mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	Move statement to static initilization of init_pid_ns. Signed-off-by: Raphael S. Carvalho <raphael.scarv@gmail.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			597 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			597 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Generic pidhash and scalable, time-bounded PID allocator
 | 
						|
 *
 | 
						|
 * (C) 2002-2003 Nadia Yvette Chambers, IBM
 | 
						|
 * (C) 2004 Nadia Yvette Chambers, Oracle
 | 
						|
 * (C) 2002-2004 Ingo Molnar, Red Hat
 | 
						|
 *
 | 
						|
 * pid-structures are backing objects for tasks sharing a given ID to chain
 | 
						|
 * against. There is very little to them aside from hashing them and
 | 
						|
 * parking tasks using given ID's on a list.
 | 
						|
 *
 | 
						|
 * The hash is always changed with the tasklist_lock write-acquired,
 | 
						|
 * and the hash is only accessed with the tasklist_lock at least
 | 
						|
 * read-acquired, so there's no additional SMP locking needed here.
 | 
						|
 *
 | 
						|
 * We have a list of bitmap pages, which bitmaps represent the PID space.
 | 
						|
 * Allocating and freeing PIDs is completely lockless. The worst-case
 | 
						|
 * allocation scenario when all but one out of 1 million PIDs possible are
 | 
						|
 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 | 
						|
 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 | 
						|
 *
 | 
						|
 * Pid namespaces:
 | 
						|
 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 | 
						|
 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 | 
						|
 *     Many thanks to Oleg Nesterov for comments and help
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/rculist.h>
 | 
						|
#include <linux/bootmem.h>
 | 
						|
#include <linux/hash.h>
 | 
						|
#include <linux/pid_namespace.h>
 | 
						|
#include <linux/init_task.h>
 | 
						|
#include <linux/syscalls.h>
 | 
						|
#include <linux/proc_ns.h>
 | 
						|
#include <linux/proc_fs.h>
 | 
						|
 | 
						|
#define pid_hashfn(nr, ns)	\
 | 
						|
	hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
 | 
						|
static struct hlist_head *pid_hash;
 | 
						|
static unsigned int pidhash_shift = 4;
 | 
						|
struct pid init_struct_pid = INIT_STRUCT_PID;
 | 
						|
 | 
						|
int pid_max = PID_MAX_DEFAULT;
 | 
						|
 | 
						|
#define RESERVED_PIDS		300
 | 
						|
 | 
						|
int pid_max_min = RESERVED_PIDS + 1;
 | 
						|
int pid_max_max = PID_MAX_LIMIT;
 | 
						|
 | 
						|
static inline int mk_pid(struct pid_namespace *pid_ns,
 | 
						|
		struct pidmap *map, int off)
 | 
						|
{
 | 
						|
	return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
 | 
						|
}
 | 
						|
 | 
						|
#define find_next_offset(map, off)					\
 | 
						|
		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
 | 
						|
 | 
						|
/*
 | 
						|
 * PID-map pages start out as NULL, they get allocated upon
 | 
						|
 * first use and are never deallocated. This way a low pid_max
 | 
						|
 * value does not cause lots of bitmaps to be allocated, but
 | 
						|
 * the scheme scales to up to 4 million PIDs, runtime.
 | 
						|
 */
 | 
						|
struct pid_namespace init_pid_ns = {
 | 
						|
	.kref = {
 | 
						|
		.refcount       = ATOMIC_INIT(2),
 | 
						|
	},
 | 
						|
	.pidmap = {
 | 
						|
		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
 | 
						|
	},
 | 
						|
	.last_pid = 0,
 | 
						|
	.nr_hashed = PIDNS_HASH_ADDING,
 | 
						|
	.level = 0,
 | 
						|
	.child_reaper = &init_task,
 | 
						|
	.user_ns = &init_user_ns,
 | 
						|
	.proc_inum = PROC_PID_INIT_INO,
 | 
						|
};
 | 
						|
EXPORT_SYMBOL_GPL(init_pid_ns);
 | 
						|
 | 
						|
/*
 | 
						|
 * Note: disable interrupts while the pidmap_lock is held as an
 | 
						|
 * interrupt might come in and do read_lock(&tasklist_lock).
 | 
						|
 *
 | 
						|
 * If we don't disable interrupts there is a nasty deadlock between
 | 
						|
 * detach_pid()->free_pid() and another cpu that does
 | 
						|
 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 | 
						|
 * read_lock(&tasklist_lock);
 | 
						|
 *
 | 
						|
 * After we clean up the tasklist_lock and know there are no
 | 
						|
 * irq handlers that take it we can leave the interrupts enabled.
 | 
						|
 * For now it is easier to be safe than to prove it can't happen.
 | 
						|
 */
 | 
						|
 | 
						|
static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
 | 
						|
 | 
						|
static void free_pidmap(struct upid *upid)
 | 
						|
{
 | 
						|
	int nr = upid->nr;
 | 
						|
	struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
 | 
						|
	int offset = nr & BITS_PER_PAGE_MASK;
 | 
						|
 | 
						|
	clear_bit(offset, map->page);
 | 
						|
	atomic_inc(&map->nr_free);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If we started walking pids at 'base', is 'a' seen before 'b'?
 | 
						|
 */
 | 
						|
static int pid_before(int base, int a, int b)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * This is the same as saying
 | 
						|
	 *
 | 
						|
	 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
 | 
						|
	 * and that mapping orders 'a' and 'b' with respect to 'base'.
 | 
						|
	 */
 | 
						|
	return (unsigned)(a - base) < (unsigned)(b - base);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We might be racing with someone else trying to set pid_ns->last_pid
 | 
						|
 * at the pid allocation time (there's also a sysctl for this, but racing
 | 
						|
 * with this one is OK, see comment in kernel/pid_namespace.c about it).
 | 
						|
 * We want the winner to have the "later" value, because if the
 | 
						|
 * "earlier" value prevails, then a pid may get reused immediately.
 | 
						|
 *
 | 
						|
 * Since pids rollover, it is not sufficient to just pick the bigger
 | 
						|
 * value.  We have to consider where we started counting from.
 | 
						|
 *
 | 
						|
 * 'base' is the value of pid_ns->last_pid that we observed when
 | 
						|
 * we started looking for a pid.
 | 
						|
 *
 | 
						|
 * 'pid' is the pid that we eventually found.
 | 
						|
 */
 | 
						|
static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
 | 
						|
{
 | 
						|
	int prev;
 | 
						|
	int last_write = base;
 | 
						|
	do {
 | 
						|
		prev = last_write;
 | 
						|
		last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
 | 
						|
	} while ((prev != last_write) && (pid_before(base, last_write, pid)));
 | 
						|
}
 | 
						|
 | 
						|
static int alloc_pidmap(struct pid_namespace *pid_ns)
 | 
						|
{
 | 
						|
	int i, offset, max_scan, pid, last = pid_ns->last_pid;
 | 
						|
	struct pidmap *map;
 | 
						|
 | 
						|
	pid = last + 1;
 | 
						|
	if (pid >= pid_max)
 | 
						|
		pid = RESERVED_PIDS;
 | 
						|
	offset = pid & BITS_PER_PAGE_MASK;
 | 
						|
	map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
 | 
						|
	/*
 | 
						|
	 * If last_pid points into the middle of the map->page we
 | 
						|
	 * want to scan this bitmap block twice, the second time
 | 
						|
	 * we start with offset == 0 (or RESERVED_PIDS).
 | 
						|
	 */
 | 
						|
	max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
 | 
						|
	for (i = 0; i <= max_scan; ++i) {
 | 
						|
		if (unlikely(!map->page)) {
 | 
						|
			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
 | 
						|
			/*
 | 
						|
			 * Free the page if someone raced with us
 | 
						|
			 * installing it:
 | 
						|
			 */
 | 
						|
			spin_lock_irq(&pidmap_lock);
 | 
						|
			if (!map->page) {
 | 
						|
				map->page = page;
 | 
						|
				page = NULL;
 | 
						|
			}
 | 
						|
			spin_unlock_irq(&pidmap_lock);
 | 
						|
			kfree(page);
 | 
						|
			if (unlikely(!map->page))
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		if (likely(atomic_read(&map->nr_free))) {
 | 
						|
			for ( ; ; ) {
 | 
						|
				if (!test_and_set_bit(offset, map->page)) {
 | 
						|
					atomic_dec(&map->nr_free);
 | 
						|
					set_last_pid(pid_ns, last, pid);
 | 
						|
					return pid;
 | 
						|
				}
 | 
						|
				offset = find_next_offset(map, offset);
 | 
						|
				if (offset >= BITS_PER_PAGE)
 | 
						|
					break;
 | 
						|
				pid = mk_pid(pid_ns, map, offset);
 | 
						|
				if (pid >= pid_max)
 | 
						|
					break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
 | 
						|
			++map;
 | 
						|
			offset = 0;
 | 
						|
		} else {
 | 
						|
			map = &pid_ns->pidmap[0];
 | 
						|
			offset = RESERVED_PIDS;
 | 
						|
			if (unlikely(last == offset))
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		pid = mk_pid(pid_ns, map, offset);
 | 
						|
	}
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
 | 
						|
{
 | 
						|
	int offset;
 | 
						|
	struct pidmap *map, *end;
 | 
						|
 | 
						|
	if (last >= PID_MAX_LIMIT)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	offset = (last + 1) & BITS_PER_PAGE_MASK;
 | 
						|
	map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
 | 
						|
	end = &pid_ns->pidmap[PIDMAP_ENTRIES];
 | 
						|
	for (; map < end; map++, offset = 0) {
 | 
						|
		if (unlikely(!map->page))
 | 
						|
			continue;
 | 
						|
		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
 | 
						|
		if (offset < BITS_PER_PAGE)
 | 
						|
			return mk_pid(pid_ns, map, offset);
 | 
						|
	}
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
void put_pid(struct pid *pid)
 | 
						|
{
 | 
						|
	struct pid_namespace *ns;
 | 
						|
 | 
						|
	if (!pid)
 | 
						|
		return;
 | 
						|
 | 
						|
	ns = pid->numbers[pid->level].ns;
 | 
						|
	if ((atomic_read(&pid->count) == 1) ||
 | 
						|
	     atomic_dec_and_test(&pid->count)) {
 | 
						|
		kmem_cache_free(ns->pid_cachep, pid);
 | 
						|
		put_pid_ns(ns);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(put_pid);
 | 
						|
 | 
						|
static void delayed_put_pid(struct rcu_head *rhp)
 | 
						|
{
 | 
						|
	struct pid *pid = container_of(rhp, struct pid, rcu);
 | 
						|
	put_pid(pid);
 | 
						|
}
 | 
						|
 | 
						|
void free_pid(struct pid *pid)
 | 
						|
{
 | 
						|
	/* We can be called with write_lock_irq(&tasklist_lock) held */
 | 
						|
	int i;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&pidmap_lock, flags);
 | 
						|
	for (i = 0; i <= pid->level; i++) {
 | 
						|
		struct upid *upid = pid->numbers + i;
 | 
						|
		struct pid_namespace *ns = upid->ns;
 | 
						|
		hlist_del_rcu(&upid->pid_chain);
 | 
						|
		switch(--ns->nr_hashed) {
 | 
						|
		case 1:
 | 
						|
			/* When all that is left in the pid namespace
 | 
						|
			 * is the reaper wake up the reaper.  The reaper
 | 
						|
			 * may be sleeping in zap_pid_ns_processes().
 | 
						|
			 */
 | 
						|
			wake_up_process(ns->child_reaper);
 | 
						|
			break;
 | 
						|
		case 0:
 | 
						|
			schedule_work(&ns->proc_work);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	spin_unlock_irqrestore(&pidmap_lock, flags);
 | 
						|
 | 
						|
	for (i = 0; i <= pid->level; i++)
 | 
						|
		free_pidmap(pid->numbers + i);
 | 
						|
 | 
						|
	call_rcu(&pid->rcu, delayed_put_pid);
 | 
						|
}
 | 
						|
 | 
						|
struct pid *alloc_pid(struct pid_namespace *ns)
 | 
						|
{
 | 
						|
	struct pid *pid;
 | 
						|
	enum pid_type type;
 | 
						|
	int i, nr;
 | 
						|
	struct pid_namespace *tmp;
 | 
						|
	struct upid *upid;
 | 
						|
 | 
						|
	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
 | 
						|
	if (!pid)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	tmp = ns;
 | 
						|
	pid->level = ns->level;
 | 
						|
	for (i = ns->level; i >= 0; i--) {
 | 
						|
		nr = alloc_pidmap(tmp);
 | 
						|
		if (nr < 0)
 | 
						|
			goto out_free;
 | 
						|
 | 
						|
		pid->numbers[i].nr = nr;
 | 
						|
		pid->numbers[i].ns = tmp;
 | 
						|
		tmp = tmp->parent;
 | 
						|
	}
 | 
						|
 | 
						|
	if (unlikely(is_child_reaper(pid))) {
 | 
						|
		if (pid_ns_prepare_proc(ns))
 | 
						|
			goto out_free;
 | 
						|
	}
 | 
						|
 | 
						|
	get_pid_ns(ns);
 | 
						|
	atomic_set(&pid->count, 1);
 | 
						|
	for (type = 0; type < PIDTYPE_MAX; ++type)
 | 
						|
		INIT_HLIST_HEAD(&pid->tasks[type]);
 | 
						|
 | 
						|
	upid = pid->numbers + ns->level;
 | 
						|
	spin_lock_irq(&pidmap_lock);
 | 
						|
	if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
 | 
						|
		goto out_unlock;
 | 
						|
	for ( ; upid >= pid->numbers; --upid) {
 | 
						|
		hlist_add_head_rcu(&upid->pid_chain,
 | 
						|
				&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
 | 
						|
		upid->ns->nr_hashed++;
 | 
						|
	}
 | 
						|
	spin_unlock_irq(&pidmap_lock);
 | 
						|
 | 
						|
out:
 | 
						|
	return pid;
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	spin_unlock_irq(&pidmap_lock);
 | 
						|
out_free:
 | 
						|
	while (++i <= ns->level)
 | 
						|
		free_pidmap(pid->numbers + i);
 | 
						|
 | 
						|
	kmem_cache_free(ns->pid_cachep, pid);
 | 
						|
	pid = NULL;
 | 
						|
	goto out;
 | 
						|
}
 | 
						|
 | 
						|
void disable_pid_allocation(struct pid_namespace *ns)
 | 
						|
{
 | 
						|
	spin_lock_irq(&pidmap_lock);
 | 
						|
	ns->nr_hashed &= ~PIDNS_HASH_ADDING;
 | 
						|
	spin_unlock_irq(&pidmap_lock);
 | 
						|
}
 | 
						|
 | 
						|
struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
 | 
						|
{
 | 
						|
	struct upid *pnr;
 | 
						|
 | 
						|
	hlist_for_each_entry_rcu(pnr,
 | 
						|
			&pid_hash[pid_hashfn(nr, ns)], pid_chain)
 | 
						|
		if (pnr->nr == nr && pnr->ns == ns)
 | 
						|
			return container_of(pnr, struct pid,
 | 
						|
					numbers[ns->level]);
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(find_pid_ns);
 | 
						|
 | 
						|
struct pid *find_vpid(int nr)
 | 
						|
{
 | 
						|
	return find_pid_ns(nr, task_active_pid_ns(current));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(find_vpid);
 | 
						|
 | 
						|
/*
 | 
						|
 * attach_pid() must be called with the tasklist_lock write-held.
 | 
						|
 */
 | 
						|
void attach_pid(struct task_struct *task, enum pid_type type)
 | 
						|
{
 | 
						|
	struct pid_link *link = &task->pids[type];
 | 
						|
	hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
 | 
						|
}
 | 
						|
 | 
						|
static void __change_pid(struct task_struct *task, enum pid_type type,
 | 
						|
			struct pid *new)
 | 
						|
{
 | 
						|
	struct pid_link *link;
 | 
						|
	struct pid *pid;
 | 
						|
	int tmp;
 | 
						|
 | 
						|
	link = &task->pids[type];
 | 
						|
	pid = link->pid;
 | 
						|
 | 
						|
	hlist_del_rcu(&link->node);
 | 
						|
	link->pid = new;
 | 
						|
 | 
						|
	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
 | 
						|
		if (!hlist_empty(&pid->tasks[tmp]))
 | 
						|
			return;
 | 
						|
 | 
						|
	free_pid(pid);
 | 
						|
}
 | 
						|
 | 
						|
void detach_pid(struct task_struct *task, enum pid_type type)
 | 
						|
{
 | 
						|
	__change_pid(task, type, NULL);
 | 
						|
}
 | 
						|
 | 
						|
void change_pid(struct task_struct *task, enum pid_type type,
 | 
						|
		struct pid *pid)
 | 
						|
{
 | 
						|
	__change_pid(task, type, pid);
 | 
						|
	attach_pid(task, type);
 | 
						|
}
 | 
						|
 | 
						|
/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
 | 
						|
void transfer_pid(struct task_struct *old, struct task_struct *new,
 | 
						|
			   enum pid_type type)
 | 
						|
{
 | 
						|
	new->pids[type].pid = old->pids[type].pid;
 | 
						|
	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
 | 
						|
}
 | 
						|
 | 
						|
struct task_struct *pid_task(struct pid *pid, enum pid_type type)
 | 
						|
{
 | 
						|
	struct task_struct *result = NULL;
 | 
						|
	if (pid) {
 | 
						|
		struct hlist_node *first;
 | 
						|
		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
 | 
						|
					      lockdep_tasklist_lock_is_held());
 | 
						|
		if (first)
 | 
						|
			result = hlist_entry(first, struct task_struct, pids[(type)].node);
 | 
						|
	}
 | 
						|
	return result;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(pid_task);
 | 
						|
 | 
						|
/*
 | 
						|
 * Must be called under rcu_read_lock().
 | 
						|
 */
 | 
						|
struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
 | 
						|
{
 | 
						|
	rcu_lockdep_assert(rcu_read_lock_held(),
 | 
						|
			   "find_task_by_pid_ns() needs rcu_read_lock()"
 | 
						|
			   " protection");
 | 
						|
	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
 | 
						|
}
 | 
						|
 | 
						|
struct task_struct *find_task_by_vpid(pid_t vnr)
 | 
						|
{
 | 
						|
	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
 | 
						|
}
 | 
						|
 | 
						|
struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
 | 
						|
{
 | 
						|
	struct pid *pid;
 | 
						|
	rcu_read_lock();
 | 
						|
	if (type != PIDTYPE_PID)
 | 
						|
		task = task->group_leader;
 | 
						|
	pid = get_pid(task->pids[type].pid);
 | 
						|
	rcu_read_unlock();
 | 
						|
	return pid;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(get_task_pid);
 | 
						|
 | 
						|
struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
 | 
						|
{
 | 
						|
	struct task_struct *result;
 | 
						|
	rcu_read_lock();
 | 
						|
	result = pid_task(pid, type);
 | 
						|
	if (result)
 | 
						|
		get_task_struct(result);
 | 
						|
	rcu_read_unlock();
 | 
						|
	return result;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(get_pid_task);
 | 
						|
 | 
						|
struct pid *find_get_pid(pid_t nr)
 | 
						|
{
 | 
						|
	struct pid *pid;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	pid = get_pid(find_vpid(nr));
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return pid;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(find_get_pid);
 | 
						|
 | 
						|
pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
 | 
						|
{
 | 
						|
	struct upid *upid;
 | 
						|
	pid_t nr = 0;
 | 
						|
 | 
						|
	if (pid && ns->level <= pid->level) {
 | 
						|
		upid = &pid->numbers[ns->level];
 | 
						|
		if (upid->ns == ns)
 | 
						|
			nr = upid->nr;
 | 
						|
	}
 | 
						|
	return nr;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(pid_nr_ns);
 | 
						|
 | 
						|
pid_t pid_vnr(struct pid *pid)
 | 
						|
{
 | 
						|
	return pid_nr_ns(pid, task_active_pid_ns(current));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(pid_vnr);
 | 
						|
 | 
						|
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
 | 
						|
			struct pid_namespace *ns)
 | 
						|
{
 | 
						|
	pid_t nr = 0;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	if (!ns)
 | 
						|
		ns = task_active_pid_ns(current);
 | 
						|
	if (likely(pid_alive(task))) {
 | 
						|
		if (type != PIDTYPE_PID)
 | 
						|
			task = task->group_leader;
 | 
						|
		nr = pid_nr_ns(task->pids[type].pid, ns);
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return nr;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__task_pid_nr_ns);
 | 
						|
 | 
						|
pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
 | 
						|
{
 | 
						|
	return pid_nr_ns(task_tgid(tsk), ns);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(task_tgid_nr_ns);
 | 
						|
 | 
						|
struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	return ns_of_pid(task_pid(tsk));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(task_active_pid_ns);
 | 
						|
 | 
						|
/*
 | 
						|
 * Used by proc to find the first pid that is greater than or equal to nr.
 | 
						|
 *
 | 
						|
 * If there is a pid at nr this function is exactly the same as find_pid_ns.
 | 
						|
 */
 | 
						|
struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
 | 
						|
{
 | 
						|
	struct pid *pid;
 | 
						|
 | 
						|
	do {
 | 
						|
		pid = find_pid_ns(nr, ns);
 | 
						|
		if (pid)
 | 
						|
			break;
 | 
						|
		nr = next_pidmap(ns, nr);
 | 
						|
	} while (nr > 0);
 | 
						|
 | 
						|
	return pid;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The pid hash table is scaled according to the amount of memory in the
 | 
						|
 * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
 | 
						|
 * more.
 | 
						|
 */
 | 
						|
void __init pidhash_init(void)
 | 
						|
{
 | 
						|
	unsigned int i, pidhash_size;
 | 
						|
 | 
						|
	pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
 | 
						|
					   HASH_EARLY | HASH_SMALL,
 | 
						|
					   &pidhash_shift, NULL,
 | 
						|
					   0, 4096);
 | 
						|
	pidhash_size = 1U << pidhash_shift;
 | 
						|
 | 
						|
	for (i = 0; i < pidhash_size; i++)
 | 
						|
		INIT_HLIST_HEAD(&pid_hash[i]);
 | 
						|
}
 | 
						|
 | 
						|
void __init pidmap_init(void)
 | 
						|
{
 | 
						|
	/* Veryify no one has done anything silly */
 | 
						|
	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
 | 
						|
 | 
						|
	/* bump default and minimum pid_max based on number of cpus */
 | 
						|
	pid_max = min(pid_max_max, max_t(int, pid_max,
 | 
						|
				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
 | 
						|
	pid_max_min = max_t(int, pid_max_min,
 | 
						|
				PIDS_PER_CPU_MIN * num_possible_cpus());
 | 
						|
	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
 | 
						|
 | 
						|
	init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
 | 
						|
	/* Reserve PID 0. We never call free_pidmap(0) */
 | 
						|
	set_bit(0, init_pid_ns.pidmap[0].page);
 | 
						|
	atomic_dec(&init_pid_ns.pidmap[0].nr_free);
 | 
						|
 | 
						|
	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
 | 
						|
			SLAB_HWCACHE_ALIGN | SLAB_PANIC);
 | 
						|
}
 |