mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 12db8b6900
			
		
	
	
		12db8b6900
		
	
	
	
	
		
			
			Add TIF_NOTIFY_SIGNAL handling in the generic entry code, which if set, will return true if signal_pending() is used in a wait loop. That causes an exit of the loop so that notify_signal tracehooks can be run. If the wait loop is currently inside a system call, the system call is restarted once task_work has been processed. In preparation for only having arch_do_signal() handle syscall restarts if _TIF_SIGPENDING isn't set, rename it to arch_do_signal_or_restart(). Pass in a boolean that tells the architecture specific signal handler if it should attempt to get a signal, or just process a potential syscall restart. For !CONFIG_GENERIC_ENTRY archs, add the TIF_NOTIFY_SIGNAL handling to get_signal(). This is done to minimize the needed architecture changes to support this feature. Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lore.kernel.org/r/20201026203230.386348-3-axboe@kernel.dk
		
			
				
	
	
		
			734 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			734 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef _LINUX_SCHED_SIGNAL_H
 | |
| #define _LINUX_SCHED_SIGNAL_H
 | |
| 
 | |
| #include <linux/rculist.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/jobctl.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/cred.h>
 | |
| #include <linux/refcount.h>
 | |
| #include <linux/posix-timers.h>
 | |
| #include <linux/mm_types.h>
 | |
| #include <asm/ptrace.h>
 | |
| 
 | |
| /*
 | |
|  * Types defining task->signal and task->sighand and APIs using them:
 | |
|  */
 | |
| 
 | |
| struct sighand_struct {
 | |
| 	spinlock_t		siglock;
 | |
| 	refcount_t		count;
 | |
| 	wait_queue_head_t	signalfd_wqh;
 | |
| 	struct k_sigaction	action[_NSIG];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Per-process accounting stats:
 | |
|  */
 | |
| struct pacct_struct {
 | |
| 	int			ac_flag;
 | |
| 	long			ac_exitcode;
 | |
| 	unsigned long		ac_mem;
 | |
| 	u64			ac_utime, ac_stime;
 | |
| 	unsigned long		ac_minflt, ac_majflt;
 | |
| };
 | |
| 
 | |
| struct cpu_itimer {
 | |
| 	u64 expires;
 | |
| 	u64 incr;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This is the atomic variant of task_cputime, which can be used for
 | |
|  * storing and updating task_cputime statistics without locking.
 | |
|  */
 | |
| struct task_cputime_atomic {
 | |
| 	atomic64_t utime;
 | |
| 	atomic64_t stime;
 | |
| 	atomic64_t sum_exec_runtime;
 | |
| };
 | |
| 
 | |
| #define INIT_CPUTIME_ATOMIC \
 | |
| 	(struct task_cputime_atomic) {				\
 | |
| 		.utime = ATOMIC64_INIT(0),			\
 | |
| 		.stime = ATOMIC64_INIT(0),			\
 | |
| 		.sum_exec_runtime = ATOMIC64_INIT(0),		\
 | |
| 	}
 | |
| /**
 | |
|  * struct thread_group_cputimer - thread group interval timer counts
 | |
|  * @cputime_atomic:	atomic thread group interval timers.
 | |
|  *
 | |
|  * This structure contains the version of task_cputime, above, that is
 | |
|  * used for thread group CPU timer calculations.
 | |
|  */
 | |
| struct thread_group_cputimer {
 | |
| 	struct task_cputime_atomic cputime_atomic;
 | |
| };
 | |
| 
 | |
| struct multiprocess_signals {
 | |
| 	sigset_t signal;
 | |
| 	struct hlist_node node;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * NOTE! "signal_struct" does not have its own
 | |
|  * locking, because a shared signal_struct always
 | |
|  * implies a shared sighand_struct, so locking
 | |
|  * sighand_struct is always a proper superset of
 | |
|  * the locking of signal_struct.
 | |
|  */
 | |
| struct signal_struct {
 | |
| 	refcount_t		sigcnt;
 | |
| 	atomic_t		live;
 | |
| 	int			nr_threads;
 | |
| 	struct list_head	thread_head;
 | |
| 
 | |
| 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
 | |
| 
 | |
| 	/* current thread group signal load-balancing target: */
 | |
| 	struct task_struct	*curr_target;
 | |
| 
 | |
| 	/* shared signal handling: */
 | |
| 	struct sigpending	shared_pending;
 | |
| 
 | |
| 	/* For collecting multiprocess signals during fork */
 | |
| 	struct hlist_head	multiprocess;
 | |
| 
 | |
| 	/* thread group exit support */
 | |
| 	int			group_exit_code;
 | |
| 	/* overloaded:
 | |
| 	 * - notify group_exit_task when ->count is equal to notify_count
 | |
| 	 * - everyone except group_exit_task is stopped during signal delivery
 | |
| 	 *   of fatal signals, group_exit_task processes the signal.
 | |
| 	 */
 | |
| 	int			notify_count;
 | |
| 	struct task_struct	*group_exit_task;
 | |
| 
 | |
| 	/* thread group stop support, overloads group_exit_code too */
 | |
| 	int			group_stop_count;
 | |
| 	unsigned int		flags; /* see SIGNAL_* flags below */
 | |
| 
 | |
| 	/*
 | |
| 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
 | |
| 	 * manager, to re-parent orphan (double-forking) child processes
 | |
| 	 * to this process instead of 'init'. The service manager is
 | |
| 	 * able to receive SIGCHLD signals and is able to investigate
 | |
| 	 * the process until it calls wait(). All children of this
 | |
| 	 * process will inherit a flag if they should look for a
 | |
| 	 * child_subreaper process at exit.
 | |
| 	 */
 | |
| 	unsigned int		is_child_subreaper:1;
 | |
| 	unsigned int		has_child_subreaper:1;
 | |
| 
 | |
| #ifdef CONFIG_POSIX_TIMERS
 | |
| 
 | |
| 	/* POSIX.1b Interval Timers */
 | |
| 	int			posix_timer_id;
 | |
| 	struct list_head	posix_timers;
 | |
| 
 | |
| 	/* ITIMER_REAL timer for the process */
 | |
| 	struct hrtimer real_timer;
 | |
| 	ktime_t it_real_incr;
 | |
| 
 | |
| 	/*
 | |
| 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 | |
| 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 | |
| 	 * values are defined to 0 and 1 respectively
 | |
| 	 */
 | |
| 	struct cpu_itimer it[2];
 | |
| 
 | |
| 	/*
 | |
| 	 * Thread group totals for process CPU timers.
 | |
| 	 * See thread_group_cputimer(), et al, for details.
 | |
| 	 */
 | |
| 	struct thread_group_cputimer cputimer;
 | |
| 
 | |
| #endif
 | |
| 	/* Empty if CONFIG_POSIX_TIMERS=n */
 | |
| 	struct posix_cputimers posix_cputimers;
 | |
| 
 | |
| 	/* PID/PID hash table linkage. */
 | |
| 	struct pid *pids[PIDTYPE_MAX];
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| 	atomic_t tick_dep_mask;
 | |
| #endif
 | |
| 
 | |
| 	struct pid *tty_old_pgrp;
 | |
| 
 | |
| 	/* boolean value for session group leader */
 | |
| 	int leader;
 | |
| 
 | |
| 	struct tty_struct *tty; /* NULL if no tty */
 | |
| 
 | |
| #ifdef CONFIG_SCHED_AUTOGROUP
 | |
| 	struct autogroup *autogroup;
 | |
| #endif
 | |
| 	/*
 | |
| 	 * Cumulative resource counters for dead threads in the group,
 | |
| 	 * and for reaped dead child processes forked by this group.
 | |
| 	 * Live threads maintain their own counters and add to these
 | |
| 	 * in __exit_signal, except for the group leader.
 | |
| 	 */
 | |
| 	seqlock_t stats_lock;
 | |
| 	u64 utime, stime, cutime, cstime;
 | |
| 	u64 gtime;
 | |
| 	u64 cgtime;
 | |
| 	struct prev_cputime prev_cputime;
 | |
| 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 | |
| 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 | |
| 	unsigned long inblock, oublock, cinblock, coublock;
 | |
| 	unsigned long maxrss, cmaxrss;
 | |
| 	struct task_io_accounting ioac;
 | |
| 
 | |
| 	/*
 | |
| 	 * Cumulative ns of schedule CPU time fo dead threads in the
 | |
| 	 * group, not including a zombie group leader, (This only differs
 | |
| 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
 | |
| 	 * other than jiffies.)
 | |
| 	 */
 | |
| 	unsigned long long sum_sched_runtime;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't bother to synchronize most readers of this at all,
 | |
| 	 * because there is no reader checking a limit that actually needs
 | |
| 	 * to get both rlim_cur and rlim_max atomically, and either one
 | |
| 	 * alone is a single word that can safely be read normally.
 | |
| 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
 | |
| 	 * protect this instead of the siglock, because they really
 | |
| 	 * have no need to disable irqs.
 | |
| 	 */
 | |
| 	struct rlimit rlim[RLIM_NLIMITS];
 | |
| 
 | |
| #ifdef CONFIG_BSD_PROCESS_ACCT
 | |
| 	struct pacct_struct pacct;	/* per-process accounting information */
 | |
| #endif
 | |
| #ifdef CONFIG_TASKSTATS
 | |
| 	struct taskstats *stats;
 | |
| #endif
 | |
| #ifdef CONFIG_AUDIT
 | |
| 	unsigned audit_tty;
 | |
| 	struct tty_audit_buf *tty_audit_buf;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Thread is the potential origin of an oom condition; kill first on
 | |
| 	 * oom
 | |
| 	 */
 | |
| 	bool oom_flag_origin;
 | |
| 	short oom_score_adj;		/* OOM kill score adjustment */
 | |
| 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
 | |
| 					 * Only settable by CAP_SYS_RESOURCE. */
 | |
| 	struct mm_struct *oom_mm;	/* recorded mm when the thread group got
 | |
| 					 * killed by the oom killer */
 | |
| 
 | |
| 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
 | |
| 					 * credential calculations
 | |
| 					 * (notably. ptrace)
 | |
| 					 * Deprecated do not use in new code.
 | |
| 					 * Use exec_update_mutex instead.
 | |
| 					 */
 | |
| 	struct mutex exec_update_mutex;	/* Held while task_struct is being
 | |
| 					 * updated during exec, and may have
 | |
| 					 * inconsistent permissions.
 | |
| 					 */
 | |
| } __randomize_layout;
 | |
| 
 | |
| /*
 | |
|  * Bits in flags field of signal_struct.
 | |
|  */
 | |
| #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
 | |
| #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
 | |
| #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
 | |
| #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
 | |
| /*
 | |
|  * Pending notifications to parent.
 | |
|  */
 | |
| #define SIGNAL_CLD_STOPPED	0x00000010
 | |
| #define SIGNAL_CLD_CONTINUED	0x00000020
 | |
| #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 | |
| 
 | |
| #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
 | |
| 
 | |
| #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
 | |
| 			  SIGNAL_STOP_CONTINUED)
 | |
| 
 | |
| static inline void signal_set_stop_flags(struct signal_struct *sig,
 | |
| 					 unsigned int flags)
 | |
| {
 | |
| 	WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
 | |
| 	sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
 | |
| }
 | |
| 
 | |
| /* If true, all threads except ->group_exit_task have pending SIGKILL */
 | |
| static inline int signal_group_exit(const struct signal_struct *sig)
 | |
| {
 | |
| 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
 | |
| 		(sig->group_exit_task != NULL);
 | |
| }
 | |
| 
 | |
| extern void flush_signals(struct task_struct *);
 | |
| extern void ignore_signals(struct task_struct *);
 | |
| extern void flush_signal_handlers(struct task_struct *, int force_default);
 | |
| extern int dequeue_signal(struct task_struct *task,
 | |
| 			  sigset_t *mask, kernel_siginfo_t *info);
 | |
| 
 | |
| static inline int kernel_dequeue_signal(void)
 | |
| {
 | |
| 	struct task_struct *task = current;
 | |
| 	kernel_siginfo_t __info;
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock_irq(&task->sighand->siglock);
 | |
| 	ret = dequeue_signal(task, &task->blocked, &__info);
 | |
| 	spin_unlock_irq(&task->sighand->siglock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline void kernel_signal_stop(void)
 | |
| {
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	if (current->jobctl & JOBCTL_STOP_DEQUEUED)
 | |
| 		set_special_state(TASK_STOPPED);
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 	schedule();
 | |
| }
 | |
| #ifdef __ARCH_SI_TRAPNO
 | |
| # define ___ARCH_SI_TRAPNO(_a1) , _a1
 | |
| #else
 | |
| # define ___ARCH_SI_TRAPNO(_a1)
 | |
| #endif
 | |
| #ifdef __ia64__
 | |
| # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
 | |
| #else
 | |
| # define ___ARCH_SI_IA64(_a1, _a2, _a3)
 | |
| #endif
 | |
| 
 | |
| int force_sig_fault_to_task(int sig, int code, void __user *addr
 | |
| 	___ARCH_SI_TRAPNO(int trapno)
 | |
| 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
 | |
| 	, struct task_struct *t);
 | |
| int force_sig_fault(int sig, int code, void __user *addr
 | |
| 	___ARCH_SI_TRAPNO(int trapno)
 | |
| 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr));
 | |
| int send_sig_fault(int sig, int code, void __user *addr
 | |
| 	___ARCH_SI_TRAPNO(int trapno)
 | |
| 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
 | |
| 	, struct task_struct *t);
 | |
| 
 | |
| int force_sig_mceerr(int code, void __user *, short);
 | |
| int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
 | |
| 
 | |
| int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
 | |
| int force_sig_pkuerr(void __user *addr, u32 pkey);
 | |
| 
 | |
| int force_sig_ptrace_errno_trap(int errno, void __user *addr);
 | |
| 
 | |
| extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
 | |
| extern void force_sigsegv(int sig);
 | |
| extern int force_sig_info(struct kernel_siginfo *);
 | |
| extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
 | |
| extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
 | |
| extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *,
 | |
| 				const struct cred *);
 | |
| extern int kill_pgrp(struct pid *pid, int sig, int priv);
 | |
| extern int kill_pid(struct pid *pid, int sig, int priv);
 | |
| extern __must_check bool do_notify_parent(struct task_struct *, int);
 | |
| extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
 | |
| extern void force_sig(int);
 | |
| extern int send_sig(int, struct task_struct *, int);
 | |
| extern int zap_other_threads(struct task_struct *p);
 | |
| extern struct sigqueue *sigqueue_alloc(void);
 | |
| extern void sigqueue_free(struct sigqueue *);
 | |
| extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
 | |
| extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
 | |
| 
 | |
| static inline int restart_syscall(void)
 | |
| {
 | |
| 	set_tsk_thread_flag(current, TIF_SIGPENDING);
 | |
| 	return -ERESTARTNOINTR;
 | |
| }
 | |
| 
 | |
| static inline int task_sigpending(struct task_struct *p)
 | |
| {
 | |
| 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
 | |
| }
 | |
| 
 | |
| static inline int signal_pending(struct task_struct *p)
 | |
| {
 | |
| #if defined(TIF_NOTIFY_SIGNAL)
 | |
| 	/*
 | |
| 	 * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same
 | |
| 	 * behavior in terms of ensuring that we break out of wait loops
 | |
| 	 * so that notify signal callbacks can be processed.
 | |
| 	 */
 | |
| 	if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL)))
 | |
| 		return 1;
 | |
| #endif
 | |
| 	return task_sigpending(p);
 | |
| }
 | |
| 
 | |
| static inline int __fatal_signal_pending(struct task_struct *p)
 | |
| {
 | |
| 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
 | |
| }
 | |
| 
 | |
| static inline int fatal_signal_pending(struct task_struct *p)
 | |
| {
 | |
| 	return task_sigpending(p) && __fatal_signal_pending(p);
 | |
| }
 | |
| 
 | |
| static inline int signal_pending_state(long state, struct task_struct *p)
 | |
| {
 | |
| 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
 | |
| 		return 0;
 | |
| 	if (!signal_pending(p))
 | |
| 		return 0;
 | |
| 
 | |
| 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This should only be used in fault handlers to decide whether we
 | |
|  * should stop the current fault routine to handle the signals
 | |
|  * instead, especially with the case where we've got interrupted with
 | |
|  * a VM_FAULT_RETRY.
 | |
|  */
 | |
| static inline bool fault_signal_pending(vm_fault_t fault_flags,
 | |
| 					struct pt_regs *regs)
 | |
| {
 | |
| 	return unlikely((fault_flags & VM_FAULT_RETRY) &&
 | |
| 			(fatal_signal_pending(current) ||
 | |
| 			 (user_mode(regs) && signal_pending(current))));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reevaluate whether the task has signals pending delivery.
 | |
|  * Wake the task if so.
 | |
|  * This is required every time the blocked sigset_t changes.
 | |
|  * callers must hold sighand->siglock.
 | |
|  */
 | |
| extern void recalc_sigpending_and_wake(struct task_struct *t);
 | |
| extern void recalc_sigpending(void);
 | |
| extern void calculate_sigpending(void);
 | |
| 
 | |
| extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
 | |
| 
 | |
| static inline void signal_wake_up(struct task_struct *t, bool resume)
 | |
| {
 | |
| 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
 | |
| }
 | |
| static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
 | |
| {
 | |
| 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
 | |
| }
 | |
| 
 | |
| void task_join_group_stop(struct task_struct *task);
 | |
| 
 | |
| #ifdef TIF_RESTORE_SIGMASK
 | |
| /*
 | |
|  * Legacy restore_sigmask accessors.  These are inefficient on
 | |
|  * SMP architectures because they require atomic operations.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * set_restore_sigmask() - make sure saved_sigmask processing gets done
 | |
|  *
 | |
|  * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
 | |
|  * will run before returning to user mode, to process the flag.  For
 | |
|  * all callers, TIF_SIGPENDING is already set or it's no harm to set
 | |
|  * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
 | |
|  * arch code will notice on return to user mode, in case those bits
 | |
|  * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
 | |
|  * signal code always gets run when TIF_RESTORE_SIGMASK is set.
 | |
|  */
 | |
| static inline void set_restore_sigmask(void)
 | |
| {
 | |
| 	set_thread_flag(TIF_RESTORE_SIGMASK);
 | |
| }
 | |
| 
 | |
| static inline void clear_tsk_restore_sigmask(struct task_struct *task)
 | |
| {
 | |
| 	clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
 | |
| }
 | |
| 
 | |
| static inline void clear_restore_sigmask(void)
 | |
| {
 | |
| 	clear_thread_flag(TIF_RESTORE_SIGMASK);
 | |
| }
 | |
| static inline bool test_tsk_restore_sigmask(struct task_struct *task)
 | |
| {
 | |
| 	return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
 | |
| }
 | |
| static inline bool test_restore_sigmask(void)
 | |
| {
 | |
| 	return test_thread_flag(TIF_RESTORE_SIGMASK);
 | |
| }
 | |
| static inline bool test_and_clear_restore_sigmask(void)
 | |
| {
 | |
| 	return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
 | |
| }
 | |
| 
 | |
| #else	/* TIF_RESTORE_SIGMASK */
 | |
| 
 | |
| /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
 | |
| static inline void set_restore_sigmask(void)
 | |
| {
 | |
| 	current->restore_sigmask = true;
 | |
| }
 | |
| static inline void clear_tsk_restore_sigmask(struct task_struct *task)
 | |
| {
 | |
| 	task->restore_sigmask = false;
 | |
| }
 | |
| static inline void clear_restore_sigmask(void)
 | |
| {
 | |
| 	current->restore_sigmask = false;
 | |
| }
 | |
| static inline bool test_restore_sigmask(void)
 | |
| {
 | |
| 	return current->restore_sigmask;
 | |
| }
 | |
| static inline bool test_tsk_restore_sigmask(struct task_struct *task)
 | |
| {
 | |
| 	return task->restore_sigmask;
 | |
| }
 | |
| static inline bool test_and_clear_restore_sigmask(void)
 | |
| {
 | |
| 	if (!current->restore_sigmask)
 | |
| 		return false;
 | |
| 	current->restore_sigmask = false;
 | |
| 	return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline void restore_saved_sigmask(void)
 | |
| {
 | |
| 	if (test_and_clear_restore_sigmask())
 | |
| 		__set_current_blocked(¤t->saved_sigmask);
 | |
| }
 | |
| 
 | |
| extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize);
 | |
| 
 | |
| static inline void restore_saved_sigmask_unless(bool interrupted)
 | |
| {
 | |
| 	if (interrupted)
 | |
| 		WARN_ON(!signal_pending(current));
 | |
| 	else
 | |
| 		restore_saved_sigmask();
 | |
| }
 | |
| 
 | |
| static inline sigset_t *sigmask_to_save(void)
 | |
| {
 | |
| 	sigset_t *res = ¤t->blocked;
 | |
| 	if (unlikely(test_restore_sigmask()))
 | |
| 		res = ¤t->saved_sigmask;
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static inline int kill_cad_pid(int sig, int priv)
 | |
| {
 | |
| 	return kill_pid(cad_pid, sig, priv);
 | |
| }
 | |
| 
 | |
| /* These can be the second arg to send_sig_info/send_group_sig_info.  */
 | |
| #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0)
 | |
| #define SEND_SIG_PRIV	((struct kernel_siginfo *) 1)
 | |
| 
 | |
| /*
 | |
|  * True if we are on the alternate signal stack.
 | |
|  */
 | |
| static inline int on_sig_stack(unsigned long sp)
 | |
| {
 | |
| 	/*
 | |
| 	 * If the signal stack is SS_AUTODISARM then, by construction, we
 | |
| 	 * can't be on the signal stack unless user code deliberately set
 | |
| 	 * SS_AUTODISARM when we were already on it.
 | |
| 	 *
 | |
| 	 * This improves reliability: if user state gets corrupted such that
 | |
| 	 * the stack pointer points very close to the end of the signal stack,
 | |
| 	 * then this check will enable the signal to be handled anyway.
 | |
| 	 */
 | |
| 	if (current->sas_ss_flags & SS_AUTODISARM)
 | |
| 		return 0;
 | |
| 
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| 	return sp >= current->sas_ss_sp &&
 | |
| 		sp - current->sas_ss_sp < current->sas_ss_size;
 | |
| #else
 | |
| 	return sp > current->sas_ss_sp &&
 | |
| 		sp - current->sas_ss_sp <= current->sas_ss_size;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline int sas_ss_flags(unsigned long sp)
 | |
| {
 | |
| 	if (!current->sas_ss_size)
 | |
| 		return SS_DISABLE;
 | |
| 
 | |
| 	return on_sig_stack(sp) ? SS_ONSTACK : 0;
 | |
| }
 | |
| 
 | |
| static inline void sas_ss_reset(struct task_struct *p)
 | |
| {
 | |
| 	p->sas_ss_sp = 0;
 | |
| 	p->sas_ss_size = 0;
 | |
| 	p->sas_ss_flags = SS_DISABLE;
 | |
| }
 | |
| 
 | |
| static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
 | |
| {
 | |
| 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| 		return current->sas_ss_sp;
 | |
| #else
 | |
| 		return current->sas_ss_sp + current->sas_ss_size;
 | |
| #endif
 | |
| 	return sp;
 | |
| }
 | |
| 
 | |
| extern void __cleanup_sighand(struct sighand_struct *);
 | |
| extern void flush_itimer_signals(void);
 | |
| 
 | |
| #define tasklist_empty() \
 | |
| 	list_empty(&init_task.tasks)
 | |
| 
 | |
| #define next_task(p) \
 | |
| 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
 | |
| 
 | |
| #define for_each_process(p) \
 | |
| 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
 | |
| 
 | |
| extern bool current_is_single_threaded(void);
 | |
| 
 | |
| /*
 | |
|  * Careful: do_each_thread/while_each_thread is a double loop so
 | |
|  *          'break' will not work as expected - use goto instead.
 | |
|  */
 | |
| #define do_each_thread(g, t) \
 | |
| 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
 | |
| 
 | |
| #define while_each_thread(g, t) \
 | |
| 	while ((t = next_thread(t)) != g)
 | |
| 
 | |
| #define __for_each_thread(signal, t)	\
 | |
| 	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
 | |
| 
 | |
| #define for_each_thread(p, t)		\
 | |
| 	__for_each_thread((p)->signal, t)
 | |
| 
 | |
| /* Careful: this is a double loop, 'break' won't work as expected. */
 | |
| #define for_each_process_thread(p, t)	\
 | |
| 	for_each_process(p) for_each_thread(p, t)
 | |
| 
 | |
| typedef int (*proc_visitor)(struct task_struct *p, void *data);
 | |
| void walk_process_tree(struct task_struct *top, proc_visitor, void *);
 | |
| 
 | |
| static inline
 | |
| struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
 | |
| {
 | |
| 	struct pid *pid;
 | |
| 	if (type == PIDTYPE_PID)
 | |
| 		pid = task_pid(task);
 | |
| 	else
 | |
| 		pid = task->signal->pids[type];
 | |
| 	return pid;
 | |
| }
 | |
| 
 | |
| static inline struct pid *task_tgid(struct task_struct *task)
 | |
| {
 | |
| 	return task->signal->pids[PIDTYPE_TGID];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Without tasklist or RCU lock it is not safe to dereference
 | |
|  * the result of task_pgrp/task_session even if task == current,
 | |
|  * we can race with another thread doing sys_setsid/sys_setpgid.
 | |
|  */
 | |
| static inline struct pid *task_pgrp(struct task_struct *task)
 | |
| {
 | |
| 	return task->signal->pids[PIDTYPE_PGID];
 | |
| }
 | |
| 
 | |
| static inline struct pid *task_session(struct task_struct *task)
 | |
| {
 | |
| 	return task->signal->pids[PIDTYPE_SID];
 | |
| }
 | |
| 
 | |
| static inline int get_nr_threads(struct task_struct *task)
 | |
| {
 | |
| 	return task->signal->nr_threads;
 | |
| }
 | |
| 
 | |
| static inline bool thread_group_leader(struct task_struct *p)
 | |
| {
 | |
| 	return p->exit_signal >= 0;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
 | |
| {
 | |
| 	return p1->signal == p2->signal;
 | |
| }
 | |
| 
 | |
| static inline struct task_struct *next_thread(const struct task_struct *p)
 | |
| {
 | |
| 	return list_entry_rcu(p->thread_group.next,
 | |
| 			      struct task_struct, thread_group);
 | |
| }
 | |
| 
 | |
| static inline int thread_group_empty(struct task_struct *p)
 | |
| {
 | |
| 	return list_empty(&p->thread_group);
 | |
| }
 | |
| 
 | |
| #define delay_group_leader(p) \
 | |
| 		(thread_group_leader(p) && !thread_group_empty(p))
 | |
| 
 | |
| extern bool thread_group_exited(struct pid *pid);
 | |
| 
 | |
| extern struct sighand_struct *__lock_task_sighand(struct task_struct *task,
 | |
| 							unsigned long *flags);
 | |
| 
 | |
| static inline struct sighand_struct *lock_task_sighand(struct task_struct *task,
 | |
| 						       unsigned long *flags)
 | |
| {
 | |
| 	struct sighand_struct *ret;
 | |
| 
 | |
| 	ret = __lock_task_sighand(task, flags);
 | |
| 	(void)__cond_lock(&task->sighand->siglock, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline void unlock_task_sighand(struct task_struct *task,
 | |
| 						unsigned long *flags)
 | |
| {
 | |
| 	spin_unlock_irqrestore(&task->sighand->siglock, *flags);
 | |
| }
 | |
| 
 | |
| static inline unsigned long task_rlimit(const struct task_struct *task,
 | |
| 		unsigned int limit)
 | |
| {
 | |
| 	return READ_ONCE(task->signal->rlim[limit].rlim_cur);
 | |
| }
 | |
| 
 | |
| static inline unsigned long task_rlimit_max(const struct task_struct *task,
 | |
| 		unsigned int limit)
 | |
| {
 | |
| 	return READ_ONCE(task->signal->rlim[limit].rlim_max);
 | |
| }
 | |
| 
 | |
| static inline unsigned long rlimit(unsigned int limit)
 | |
| {
 | |
| 	return task_rlimit(current, limit);
 | |
| }
 | |
| 
 | |
| static inline unsigned long rlimit_max(unsigned int limit)
 | |
| {
 | |
| 	return task_rlimit_max(current, limit);
 | |
| }
 | |
| 
 | |
| #endif /* _LINUX_SCHED_SIGNAL_H */
 |