q->reorder_cor, r->correlation);
 | 
						|
}
 | 
						|
 | 
						|
static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
 | 
						|
{
 | 
						|
	const struct tc_netem_corrupt *r = nla_data(attr);
 | 
						|
 | 
						|
	q->corrupt = r->probability;
 | 
						|
	init_crandom(&q->corrupt_cor, r->correlation);
 | 
						|
}
 | 
						|
 | 
						|
static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
 | 
						|
{
 | 
						|
	const struct tc_netem_rate *r = nla_data(attr);
 | 
						|
 | 
						|
	q->rate = r->rate;
 | 
						|
	q->packet_overhead = r->packet_overhead;
 | 
						|
	q->cell_size = r->cell_size;
 | 
						|
	q->cell_overhead = r->cell_overhead;
 | 
						|
	if (q->cell_size)
 | 
						|
		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
 | 
						|
	else
 | 
						|
		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
 | 
						|
}
 | 
						|
 | 
						|
static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
 | 
						|
{
 | 
						|
	const struct nlattr *la;
 | 
						|
	int rem;
 | 
						|
 | 
						|
	nla_for_each_nested(la, attr, rem) {
 | 
						|
		u16 type = nla_type(la);
 | 
						|
 | 
						|
		switch (type) {
 | 
						|
		case NETEM_LOSS_GI: {
 | 
						|
			const struct tc_netem_gimodel *gi = nla_data(la);
 | 
						|
 | 
						|
			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
 | 
						|
				pr_info("netem: incorrect gi model size\n");
 | 
						|
				return -EINVAL;
 | 
						|
			}
 | 
						|
 | 
						|
			q->loss_model = CLG_4_STATES;
 | 
						|
 | 
						|
			q->clg.state = TX_IN_GAP_PERIOD;
 | 
						|
			q->clg.a1 = gi->p13;
 | 
						|
			q->clg.a2 = gi->p31;
 | 
						|
			q->clg.a3 = gi->p32;
 | 
						|
			q->clg.a4 = gi->p14;
 | 
						|
			q->clg.a5 = gi->p23;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		case NETEM_LOSS_GE: {
 | 
						|
			const struct tc_netem_gemodel *ge = nla_data(la);
 | 
						|
 | 
						|
			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
 | 
						|
				pr_info("netem: incorrect ge model size\n");
 | 
						|
				return -EINVAL;
 | 
						|
			}
 | 
						|
 | 
						|
			q->loss_model = CLG_GILB_ELL;
 | 
						|
			q->clg.state = GOOD_STATE;
 | 
						|
			q->clg.a1 = ge->p;
 | 
						|
			q->clg.a2 = ge->r;
 | 
						|
			q->clg.a3 = ge->h;
 | 
						|
			q->clg.a4 = ge->k1;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		default:
 | 
						|
			pr_info("netem: unknown loss type %u\n", type);
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
 | 
						|
	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
 | 
						|
	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
 | 
						|
	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
 | 
						|
	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
 | 
						|
	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
 | 
						|
	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
 | 
						|
	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
 | 
						|
	[TCA_NETEM_LATENCY64]	= { .type = NLA_S64 },
 | 
						|
	[TCA_NETEM_JITTER64]	= { .type = NLA_S64 },
 | 
						|
	[TCA_NETEM_SLOT]	= { .len = sizeof(struct tc_netem_slot) },
 | 
						|
};
 | 
						|
 | 
						|
static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
 | 
						|
		      const struct nla_policy *policy, int len)
 | 
						|
{
 | 
						|
	int nested_len = nla_len(nla) - NLA_ALIGN(len);
 | 
						|
 | 
						|
	if (nested_len < 0) {
 | 
						|
		pr_info("netem: invalid attributes len %d\n", nested_len);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (nested_len >= nla_attr_size(0))
 | 
						|
		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
 | 
						|
				 nested_len, policy, NULL);
 | 
						|
 | 
						|
	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Parse netlink message to set options */
 | 
						|
static int netem_change(struct Qdisc *sch, struct nlattr *opt)
 | 
						|
{
 | 
						|
	struct netem_sched_data *q = qdisc_priv(sch);
 | 
						|
	struct nlattr *tb[TCA_NETEM_MAX + 1];
 | 
						|
	struct tc_netem_qopt *qopt;
 | 
						|
	struct clgstate old_clg;
 | 
						|
	int old_loss_model = CLG_RANDOM;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (opt == NULL)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	qopt = nla_data(opt);
 | 
						|
	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
 | 
						|
	if (ret < 0)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/* backup q->clg and q->loss_model */
 | 
						|
	old_clg = q->clg;
 | 
						|
	old_loss_model = q->loss_model;
 | 
						|
 | 
						|
	if (tb[TCA_NETEM_LOSS]) {
 | 
						|
		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
 | 
						|
		if (ret) {
 | 
						|
			q->loss_model = old_loss_model;
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		q->loss_model = CLG_RANDOM;
 | 
						|
	}
 | 
						|
 | 
						|
	if (tb[TCA_NETEM_DELAY_DIST]) {
 | 
						|
		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
 | 
						|
		if (ret) {
 | 
						|
			/* recover clg and loss_model, in case of
 | 
						|
			 * q->clg and q->loss_model were modified
 | 
						|
			 * in get_loss_clg()
 | 
						|
			 */
 | 
						|
			q->clg = old_clg;
 | 
						|
			q->loss_model = old_loss_model;
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	sch->limit = qopt->limit;
 | 
						|
 | 
						|
	q->latency = PSCHED_TICKS2NS(qopt->latency);
 | 
						|
	q->jitter = PSCHED_TICKS2NS(qopt->jitter);
 | 
						|
	q->limit = qopt->limit;
 | 
						|
	q->gap = qopt->gap;
 | 
						|
	q->counter = 0;
 | 
						|
	q->loss = qopt->loss;
 | 
						|
	q->duplicate = qopt->duplicate;
 | 
						|
 | 
						|
	/* for compatibility with earlier versions.
 | 
						|
	 * if gap is set, need to assume 100% probability
 | 
						|
	 */
 | 
						|
	if (q->gap)
 | 
						|
		q->reorder = ~0;
 | 
						|
 | 
						|
	if (tb[TCA_NETEM_CORR])
 | 
						|
		get_correlation(q, tb[TCA_NETEM_CORR]);
 | 
						|
 | 
						|
	if (tb[TCA_NETEM_REORDER])
 | 
						|
		get_reorder(q, tb[TCA_NETEM_REORDER]);
 | 
						|
 | 
						|
	if (tb[TCA_NETEM_CORRUPT])
 | 
						|
		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
 | 
						|
 | 
						|
	if (tb[TCA_NETEM_RATE])
 | 
						|
		get_rate(q, tb[TCA_NETEM_RATE]);
 | 
						|
 | 
						|
	if (tb[TCA_NETEM_RATE64])
 | 
						|
		q->rate = max_t(u64, q->rate,
 | 
						|
				nla_get_u64(tb[TCA_NETEM_RATE64]));
 | 
						|
 | 
						|
	if (tb[TCA_NETEM_LATENCY64])
 | 
						|
		q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
 | 
						|
 | 
						|
	if (tb[TCA_NETEM_JITTER64])
 | 
						|
		q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
 | 
						|
 | 
						|
	if (tb[TCA_NETEM_ECN])
 | 
						|
		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
 | 
						|
 | 
						|
	if (tb[TCA_NETEM_SLOT])
 | 
						|
		get_slot(q, tb[TCA_NETEM_SLOT]);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int netem_init(struct Qdisc *sch, struct nlattr *opt)
 | 
						|
{
 | 
						|
	struct netem_sched_data *q = qdisc_priv(sch);
 | 
						|
	int ret;
 | 
						|
 | 
						|
	qdisc_watchdog_init(&q->watchdog, sch);
 | 
						|
 | 
						|
	if (!opt)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	q->loss_model = CLG_RANDOM;
 | 
						|
	ret = netem_change(sch, opt);
 | 
						|
	if (ret)
 | 
						|
		pr_info("netem: change failed\n");
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void netem_destroy(struct Qdisc *sch)
 | 
						|
{
 | 
						|
	struct netem_sched_data *q = qdisc_priv(sch);
 | 
						|
 | 
						|
	qdisc_watchdog_cancel(&q->watchdog);
 | 
						|
	if (q->qdisc)
 | 
						|
		qdisc_destroy(q->qdisc);
 | 
						|
	dist_free(q->delay_dist);
 | 
						|
}
 | 
						|
 | 
						|
static int dump_loss_model(const struct netem_sched_data *q,
 | 
						|
			   struct sk_buff *skb)
 | 
						|
{
 | 
						|
	struct nlattr *nest;
 | 
						|
 | 
						|
	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
 | 
						|
	if (nest == NULL)
 | 
						|
		goto nla_put_failure;
 | 
						|
 | 
						|
	switch (q->loss_model) {
 | 
						|
	case CLG_RANDOM:
 | 
						|
		/* legacy loss model */
 | 
						|
		nla_nest_cancel(skb, nest);
 | 
						|
		return 0;	/* no data */
 | 
						|
 | 
						|
	case CLG_4_STATES: {
 | 
						|
		struct tc_netem_gimodel gi = {
 | 
						|
			.p13 = q->clg.a1,
 | 
						|
			.p31 = q->clg.a2,
 | 
						|
			.p32 = q->clg.a3,
 | 
						|
			.p14 = q->clg.a4,
 | 
						|
			.p23 = q->clg.a5,
 | 
						|
		};
 | 
						|
 | 
						|
		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
 | 
						|
			goto nla_put_failure;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case CLG_GILB_ELL: {
 | 
						|
		struct tc_netem_gemodel ge = {
 | 
						|
			.p = q->clg.a1,
 | 
						|
			.r = q->clg.a2,
 | 
						|
			.h = q->clg.a3,
 | 
						|
			.k1 = q->clg.a4,
 | 
						|
		};
 | 
						|
 | 
						|
		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
 | 
						|
			goto nla_put_failure;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	}
 | 
						|
 | 
						|
	nla_nest_end(skb, nest);
 | 
						|
	return 0;
 | 
						|
 | 
						|
nla_put_failure:
 | 
						|
	nla_nest_cancel(skb, nest);
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
 | 
						|
{
 | 
						|
	const struct netem_sched_data *q = qdisc_priv(sch);
 | 
						|
	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
 | 
						|
	struct tc_netem_qopt qopt;
 | 
						|
	struct tc_netem_corr cor;
 | 
						|
	struct tc_netem_reorder reorder;
 | 
						|
	struct tc_netem_corrupt corrupt;
 | 
						|
	struct tc_netem_rate rate;
 | 
						|
	struct tc_netem_slot slot;
 | 
						|
 | 
						|
	qopt.latency = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->latency),
 | 
						|
			     UINT_MAX);
 | 
						|
	qopt.jitter = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->jitter),
 | 
						|
			    UINT_MAX);
 | 
						|
	qopt.limit = q->limit;
 | 
						|
	qopt.loss = q->loss;
 | 
						|
	qopt.gap = q->gap;
 | 
						|
	qopt.duplicate = q->duplicate;
 | 
						|
	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
 | 
						|
		goto nla_put_failure;
 | 
						|
 | 
						|
	if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
 | 
						|
		goto nla_put_failure;
 | 
						|
 | 
						|
	if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
 | 
						|
		goto nla_put_failure;
 | 
						|
 | 
						|
	cor.delay_corr = q->delay_cor.rho;
 | 
						|
	cor.loss_corr = q->loss_cor.rho;
 | 
						|
	cor.dup_corr = q->dup_cor.rho;
 | 
						|
	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
 | 
						|
		goto nla_put_failure;
 | 
						|
 | 
						|
	reorder.probability = q->reorder;
 | 
						|
	reorder.correlation = q->reorder_cor.rho;
 | 
						|
	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
 | 
						|
		goto nla_put_failure;
 | 
						|
 | 
						|
	corrupt.probability = q->corrupt;
 | 
						|
	corrupt.correlation = q->corrupt_cor.rho;
 | 
						|
	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
 | 
						|
		goto nla_put_failure;
 | 
						|
 | 
						|
	if (q->rate >= (1ULL << 32)) {
 | 
						|
		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
 | 
						|
				      TCA_NETEM_PAD))
 | 
						|
			goto nla_put_failure;
 | 
						|
		rate.rate = ~0U;
 | 
						|
	} else {
 | 
						|
		rate.rate = q->rate;
 | 
						|
	}
 | 
						|
	rate.packet_overhead = q->packet_overhead;
 | 
						|
	rate.cell_size = q->cell_size;
 | 
						|
	rate.cell_overhead = q->cell_overhead;
 | 
						|
	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
 | 
						|
		goto nla_put_failure;
 | 
						|
 | 
						|
	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
 | 
						|
		goto nla_put_failure;
 | 
						|
 | 
						|
	if (dump_loss_model(q, skb) != 0)
 | 
						|
		goto nla_put_failure;
 | 
						|
 | 
						|
	if (q->slot_config.min_delay | q->slot_config.max_delay) {
 | 
						|
		slot = q->slot_config;
 | 
						|
		if (slot.max_packets == INT_MAX)
 | 
						|
			slot.max_packets = 0;
 | 
						|
		if (slot.max_bytes == INT_MAX)
 | 
						|
			slot.max_bytes = 0;
 | 
						|
		if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
 | 
						|
			goto nla_put_failure;
 | 
						|
	}
 | 
						|
 | 
						|
	return nla_nest_end(skb, nla);
 | 
						|
 | 
						|
nla_put_failure:
 | 
						|
	nlmsg_trim(skb, nla);
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
 | 
						|
			  struct sk_buff *skb, struct tcmsg *tcm)
 | 
						|
{
 | 
						|
	struct netem_sched_data *q = qdisc_priv(sch);
 | 
						|
 | 
						|
	if (cl != 1 || !q->qdisc) 	/* only one class */
 | 
						|
		return -ENOENT;
 | 
						|
 | 
						|
	tcm->tcm_handle |= TC_H_MIN(1);
 | 
						|
	tcm->tcm_info = q->qdisc->handle;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
 | 
						|
		     struct Qdisc **old)
 | 
						|
{
 | 
						|
	struct netem_sched_data *q = qdisc_priv(sch);
 | 
						|
 | 
						|
	*old = qdisc_replace(sch, new, &q->qdisc);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
 | 
						|
{
 | 
						|
	struct netem_sched_data *q = qdisc_priv(sch);
 | 
						|
	return q->qdisc;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long netem_find(struct Qdisc *sch, u32 classid)
 | 
						|
{
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
 | 
						|
{
 | 
						|
	if (!walker->stop) {
 | 
						|
		if (walker->count >= walker->skip)
 | 
						|
			if (walker->fn(sch, 1, walker) < 0) {
 | 
						|
				walker->stop = 1;
 | 
						|
				return;
 | 
						|
			}
 | 
						|
		walker->count++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static const struct Qdisc_class_ops netem_class_ops = {
 | 
						|
	.graft		=	netem_graft,
 | 
						|
	.leaf		=	netem_leaf,
 | 
						|
	.find		=	netem_find,
 | 
						|
	.walk		=	netem_walk,
 | 
						|
	.dump		=	netem_dump_class,
 | 
						|
};
 | 
						|
 | 
						|
static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
 | 
						|
	.id		=	"netem",
 | 
						|
	.cl_ops		=	&netem_class_ops,
 | 
						|
	.priv_size	=	sizeof(struct netem_sched_data),
 | 
						|
	.enqueue	=	netem_enqueue,
 | 
						|
	.dequeue	=	netem_dequeue,
 | 
						|
	.peek		=	qdisc_peek_dequeued,
 | 
						|
	.init		=	netem_init,
 | 
						|
	.reset		=	netem_reset,
 | 
						|
	.destroy	=	netem_destroy,
 | 
						|
	.change		=	netem_change,
 | 
						|
	.dump		=	netem_dump,
 | 
						|
	.owner		=	THIS_MODULE,
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
static int __init netem_module_init(void)
 | 
						|
{
 | 
						|
	pr_info("netem: version " VERSION "\n");
 | 
						|
	return register_qdisc(&netem_qdisc_ops);
 | 
						|
}
 | 
						|
static void __exit netem_module_exit(void)
 | 
						|
{
 | 
						|
	unregister_qdisc(&netem_qdisc_ops);
 | 
						|
}
 | 
						|
module_init(netem_module_init)
 | 
						|
module_exit(netem_module_exit)
 | 
						|
MODULE_LICENSE("GPL");
 |