mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	document on perf security, more Italian translations, more
 improvements to the memory-management docs, improvements to the
 pathname lookup documentation, and the usual array of smaller
 fixes.
 -----BEGIN PGP SIGNATURE-----
 
 iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAlwmSPkPHGNvcmJldEBs
 d24ubmV0AAoJEBdDWhNsDH5Y9ZoH/joPnMFykOxS0SmdfI7Z+F4EiJct/ZwF9bHx
 T673T0RC30IgnUXGmBl5OtktfWqVh9aGqHOGwgh65ybp2QvzemdP0k6Lu6RtwNk9
 6LfkpvuUb8FzaQmCHnSMzMSDmXtZUw3Z/mOjCBcQtfGAsUULNT08xl+Dr+gwWIWt
 H+gPEEP+MCXTOQO1jm2dHOHW8NGm6XOijMTpOxp/pkoEY5tUxkVB1T//8EeX7LVh
 c1QHzFrufE3bmmubCLtIuyVqZbm/V5l6rHREDQ46fnH/G9fM4gojzsrAL/Y2m4bt
 E4y0XJHycjLMRDimAnYhbPm1ryTFAX1lNzHP3M/EF6Heqx8YHAk=
 =vtwu
 -----END PGP SIGNATURE-----
Merge tag 'docs-5.0' of git://git.lwn.net/linux
Pull documentation update from Jonathan Corbet:
 "A fairly normal cycle for documentation stuff. We have a new document
  on perf security, more Italian translations, more improvements to the
  memory-management docs, improvements to the pathname lookup
  documentation, and the usual array of smaller fixes.
  As is often the case, there are a few reaches outside of
  Documentation/ to adjust kerneldoc comments"
* tag 'docs-5.0' of git://git.lwn.net/linux: (38 commits)
  docs: improve pathname-lookup document structure
  configfs: fix wrong name of struct in documentation
  docs/mm-api: link slab_common.c to "The Slab Cache" section
  slab: make kmem_cache_create{_usercopy} description proper kernel-doc
  doc:process: add links where missing
  docs/core-api: make mm-api.rst more structured
  x86, boot: documentation whitespace fixup
  Documentation: devres: note checking needs when converting
  doc🇮🇹 add some process/* translations
  doc🇮🇹 fixes in process/1.Intro
  Documentation: convert path-lookup from markdown to resturctured text
  Documentation/admin-guide: update admin-guide index.rst
  Documentation/admin-guide: introduce perf-security.rst file
  scripts/kernel-doc: Fix struct and struct field attribute processing
  Documentation: dev-tools: Fix typos in index.rst
  Correct gen_init_cpio tool's documentation
  Document /proc/pid PID reuse behavior
  Documentation: update path-lookup.md for parallel lookups
  Documentation: Use "while" instead of "whilst"
  dmaengine: Add mailing list address to the documentation
  ...
		
	
			
		
			
				
	
	
		
			1607 lines
		
	
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1607 lines
		
	
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Slab allocator functions that are independent of the allocator strategy
 | 
						|
 *
 | 
						|
 * (C) 2012 Christoph Lameter <cl@linux.com>
 | 
						|
 */
 | 
						|
#include <linux/slab.h>
 | 
						|
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/poison.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/memory.h>
 | 
						|
#include <linux/cache.h>
 | 
						|
#include <linux/compiler.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/uaccess.h>
 | 
						|
#include <linux/seq_file.h>
 | 
						|
#include <linux/proc_fs.h>
 | 
						|
#include <asm/cacheflush.h>
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
#include <asm/page.h>
 | 
						|
#include <linux/memcontrol.h>
 | 
						|
 | 
						|
#define CREATE_TRACE_POINTS
 | 
						|
#include <trace/events/kmem.h>
 | 
						|
 | 
						|
#include "slab.h"
 | 
						|
 | 
						|
enum slab_state slab_state;
 | 
						|
LIST_HEAD(slab_caches);
 | 
						|
DEFINE_MUTEX(slab_mutex);
 | 
						|
struct kmem_cache *kmem_cache;
 | 
						|
 | 
						|
#ifdef CONFIG_HARDENED_USERCOPY
 | 
						|
bool usercopy_fallback __ro_after_init =
 | 
						|
		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
 | 
						|
module_param(usercopy_fallback, bool, 0400);
 | 
						|
MODULE_PARM_DESC(usercopy_fallback,
 | 
						|
		"WARN instead of reject usercopy whitelist violations");
 | 
						|
#endif
 | 
						|
 | 
						|
static LIST_HEAD(slab_caches_to_rcu_destroy);
 | 
						|
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
 | 
						|
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
 | 
						|
		    slab_caches_to_rcu_destroy_workfn);
 | 
						|
 | 
						|
/*
 | 
						|
 * Set of flags that will prevent slab merging
 | 
						|
 */
 | 
						|
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 | 
						|
		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
 | 
						|
		SLAB_FAILSLAB | SLAB_KASAN)
 | 
						|
 | 
						|
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
 | 
						|
			 SLAB_ACCOUNT)
 | 
						|
 | 
						|
/*
 | 
						|
 * Merge control. If this is set then no merging of slab caches will occur.
 | 
						|
 */
 | 
						|
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
 | 
						|
 | 
						|
static int __init setup_slab_nomerge(char *str)
 | 
						|
{
 | 
						|
	slab_nomerge = true;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SLUB
 | 
						|
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
 | 
						|
#endif
 | 
						|
 | 
						|
__setup("slab_nomerge", setup_slab_nomerge);
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine the size of a slab object
 | 
						|
 */
 | 
						|
unsigned int kmem_cache_size(struct kmem_cache *s)
 | 
						|
{
 | 
						|
	return s->object_size;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kmem_cache_size);
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_VM
 | 
						|
static int kmem_cache_sanity_check(const char *name, unsigned int size)
 | 
						|
{
 | 
						|
	if (!name || in_interrupt() || size < sizeof(void *) ||
 | 
						|
		size > KMALLOC_MAX_SIZE) {
 | 
						|
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
 | 
						|
{
 | 
						|
	size_t i;
 | 
						|
 | 
						|
	for (i = 0; i < nr; i++) {
 | 
						|
		if (s)
 | 
						|
			kmem_cache_free(s, p[i]);
 | 
						|
		else
 | 
						|
			kfree(p[i]);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
 | 
						|
								void **p)
 | 
						|
{
 | 
						|
	size_t i;
 | 
						|
 | 
						|
	for (i = 0; i < nr; i++) {
 | 
						|
		void *x = p[i] = kmem_cache_alloc(s, flags);
 | 
						|
		if (!x) {
 | 
						|
			__kmem_cache_free_bulk(s, i, p);
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return i;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_KMEM
 | 
						|
 | 
						|
LIST_HEAD(slab_root_caches);
 | 
						|
 | 
						|
void slab_init_memcg_params(struct kmem_cache *s)
 | 
						|
{
 | 
						|
	s->memcg_params.root_cache = NULL;
 | 
						|
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
 | 
						|
	INIT_LIST_HEAD(&s->memcg_params.children);
 | 
						|
	s->memcg_params.dying = false;
 | 
						|
}
 | 
						|
 | 
						|
static int init_memcg_params(struct kmem_cache *s,
 | 
						|
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 | 
						|
{
 | 
						|
	struct memcg_cache_array *arr;
 | 
						|
 | 
						|
	if (root_cache) {
 | 
						|
		s->memcg_params.root_cache = root_cache;
 | 
						|
		s->memcg_params.memcg = memcg;
 | 
						|
		INIT_LIST_HEAD(&s->memcg_params.children_node);
 | 
						|
		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	slab_init_memcg_params(s);
 | 
						|
 | 
						|
	if (!memcg_nr_cache_ids)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	arr = kvzalloc(sizeof(struct memcg_cache_array) +
 | 
						|
		       memcg_nr_cache_ids * sizeof(void *),
 | 
						|
		       GFP_KERNEL);
 | 
						|
	if (!arr)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void destroy_memcg_params(struct kmem_cache *s)
 | 
						|
{
 | 
						|
	if (is_root_cache(s))
 | 
						|
		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
 | 
						|
}
 | 
						|
 | 
						|
static void free_memcg_params(struct rcu_head *rcu)
 | 
						|
{
 | 
						|
	struct memcg_cache_array *old;
 | 
						|
 | 
						|
	old = container_of(rcu, struct memcg_cache_array, rcu);
 | 
						|
	kvfree(old);
 | 
						|
}
 | 
						|
 | 
						|
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
 | 
						|
{
 | 
						|
	struct memcg_cache_array *old, *new;
 | 
						|
 | 
						|
	new = kvzalloc(sizeof(struct memcg_cache_array) +
 | 
						|
		       new_array_size * sizeof(void *), GFP_KERNEL);
 | 
						|
	if (!new)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
 | 
						|
					lockdep_is_held(&slab_mutex));
 | 
						|
	if (old)
 | 
						|
		memcpy(new->entries, old->entries,
 | 
						|
		       memcg_nr_cache_ids * sizeof(void *));
 | 
						|
 | 
						|
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
 | 
						|
	if (old)
 | 
						|
		call_rcu(&old->rcu, free_memcg_params);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int memcg_update_all_caches(int num_memcgs)
 | 
						|
{
 | 
						|
	struct kmem_cache *s;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	mutex_lock(&slab_mutex);
 | 
						|
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
 | 
						|
		ret = update_memcg_params(s, num_memcgs);
 | 
						|
		/*
 | 
						|
		 * Instead of freeing the memory, we'll just leave the caches
 | 
						|
		 * up to this point in an updated state.
 | 
						|
		 */
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	mutex_unlock(&slab_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void memcg_link_cache(struct kmem_cache *s)
 | 
						|
{
 | 
						|
	if (is_root_cache(s)) {
 | 
						|
		list_add(&s->root_caches_node, &slab_root_caches);
 | 
						|
	} else {
 | 
						|
		list_add(&s->memcg_params.children_node,
 | 
						|
			 &s->memcg_params.root_cache->memcg_params.children);
 | 
						|
		list_add(&s->memcg_params.kmem_caches_node,
 | 
						|
			 &s->memcg_params.memcg->kmem_caches);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void memcg_unlink_cache(struct kmem_cache *s)
 | 
						|
{
 | 
						|
	if (is_root_cache(s)) {
 | 
						|
		list_del(&s->root_caches_node);
 | 
						|
	} else {
 | 
						|
		list_del(&s->memcg_params.children_node);
 | 
						|
		list_del(&s->memcg_params.kmem_caches_node);
 | 
						|
	}
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline int init_memcg_params(struct kmem_cache *s,
 | 
						|
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline void destroy_memcg_params(struct kmem_cache *s)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline void memcg_unlink_cache(struct kmem_cache *s)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif /* CONFIG_MEMCG_KMEM */
 | 
						|
 | 
						|
/*
 | 
						|
 * Figure out what the alignment of the objects will be given a set of
 | 
						|
 * flags, a user specified alignment and the size of the objects.
 | 
						|
 */
 | 
						|
static unsigned int calculate_alignment(slab_flags_t flags,
 | 
						|
		unsigned int align, unsigned int size)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * If the user wants hardware cache aligned objects then follow that
 | 
						|
	 * suggestion if the object is sufficiently large.
 | 
						|
	 *
 | 
						|
	 * The hardware cache alignment cannot override the specified
 | 
						|
	 * alignment though. If that is greater then use it.
 | 
						|
	 */
 | 
						|
	if (flags & SLAB_HWCACHE_ALIGN) {
 | 
						|
		unsigned int ralign;
 | 
						|
 | 
						|
		ralign = cache_line_size();
 | 
						|
		while (size <= ralign / 2)
 | 
						|
			ralign /= 2;
 | 
						|
		align = max(align, ralign);
 | 
						|
	}
 | 
						|
 | 
						|
	if (align < ARCH_SLAB_MINALIGN)
 | 
						|
		align = ARCH_SLAB_MINALIGN;
 | 
						|
 | 
						|
	return ALIGN(align, sizeof(void *));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find a mergeable slab cache
 | 
						|
 */
 | 
						|
int slab_unmergeable(struct kmem_cache *s)
 | 
						|
{
 | 
						|
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	if (!is_root_cache(s))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	if (s->ctor)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	if (s->usersize)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We may have set a slab to be unmergeable during bootstrap.
 | 
						|
	 */
 | 
						|
	if (s->refcount < 0)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
 | 
						|
		slab_flags_t flags, const char *name, void (*ctor)(void *))
 | 
						|
{
 | 
						|
	struct kmem_cache *s;
 | 
						|
 | 
						|
	if (slab_nomerge)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (ctor)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	size = ALIGN(size, sizeof(void *));
 | 
						|
	align = calculate_alignment(flags, align, size);
 | 
						|
	size = ALIGN(size, align);
 | 
						|
	flags = kmem_cache_flags(size, flags, name, NULL);
 | 
						|
 | 
						|
	if (flags & SLAB_NEVER_MERGE)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
 | 
						|
		if (slab_unmergeable(s))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (size > s->size)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 | 
						|
			continue;
 | 
						|
		/*
 | 
						|
		 * Check if alignment is compatible.
 | 
						|
		 * Courtesy of Adrian Drzewiecki
 | 
						|
		 */
 | 
						|
		if ((s->size & ~(align - 1)) != s->size)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (s->size - size >= sizeof(void *))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (IS_ENABLED(CONFIG_SLAB) && align &&
 | 
						|
			(align > s->align || s->align % align))
 | 
						|
			continue;
 | 
						|
 | 
						|
		return s;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static struct kmem_cache *create_cache(const char *name,
 | 
						|
		unsigned int object_size, unsigned int align,
 | 
						|
		slab_flags_t flags, unsigned int useroffset,
 | 
						|
		unsigned int usersize, void (*ctor)(void *),
 | 
						|
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 | 
						|
{
 | 
						|
	struct kmem_cache *s;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (WARN_ON(useroffset + usersize > object_size))
 | 
						|
		useroffset = usersize = 0;
 | 
						|
 | 
						|
	err = -ENOMEM;
 | 
						|
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 | 
						|
	if (!s)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	s->name = name;
 | 
						|
	s->size = s->object_size = object_size;
 | 
						|
	s->align = align;
 | 
						|
	s->ctor = ctor;
 | 
						|
	s->useroffset = useroffset;
 | 
						|
	s->usersize = usersize;
 | 
						|
 | 
						|
	err = init_memcg_params(s, memcg, root_cache);
 | 
						|
	if (err)
 | 
						|
		goto out_free_cache;
 | 
						|
 | 
						|
	err = __kmem_cache_create(s, flags);
 | 
						|
	if (err)
 | 
						|
		goto out_free_cache;
 | 
						|
 | 
						|
	s->refcount = 1;
 | 
						|
	list_add(&s->list, &slab_caches);
 | 
						|
	memcg_link_cache(s);
 | 
						|
out:
 | 
						|
	if (err)
 | 
						|
		return ERR_PTR(err);
 | 
						|
	return s;
 | 
						|
 | 
						|
out_free_cache:
 | 
						|
	destroy_memcg_params(s);
 | 
						|
	kmem_cache_free(kmem_cache, s);
 | 
						|
	goto out;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * kmem_cache_create_usercopy - Create a cache with a region suitable
 | 
						|
 * for copying to userspace
 | 
						|
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 | 
						|
 * @size: The size of objects to be created in this cache.
 | 
						|
 * @align: The required alignment for the objects.
 | 
						|
 * @flags: SLAB flags
 | 
						|
 * @useroffset: Usercopy region offset
 | 
						|
 * @usersize: Usercopy region size
 | 
						|
 * @ctor: A constructor for the objects.
 | 
						|
 *
 | 
						|
 * Cannot be called within a interrupt, but can be interrupted.
 | 
						|
 * The @ctor is run when new pages are allocated by the cache.
 | 
						|
 *
 | 
						|
 * The flags are
 | 
						|
 *
 | 
						|
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 | 
						|
 * to catch references to uninitialised memory.
 | 
						|
 *
 | 
						|
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 | 
						|
 * for buffer overruns.
 | 
						|
 *
 | 
						|
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 | 
						|
 * cacheline.  This can be beneficial if you're counting cycles as closely
 | 
						|
 * as davem.
 | 
						|
 *
 | 
						|
 * Return: a pointer to the cache on success, NULL on failure.
 | 
						|
 */
 | 
						|
struct kmem_cache *
 | 
						|
kmem_cache_create_usercopy(const char *name,
 | 
						|
		  unsigned int size, unsigned int align,
 | 
						|
		  slab_flags_t flags,
 | 
						|
		  unsigned int useroffset, unsigned int usersize,
 | 
						|
		  void (*ctor)(void *))
 | 
						|
{
 | 
						|
	struct kmem_cache *s = NULL;
 | 
						|
	const char *cache_name;
 | 
						|
	int err;
 | 
						|
 | 
						|
	get_online_cpus();
 | 
						|
	get_online_mems();
 | 
						|
	memcg_get_cache_ids();
 | 
						|
 | 
						|
	mutex_lock(&slab_mutex);
 | 
						|
 | 
						|
	err = kmem_cache_sanity_check(name, size);
 | 
						|
	if (err) {
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Refuse requests with allocator specific flags */
 | 
						|
	if (flags & ~SLAB_FLAGS_PERMITTED) {
 | 
						|
		err = -EINVAL;
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Some allocators will constraint the set of valid flags to a subset
 | 
						|
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
 | 
						|
	 * case, and we'll just provide them with a sanitized version of the
 | 
						|
	 * passed flags.
 | 
						|
	 */
 | 
						|
	flags &= CACHE_CREATE_MASK;
 | 
						|
 | 
						|
	/* Fail closed on bad usersize of useroffset values. */
 | 
						|
	if (WARN_ON(!usersize && useroffset) ||
 | 
						|
	    WARN_ON(size < usersize || size - usersize < useroffset))
 | 
						|
		usersize = useroffset = 0;
 | 
						|
 | 
						|
	if (!usersize)
 | 
						|
		s = __kmem_cache_alias(name, size, align, flags, ctor);
 | 
						|
	if (s)
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	cache_name = kstrdup_const(name, GFP_KERNEL);
 | 
						|
	if (!cache_name) {
 | 
						|
		err = -ENOMEM;
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	s = create_cache(cache_name, size,
 | 
						|
			 calculate_alignment(flags, align, size),
 | 
						|
			 flags, useroffset, usersize, ctor, NULL, NULL);
 | 
						|
	if (IS_ERR(s)) {
 | 
						|
		err = PTR_ERR(s);
 | 
						|
		kfree_const(cache_name);
 | 
						|
	}
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	mutex_unlock(&slab_mutex);
 | 
						|
 | 
						|
	memcg_put_cache_ids();
 | 
						|
	put_online_mems();
 | 
						|
	put_online_cpus();
 | 
						|
 | 
						|
	if (err) {
 | 
						|
		if (flags & SLAB_PANIC)
 | 
						|
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
 | 
						|
				name, err);
 | 
						|
		else {
 | 
						|
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
 | 
						|
				name, err);
 | 
						|
			dump_stack();
 | 
						|
		}
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return s;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kmem_cache_create_usercopy);
 | 
						|
 | 
						|
/**
 | 
						|
 * kmem_cache_create - Create a cache.
 | 
						|
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 | 
						|
 * @size: The size of objects to be created in this cache.
 | 
						|
 * @align: The required alignment for the objects.
 | 
						|
 * @flags: SLAB flags
 | 
						|
 * @ctor: A constructor for the objects.
 | 
						|
 *
 | 
						|
 * Cannot be called within a interrupt, but can be interrupted.
 | 
						|
 * The @ctor is run when new pages are allocated by the cache.
 | 
						|
 *
 | 
						|
 * The flags are
 | 
						|
 *
 | 
						|
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 | 
						|
 * to catch references to uninitialised memory.
 | 
						|
 *
 | 
						|
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 | 
						|
 * for buffer overruns.
 | 
						|
 *
 | 
						|
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 | 
						|
 * cacheline.  This can be beneficial if you're counting cycles as closely
 | 
						|
 * as davem.
 | 
						|
 *
 | 
						|
 * Return: a pointer to the cache on success, NULL on failure.
 | 
						|
 */
 | 
						|
struct kmem_cache *
 | 
						|
kmem_cache_create(const char *name, unsigned int size, unsigned int align,
 | 
						|
		slab_flags_t flags, void (*ctor)(void *))
 | 
						|
{
 | 
						|
	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
 | 
						|
					  ctor);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kmem_cache_create);
 | 
						|
 | 
						|
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
 | 
						|
{
 | 
						|
	LIST_HEAD(to_destroy);
 | 
						|
	struct kmem_cache *s, *s2;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
 | 
						|
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
 | 
						|
	 * through RCU and and the associated kmem_cache are dereferenced
 | 
						|
	 * while freeing the pages, so the kmem_caches should be freed only
 | 
						|
	 * after the pending RCU operations are finished.  As rcu_barrier()
 | 
						|
	 * is a pretty slow operation, we batch all pending destructions
 | 
						|
	 * asynchronously.
 | 
						|
	 */
 | 
						|
	mutex_lock(&slab_mutex);
 | 
						|
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
 | 
						|
	mutex_unlock(&slab_mutex);
 | 
						|
 | 
						|
	if (list_empty(&to_destroy))
 | 
						|
		return;
 | 
						|
 | 
						|
	rcu_barrier();
 | 
						|
 | 
						|
	list_for_each_entry_safe(s, s2, &to_destroy, list) {
 | 
						|
#ifdef SLAB_SUPPORTS_SYSFS
 | 
						|
		sysfs_slab_release(s);
 | 
						|
#else
 | 
						|
		slab_kmem_cache_release(s);
 | 
						|
#endif
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int shutdown_cache(struct kmem_cache *s)
 | 
						|
{
 | 
						|
	/* free asan quarantined objects */
 | 
						|
	kasan_cache_shutdown(s);
 | 
						|
 | 
						|
	if (__kmem_cache_shutdown(s) != 0)
 | 
						|
		return -EBUSY;
 | 
						|
 | 
						|
	memcg_unlink_cache(s);
 | 
						|
	list_del(&s->list);
 | 
						|
 | 
						|
	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
 | 
						|
#ifdef SLAB_SUPPORTS_SYSFS
 | 
						|
		sysfs_slab_unlink(s);
 | 
						|
#endif
 | 
						|
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
 | 
						|
		schedule_work(&slab_caches_to_rcu_destroy_work);
 | 
						|
	} else {
 | 
						|
#ifdef SLAB_SUPPORTS_SYSFS
 | 
						|
		sysfs_slab_unlink(s);
 | 
						|
		sysfs_slab_release(s);
 | 
						|
#else
 | 
						|
		slab_kmem_cache_release(s);
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MEMCG_KMEM
 | 
						|
/*
 | 
						|
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
 | 
						|
 * @memcg: The memory cgroup the new cache is for.
 | 
						|
 * @root_cache: The parent of the new cache.
 | 
						|
 *
 | 
						|
 * This function attempts to create a kmem cache that will serve allocation
 | 
						|
 * requests going from @memcg to @root_cache. The new cache inherits properties
 | 
						|
 * from its parent.
 | 
						|
 */
 | 
						|
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
 | 
						|
			     struct kmem_cache *root_cache)
 | 
						|
{
 | 
						|
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
 | 
						|
	struct cgroup_subsys_state *css = &memcg->css;
 | 
						|
	struct memcg_cache_array *arr;
 | 
						|
	struct kmem_cache *s = NULL;
 | 
						|
	char *cache_name;
 | 
						|
	int idx;
 | 
						|
 | 
						|
	get_online_cpus();
 | 
						|
	get_online_mems();
 | 
						|
 | 
						|
	mutex_lock(&slab_mutex);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The memory cgroup could have been offlined while the cache
 | 
						|
	 * creation work was pending.
 | 
						|
	 */
 | 
						|
	if (memcg->kmem_state != KMEM_ONLINE || root_cache->memcg_params.dying)
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	idx = memcg_cache_id(memcg);
 | 
						|
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
 | 
						|
					lockdep_is_held(&slab_mutex));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since per-memcg caches are created asynchronously on first
 | 
						|
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
 | 
						|
	 * create the same cache, but only one of them may succeed.
 | 
						|
	 */
 | 
						|
	if (arr->entries[idx])
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
 | 
						|
	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
 | 
						|
			       css->serial_nr, memcg_name_buf);
 | 
						|
	if (!cache_name)
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	s = create_cache(cache_name, root_cache->object_size,
 | 
						|
			 root_cache->align,
 | 
						|
			 root_cache->flags & CACHE_CREATE_MASK,
 | 
						|
			 root_cache->useroffset, root_cache->usersize,
 | 
						|
			 root_cache->ctor, memcg, root_cache);
 | 
						|
	/*
 | 
						|
	 * If we could not create a memcg cache, do not complain, because
 | 
						|
	 * that's not critical at all as we can always proceed with the root
 | 
						|
	 * cache.
 | 
						|
	 */
 | 
						|
	if (IS_ERR(s)) {
 | 
						|
		kfree(cache_name);
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
 | 
						|
	 * barrier here to ensure nobody will see the kmem_cache partially
 | 
						|
	 * initialized.
 | 
						|
	 */
 | 
						|
	smp_wmb();
 | 
						|
	arr->entries[idx] = s;
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	mutex_unlock(&slab_mutex);
 | 
						|
 | 
						|
	put_online_mems();
 | 
						|
	put_online_cpus();
 | 
						|
}
 | 
						|
 | 
						|
static void kmemcg_deactivate_workfn(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct kmem_cache *s = container_of(work, struct kmem_cache,
 | 
						|
					    memcg_params.deact_work);
 | 
						|
 | 
						|
	get_online_cpus();
 | 
						|
	get_online_mems();
 | 
						|
 | 
						|
	mutex_lock(&slab_mutex);
 | 
						|
 | 
						|
	s->memcg_params.deact_fn(s);
 | 
						|
 | 
						|
	mutex_unlock(&slab_mutex);
 | 
						|
 | 
						|
	put_online_mems();
 | 
						|
	put_online_cpus();
 | 
						|
 | 
						|
	/* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
 | 
						|
	css_put(&s->memcg_params.memcg->css);
 | 
						|
}
 | 
						|
 | 
						|
static void kmemcg_deactivate_rcufn(struct rcu_head *head)
 | 
						|
{
 | 
						|
	struct kmem_cache *s = container_of(head, struct kmem_cache,
 | 
						|
					    memcg_params.deact_rcu_head);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We need to grab blocking locks.  Bounce to ->deact_work.  The
 | 
						|
	 * work item shares the space with the RCU head and can't be
 | 
						|
	 * initialized eariler.
 | 
						|
	 */
 | 
						|
	INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
 | 
						|
	queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
 | 
						|
 *					   sched RCU grace period
 | 
						|
 * @s: target kmem_cache
 | 
						|
 * @deact_fn: deactivation function to call
 | 
						|
 *
 | 
						|
 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
 | 
						|
 * held after a sched RCU grace period.  The slab is guaranteed to stay
 | 
						|
 * alive until @deact_fn is finished.  This is to be used from
 | 
						|
 * __kmemcg_cache_deactivate().
 | 
						|
 */
 | 
						|
void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
 | 
						|
					   void (*deact_fn)(struct kmem_cache *))
 | 
						|
{
 | 
						|
	if (WARN_ON_ONCE(is_root_cache(s)) ||
 | 
						|
	    WARN_ON_ONCE(s->memcg_params.deact_fn))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (s->memcg_params.root_cache->memcg_params.dying)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* pin memcg so that @s doesn't get destroyed in the middle */
 | 
						|
	css_get(&s->memcg_params.memcg->css);
 | 
						|
 | 
						|
	s->memcg_params.deact_fn = deact_fn;
 | 
						|
	call_rcu(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
 | 
						|
}
 | 
						|
 | 
						|
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	int idx;
 | 
						|
	struct memcg_cache_array *arr;
 | 
						|
	struct kmem_cache *s, *c;
 | 
						|
 | 
						|
	idx = memcg_cache_id(memcg);
 | 
						|
 | 
						|
	get_online_cpus();
 | 
						|
	get_online_mems();
 | 
						|
 | 
						|
	mutex_lock(&slab_mutex);
 | 
						|
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
 | 
						|
		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
 | 
						|
						lockdep_is_held(&slab_mutex));
 | 
						|
		c = arr->entries[idx];
 | 
						|
		if (!c)
 | 
						|
			continue;
 | 
						|
 | 
						|
		__kmemcg_cache_deactivate(c);
 | 
						|
		arr->entries[idx] = NULL;
 | 
						|
	}
 | 
						|
	mutex_unlock(&slab_mutex);
 | 
						|
 | 
						|
	put_online_mems();
 | 
						|
	put_online_cpus();
 | 
						|
}
 | 
						|
 | 
						|
void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
 | 
						|
{
 | 
						|
	struct kmem_cache *s, *s2;
 | 
						|
 | 
						|
	get_online_cpus();
 | 
						|
	get_online_mems();
 | 
						|
 | 
						|
	mutex_lock(&slab_mutex);
 | 
						|
	list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
 | 
						|
				 memcg_params.kmem_caches_node) {
 | 
						|
		/*
 | 
						|
		 * The cgroup is about to be freed and therefore has no charges
 | 
						|
		 * left. Hence, all its caches must be empty by now.
 | 
						|
		 */
 | 
						|
		BUG_ON(shutdown_cache(s));
 | 
						|
	}
 | 
						|
	mutex_unlock(&slab_mutex);
 | 
						|
 | 
						|
	put_online_mems();
 | 
						|
	put_online_cpus();
 | 
						|
}
 | 
						|
 | 
						|
static int shutdown_memcg_caches(struct kmem_cache *s)
 | 
						|
{
 | 
						|
	struct memcg_cache_array *arr;
 | 
						|
	struct kmem_cache *c, *c2;
 | 
						|
	LIST_HEAD(busy);
 | 
						|
	int i;
 | 
						|
 | 
						|
	BUG_ON(!is_root_cache(s));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * First, shutdown active caches, i.e. caches that belong to online
 | 
						|
	 * memory cgroups.
 | 
						|
	 */
 | 
						|
	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
 | 
						|
					lockdep_is_held(&slab_mutex));
 | 
						|
	for_each_memcg_cache_index(i) {
 | 
						|
		c = arr->entries[i];
 | 
						|
		if (!c)
 | 
						|
			continue;
 | 
						|
		if (shutdown_cache(c))
 | 
						|
			/*
 | 
						|
			 * The cache still has objects. Move it to a temporary
 | 
						|
			 * list so as not to try to destroy it for a second
 | 
						|
			 * time while iterating over inactive caches below.
 | 
						|
			 */
 | 
						|
			list_move(&c->memcg_params.children_node, &busy);
 | 
						|
		else
 | 
						|
			/*
 | 
						|
			 * The cache is empty and will be destroyed soon. Clear
 | 
						|
			 * the pointer to it in the memcg_caches array so that
 | 
						|
			 * it will never be accessed even if the root cache
 | 
						|
			 * stays alive.
 | 
						|
			 */
 | 
						|
			arr->entries[i] = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Second, shutdown all caches left from memory cgroups that are now
 | 
						|
	 * offline.
 | 
						|
	 */
 | 
						|
	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
 | 
						|
				 memcg_params.children_node)
 | 
						|
		shutdown_cache(c);
 | 
						|
 | 
						|
	list_splice(&busy, &s->memcg_params.children);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A cache being destroyed must be empty. In particular, this means
 | 
						|
	 * that all per memcg caches attached to it must be empty too.
 | 
						|
	 */
 | 
						|
	if (!list_empty(&s->memcg_params.children))
 | 
						|
		return -EBUSY;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void flush_memcg_workqueue(struct kmem_cache *s)
 | 
						|
{
 | 
						|
	mutex_lock(&slab_mutex);
 | 
						|
	s->memcg_params.dying = true;
 | 
						|
	mutex_unlock(&slab_mutex);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * SLUB deactivates the kmem_caches through call_rcu. Make
 | 
						|
	 * sure all registered rcu callbacks have been invoked.
 | 
						|
	 */
 | 
						|
	if (IS_ENABLED(CONFIG_SLUB))
 | 
						|
		rcu_barrier();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
 | 
						|
	 * deactivates the memcg kmem_caches through workqueue. Make sure all
 | 
						|
	 * previous workitems on workqueue are processed.
 | 
						|
	 */
 | 
						|
	flush_workqueue(memcg_kmem_cache_wq);
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline int shutdown_memcg_caches(struct kmem_cache *s)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline void flush_memcg_workqueue(struct kmem_cache *s)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif /* CONFIG_MEMCG_KMEM */
 | 
						|
 | 
						|
void slab_kmem_cache_release(struct kmem_cache *s)
 | 
						|
{
 | 
						|
	__kmem_cache_release(s);
 | 
						|
	destroy_memcg_params(s);
 | 
						|
	kfree_const(s->name);
 | 
						|
	kmem_cache_free(kmem_cache, s);
 | 
						|
}
 | 
						|
 | 
						|
void kmem_cache_destroy(struct kmem_cache *s)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (unlikely(!s))
 | 
						|
		return;
 | 
						|
 | 
						|
	flush_memcg_workqueue(s);
 | 
						|
 | 
						|
	get_online_cpus();
 | 
						|
	get_online_mems();
 | 
						|
 | 
						|
	mutex_lock(&slab_mutex);
 | 
						|
 | 
						|
	s->refcount--;
 | 
						|
	if (s->refcount)
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	err = shutdown_memcg_caches(s);
 | 
						|
	if (!err)
 | 
						|
		err = shutdown_cache(s);
 | 
						|
 | 
						|
	if (err) {
 | 
						|
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
 | 
						|
		       s->name);
 | 
						|
		dump_stack();
 | 
						|
	}
 | 
						|
out_unlock:
 | 
						|
	mutex_unlock(&slab_mutex);
 | 
						|
 | 
						|
	put_online_mems();
 | 
						|
	put_online_cpus();
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kmem_cache_destroy);
 | 
						|
 | 
						|
/**
 | 
						|
 * kmem_cache_shrink - Shrink a cache.
 | 
						|
 * @cachep: The cache to shrink.
 | 
						|
 *
 | 
						|
 * Releases as many slabs as possible for a cache.
 | 
						|
 * To help debugging, a zero exit status indicates all slabs were released.
 | 
						|
 */
 | 
						|
int kmem_cache_shrink(struct kmem_cache *cachep)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	get_online_cpus();
 | 
						|
	get_online_mems();
 | 
						|
	kasan_cache_shrink(cachep);
 | 
						|
	ret = __kmem_cache_shrink(cachep);
 | 
						|
	put_online_mems();
 | 
						|
	put_online_cpus();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kmem_cache_shrink);
 | 
						|
 | 
						|
bool slab_is_available(void)
 | 
						|
{
 | 
						|
	return slab_state >= UP;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef CONFIG_SLOB
 | 
						|
/* Create a cache during boot when no slab services are available yet */
 | 
						|
void __init create_boot_cache(struct kmem_cache *s, const char *name,
 | 
						|
		unsigned int size, slab_flags_t flags,
 | 
						|
		unsigned int useroffset, unsigned int usersize)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	s->name = name;
 | 
						|
	s->size = s->object_size = size;
 | 
						|
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
 | 
						|
	s->useroffset = useroffset;
 | 
						|
	s->usersize = usersize;
 | 
						|
 | 
						|
	slab_init_memcg_params(s);
 | 
						|
 | 
						|
	err = __kmem_cache_create(s, flags);
 | 
						|
 | 
						|
	if (err)
 | 
						|
		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
 | 
						|
					name, size, err);
 | 
						|
 | 
						|
	s->refcount = -1;	/* Exempt from merging for now */
 | 
						|
}
 | 
						|
 | 
						|
struct kmem_cache *__init create_kmalloc_cache(const char *name,
 | 
						|
		unsigned int size, slab_flags_t flags,
 | 
						|
		unsigned int useroffset, unsigned int usersize)
 | 
						|
{
 | 
						|
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 | 
						|
 | 
						|
	if (!s)
 | 
						|
		panic("Out of memory when creating slab %s\n", name);
 | 
						|
 | 
						|
	create_boot_cache(s, name, size, flags, useroffset, usersize);
 | 
						|
	list_add(&s->list, &slab_caches);
 | 
						|
	memcg_link_cache(s);
 | 
						|
	s->refcount = 1;
 | 
						|
	return s;
 | 
						|
}
 | 
						|
 | 
						|
struct kmem_cache *
 | 
						|
kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
 | 
						|
EXPORT_SYMBOL(kmalloc_caches);
 | 
						|
 | 
						|
/*
 | 
						|
 * Conversion table for small slabs sizes / 8 to the index in the
 | 
						|
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 | 
						|
 * of two cache sizes there. The size of larger slabs can be determined using
 | 
						|
 * fls.
 | 
						|
 */
 | 
						|
static u8 size_index[24] __ro_after_init = {
 | 
						|
	3,	/* 8 */
 | 
						|
	4,	/* 16 */
 | 
						|
	5,	/* 24 */
 | 
						|
	5,	/* 32 */
 | 
						|
	6,	/* 40 */
 | 
						|
	6,	/* 48 */
 | 
						|
	6,	/* 56 */
 | 
						|
	6,	/* 64 */
 | 
						|
	1,	/* 72 */
 | 
						|
	1,	/* 80 */
 | 
						|
	1,	/* 88 */
 | 
						|
	1,	/* 96 */
 | 
						|
	7,	/* 104 */
 | 
						|
	7,	/* 112 */
 | 
						|
	7,	/* 120 */
 | 
						|
	7,	/* 128 */
 | 
						|
	2,	/* 136 */
 | 
						|
	2,	/* 144 */
 | 
						|
	2,	/* 152 */
 | 
						|
	2,	/* 160 */
 | 
						|
	2,	/* 168 */
 | 
						|
	2,	/* 176 */
 | 
						|
	2,	/* 184 */
 | 
						|
	2	/* 192 */
 | 
						|
};
 | 
						|
 | 
						|
static inline unsigned int size_index_elem(unsigned int bytes)
 | 
						|
{
 | 
						|
	return (bytes - 1) / 8;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find the kmem_cache structure that serves a given size of
 | 
						|
 * allocation
 | 
						|
 */
 | 
						|
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
 | 
						|
{
 | 
						|
	unsigned int index;
 | 
						|
 | 
						|
	if (size <= 192) {
 | 
						|
		if (!size)
 | 
						|
			return ZERO_SIZE_PTR;
 | 
						|
 | 
						|
		index = size_index[size_index_elem(size)];
 | 
						|
	} else {
 | 
						|
		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
 | 
						|
			return NULL;
 | 
						|
		index = fls(size - 1);
 | 
						|
	}
 | 
						|
 | 
						|
	return kmalloc_caches[kmalloc_type(flags)][index];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 | 
						|
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 | 
						|
 * kmalloc-67108864.
 | 
						|
 */
 | 
						|
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
 | 
						|
	{NULL,                      0},		{"kmalloc-96",             96},
 | 
						|
	{"kmalloc-192",           192},		{"kmalloc-8",               8},
 | 
						|
	{"kmalloc-16",             16},		{"kmalloc-32",             32},
 | 
						|
	{"kmalloc-64",             64},		{"kmalloc-128",           128},
 | 
						|
	{"kmalloc-256",           256},		{"kmalloc-512",           512},
 | 
						|
	{"kmalloc-1k",           1024},		{"kmalloc-2k",           2048},
 | 
						|
	{"kmalloc-4k",           4096},		{"kmalloc-8k",           8192},
 | 
						|
	{"kmalloc-16k",         16384},		{"kmalloc-32k",         32768},
 | 
						|
	{"kmalloc-64k",         65536},		{"kmalloc-128k",       131072},
 | 
						|
	{"kmalloc-256k",       262144},		{"kmalloc-512k",       524288},
 | 
						|
	{"kmalloc-1M",        1048576},		{"kmalloc-2M",        2097152},
 | 
						|
	{"kmalloc-4M",        4194304},		{"kmalloc-8M",        8388608},
 | 
						|
	{"kmalloc-16M",      16777216},		{"kmalloc-32M",      33554432},
 | 
						|
	{"kmalloc-64M",      67108864}
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Patch up the size_index table if we have strange large alignment
 | 
						|
 * requirements for the kmalloc array. This is only the case for
 | 
						|
 * MIPS it seems. The standard arches will not generate any code here.
 | 
						|
 *
 | 
						|
 * Largest permitted alignment is 256 bytes due to the way we
 | 
						|
 * handle the index determination for the smaller caches.
 | 
						|
 *
 | 
						|
 * Make sure that nothing crazy happens if someone starts tinkering
 | 
						|
 * around with ARCH_KMALLOC_MINALIGN
 | 
						|
 */
 | 
						|
void __init setup_kmalloc_cache_index_table(void)
 | 
						|
{
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
 | 
						|
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
 | 
						|
 | 
						|
	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
 | 
						|
		unsigned int elem = size_index_elem(i);
 | 
						|
 | 
						|
		if (elem >= ARRAY_SIZE(size_index))
 | 
						|
			break;
 | 
						|
		size_index[elem] = KMALLOC_SHIFT_LOW;
 | 
						|
	}
 | 
						|
 | 
						|
	if (KMALLOC_MIN_SIZE >= 64) {
 | 
						|
		/*
 | 
						|
		 * The 96 byte size cache is not used if the alignment
 | 
						|
		 * is 64 byte.
 | 
						|
		 */
 | 
						|
		for (i = 64 + 8; i <= 96; i += 8)
 | 
						|
			size_index[size_index_elem(i)] = 7;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	if (KMALLOC_MIN_SIZE >= 128) {
 | 
						|
		/*
 | 
						|
		 * The 192 byte sized cache is not used if the alignment
 | 
						|
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
 | 
						|
		 * instead.
 | 
						|
		 */
 | 
						|
		for (i = 128 + 8; i <= 192; i += 8)
 | 
						|
			size_index[size_index_elem(i)] = 8;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static const char *
 | 
						|
kmalloc_cache_name(const char *prefix, unsigned int size)
 | 
						|
{
 | 
						|
 | 
						|
	static const char units[3] = "\0kM";
 | 
						|
	int idx = 0;
 | 
						|
 | 
						|
	while (size >= 1024 && (size % 1024 == 0)) {
 | 
						|
		size /= 1024;
 | 
						|
		idx++;
 | 
						|
	}
 | 
						|
 | 
						|
	return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]);
 | 
						|
}
 | 
						|
 | 
						|
static void __init
 | 
						|
new_kmalloc_cache(int idx, int type, slab_flags_t flags)
 | 
						|
{
 | 
						|
	const char *name;
 | 
						|
 | 
						|
	if (type == KMALLOC_RECLAIM) {
 | 
						|
		flags |= SLAB_RECLAIM_ACCOUNT;
 | 
						|
		name = kmalloc_cache_name("kmalloc-rcl",
 | 
						|
						kmalloc_info[idx].size);
 | 
						|
		BUG_ON(!name);
 | 
						|
	} else {
 | 
						|
		name = kmalloc_info[idx].name;
 | 
						|
	}
 | 
						|
 | 
						|
	kmalloc_caches[type][idx] = create_kmalloc_cache(name,
 | 
						|
					kmalloc_info[idx].size, flags, 0,
 | 
						|
					kmalloc_info[idx].size);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Create the kmalloc array. Some of the regular kmalloc arrays
 | 
						|
 * may already have been created because they were needed to
 | 
						|
 * enable allocations for slab creation.
 | 
						|
 */
 | 
						|
void __init create_kmalloc_caches(slab_flags_t flags)
 | 
						|
{
 | 
						|
	int i, type;
 | 
						|
 | 
						|
	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
 | 
						|
		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
 | 
						|
			if (!kmalloc_caches[type][i])
 | 
						|
				new_kmalloc_cache(i, type, flags);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Caches that are not of the two-to-the-power-of size.
 | 
						|
			 * These have to be created immediately after the
 | 
						|
			 * earlier power of two caches
 | 
						|
			 */
 | 
						|
			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
 | 
						|
					!kmalloc_caches[type][1])
 | 
						|
				new_kmalloc_cache(1, type, flags);
 | 
						|
			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
 | 
						|
					!kmalloc_caches[type][2])
 | 
						|
				new_kmalloc_cache(2, type, flags);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Kmalloc array is now usable */
 | 
						|
	slab_state = UP;
 | 
						|
 | 
						|
#ifdef CONFIG_ZONE_DMA
 | 
						|
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
 | 
						|
		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
 | 
						|
 | 
						|
		if (s) {
 | 
						|
			unsigned int size = kmalloc_size(i);
 | 
						|
			const char *n = kmalloc_cache_name("dma-kmalloc", size);
 | 
						|
 | 
						|
			BUG_ON(!n);
 | 
						|
			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
 | 
						|
				n, size, SLAB_CACHE_DMA | flags, 0, 0);
 | 
						|
		}
 | 
						|
	}
 | 
						|
#endif
 | 
						|
}
 | 
						|
#endif /* !CONFIG_SLOB */
 | 
						|
 | 
						|
/*
 | 
						|
 * To avoid unnecessary overhead, we pass through large allocation requests
 | 
						|
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 | 
						|
 * know the allocation order to free the pages properly in kfree.
 | 
						|
 */
 | 
						|
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
 | 
						|
{
 | 
						|
	void *ret;
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	flags |= __GFP_COMP;
 | 
						|
	page = alloc_pages(flags, order);
 | 
						|
	ret = page ? page_address(page) : NULL;
 | 
						|
	kmemleak_alloc(ret, size, 1, flags);
 | 
						|
	ret = kasan_kmalloc_large(ret, size, flags);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kmalloc_order);
 | 
						|
 | 
						|
#ifdef CONFIG_TRACING
 | 
						|
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
 | 
						|
{
 | 
						|
	void *ret = kmalloc_order(size, flags, order);
 | 
						|
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kmalloc_order_trace);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_SLAB_FREELIST_RANDOM
 | 
						|
/* Randomize a generic freelist */
 | 
						|
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
 | 
						|
			       unsigned int count)
 | 
						|
{
 | 
						|
	unsigned int rand;
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	for (i = 0; i < count; i++)
 | 
						|
		list[i] = i;
 | 
						|
 | 
						|
	/* Fisher-Yates shuffle */
 | 
						|
	for (i = count - 1; i > 0; i--) {
 | 
						|
		rand = prandom_u32_state(state);
 | 
						|
		rand %= (i + 1);
 | 
						|
		swap(list[i], list[rand]);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Create a random sequence per cache */
 | 
						|
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
 | 
						|
				    gfp_t gfp)
 | 
						|
{
 | 
						|
	struct rnd_state state;
 | 
						|
 | 
						|
	if (count < 2 || cachep->random_seq)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
 | 
						|
	if (!cachep->random_seq)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	/* Get best entropy at this stage of boot */
 | 
						|
	prandom_seed_state(&state, get_random_long());
 | 
						|
 | 
						|
	freelist_randomize(&state, cachep->random_seq, count);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Destroy the per-cache random freelist sequence */
 | 
						|
void cache_random_seq_destroy(struct kmem_cache *cachep)
 | 
						|
{
 | 
						|
	kfree(cachep->random_seq);
 | 
						|
	cachep->random_seq = NULL;
 | 
						|
}
 | 
						|
#endif /* CONFIG_SLAB_FREELIST_RANDOM */
 | 
						|
 | 
						|
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
 | 
						|
#ifdef CONFIG_SLAB
 | 
						|
#define SLABINFO_RIGHTS (0600)
 | 
						|
#else
 | 
						|
#define SLABINFO_RIGHTS (0400)
 | 
						|
#endif
 | 
						|
 | 
						|
static void print_slabinfo_header(struct seq_file *m)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Output format version, so at least we can change it
 | 
						|
	 * without _too_ many complaints.
 | 
						|
	 */
 | 
						|
#ifdef CONFIG_DEBUG_SLAB
 | 
						|
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
 | 
						|
#else
 | 
						|
	seq_puts(m, "slabinfo - version: 2.1\n");
 | 
						|
#endif
 | 
						|
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
 | 
						|
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
 | 
						|
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
 | 
						|
#ifdef CONFIG_DEBUG_SLAB
 | 
						|
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
 | 
						|
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
 | 
						|
#endif
 | 
						|
	seq_putc(m, '\n');
 | 
						|
}
 | 
						|
 | 
						|
void *slab_start(struct seq_file *m, loff_t *pos)
 | 
						|
{
 | 
						|
	mutex_lock(&slab_mutex);
 | 
						|
	return seq_list_start(&slab_root_caches, *pos);
 | 
						|
}
 | 
						|
 | 
						|
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
 | 
						|
{
 | 
						|
	return seq_list_next(p, &slab_root_caches, pos);
 | 
						|
}
 | 
						|
 | 
						|
void slab_stop(struct seq_file *m, void *p)
 | 
						|
{
 | 
						|
	mutex_unlock(&slab_mutex);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
 | 
						|
{
 | 
						|
	struct kmem_cache *c;
 | 
						|
	struct slabinfo sinfo;
 | 
						|
 | 
						|
	if (!is_root_cache(s))
 | 
						|
		return;
 | 
						|
 | 
						|
	for_each_memcg_cache(c, s) {
 | 
						|
		memset(&sinfo, 0, sizeof(sinfo));
 | 
						|
		get_slabinfo(c, &sinfo);
 | 
						|
 | 
						|
		info->active_slabs += sinfo.active_slabs;
 | 
						|
		info->num_slabs += sinfo.num_slabs;
 | 
						|
		info->shared_avail += sinfo.shared_avail;
 | 
						|
		info->active_objs += sinfo.active_objs;
 | 
						|
		info->num_objs += sinfo.num_objs;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void cache_show(struct kmem_cache *s, struct seq_file *m)
 | 
						|
{
 | 
						|
	struct slabinfo sinfo;
 | 
						|
 | 
						|
	memset(&sinfo, 0, sizeof(sinfo));
 | 
						|
	get_slabinfo(s, &sinfo);
 | 
						|
 | 
						|
	memcg_accumulate_slabinfo(s, &sinfo);
 | 
						|
 | 
						|
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
 | 
						|
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
 | 
						|
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
 | 
						|
 | 
						|
	seq_printf(m, " : tunables %4u %4u %4u",
 | 
						|
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
 | 
						|
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
 | 
						|
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
 | 
						|
	slabinfo_show_stats(m, s);
 | 
						|
	seq_putc(m, '\n');
 | 
						|
}
 | 
						|
 | 
						|
static int slab_show(struct seq_file *m, void *p)
 | 
						|
{
 | 
						|
	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
 | 
						|
 | 
						|
	if (p == slab_root_caches.next)
 | 
						|
		print_slabinfo_header(m);
 | 
						|
	cache_show(s, m);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void dump_unreclaimable_slab(void)
 | 
						|
{
 | 
						|
	struct kmem_cache *s, *s2;
 | 
						|
	struct slabinfo sinfo;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Here acquiring slab_mutex is risky since we don't prefer to get
 | 
						|
	 * sleep in oom path. But, without mutex hold, it may introduce a
 | 
						|
	 * risk of crash.
 | 
						|
	 * Use mutex_trylock to protect the list traverse, dump nothing
 | 
						|
	 * without acquiring the mutex.
 | 
						|
	 */
 | 
						|
	if (!mutex_trylock(&slab_mutex)) {
 | 
						|
		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	pr_info("Unreclaimable slab info:\n");
 | 
						|
	pr_info("Name                      Used          Total\n");
 | 
						|
 | 
						|
	list_for_each_entry_safe(s, s2, &slab_caches, list) {
 | 
						|
		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
 | 
						|
			continue;
 | 
						|
 | 
						|
		get_slabinfo(s, &sinfo);
 | 
						|
 | 
						|
		if (sinfo.num_objs > 0)
 | 
						|
			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
 | 
						|
				(sinfo.active_objs * s->size) / 1024,
 | 
						|
				(sinfo.num_objs * s->size) / 1024);
 | 
						|
	}
 | 
						|
	mutex_unlock(&slab_mutex);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(CONFIG_MEMCG)
 | 
						|
void *memcg_slab_start(struct seq_file *m, loff_t *pos)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
 | 
						|
 | 
						|
	mutex_lock(&slab_mutex);
 | 
						|
	return seq_list_start(&memcg->kmem_caches, *pos);
 | 
						|
}
 | 
						|
 | 
						|
void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
 | 
						|
{
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
 | 
						|
 | 
						|
	return seq_list_next(p, &memcg->kmem_caches, pos);
 | 
						|
}
 | 
						|
 | 
						|
void memcg_slab_stop(struct seq_file *m, void *p)
 | 
						|
{
 | 
						|
	mutex_unlock(&slab_mutex);
 | 
						|
}
 | 
						|
 | 
						|
int memcg_slab_show(struct seq_file *m, void *p)
 | 
						|
{
 | 
						|
	struct kmem_cache *s = list_entry(p, struct kmem_cache,
 | 
						|
					  memcg_params.kmem_caches_node);
 | 
						|
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
 | 
						|
 | 
						|
	if (p == memcg->kmem_caches.next)
 | 
						|
		print_slabinfo_header(m);
 | 
						|
	cache_show(s, m);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * slabinfo_op - iterator that generates /proc/slabinfo
 | 
						|
 *
 | 
						|
 * Output layout:
 | 
						|
 * cache-name
 | 
						|
 * num-active-objs
 | 
						|
 * total-objs
 | 
						|
 * object size
 | 
						|
 * num-active-slabs
 | 
						|
 * total-slabs
 | 
						|
 * num-pages-per-slab
 | 
						|
 * + further values on SMP and with statistics enabled
 | 
						|
 */
 | 
						|
static const struct seq_operations slabinfo_op = {
 | 
						|
	.start = slab_start,
 | 
						|
	.next = slab_next,
 | 
						|
	.stop = slab_stop,
 | 
						|
	.show = slab_show,
 | 
						|
};
 | 
						|
 | 
						|
static int slabinfo_open(struct inode *inode, struct file *file)
 | 
						|
{
 | 
						|
	return seq_open(file, &slabinfo_op);
 | 
						|
}
 | 
						|
 | 
						|
static const struct file_operations proc_slabinfo_operations = {
 | 
						|
	.open		= slabinfo_open,
 | 
						|
	.read		= seq_read,
 | 
						|
	.write          = slabinfo_write,
 | 
						|
	.llseek		= seq_lseek,
 | 
						|
	.release	= seq_release,
 | 
						|
};
 | 
						|
 | 
						|
static int __init slab_proc_init(void)
 | 
						|
{
 | 
						|
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
 | 
						|
						&proc_slabinfo_operations);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
module_init(slab_proc_init);
 | 
						|
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
 | 
						|
 | 
						|
static __always_inline void *__do_krealloc(const void *p, size_t new_size,
 | 
						|
					   gfp_t flags)
 | 
						|
{
 | 
						|
	void *ret;
 | 
						|
	size_t ks = 0;
 | 
						|
 | 
						|
	if (p)
 | 
						|
		ks = ksize(p);
 | 
						|
 | 
						|
	if (ks >= new_size) {
 | 
						|
		p = kasan_krealloc((void *)p, new_size, flags);
 | 
						|
		return (void *)p;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = kmalloc_track_caller(new_size, flags);
 | 
						|
	if (ret && p)
 | 
						|
		memcpy(ret, p, ks);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __krealloc - like krealloc() but don't free @p.
 | 
						|
 * @p: object to reallocate memory for.
 | 
						|
 * @new_size: how many bytes of memory are required.
 | 
						|
 * @flags: the type of memory to allocate.
 | 
						|
 *
 | 
						|
 * This function is like krealloc() except it never frees the originally
 | 
						|
 * allocated buffer. Use this if you don't want to free the buffer immediately
 | 
						|
 * like, for example, with RCU.
 | 
						|
 */
 | 
						|
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
 | 
						|
{
 | 
						|
	if (unlikely(!new_size))
 | 
						|
		return ZERO_SIZE_PTR;
 | 
						|
 | 
						|
	return __do_krealloc(p, new_size, flags);
 | 
						|
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__krealloc);
 | 
						|
 | 
						|
/**
 | 
						|
 * krealloc - reallocate memory. The contents will remain unchanged.
 | 
						|
 * @p: object to reallocate memory for.
 | 
						|
 * @new_size: how many bytes of memory are required.
 | 
						|
 * @flags: the type of memory to allocate.
 | 
						|
 *
 | 
						|
 * The contents of the object pointed to are preserved up to the
 | 
						|
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 | 
						|
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 | 
						|
 * %NULL pointer, the object pointed to is freed.
 | 
						|
 */
 | 
						|
void *krealloc(const void *p, size_t new_size, gfp_t flags)
 | 
						|
{
 | 
						|
	void *ret;
 | 
						|
 | 
						|
	if (unlikely(!new_size)) {
 | 
						|
		kfree(p);
 | 
						|
		return ZERO_SIZE_PTR;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = __do_krealloc(p, new_size, flags);
 | 
						|
	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
 | 
						|
		kfree(p);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(krealloc);
 | 
						|
 | 
						|
/**
 | 
						|
 * kzfree - like kfree but zero memory
 | 
						|
 * @p: object to free memory of
 | 
						|
 *
 | 
						|
 * The memory of the object @p points to is zeroed before freed.
 | 
						|
 * If @p is %NULL, kzfree() does nothing.
 | 
						|
 *
 | 
						|
 * Note: this function zeroes the whole allocated buffer which can be a good
 | 
						|
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 | 
						|
 * careful when using this function in performance sensitive code.
 | 
						|
 */
 | 
						|
void kzfree(const void *p)
 | 
						|
{
 | 
						|
	size_t ks;
 | 
						|
	void *mem = (void *)p;
 | 
						|
 | 
						|
	if (unlikely(ZERO_OR_NULL_PTR(mem)))
 | 
						|
		return;
 | 
						|
	ks = ksize(mem);
 | 
						|
	memset(mem, 0, ks);
 | 
						|
	kfree(mem);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kzfree);
 | 
						|
 | 
						|
/* Tracepoints definitions. */
 | 
						|
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
 | 
						|
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
 | 
						|
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
 | 
						|
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
 | 
						|
EXPORT_TRACEPOINT_SYMBOL(kfree);
 | 
						|
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
 | 
						|
 | 
						|
int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
 | 
						|
{
 | 
						|
	if (__should_failslab(s, gfpflags))
 | 
						|
		return -ENOMEM;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
 |