mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 154d1e7ad9
			
		
	
	
		154d1e7ad9
		
			
		
	
	
	
	
		
			
			The commit 168316db3583("dax: assert that i_rwsem is held
exclusive for writes") added lock assertions to ensure proper
locking in DAX operations. However, these assertions trigger
false-positive lockdep warnings since read lock is unnecessary
on read-only filesystems(e.g., erofs).
This patch skips the read lock assertion for read-only filesystems,
eliminating the spurious warnings while maintaining the integrity
checks for writable filesystems.
Fixes: 168316db35 ("dax: assert that i_rwsem is held exclusive for writes")
Signed-off-by: Yuezhang Mo <Yuezhang.Mo@sony.com>
Reviewed-by: Friendy Su <friendy.su@sony.com>
Reviewed-by: Daniel Palmer <daniel.palmer@sony.com>
Reviewed-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
		
	
			
		
			
				
	
	
		
			2247 lines
		
	
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2247 lines
		
	
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * fs/dax.c - Direct Access filesystem code
 | |
|  * Copyright (c) 2013-2014 Intel Corporation
 | |
|  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
 | |
|  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/buffer_head.h>
 | |
| #include <linux/dax.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/uio.h>
 | |
| #include <linux/vmstat.h>
 | |
| #include <linux/sizes.h>
 | |
| #include <linux/mmu_notifier.h>
 | |
| #include <linux/iomap.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <asm/pgalloc.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/fs_dax.h>
 | |
| 
 | |
| /* We choose 4096 entries - same as per-zone page wait tables */
 | |
| #define DAX_WAIT_TABLE_BITS 12
 | |
| #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
 | |
| 
 | |
| /* The 'colour' (ie low bits) within a PMD of a page offset.  */
 | |
| #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
 | |
| #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
 | |
| 
 | |
| static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
 | |
| 
 | |
| static int __init init_dax_wait_table(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
 | |
| 		init_waitqueue_head(wait_table + i);
 | |
| 	return 0;
 | |
| }
 | |
| fs_initcall(init_dax_wait_table);
 | |
| 
 | |
| /*
 | |
|  * DAX pagecache entries use XArray value entries so they can't be mistaken
 | |
|  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
 | |
|  * and two more to tell us if the entry is a zero page or an empty entry that
 | |
|  * is just used for locking.  In total four special bits.
 | |
|  *
 | |
|  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
 | |
|  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
 | |
|  * block allocation.
 | |
|  */
 | |
| #define DAX_SHIFT	(4)
 | |
| #define DAX_LOCKED	(1UL << 0)
 | |
| #define DAX_PMD		(1UL << 1)
 | |
| #define DAX_ZERO_PAGE	(1UL << 2)
 | |
| #define DAX_EMPTY	(1UL << 3)
 | |
| 
 | |
| static unsigned long dax_to_pfn(void *entry)
 | |
| {
 | |
| 	return xa_to_value(entry) >> DAX_SHIFT;
 | |
| }
 | |
| 
 | |
| static struct folio *dax_to_folio(void *entry)
 | |
| {
 | |
| 	return page_folio(pfn_to_page(dax_to_pfn(entry)));
 | |
| }
 | |
| 
 | |
| static void *dax_make_entry(unsigned long pfn, unsigned long flags)
 | |
| {
 | |
| 	return xa_mk_value(flags | (pfn << DAX_SHIFT));
 | |
| }
 | |
| 
 | |
| static bool dax_is_locked(void *entry)
 | |
| {
 | |
| 	return xa_to_value(entry) & DAX_LOCKED;
 | |
| }
 | |
| 
 | |
| static unsigned int dax_entry_order(void *entry)
 | |
| {
 | |
| 	if (xa_to_value(entry) & DAX_PMD)
 | |
| 		return PMD_ORDER;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned long dax_is_pmd_entry(void *entry)
 | |
| {
 | |
| 	return xa_to_value(entry) & DAX_PMD;
 | |
| }
 | |
| 
 | |
| static bool dax_is_pte_entry(void *entry)
 | |
| {
 | |
| 	return !(xa_to_value(entry) & DAX_PMD);
 | |
| }
 | |
| 
 | |
| static int dax_is_zero_entry(void *entry)
 | |
| {
 | |
| 	return xa_to_value(entry) & DAX_ZERO_PAGE;
 | |
| }
 | |
| 
 | |
| static int dax_is_empty_entry(void *entry)
 | |
| {
 | |
| 	return xa_to_value(entry) & DAX_EMPTY;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * true if the entry that was found is of a smaller order than the entry
 | |
|  * we were looking for
 | |
|  */
 | |
| static bool dax_is_conflict(void *entry)
 | |
| {
 | |
| 	return entry == XA_RETRY_ENTRY;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * DAX page cache entry locking
 | |
|  */
 | |
| struct exceptional_entry_key {
 | |
| 	struct xarray *xa;
 | |
| 	pgoff_t entry_start;
 | |
| };
 | |
| 
 | |
| struct wait_exceptional_entry_queue {
 | |
| 	wait_queue_entry_t wait;
 | |
| 	struct exceptional_entry_key key;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * enum dax_wake_mode: waitqueue wakeup behaviour
 | |
|  * @WAKE_ALL: wake all waiters in the waitqueue
 | |
|  * @WAKE_NEXT: wake only the first waiter in the waitqueue
 | |
|  */
 | |
| enum dax_wake_mode {
 | |
| 	WAKE_ALL,
 | |
| 	WAKE_NEXT,
 | |
| };
 | |
| 
 | |
| static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
 | |
| 		void *entry, struct exceptional_entry_key *key)
 | |
| {
 | |
| 	unsigned long hash;
 | |
| 	unsigned long index = xas->xa_index;
 | |
| 
 | |
| 	/*
 | |
| 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
 | |
| 	 * queue to the start of that PMD.  This ensures that all offsets in
 | |
| 	 * the range covered by the PMD map to the same bit lock.
 | |
| 	 */
 | |
| 	if (dax_is_pmd_entry(entry))
 | |
| 		index &= ~PG_PMD_COLOUR;
 | |
| 	key->xa = xas->xa;
 | |
| 	key->entry_start = index;
 | |
| 
 | |
| 	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
 | |
| 	return wait_table + hash;
 | |
| }
 | |
| 
 | |
| static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
 | |
| 		unsigned int mode, int sync, void *keyp)
 | |
| {
 | |
| 	struct exceptional_entry_key *key = keyp;
 | |
| 	struct wait_exceptional_entry_queue *ewait =
 | |
| 		container_of(wait, struct wait_exceptional_entry_queue, wait);
 | |
| 
 | |
| 	if (key->xa != ewait->key.xa ||
 | |
| 	    key->entry_start != ewait->key.entry_start)
 | |
| 		return 0;
 | |
| 	return autoremove_wake_function(wait, mode, sync, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * @entry may no longer be the entry at the index in the mapping.
 | |
|  * The important information it's conveying is whether the entry at
 | |
|  * this index used to be a PMD entry.
 | |
|  */
 | |
| static void dax_wake_entry(struct xa_state *xas, void *entry,
 | |
| 			   enum dax_wake_mode mode)
 | |
| {
 | |
| 	struct exceptional_entry_key key;
 | |
| 	wait_queue_head_t *wq;
 | |
| 
 | |
| 	wq = dax_entry_waitqueue(xas, entry, &key);
 | |
| 
 | |
| 	/*
 | |
| 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
 | |
| 	 * under the i_pages lock, ditto for entry handling in our callers.
 | |
| 	 * So at this point all tasks that could have seen our entry locked
 | |
| 	 * must be in the waitqueue and the following check will see them.
 | |
| 	 */
 | |
| 	if (waitqueue_active(wq))
 | |
| 		__wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look up entry in page cache, wait for it to become unlocked if it
 | |
|  * is a DAX entry and return it.  The caller must subsequently call
 | |
|  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
 | |
|  * if it did.  The entry returned may have a larger order than @order.
 | |
|  * If @order is larger than the order of the entry found in i_pages, this
 | |
|  * function returns a dax_is_conflict entry.
 | |
|  *
 | |
|  * Must be called with the i_pages lock held.
 | |
|  */
 | |
| static void *get_next_unlocked_entry(struct xa_state *xas, unsigned int order)
 | |
| {
 | |
| 	void *entry;
 | |
| 	struct wait_exceptional_entry_queue ewait;
 | |
| 	wait_queue_head_t *wq;
 | |
| 
 | |
| 	init_wait(&ewait.wait);
 | |
| 	ewait.wait.func = wake_exceptional_entry_func;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		entry = xas_find_conflict(xas);
 | |
| 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 | |
| 			return entry;
 | |
| 		if (dax_entry_order(entry) < order)
 | |
| 			return XA_RETRY_ENTRY;
 | |
| 		if (!dax_is_locked(entry))
 | |
| 			return entry;
 | |
| 
 | |
| 		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
 | |
| 		prepare_to_wait_exclusive(wq, &ewait.wait,
 | |
| 					  TASK_UNINTERRUPTIBLE);
 | |
| 		xas_unlock_irq(xas);
 | |
| 		xas_reset(xas);
 | |
| 		schedule();
 | |
| 		finish_wait(wq, &ewait.wait);
 | |
| 		xas_lock_irq(xas);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wait for the given entry to become unlocked. Caller must hold the i_pages
 | |
|  * lock and call either put_unlocked_entry() if it did not lock the entry or
 | |
|  * dax_unlock_entry() if it did. Returns an unlocked entry if still present.
 | |
|  */
 | |
| static void *wait_entry_unlocked_exclusive(struct xa_state *xas, void *entry)
 | |
| {
 | |
| 	struct wait_exceptional_entry_queue ewait;
 | |
| 	wait_queue_head_t *wq;
 | |
| 
 | |
| 	init_wait(&ewait.wait);
 | |
| 	ewait.wait.func = wake_exceptional_entry_func;
 | |
| 
 | |
| 	while (unlikely(dax_is_locked(entry))) {
 | |
| 		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
 | |
| 		prepare_to_wait_exclusive(wq, &ewait.wait,
 | |
| 					TASK_UNINTERRUPTIBLE);
 | |
| 		xas_reset(xas);
 | |
| 		xas_unlock_irq(xas);
 | |
| 		schedule();
 | |
| 		finish_wait(wq, &ewait.wait);
 | |
| 		xas_lock_irq(xas);
 | |
| 		entry = xas_load(xas);
 | |
| 	}
 | |
| 
 | |
| 	if (xa_is_internal(entry))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The only thing keeping the address space around is the i_pages lock
 | |
|  * (it's cycled in clear_inode() after removing the entries from i_pages)
 | |
|  * After we call xas_unlock_irq(), we cannot touch xas->xa.
 | |
|  */
 | |
| static void wait_entry_unlocked(struct xa_state *xas, void *entry)
 | |
| {
 | |
| 	struct wait_exceptional_entry_queue ewait;
 | |
| 	wait_queue_head_t *wq;
 | |
| 
 | |
| 	init_wait(&ewait.wait);
 | |
| 	ewait.wait.func = wake_exceptional_entry_func;
 | |
| 
 | |
| 	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
 | |
| 	/*
 | |
| 	 * Unlike get_next_unlocked_entry() there is no guarantee that this
 | |
| 	 * path ever successfully retrieves an unlocked entry before an
 | |
| 	 * inode dies. Perform a non-exclusive wait in case this path
 | |
| 	 * never successfully performs its own wake up.
 | |
| 	 */
 | |
| 	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
 | |
| 	xas_unlock_irq(xas);
 | |
| 	schedule();
 | |
| 	finish_wait(wq, &ewait.wait);
 | |
| }
 | |
| 
 | |
| static void put_unlocked_entry(struct xa_state *xas, void *entry,
 | |
| 			       enum dax_wake_mode mode)
 | |
| {
 | |
| 	if (entry && !dax_is_conflict(entry))
 | |
| 		dax_wake_entry(xas, entry, mode);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We used the xa_state to get the entry, but then we locked the entry and
 | |
|  * dropped the xa_lock, so we know the xa_state is stale and must be reset
 | |
|  * before use.
 | |
|  */
 | |
| static void dax_unlock_entry(struct xa_state *xas, void *entry)
 | |
| {
 | |
| 	void *old;
 | |
| 
 | |
| 	BUG_ON(dax_is_locked(entry));
 | |
| 	xas_reset(xas);
 | |
| 	xas_lock_irq(xas);
 | |
| 	old = xas_store(xas, entry);
 | |
| 	xas_unlock_irq(xas);
 | |
| 	BUG_ON(!dax_is_locked(old));
 | |
| 	dax_wake_entry(xas, entry, WAKE_NEXT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return: The entry stored at this location before it was locked.
 | |
|  */
 | |
| static void *dax_lock_entry(struct xa_state *xas, void *entry)
 | |
| {
 | |
| 	unsigned long v = xa_to_value(entry);
 | |
| 	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
 | |
| }
 | |
| 
 | |
| static unsigned long dax_entry_size(void *entry)
 | |
| {
 | |
| 	if (dax_is_zero_entry(entry))
 | |
| 		return 0;
 | |
| 	else if (dax_is_empty_entry(entry))
 | |
| 		return 0;
 | |
| 	else if (dax_is_pmd_entry(entry))
 | |
| 		return PMD_SIZE;
 | |
| 	else
 | |
| 		return PAGE_SIZE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A DAX folio is considered shared if it has no mapping set and ->share (which
 | |
|  * shares the ->index field) is non-zero. Note this may return false even if the
 | |
|  * page is shared between multiple files but has not yet actually been mapped
 | |
|  * into multiple address spaces.
 | |
|  */
 | |
| static inline bool dax_folio_is_shared(struct folio *folio)
 | |
| {
 | |
| 	return !folio->mapping && folio->share;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When it is called by dax_insert_entry(), the shared flag will indicate
 | |
|  * whether this entry is shared by multiple files. If the page has not
 | |
|  * previously been associated with any mappings the ->mapping and ->index
 | |
|  * fields will be set. If it has already been associated with a mapping
 | |
|  * the mapping will be cleared and the share count set. It's then up to
 | |
|  * reverse map users like memory_failure() to call back into the filesystem to
 | |
|  * recover ->mapping and ->index information. For example by implementing
 | |
|  * dax_holder_operations.
 | |
|  */
 | |
| static void dax_folio_make_shared(struct folio *folio)
 | |
| {
 | |
| 	/*
 | |
| 	 * folio is not currently shared so mark it as shared by clearing
 | |
| 	 * folio->mapping.
 | |
| 	 */
 | |
| 	folio->mapping = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * folio has previously been mapped into one address space so set the
 | |
| 	 * share count.
 | |
| 	 */
 | |
| 	folio->share = 1;
 | |
| }
 | |
| 
 | |
| static inline unsigned long dax_folio_put(struct folio *folio)
 | |
| {
 | |
| 	unsigned long ref;
 | |
| 	int order, i;
 | |
| 
 | |
| 	if (!dax_folio_is_shared(folio))
 | |
| 		ref = 0;
 | |
| 	else
 | |
| 		ref = --folio->share;
 | |
| 
 | |
| 	if (ref)
 | |
| 		return ref;
 | |
| 
 | |
| 	folio->mapping = NULL;
 | |
| 	order = folio_order(folio);
 | |
| 	if (!order)
 | |
| 		return 0;
 | |
| 	folio_reset_order(folio);
 | |
| 
 | |
| 	for (i = 0; i < (1UL << order); i++) {
 | |
| 		struct dev_pagemap *pgmap = page_pgmap(&folio->page);
 | |
| 		struct page *page = folio_page(folio, i);
 | |
| 		struct folio *new_folio = (struct folio *)page;
 | |
| 
 | |
| 		ClearPageHead(page);
 | |
| 		clear_compound_head(page);
 | |
| 
 | |
| 		new_folio->mapping = NULL;
 | |
| 		/*
 | |
| 		 * Reset pgmap which was over-written by
 | |
| 		 * prep_compound_page().
 | |
| 		 */
 | |
| 		new_folio->pgmap = pgmap;
 | |
| 		new_folio->share = 0;
 | |
| 		WARN_ON_ONCE(folio_ref_count(new_folio));
 | |
| 	}
 | |
| 
 | |
| 	return ref;
 | |
| }
 | |
| 
 | |
| static void dax_folio_init(void *entry)
 | |
| {
 | |
| 	struct folio *folio = dax_to_folio(entry);
 | |
| 	int order = dax_entry_order(entry);
 | |
| 
 | |
| 	/*
 | |
| 	 * Folio should have been split back to order-0 pages in
 | |
| 	 * dax_folio_put() when they were removed from their
 | |
| 	 * final mapping.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(folio_order(folio));
 | |
| 
 | |
| 	if (order > 0) {
 | |
| 		prep_compound_page(&folio->page, order);
 | |
| 		if (order > 1)
 | |
| 			INIT_LIST_HEAD(&folio->_deferred_list);
 | |
| 		WARN_ON_ONCE(folio_ref_count(folio));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void dax_associate_entry(void *entry, struct address_space *mapping,
 | |
| 				struct vm_area_struct *vma,
 | |
| 				unsigned long address, bool shared)
 | |
| {
 | |
| 	unsigned long size = dax_entry_size(entry), index;
 | |
| 	struct folio *folio = dax_to_folio(entry);
 | |
| 
 | |
| 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry))
 | |
| 		return;
 | |
| 
 | |
| 	index = linear_page_index(vma, address & ~(size - 1));
 | |
| 	if (shared && (folio->mapping || dax_folio_is_shared(folio))) {
 | |
| 		if (folio->mapping)
 | |
| 			dax_folio_make_shared(folio);
 | |
| 
 | |
| 		WARN_ON_ONCE(!folio->share);
 | |
| 		WARN_ON_ONCE(dax_entry_order(entry) != folio_order(folio));
 | |
| 		folio->share++;
 | |
| 	} else {
 | |
| 		WARN_ON_ONCE(folio->mapping);
 | |
| 		dax_folio_init(entry);
 | |
| 		folio = dax_to_folio(entry);
 | |
| 		folio->mapping = mapping;
 | |
| 		folio->index = index;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void dax_disassociate_entry(void *entry, struct address_space *mapping,
 | |
| 				bool trunc)
 | |
| {
 | |
| 	struct folio *folio = dax_to_folio(entry);
 | |
| 
 | |
| 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry))
 | |
| 		return;
 | |
| 
 | |
| 	dax_folio_put(folio);
 | |
| }
 | |
| 
 | |
| static struct page *dax_busy_page(void *entry)
 | |
| {
 | |
| 	struct folio *folio = dax_to_folio(entry);
 | |
| 
 | |
| 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (folio_ref_count(folio) - folio_mapcount(folio))
 | |
| 		return &folio->page;
 | |
| 	else
 | |
| 		return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dax_lock_folio - Lock the DAX entry corresponding to a folio
 | |
|  * @folio: The folio whose entry we want to lock
 | |
|  *
 | |
|  * Context: Process context.
 | |
|  * Return: A cookie to pass to dax_unlock_folio() or 0 if the entry could
 | |
|  * not be locked.
 | |
|  */
 | |
| dax_entry_t dax_lock_folio(struct folio *folio)
 | |
| {
 | |
| 	XA_STATE(xas, NULL, 0);
 | |
| 	void *entry;
 | |
| 
 | |
| 	/* Ensure folio->mapping isn't freed while we look at it */
 | |
| 	rcu_read_lock();
 | |
| 	for (;;) {
 | |
| 		struct address_space *mapping = READ_ONCE(folio->mapping);
 | |
| 
 | |
| 		entry = NULL;
 | |
| 		if (!mapping || !dax_mapping(mapping))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * In the device-dax case there's no need to lock, a
 | |
| 		 * struct dev_pagemap pin is sufficient to keep the
 | |
| 		 * inode alive, and we assume we have dev_pagemap pin
 | |
| 		 * otherwise we would not have a valid pfn_to_page()
 | |
| 		 * translation.
 | |
| 		 */
 | |
| 		entry = (void *)~0UL;
 | |
| 		if (S_ISCHR(mapping->host->i_mode))
 | |
| 			break;
 | |
| 
 | |
| 		xas.xa = &mapping->i_pages;
 | |
| 		xas_lock_irq(&xas);
 | |
| 		if (mapping != folio->mapping) {
 | |
| 			xas_unlock_irq(&xas);
 | |
| 			continue;
 | |
| 		}
 | |
| 		xas_set(&xas, folio->index);
 | |
| 		entry = xas_load(&xas);
 | |
| 		if (dax_is_locked(entry)) {
 | |
| 			rcu_read_unlock();
 | |
| 			wait_entry_unlocked(&xas, entry);
 | |
| 			rcu_read_lock();
 | |
| 			continue;
 | |
| 		}
 | |
| 		dax_lock_entry(&xas, entry);
 | |
| 		xas_unlock_irq(&xas);
 | |
| 		break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return (dax_entry_t)entry;
 | |
| }
 | |
| 
 | |
| void dax_unlock_folio(struct folio *folio, dax_entry_t cookie)
 | |
| {
 | |
| 	struct address_space *mapping = folio->mapping;
 | |
| 	XA_STATE(xas, &mapping->i_pages, folio->index);
 | |
| 
 | |
| 	if (S_ISCHR(mapping->host->i_mode))
 | |
| 		return;
 | |
| 
 | |
| 	dax_unlock_entry(&xas, (void *)cookie);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
 | |
|  * @mapping: the file's mapping whose entry we want to lock
 | |
|  * @index: the offset within this file
 | |
|  * @page: output the dax page corresponding to this dax entry
 | |
|  *
 | |
|  * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
 | |
|  * could not be locked.
 | |
|  */
 | |
| dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
 | |
| 		struct page **page)
 | |
| {
 | |
| 	XA_STATE(xas, NULL, 0);
 | |
| 	void *entry;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (;;) {
 | |
| 		entry = NULL;
 | |
| 		if (!dax_mapping(mapping))
 | |
| 			break;
 | |
| 
 | |
| 		xas.xa = &mapping->i_pages;
 | |
| 		xas_lock_irq(&xas);
 | |
| 		xas_set(&xas, index);
 | |
| 		entry = xas_load(&xas);
 | |
| 		if (dax_is_locked(entry)) {
 | |
| 			rcu_read_unlock();
 | |
| 			wait_entry_unlocked(&xas, entry);
 | |
| 			rcu_read_lock();
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!entry ||
 | |
| 		    dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
 | |
| 			/*
 | |
| 			 * Because we are looking for entry from file's mapping
 | |
| 			 * and index, so the entry may not be inserted for now,
 | |
| 			 * or even a zero/empty entry.  We don't think this is
 | |
| 			 * an error case.  So, return a special value and do
 | |
| 			 * not output @page.
 | |
| 			 */
 | |
| 			entry = (void *)~0UL;
 | |
| 		} else {
 | |
| 			*page = pfn_to_page(dax_to_pfn(entry));
 | |
| 			dax_lock_entry(&xas, entry);
 | |
| 		}
 | |
| 		xas_unlock_irq(&xas);
 | |
| 		break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return (dax_entry_t)entry;
 | |
| }
 | |
| 
 | |
| void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
 | |
| 		dax_entry_t cookie)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, index);
 | |
| 
 | |
| 	if (cookie == ~0UL)
 | |
| 		return;
 | |
| 
 | |
| 	dax_unlock_entry(&xas, (void *)cookie);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find page cache entry at given index. If it is a DAX entry, return it
 | |
|  * with the entry locked. If the page cache doesn't contain an entry at
 | |
|  * that index, add a locked empty entry.
 | |
|  *
 | |
|  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
 | |
|  * either return that locked entry or will return VM_FAULT_FALLBACK.
 | |
|  * This will happen if there are any PTE entries within the PMD range
 | |
|  * that we are requesting.
 | |
|  *
 | |
|  * We always favor PTE entries over PMD entries. There isn't a flow where we
 | |
|  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
 | |
|  * insertion will fail if it finds any PTE entries already in the tree, and a
 | |
|  * PTE insertion will cause an existing PMD entry to be unmapped and
 | |
|  * downgraded to PTE entries.  This happens for both PMD zero pages as
 | |
|  * well as PMD empty entries.
 | |
|  *
 | |
|  * The exception to this downgrade path is for PMD entries that have
 | |
|  * real storage backing them.  We will leave these real PMD entries in
 | |
|  * the tree, and PTE writes will simply dirty the entire PMD entry.
 | |
|  *
 | |
|  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
 | |
|  * persistent memory the benefit is doubtful. We can add that later if we can
 | |
|  * show it helps.
 | |
|  *
 | |
|  * On error, this function does not return an ERR_PTR.  Instead it returns
 | |
|  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
 | |
|  * overlap with xarray value entries.
 | |
|  */
 | |
| static void *grab_mapping_entry(struct xa_state *xas,
 | |
| 		struct address_space *mapping, unsigned int order)
 | |
| {
 | |
| 	unsigned long index = xas->xa_index;
 | |
| 	bool pmd_downgrade;	/* splitting PMD entry into PTE entries? */
 | |
| 	void *entry;
 | |
| 
 | |
| retry:
 | |
| 	pmd_downgrade = false;
 | |
| 	xas_lock_irq(xas);
 | |
| 	entry = get_next_unlocked_entry(xas, order);
 | |
| 
 | |
| 	if (entry) {
 | |
| 		if (dax_is_conflict(entry))
 | |
| 			goto fallback;
 | |
| 		if (!xa_is_value(entry)) {
 | |
| 			xas_set_err(xas, -EIO);
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		if (order == 0) {
 | |
| 			if (dax_is_pmd_entry(entry) &&
 | |
| 			    (dax_is_zero_entry(entry) ||
 | |
| 			     dax_is_empty_entry(entry))) {
 | |
| 				pmd_downgrade = true;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (pmd_downgrade) {
 | |
| 		/*
 | |
| 		 * Make sure 'entry' remains valid while we drop
 | |
| 		 * the i_pages lock.
 | |
| 		 */
 | |
| 		dax_lock_entry(xas, entry);
 | |
| 
 | |
| 		/*
 | |
| 		 * Besides huge zero pages the only other thing that gets
 | |
| 		 * downgraded are empty entries which don't need to be
 | |
| 		 * unmapped.
 | |
| 		 */
 | |
| 		if (dax_is_zero_entry(entry)) {
 | |
| 			xas_unlock_irq(xas);
 | |
| 			unmap_mapping_pages(mapping,
 | |
| 					xas->xa_index & ~PG_PMD_COLOUR,
 | |
| 					PG_PMD_NR, false);
 | |
| 			xas_reset(xas);
 | |
| 			xas_lock_irq(xas);
 | |
| 		}
 | |
| 
 | |
| 		dax_disassociate_entry(entry, mapping, false);
 | |
| 		xas_store(xas, NULL);	/* undo the PMD join */
 | |
| 		dax_wake_entry(xas, entry, WAKE_ALL);
 | |
| 		mapping->nrpages -= PG_PMD_NR;
 | |
| 		entry = NULL;
 | |
| 		xas_set(xas, index);
 | |
| 	}
 | |
| 
 | |
| 	if (entry) {
 | |
| 		dax_lock_entry(xas, entry);
 | |
| 	} else {
 | |
| 		unsigned long flags = DAX_EMPTY;
 | |
| 
 | |
| 		if (order > 0)
 | |
| 			flags |= DAX_PMD;
 | |
| 		entry = dax_make_entry(0, flags);
 | |
| 		dax_lock_entry(xas, entry);
 | |
| 		if (xas_error(xas))
 | |
| 			goto out_unlock;
 | |
| 		mapping->nrpages += 1UL << order;
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	xas_unlock_irq(xas);
 | |
| 	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
 | |
| 		goto retry;
 | |
| 	if (xas->xa_node == XA_ERROR(-ENOMEM))
 | |
| 		return xa_mk_internal(VM_FAULT_OOM);
 | |
| 	if (xas_error(xas))
 | |
| 		return xa_mk_internal(VM_FAULT_SIGBUS);
 | |
| 	return entry;
 | |
| fallback:
 | |
| 	xas_unlock_irq(xas);
 | |
| 	return xa_mk_internal(VM_FAULT_FALLBACK);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dax_layout_busy_page_range - find first pinned page in @mapping
 | |
|  * @mapping: address space to scan for a page with ref count > 1
 | |
|  * @start: Starting offset. Page containing 'start' is included.
 | |
|  * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
 | |
|  *       pages from 'start' till the end of file are included.
 | |
|  *
 | |
|  * DAX requires ZONE_DEVICE mapped pages. These pages are never
 | |
|  * 'onlined' to the page allocator so they are considered idle when
 | |
|  * page->count == 1. A filesystem uses this interface to determine if
 | |
|  * any page in the mapping is busy, i.e. for DMA, or other
 | |
|  * get_user_pages() usages.
 | |
|  *
 | |
|  * It is expected that the filesystem is holding locks to block the
 | |
|  * establishment of new mappings in this address_space. I.e. it expects
 | |
|  * to be able to run unmap_mapping_range() and subsequently not race
 | |
|  * mapping_mapped() becoming true.
 | |
|  */
 | |
| struct page *dax_layout_busy_page_range(struct address_space *mapping,
 | |
| 					loff_t start, loff_t end)
 | |
| {
 | |
| 	void *entry;
 | |
| 	unsigned int scanned = 0;
 | |
| 	struct page *page = NULL;
 | |
| 	pgoff_t start_idx = start >> PAGE_SHIFT;
 | |
| 	pgoff_t end_idx;
 | |
| 	XA_STATE(xas, &mapping->i_pages, start_idx);
 | |
| 
 | |
| 	if (!dax_mapping(mapping))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* If end == LLONG_MAX, all pages from start to till end of file */
 | |
| 	if (end == LLONG_MAX)
 | |
| 		end_idx = ULONG_MAX;
 | |
| 	else
 | |
| 		end_idx = end >> PAGE_SHIFT;
 | |
| 	/*
 | |
| 	 * If we race get_user_pages_fast() here either we'll see the
 | |
| 	 * elevated page count in the iteration and wait, or
 | |
| 	 * get_user_pages_fast() will see that the page it took a reference
 | |
| 	 * against is no longer mapped in the page tables and bail to the
 | |
| 	 * get_user_pages() slow path.  The slow path is protected by
 | |
| 	 * pte_lock() and pmd_lock(). New references are not taken without
 | |
| 	 * holding those locks, and unmap_mapping_pages() will not zero the
 | |
| 	 * pte or pmd without holding the respective lock, so we are
 | |
| 	 * guaranteed to either see new references or prevent new
 | |
| 	 * references from being established.
 | |
| 	 */
 | |
| 	unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
 | |
| 
 | |
| 	xas_lock_irq(&xas);
 | |
| 	xas_for_each(&xas, entry, end_idx) {
 | |
| 		if (WARN_ON_ONCE(!xa_is_value(entry)))
 | |
| 			continue;
 | |
| 		entry = wait_entry_unlocked_exclusive(&xas, entry);
 | |
| 		if (entry)
 | |
| 			page = dax_busy_page(entry);
 | |
| 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
 | |
| 		if (page)
 | |
| 			break;
 | |
| 		if (++scanned % XA_CHECK_SCHED)
 | |
| 			continue;
 | |
| 
 | |
| 		xas_pause(&xas);
 | |
| 		xas_unlock_irq(&xas);
 | |
| 		cond_resched();
 | |
| 		xas_lock_irq(&xas);
 | |
| 	}
 | |
| 	xas_unlock_irq(&xas);
 | |
| 	return page;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
 | |
| 
 | |
| struct page *dax_layout_busy_page(struct address_space *mapping)
 | |
| {
 | |
| 	return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_layout_busy_page);
 | |
| 
 | |
| static int __dax_invalidate_entry(struct address_space *mapping,
 | |
| 				  pgoff_t index, bool trunc)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, index);
 | |
| 	int ret = 0;
 | |
| 	void *entry;
 | |
| 
 | |
| 	xas_lock_irq(&xas);
 | |
| 	entry = get_next_unlocked_entry(&xas, 0);
 | |
| 	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 | |
| 		goto out;
 | |
| 	if (!trunc &&
 | |
| 	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
 | |
| 	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
 | |
| 		goto out;
 | |
| 	dax_disassociate_entry(entry, mapping, trunc);
 | |
| 	xas_store(&xas, NULL);
 | |
| 	mapping->nrpages -= 1UL << dax_entry_order(entry);
 | |
| 	ret = 1;
 | |
| out:
 | |
| 	put_unlocked_entry(&xas, entry, WAKE_ALL);
 | |
| 	xas_unlock_irq(&xas);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __dax_clear_dirty_range(struct address_space *mapping,
 | |
| 		pgoff_t start, pgoff_t end)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, start);
 | |
| 	unsigned int scanned = 0;
 | |
| 	void *entry;
 | |
| 
 | |
| 	xas_lock_irq(&xas);
 | |
| 	xas_for_each(&xas, entry, end) {
 | |
| 		entry = wait_entry_unlocked_exclusive(&xas, entry);
 | |
| 		if (!entry)
 | |
| 			continue;
 | |
| 		xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
 | |
| 		xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
 | |
| 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
 | |
| 
 | |
| 		if (++scanned % XA_CHECK_SCHED)
 | |
| 			continue;
 | |
| 
 | |
| 		xas_pause(&xas);
 | |
| 		xas_unlock_irq(&xas);
 | |
| 		cond_resched();
 | |
| 		xas_lock_irq(&xas);
 | |
| 	}
 | |
| 	xas_unlock_irq(&xas);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Delete DAX entry at @index from @mapping.  Wait for it
 | |
|  * to be unlocked before deleting it.
 | |
|  */
 | |
| int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
 | |
| {
 | |
| 	int ret = __dax_invalidate_entry(mapping, index, true);
 | |
| 
 | |
| 	/*
 | |
| 	 * This gets called from truncate / punch_hole path. As such, the caller
 | |
| 	 * must hold locks protecting against concurrent modifications of the
 | |
| 	 * page cache (usually fs-private i_mmap_sem for writing). Since the
 | |
| 	 * caller has seen a DAX entry for this index, we better find it
 | |
| 	 * at that index as well...
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(!ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void dax_delete_mapping_range(struct address_space *mapping,
 | |
| 				loff_t start, loff_t end)
 | |
| {
 | |
| 	void *entry;
 | |
| 	pgoff_t start_idx = start >> PAGE_SHIFT;
 | |
| 	pgoff_t end_idx;
 | |
| 	XA_STATE(xas, &mapping->i_pages, start_idx);
 | |
| 
 | |
| 	/* If end == LLONG_MAX, all pages from start to till end of file */
 | |
| 	if (end == LLONG_MAX)
 | |
| 		end_idx = ULONG_MAX;
 | |
| 	else
 | |
| 		end_idx = end >> PAGE_SHIFT;
 | |
| 
 | |
| 	xas_lock_irq(&xas);
 | |
| 	xas_for_each(&xas, entry, end_idx) {
 | |
| 		if (!xa_is_value(entry))
 | |
| 			continue;
 | |
| 		entry = wait_entry_unlocked_exclusive(&xas, entry);
 | |
| 		if (!entry)
 | |
| 			continue;
 | |
| 		dax_disassociate_entry(entry, mapping, true);
 | |
| 		xas_store(&xas, NULL);
 | |
| 		mapping->nrpages -= 1UL << dax_entry_order(entry);
 | |
| 		put_unlocked_entry(&xas, entry, WAKE_ALL);
 | |
| 	}
 | |
| 	xas_unlock_irq(&xas);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_delete_mapping_range);
 | |
| 
 | |
| static int wait_page_idle(struct page *page,
 | |
| 			void (cb)(struct inode *),
 | |
| 			struct inode *inode)
 | |
| {
 | |
| 	return ___wait_var_event(page, dax_page_is_idle(page),
 | |
| 				TASK_INTERRUPTIBLE, 0, 0, cb(inode));
 | |
| }
 | |
| 
 | |
| static void wait_page_idle_uninterruptible(struct page *page,
 | |
| 					struct inode *inode)
 | |
| {
 | |
| 	___wait_var_event(page, dax_page_is_idle(page),
 | |
| 			TASK_UNINTERRUPTIBLE, 0, 0, schedule());
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unmaps the inode and waits for any DMA to complete prior to deleting the
 | |
|  * DAX mapping entries for the range.
 | |
|  *
 | |
|  * For NOWAIT behavior, pass @cb as NULL to early-exit on first found
 | |
|  * busy page
 | |
|  */
 | |
| int dax_break_layout(struct inode *inode, loff_t start, loff_t end,
 | |
| 		void (cb)(struct inode *))
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if (!dax_mapping(inode->i_mapping))
 | |
| 		return 0;
 | |
| 
 | |
| 	do {
 | |
| 		page = dax_layout_busy_page_range(inode->i_mapping, start, end);
 | |
| 		if (!page)
 | |
| 			break;
 | |
| 		if (!cb) {
 | |
| 			error = -ERESTARTSYS;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		error = wait_page_idle(page, cb, inode);
 | |
| 	} while (error == 0);
 | |
| 
 | |
| 	if (!page)
 | |
| 		dax_delete_mapping_range(inode->i_mapping, start, end);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_break_layout);
 | |
| 
 | |
| void dax_break_layout_final(struct inode *inode)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (!dax_mapping(inode->i_mapping))
 | |
| 		return;
 | |
| 
 | |
| 	do {
 | |
| 		page = dax_layout_busy_page_range(inode->i_mapping, 0,
 | |
| 						LLONG_MAX);
 | |
| 		if (!page)
 | |
| 			break;
 | |
| 
 | |
| 		wait_page_idle_uninterruptible(page, inode);
 | |
| 	} while (true);
 | |
| 
 | |
| 	if (!page)
 | |
| 		dax_delete_mapping_range(inode->i_mapping, 0, LLONG_MAX);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_break_layout_final);
 | |
| 
 | |
| /*
 | |
|  * Invalidate DAX entry if it is clean.
 | |
|  */
 | |
| int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
 | |
| 				      pgoff_t index)
 | |
| {
 | |
| 	return __dax_invalidate_entry(mapping, index, false);
 | |
| }
 | |
| 
 | |
| static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
 | |
| {
 | |
| 	return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
 | |
| }
 | |
| 
 | |
| static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
 | |
| {
 | |
| 	pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
 | |
| 	void *vto, *kaddr;
 | |
| 	long rc;
 | |
| 	int id;
 | |
| 
 | |
| 	id = dax_read_lock();
 | |
| 	rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
 | |
| 				&kaddr, NULL);
 | |
| 	if (rc < 0) {
 | |
| 		dax_read_unlock(id);
 | |
| 		return rc;
 | |
| 	}
 | |
| 	vto = kmap_atomic(vmf->cow_page);
 | |
| 	copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
 | |
| 	kunmap_atomic(vto);
 | |
| 	dax_read_unlock(id);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * MAP_SYNC on a dax mapping guarantees dirty metadata is
 | |
|  * flushed on write-faults (non-cow), but not read-faults.
 | |
|  */
 | |
| static bool dax_fault_is_synchronous(const struct iomap_iter *iter,
 | |
| 		struct vm_area_struct *vma)
 | |
| {
 | |
| 	return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) &&
 | |
| 		(iter->iomap.flags & IOMAP_F_DIRTY);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * By this point grab_mapping_entry() has ensured that we have a locked entry
 | |
|  * of the appropriate size so we don't have to worry about downgrading PMDs to
 | |
|  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
 | |
|  * already in the tree, we will skip the insertion and just dirty the PMD as
 | |
|  * appropriate.
 | |
|  */
 | |
| static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf,
 | |
| 		const struct iomap_iter *iter, void *entry, unsigned long pfn,
 | |
| 		unsigned long flags)
 | |
| {
 | |
| 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
 | |
| 	void *new_entry = dax_make_entry(pfn, flags);
 | |
| 	bool write = iter->flags & IOMAP_WRITE;
 | |
| 	bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma);
 | |
| 	bool shared = iter->iomap.flags & IOMAP_F_SHARED;
 | |
| 
 | |
| 	if (dirty)
 | |
| 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 | |
| 
 | |
| 	if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) {
 | |
| 		unsigned long index = xas->xa_index;
 | |
| 		/* we are replacing a zero page with block mapping */
 | |
| 		if (dax_is_pmd_entry(entry))
 | |
| 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
 | |
| 					PG_PMD_NR, false);
 | |
| 		else /* pte entry */
 | |
| 			unmap_mapping_pages(mapping, index, 1, false);
 | |
| 	}
 | |
| 
 | |
| 	xas_reset(xas);
 | |
| 	xas_lock_irq(xas);
 | |
| 	if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
 | |
| 		void *old;
 | |
| 
 | |
| 		dax_disassociate_entry(entry, mapping, false);
 | |
| 		dax_associate_entry(new_entry, mapping, vmf->vma,
 | |
| 					vmf->address, shared);
 | |
| 
 | |
| 		/*
 | |
| 		 * Only swap our new entry into the page cache if the current
 | |
| 		 * entry is a zero page or an empty entry.  If a normal PTE or
 | |
| 		 * PMD entry is already in the cache, we leave it alone.  This
 | |
| 		 * means that if we are trying to insert a PTE and the
 | |
| 		 * existing entry is a PMD, we will just leave the PMD in the
 | |
| 		 * tree and dirty it if necessary.
 | |
| 		 */
 | |
| 		old = dax_lock_entry(xas, new_entry);
 | |
| 		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
 | |
| 					DAX_LOCKED));
 | |
| 		entry = new_entry;
 | |
| 	} else {
 | |
| 		xas_load(xas);	/* Walk the xa_state */
 | |
| 	}
 | |
| 
 | |
| 	if (dirty)
 | |
| 		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
 | |
| 
 | |
| 	if (write && shared)
 | |
| 		xas_set_mark(xas, PAGECACHE_TAG_TOWRITE);
 | |
| 
 | |
| 	xas_unlock_irq(xas);
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
 | |
| 		struct address_space *mapping, void *entry)
 | |
| {
 | |
| 	unsigned long pfn, index, count, end;
 | |
| 	long ret = 0;
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	/*
 | |
| 	 * A page got tagged dirty in DAX mapping? Something is seriously
 | |
| 	 * wrong.
 | |
| 	 */
 | |
| 	if (WARN_ON(!xa_is_value(entry)))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	if (unlikely(dax_is_locked(entry))) {
 | |
| 		void *old_entry = entry;
 | |
| 
 | |
| 		entry = get_next_unlocked_entry(xas, 0);
 | |
| 
 | |
| 		/* Entry got punched out / reallocated? */
 | |
| 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 | |
| 			goto put_unlocked;
 | |
| 		/*
 | |
| 		 * Entry got reallocated elsewhere? No need to writeback.
 | |
| 		 * We have to compare pfns as we must not bail out due to
 | |
| 		 * difference in lockbit or entry type.
 | |
| 		 */
 | |
| 		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
 | |
| 			goto put_unlocked;
 | |
| 		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
 | |
| 					dax_is_zero_entry(entry))) {
 | |
| 			ret = -EIO;
 | |
| 			goto put_unlocked;
 | |
| 		}
 | |
| 
 | |
| 		/* Another fsync thread may have already done this entry */
 | |
| 		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
 | |
| 			goto put_unlocked;
 | |
| 	}
 | |
| 
 | |
| 	/* Lock the entry to serialize with page faults */
 | |
| 	dax_lock_entry(xas, entry);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can clear the tag now but we have to be careful so that concurrent
 | |
| 	 * dax_writeback_one() calls for the same index cannot finish before we
 | |
| 	 * actually flush the caches. This is achieved as the calls will look
 | |
| 	 * at the entry only under the i_pages lock and once they do that
 | |
| 	 * they will see the entry locked and wait for it to unlock.
 | |
| 	 */
 | |
| 	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
 | |
| 	xas_unlock_irq(xas);
 | |
| 
 | |
| 	/*
 | |
| 	 * If dax_writeback_mapping_range() was given a wbc->range_start
 | |
| 	 * in the middle of a PMD, the 'index' we use needs to be
 | |
| 	 * aligned to the start of the PMD.
 | |
| 	 * This allows us to flush for PMD_SIZE and not have to worry about
 | |
| 	 * partial PMD writebacks.
 | |
| 	 */
 | |
| 	pfn = dax_to_pfn(entry);
 | |
| 	count = 1UL << dax_entry_order(entry);
 | |
| 	index = xas->xa_index & ~(count - 1);
 | |
| 	end = index + count - 1;
 | |
| 
 | |
| 	/* Walk all mappings of a given index of a file and writeprotect them */
 | |
| 	i_mmap_lock_read(mapping);
 | |
| 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
 | |
| 		pfn_mkclean_range(pfn, count, index, vma);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	i_mmap_unlock_read(mapping);
 | |
| 
 | |
| 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
 | |
| 	/*
 | |
| 	 * After we have flushed the cache, we can clear the dirty tag. There
 | |
| 	 * cannot be new dirty data in the pfn after the flush has completed as
 | |
| 	 * the pfn mappings are writeprotected and fault waits for mapping
 | |
| 	 * entry lock.
 | |
| 	 */
 | |
| 	xas_reset(xas);
 | |
| 	xas_lock_irq(xas);
 | |
| 	xas_store(xas, entry);
 | |
| 	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
 | |
| 	dax_wake_entry(xas, entry, WAKE_NEXT);
 | |
| 
 | |
| 	trace_dax_writeback_one(mapping->host, index, count);
 | |
| 	return ret;
 | |
| 
 | |
|  put_unlocked:
 | |
| 	put_unlocked_entry(xas, entry, WAKE_NEXT);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush the mapping to the persistent domain within the byte range of [start,
 | |
|  * end]. This is required by data integrity operations to ensure file data is
 | |
|  * on persistent storage prior to completion of the operation.
 | |
|  */
 | |
| int dax_writeback_mapping_range(struct address_space *mapping,
 | |
| 		struct dax_device *dax_dev, struct writeback_control *wbc)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
 | |
| 	void *entry;
 | |
| 	int ret = 0;
 | |
| 	unsigned int scanned = 0;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
 | |
| 		return 0;
 | |
| 
 | |
| 	trace_dax_writeback_range(inode, xas.xa_index, end_index);
 | |
| 
 | |
| 	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
 | |
| 
 | |
| 	xas_lock_irq(&xas);
 | |
| 	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
 | |
| 		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
 | |
| 		if (ret < 0) {
 | |
| 			mapping_set_error(mapping, ret);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (++scanned % XA_CHECK_SCHED)
 | |
| 			continue;
 | |
| 
 | |
| 		xas_pause(&xas);
 | |
| 		xas_unlock_irq(&xas);
 | |
| 		cond_resched();
 | |
| 		xas_lock_irq(&xas);
 | |
| 	}
 | |
| 	xas_unlock_irq(&xas);
 | |
| 	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
 | |
| 
 | |
| static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos,
 | |
| 		size_t size, void **kaddr, unsigned long *pfnp)
 | |
| {
 | |
| 	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
 | |
| 	int id, rc = 0;
 | |
| 	long length;
 | |
| 
 | |
| 	id = dax_read_lock();
 | |
| 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
 | |
| 				   DAX_ACCESS, kaddr, pfnp);
 | |
| 	if (length < 0) {
 | |
| 		rc = length;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (!pfnp)
 | |
| 		goto out_check_addr;
 | |
| 	rc = -EINVAL;
 | |
| 	if (PFN_PHYS(length) < size)
 | |
| 		goto out;
 | |
| 	if (*pfnp & (PHYS_PFN(size)-1))
 | |
| 		goto out;
 | |
| 
 | |
| 	rc = 0;
 | |
| 
 | |
| out_check_addr:
 | |
| 	if (!kaddr)
 | |
| 		goto out;
 | |
| 	if (!*kaddr)
 | |
| 		rc = -EFAULT;
 | |
| out:
 | |
| 	dax_read_unlock(id);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page
 | |
|  * by copying the data before and after the range to be written.
 | |
|  * @pos:	address to do copy from.
 | |
|  * @length:	size of copy operation.
 | |
|  * @align_size:	aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE)
 | |
|  * @srcmap:	iomap srcmap
 | |
|  * @daddr:	destination address to copy to.
 | |
|  *
 | |
|  * This can be called from two places. Either during DAX write fault (page
 | |
|  * aligned), to copy the length size data to daddr. Or, while doing normal DAX
 | |
|  * write operation, dax_iomap_iter() might call this to do the copy of either
 | |
|  * start or end unaligned address. In the latter case the rest of the copy of
 | |
|  * aligned ranges is taken care by dax_iomap_iter() itself.
 | |
|  * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the
 | |
|  * area to make sure no old data remains.
 | |
|  */
 | |
| static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size,
 | |
| 		const struct iomap *srcmap, void *daddr)
 | |
| {
 | |
| 	loff_t head_off = pos & (align_size - 1);
 | |
| 	size_t size = ALIGN(head_off + length, align_size);
 | |
| 	loff_t end = pos + length;
 | |
| 	loff_t pg_end = round_up(end, align_size);
 | |
| 	/* copy_all is usually in page fault case */
 | |
| 	bool copy_all = head_off == 0 && end == pg_end;
 | |
| 	/* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */
 | |
| 	bool zero_edge = srcmap->flags & IOMAP_F_SHARED ||
 | |
| 			 srcmap->type == IOMAP_UNWRITTEN;
 | |
| 	void *saddr = NULL;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!zero_edge) {
 | |
| 		ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL);
 | |
| 		if (ret)
 | |
| 			return dax_mem2blk_err(ret);
 | |
| 	}
 | |
| 
 | |
| 	if (copy_all) {
 | |
| 		if (zero_edge)
 | |
| 			memset(daddr, 0, size);
 | |
| 		else
 | |
| 			ret = copy_mc_to_kernel(daddr, saddr, length);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Copy the head part of the range */
 | |
| 	if (head_off) {
 | |
| 		if (zero_edge)
 | |
| 			memset(daddr, 0, head_off);
 | |
| 		else {
 | |
| 			ret = copy_mc_to_kernel(daddr, saddr, head_off);
 | |
| 			if (ret)
 | |
| 				return -EIO;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Copy the tail part of the range */
 | |
| 	if (end < pg_end) {
 | |
| 		loff_t tail_off = head_off + length;
 | |
| 		loff_t tail_len = pg_end - end;
 | |
| 
 | |
| 		if (zero_edge)
 | |
| 			memset(daddr + tail_off, 0, tail_len);
 | |
| 		else {
 | |
| 			ret = copy_mc_to_kernel(daddr + tail_off,
 | |
| 						saddr + tail_off, tail_len);
 | |
| 			if (ret)
 | |
| 				return -EIO;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	if (zero_edge)
 | |
| 		dax_flush(srcmap->dax_dev, daddr, size);
 | |
| 	return ret ? -EIO : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The user has performed a load from a hole in the file.  Allocating a new
 | |
|  * page in the file would cause excessive storage usage for workloads with
 | |
|  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
 | |
|  * If this page is ever written to we will re-fault and change the mapping to
 | |
|  * point to real DAX storage instead.
 | |
|  */
 | |
| static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf,
 | |
| 		const struct iomap_iter *iter, void **entry)
 | |
| {
 | |
| 	struct inode *inode = iter->inode;
 | |
| 	unsigned long vaddr = vmf->address;
 | |
| 	unsigned long pfn = my_zero_pfn(vaddr);
 | |
| 	vm_fault_t ret;
 | |
| 
 | |
| 	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE);
 | |
| 
 | |
| 	ret = vmf_insert_page_mkwrite(vmf, pfn_to_page(pfn), false);
 | |
| 	trace_dax_load_hole(inode, vmf, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FS_DAX_PMD
 | |
| static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
 | |
| 		const struct iomap_iter *iter, void **entry)
 | |
| {
 | |
| 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	struct folio *zero_folio;
 | |
| 	vm_fault_t ret;
 | |
| 
 | |
| 	zero_folio = mm_get_huge_zero_folio(vmf->vma->vm_mm);
 | |
| 
 | |
| 	if (unlikely(!zero_folio)) {
 | |
| 		trace_dax_pmd_load_hole_fallback(inode, vmf, zero_folio, *entry);
 | |
| 		return VM_FAULT_FALLBACK;
 | |
| 	}
 | |
| 
 | |
| 	*entry = dax_insert_entry(xas, vmf, iter, *entry, folio_pfn(zero_folio),
 | |
| 				  DAX_PMD | DAX_ZERO_PAGE);
 | |
| 
 | |
| 	ret = vmf_insert_folio_pmd(vmf, zero_folio, false);
 | |
| 	if (ret == VM_FAULT_NOPAGE)
 | |
| 		trace_dax_pmd_load_hole(inode, vmf, zero_folio, *entry);
 | |
| 	return ret;
 | |
| }
 | |
| #else
 | |
| static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
 | |
| 		const struct iomap_iter *iter, void **entry)
 | |
| {
 | |
| 	return VM_FAULT_FALLBACK;
 | |
| }
 | |
| #endif /* CONFIG_FS_DAX_PMD */
 | |
| 
 | |
| static int dax_unshare_iter(struct iomap_iter *iter)
 | |
| {
 | |
| 	struct iomap *iomap = &iter->iomap;
 | |
| 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
 | |
| 	loff_t copy_pos = iter->pos;
 | |
| 	u64 copy_len = iomap_length(iter);
 | |
| 	u32 mod;
 | |
| 	int id = 0;
 | |
| 	s64 ret;
 | |
| 	void *daddr = NULL, *saddr = NULL;
 | |
| 
 | |
| 	if (!iomap_want_unshare_iter(iter))
 | |
| 		return iomap_iter_advance_full(iter);
 | |
| 
 | |
| 	/*
 | |
| 	 * Extend the file range to be aligned to fsblock/pagesize, because
 | |
| 	 * we need to copy entire blocks, not just the byte range specified.
 | |
| 	 * Invalidate the mapping because we're about to CoW.
 | |
| 	 */
 | |
| 	mod = offset_in_page(copy_pos);
 | |
| 	if (mod) {
 | |
| 		copy_len += mod;
 | |
| 		copy_pos -= mod;
 | |
| 	}
 | |
| 
 | |
| 	mod = offset_in_page(copy_pos + copy_len);
 | |
| 	if (mod)
 | |
| 		copy_len += PAGE_SIZE - mod;
 | |
| 
 | |
| 	invalidate_inode_pages2_range(iter->inode->i_mapping,
 | |
| 				      copy_pos >> PAGE_SHIFT,
 | |
| 				      (copy_pos + copy_len - 1) >> PAGE_SHIFT);
 | |
| 
 | |
| 	id = dax_read_lock();
 | |
| 	ret = dax_iomap_direct_access(iomap, copy_pos, copy_len, &daddr, NULL);
 | |
| 	if (ret < 0)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	ret = dax_iomap_direct_access(srcmap, copy_pos, copy_len, &saddr, NULL);
 | |
| 	if (ret < 0)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (copy_mc_to_kernel(daddr, saddr, copy_len) != 0)
 | |
| 		ret = -EIO;
 | |
| 
 | |
| out_unlock:
 | |
| 	dax_read_unlock(id);
 | |
| 	if (ret < 0)
 | |
| 		return dax_mem2blk_err(ret);
 | |
| 	return iomap_iter_advance_full(iter);
 | |
| }
 | |
| 
 | |
| int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len,
 | |
| 		const struct iomap_ops *ops)
 | |
| {
 | |
| 	struct iomap_iter iter = {
 | |
| 		.inode		= inode,
 | |
| 		.pos		= pos,
 | |
| 		.flags		= IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX,
 | |
| 	};
 | |
| 	loff_t size = i_size_read(inode);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (pos < 0 || pos >= size)
 | |
| 		return 0;
 | |
| 
 | |
| 	iter.len = min(len, size - pos);
 | |
| 	while ((ret = iomap_iter(&iter, ops)) > 0)
 | |
| 		iter.status = dax_unshare_iter(&iter);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_file_unshare);
 | |
| 
 | |
| static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size)
 | |
| {
 | |
| 	const struct iomap *iomap = &iter->iomap;
 | |
| 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
 | |
| 	unsigned offset = offset_in_page(pos);
 | |
| 	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
 | |
| 	void *kaddr;
 | |
| 	long ret;
 | |
| 
 | |
| 	ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr,
 | |
| 				NULL);
 | |
| 	if (ret < 0)
 | |
| 		return dax_mem2blk_err(ret);
 | |
| 
 | |
| 	memset(kaddr + offset, 0, size);
 | |
| 	if (iomap->flags & IOMAP_F_SHARED)
 | |
| 		ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap,
 | |
| 					    kaddr);
 | |
| 	else
 | |
| 		dax_flush(iomap->dax_dev, kaddr + offset, size);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
 | |
| {
 | |
| 	const struct iomap *iomap = &iter->iomap;
 | |
| 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
 | |
| 	u64 length = iomap_length(iter);
 | |
| 	int ret;
 | |
| 
 | |
| 	/* already zeroed?  we're done. */
 | |
| 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
 | |
| 		return iomap_iter_advance(iter, &length);
 | |
| 
 | |
| 	/*
 | |
| 	 * invalidate the pages whose sharing state is to be changed
 | |
| 	 * because of CoW.
 | |
| 	 */
 | |
| 	if (iomap->flags & IOMAP_F_SHARED)
 | |
| 		invalidate_inode_pages2_range(iter->inode->i_mapping,
 | |
| 				iter->pos >> PAGE_SHIFT,
 | |
| 				(iter->pos + length - 1) >> PAGE_SHIFT);
 | |
| 
 | |
| 	do {
 | |
| 		loff_t pos = iter->pos;
 | |
| 		unsigned offset = offset_in_page(pos);
 | |
| 		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
 | |
| 		int id;
 | |
| 
 | |
| 		length = min_t(u64, PAGE_SIZE - offset, length);
 | |
| 
 | |
| 		id = dax_read_lock();
 | |
| 		if (IS_ALIGNED(pos, PAGE_SIZE) && length == PAGE_SIZE)
 | |
| 			ret = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
 | |
| 		else
 | |
| 			ret = dax_memzero(iter, pos, length);
 | |
| 		dax_read_unlock(id);
 | |
| 
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = iomap_iter_advance(iter, &length);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} while (length > 0);
 | |
| 
 | |
| 	if (did_zero)
 | |
| 		*did_zero = true;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
 | |
| 		const struct iomap_ops *ops)
 | |
| {
 | |
| 	struct iomap_iter iter = {
 | |
| 		.inode		= inode,
 | |
| 		.pos		= pos,
 | |
| 		.len		= len,
 | |
| 		.flags		= IOMAP_DAX | IOMAP_ZERO,
 | |
| 	};
 | |
| 	int ret;
 | |
| 
 | |
| 	while ((ret = iomap_iter(&iter, ops)) > 0)
 | |
| 		iter.status = dax_zero_iter(&iter, did_zero);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_zero_range);
 | |
| 
 | |
| int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
 | |
| 		const struct iomap_ops *ops)
 | |
| {
 | |
| 	unsigned int blocksize = i_blocksize(inode);
 | |
| 	unsigned int off = pos & (blocksize - 1);
 | |
| 
 | |
| 	/* Block boundary? Nothing to do */
 | |
| 	if (!off)
 | |
| 		return 0;
 | |
| 	return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_truncate_page);
 | |
| 
 | |
| static int dax_iomap_iter(struct iomap_iter *iomi, struct iov_iter *iter)
 | |
| {
 | |
| 	const struct iomap *iomap = &iomi->iomap;
 | |
| 	const struct iomap *srcmap = iomap_iter_srcmap(iomi);
 | |
| 	loff_t length = iomap_length(iomi);
 | |
| 	loff_t pos = iomi->pos;
 | |
| 	struct dax_device *dax_dev = iomap->dax_dev;
 | |
| 	loff_t end = pos + length, done = 0;
 | |
| 	bool write = iov_iter_rw(iter) == WRITE;
 | |
| 	bool cow = write && iomap->flags & IOMAP_F_SHARED;
 | |
| 	ssize_t ret = 0;
 | |
| 	size_t xfer;
 | |
| 	int id;
 | |
| 
 | |
| 	if (!write) {
 | |
| 		end = min(end, i_size_read(iomi->inode));
 | |
| 		if (pos >= end)
 | |
| 			return 0;
 | |
| 
 | |
| 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) {
 | |
| 			done = iov_iter_zero(min(length, end - pos), iter);
 | |
| 			return iomap_iter_advance(iomi, &done);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * In DAX mode, enforce either pure overwrites of written extents, or
 | |
| 	 * writes to unwritten extents as part of a copy-on-write operation.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED &&
 | |
| 			!(iomap->flags & IOMAP_F_SHARED)))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/*
 | |
| 	 * Write can allocate block for an area which has a hole page mapped
 | |
| 	 * into page tables. We have to tear down these mappings so that data
 | |
| 	 * written by write(2) is visible in mmap.
 | |
| 	 */
 | |
| 	if (iomap->flags & IOMAP_F_NEW || cow) {
 | |
| 		/*
 | |
| 		 * Filesystem allows CoW on non-shared extents. The src extents
 | |
| 		 * may have been mmapped with dirty mark before. To be able to
 | |
| 		 * invalidate its dax entries, we need to clear the dirty mark
 | |
| 		 * in advance.
 | |
| 		 */
 | |
| 		if (cow)
 | |
| 			__dax_clear_dirty_range(iomi->inode->i_mapping,
 | |
| 						pos >> PAGE_SHIFT,
 | |
| 						(end - 1) >> PAGE_SHIFT);
 | |
| 		invalidate_inode_pages2_range(iomi->inode->i_mapping,
 | |
| 					      pos >> PAGE_SHIFT,
 | |
| 					      (end - 1) >> PAGE_SHIFT);
 | |
| 	}
 | |
| 
 | |
| 	id = dax_read_lock();
 | |
| 	while ((pos = iomi->pos) < end) {
 | |
| 		unsigned offset = pos & (PAGE_SIZE - 1);
 | |
| 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
 | |
| 		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
 | |
| 		ssize_t map_len;
 | |
| 		bool recovery = false;
 | |
| 		void *kaddr;
 | |
| 
 | |
| 		if (fatal_signal_pending(current)) {
 | |
| 			ret = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
 | |
| 				DAX_ACCESS, &kaddr, NULL);
 | |
| 		if (map_len == -EHWPOISON && iov_iter_rw(iter) == WRITE) {
 | |
| 			map_len = dax_direct_access(dax_dev, pgoff,
 | |
| 					PHYS_PFN(size), DAX_RECOVERY_WRITE,
 | |
| 					&kaddr, NULL);
 | |
| 			if (map_len > 0)
 | |
| 				recovery = true;
 | |
| 		}
 | |
| 		if (map_len < 0) {
 | |
| 			ret = dax_mem2blk_err(map_len);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (cow) {
 | |
| 			ret = dax_iomap_copy_around(pos, length, PAGE_SIZE,
 | |
| 						    srcmap, kaddr);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		map_len = PFN_PHYS(map_len);
 | |
| 		kaddr += offset;
 | |
| 		map_len -= offset;
 | |
| 		if (map_len > end - pos)
 | |
| 			map_len = end - pos;
 | |
| 
 | |
| 		if (recovery)
 | |
| 			xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
 | |
| 					map_len, iter);
 | |
| 		else if (write)
 | |
| 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
 | |
| 					map_len, iter);
 | |
| 		else
 | |
| 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
 | |
| 					map_len, iter);
 | |
| 
 | |
| 		length = xfer;
 | |
| 		ret = iomap_iter_advance(iomi, &length);
 | |
| 		if (!ret && xfer == 0)
 | |
| 			ret = -EFAULT;
 | |
| 		if (xfer < map_len)
 | |
| 			break;
 | |
| 	}
 | |
| 	dax_read_unlock(id);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dax_iomap_rw - Perform I/O to a DAX file
 | |
|  * @iocb:	The control block for this I/O
 | |
|  * @iter:	The addresses to do I/O from or to
 | |
|  * @ops:	iomap ops passed from the file system
 | |
|  *
 | |
|  * This function performs read and write operations to directly mapped
 | |
|  * persistent memory.  The callers needs to take care of read/write exclusion
 | |
|  * and evicting any page cache pages in the region under I/O.
 | |
|  */
 | |
| ssize_t
 | |
| dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
 | |
| 		const struct iomap_ops *ops)
 | |
| {
 | |
| 	struct iomap_iter iomi = {
 | |
| 		.inode		= iocb->ki_filp->f_mapping->host,
 | |
| 		.pos		= iocb->ki_pos,
 | |
| 		.len		= iov_iter_count(iter),
 | |
| 		.flags		= IOMAP_DAX,
 | |
| 	};
 | |
| 	loff_t done = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(iocb->ki_flags & IOCB_ATOMIC))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	if (!iomi.len)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (iov_iter_rw(iter) == WRITE) {
 | |
| 		lockdep_assert_held_write(&iomi.inode->i_rwsem);
 | |
| 		iomi.flags |= IOMAP_WRITE;
 | |
| 	} else if (!sb_rdonly(iomi.inode->i_sb)) {
 | |
| 		lockdep_assert_held(&iomi.inode->i_rwsem);
 | |
| 	}
 | |
| 
 | |
| 	if (iocb->ki_flags & IOCB_NOWAIT)
 | |
| 		iomi.flags |= IOMAP_NOWAIT;
 | |
| 
 | |
| 	while ((ret = iomap_iter(&iomi, ops)) > 0)
 | |
| 		iomi.status = dax_iomap_iter(&iomi, iter);
 | |
| 
 | |
| 	done = iomi.pos - iocb->ki_pos;
 | |
| 	iocb->ki_pos = iomi.pos;
 | |
| 	return done ? done : ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_iomap_rw);
 | |
| 
 | |
| static vm_fault_t dax_fault_return(int error)
 | |
| {
 | |
| 	if (error == 0)
 | |
| 		return VM_FAULT_NOPAGE;
 | |
| 	return vmf_error(error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When handling a synchronous page fault and the inode need a fsync, we can
 | |
|  * insert the PTE/PMD into page tables only after that fsync happened. Skip
 | |
|  * insertion for now and return the pfn so that caller can insert it after the
 | |
|  * fsync is done.
 | |
|  */
 | |
| static vm_fault_t dax_fault_synchronous_pfnp(unsigned long *pfnp,
 | |
| 					unsigned long pfn)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(!pfnp))
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 	*pfnp = pfn;
 | |
| 	return VM_FAULT_NEEDDSYNC;
 | |
| }
 | |
| 
 | |
| static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
 | |
| 		const struct iomap_iter *iter)
 | |
| {
 | |
| 	vm_fault_t ret;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	switch (iter->iomap.type) {
 | |
| 	case IOMAP_HOLE:
 | |
| 	case IOMAP_UNWRITTEN:
 | |
| 		clear_user_highpage(vmf->cow_page, vmf->address);
 | |
| 		break;
 | |
| 	case IOMAP_MAPPED:
 | |
| 		error = copy_cow_page_dax(vmf, iter);
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		error = -EIO;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (error)
 | |
| 		return dax_fault_return(error);
 | |
| 
 | |
| 	__SetPageUptodate(vmf->cow_page);
 | |
| 	ret = finish_fault(vmf);
 | |
| 	if (!ret)
 | |
| 		return VM_FAULT_DONE_COW;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
 | |
|  * @vmf:	vm fault instance
 | |
|  * @iter:	iomap iter
 | |
|  * @pfnp:	pfn to be returned
 | |
|  * @xas:	the dax mapping tree of a file
 | |
|  * @entry:	an unlocked dax entry to be inserted
 | |
|  * @pmd:	distinguish whether it is a pmd fault
 | |
|  */
 | |
| static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
 | |
| 		const struct iomap_iter *iter, unsigned long *pfnp,
 | |
| 		struct xa_state *xas, void **entry, bool pmd)
 | |
| {
 | |
| 	const struct iomap *iomap = &iter->iomap;
 | |
| 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
 | |
| 	size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
 | |
| 	loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
 | |
| 	bool write = iter->flags & IOMAP_WRITE;
 | |
| 	unsigned long entry_flags = pmd ? DAX_PMD : 0;
 | |
| 	struct folio *folio;
 | |
| 	int ret, err = 0;
 | |
| 	unsigned long pfn;
 | |
| 	void *kaddr;
 | |
| 
 | |
| 	if (!pmd && vmf->cow_page)
 | |
| 		return dax_fault_cow_page(vmf, iter);
 | |
| 
 | |
| 	/* if we are reading UNWRITTEN and HOLE, return a hole. */
 | |
| 	if (!write &&
 | |
| 	    (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
 | |
| 		if (!pmd)
 | |
| 			return dax_load_hole(xas, vmf, iter, entry);
 | |
| 		return dax_pmd_load_hole(xas, vmf, iter, entry);
 | |
| 	}
 | |
| 
 | |
| 	if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) {
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
 | |
| 	}
 | |
| 
 | |
| 	err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn);
 | |
| 	if (err)
 | |
| 		return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
 | |
| 
 | |
| 	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags);
 | |
| 
 | |
| 	if (write && iomap->flags & IOMAP_F_SHARED) {
 | |
| 		err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr);
 | |
| 		if (err)
 | |
| 			return dax_fault_return(err);
 | |
| 	}
 | |
| 
 | |
| 	folio = dax_to_folio(*entry);
 | |
| 	if (dax_fault_is_synchronous(iter, vmf->vma))
 | |
| 		return dax_fault_synchronous_pfnp(pfnp, pfn);
 | |
| 
 | |
| 	folio_ref_inc(folio);
 | |
| 	if (pmd)
 | |
| 		ret = vmf_insert_folio_pmd(vmf, pfn_folio(pfn), write);
 | |
| 	else
 | |
| 		ret = vmf_insert_page_mkwrite(vmf, pfn_to_page(pfn), write);
 | |
| 	folio_put(folio);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, unsigned long *pfnp,
 | |
| 			       int *iomap_errp, const struct iomap_ops *ops)
 | |
| {
 | |
| 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
 | |
| 	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
 | |
| 	struct iomap_iter iter = {
 | |
| 		.inode		= mapping->host,
 | |
| 		.pos		= (loff_t)vmf->pgoff << PAGE_SHIFT,
 | |
| 		.len		= PAGE_SIZE,
 | |
| 		.flags		= IOMAP_DAX | IOMAP_FAULT,
 | |
| 	};
 | |
| 	vm_fault_t ret = 0;
 | |
| 	void *entry;
 | |
| 	int error;
 | |
| 
 | |
| 	trace_dax_pte_fault(iter.inode, vmf, ret);
 | |
| 	/*
 | |
| 	 * Check whether offset isn't beyond end of file now. Caller is supposed
 | |
| 	 * to hold locks serializing us with truncate / punch hole so this is
 | |
| 	 * a reliable test.
 | |
| 	 */
 | |
| 	if (iter.pos >= i_size_read(iter.inode)) {
 | |
| 		ret = VM_FAULT_SIGBUS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
 | |
| 		iter.flags |= IOMAP_WRITE;
 | |
| 
 | |
| 	entry = grab_mapping_entry(&xas, mapping, 0);
 | |
| 	if (xa_is_internal(entry)) {
 | |
| 		ret = xa_to_internal(entry);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It is possible, particularly with mixed reads & writes to private
 | |
| 	 * mappings, that we have raced with a PMD fault that overlaps with
 | |
| 	 * the PTE we need to set up.  If so just return and the fault will be
 | |
| 	 * retried.
 | |
| 	 */
 | |
| 	if (pmd_trans_huge(*vmf->pmd)) {
 | |
| 		ret = VM_FAULT_NOPAGE;
 | |
| 		goto unlock_entry;
 | |
| 	}
 | |
| 
 | |
| 	while ((error = iomap_iter(&iter, ops)) > 0) {
 | |
| 		if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
 | |
| 			iter.status = -EIO;	/* fs corruption? */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
 | |
| 		if (ret != VM_FAULT_SIGBUS &&
 | |
| 		    (iter.iomap.flags & IOMAP_F_NEW)) {
 | |
| 			count_vm_event(PGMAJFAULT);
 | |
| 			count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
 | |
| 			ret |= VM_FAULT_MAJOR;
 | |
| 		}
 | |
| 
 | |
| 		if (!(ret & VM_FAULT_ERROR)) {
 | |
| 			u64 length = PAGE_SIZE;
 | |
| 			iter.status = iomap_iter_advance(&iter, &length);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (iomap_errp)
 | |
| 		*iomap_errp = error;
 | |
| 	if (!ret && error)
 | |
| 		ret = dax_fault_return(error);
 | |
| 
 | |
| unlock_entry:
 | |
| 	dax_unlock_entry(&xas, entry);
 | |
| out:
 | |
| 	trace_dax_pte_fault_done(iter.inode, vmf, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FS_DAX_PMD
 | |
| static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
 | |
| 		pgoff_t max_pgoff)
 | |
| {
 | |
| 	unsigned long pmd_addr = vmf->address & PMD_MASK;
 | |
| 	bool write = vmf->flags & FAULT_FLAG_WRITE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that the faulting address's PMD offset (color) matches
 | |
| 	 * the PMD offset from the start of the file.  This is necessary so
 | |
| 	 * that a PMD range in the page table overlaps exactly with a PMD
 | |
| 	 * range in the page cache.
 | |
| 	 */
 | |
| 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
 | |
| 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
 | |
| 		return true;
 | |
| 
 | |
| 	/* Fall back to PTEs if we're going to COW */
 | |
| 	if (write && !(vmf->vma->vm_flags & VM_SHARED))
 | |
| 		return true;
 | |
| 
 | |
| 	/* If the PMD would extend outside the VMA */
 | |
| 	if (pmd_addr < vmf->vma->vm_start)
 | |
| 		return true;
 | |
| 	if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
 | |
| 		return true;
 | |
| 
 | |
| 	/* If the PMD would extend beyond the file size */
 | |
| 	if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, unsigned long *pfnp,
 | |
| 			       const struct iomap_ops *ops)
 | |
| {
 | |
| 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
 | |
| 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
 | |
| 	struct iomap_iter iter = {
 | |
| 		.inode		= mapping->host,
 | |
| 		.len		= PMD_SIZE,
 | |
| 		.flags		= IOMAP_DAX | IOMAP_FAULT,
 | |
| 	};
 | |
| 	vm_fault_t ret = VM_FAULT_FALLBACK;
 | |
| 	pgoff_t max_pgoff;
 | |
| 	void *entry;
 | |
| 
 | |
| 	if (vmf->flags & FAULT_FLAG_WRITE)
 | |
| 		iter.flags |= IOMAP_WRITE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether offset isn't beyond end of file now. Caller is
 | |
| 	 * supposed to hold locks serializing us with truncate / punch hole so
 | |
| 	 * this is a reliable test.
 | |
| 	 */
 | |
| 	max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
 | |
| 
 | |
| 	trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
 | |
| 
 | |
| 	if (xas.xa_index >= max_pgoff) {
 | |
| 		ret = VM_FAULT_SIGBUS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
 | |
| 		goto fallback;
 | |
| 
 | |
| 	/*
 | |
| 	 * grab_mapping_entry() will make sure we get an empty PMD entry,
 | |
| 	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
 | |
| 	 * entry is already in the array, for instance), it will return
 | |
| 	 * VM_FAULT_FALLBACK.
 | |
| 	 */
 | |
| 	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
 | |
| 	if (xa_is_internal(entry)) {
 | |
| 		ret = xa_to_internal(entry);
 | |
| 		goto fallback;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It is possible, particularly with mixed reads & writes to private
 | |
| 	 * mappings, that we have raced with a PTE fault that overlaps with
 | |
| 	 * the PMD we need to set up.  If so just return and the fault will be
 | |
| 	 * retried.
 | |
| 	 */
 | |
| 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd)) {
 | |
| 		ret = 0;
 | |
| 		goto unlock_entry;
 | |
| 	}
 | |
| 
 | |
| 	iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
 | |
| 	while (iomap_iter(&iter, ops) > 0) {
 | |
| 		if (iomap_length(&iter) < PMD_SIZE)
 | |
| 			continue; /* actually breaks out of the loop */
 | |
| 
 | |
| 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
 | |
| 		if (ret != VM_FAULT_FALLBACK) {
 | |
| 			u64 length = PMD_SIZE;
 | |
| 			iter.status = iomap_iter_advance(&iter, &length);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| unlock_entry:
 | |
| 	dax_unlock_entry(&xas, entry);
 | |
| fallback:
 | |
| 	if (ret == VM_FAULT_FALLBACK) {
 | |
| 		split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
 | |
| 		count_vm_event(THP_FAULT_FALLBACK);
 | |
| 	}
 | |
| out:
 | |
| 	trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
 | |
| 	return ret;
 | |
| }
 | |
| #else
 | |
| static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, unsigned long *pfnp,
 | |
| 			       const struct iomap_ops *ops)
 | |
| {
 | |
| 	return VM_FAULT_FALLBACK;
 | |
| }
 | |
| #endif /* CONFIG_FS_DAX_PMD */
 | |
| 
 | |
| /**
 | |
|  * dax_iomap_fault - handle a page fault on a DAX file
 | |
|  * @vmf: The description of the fault
 | |
|  * @order: Order of the page to fault in
 | |
|  * @pfnp: PFN to insert for synchronous faults if fsync is required
 | |
|  * @iomap_errp: Storage for detailed error code in case of error
 | |
|  * @ops: Iomap ops passed from the file system
 | |
|  *
 | |
|  * When a page fault occurs, filesystems may call this helper in
 | |
|  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
 | |
|  * has done all the necessary locking for page fault to proceed
 | |
|  * successfully.
 | |
|  */
 | |
| vm_fault_t dax_iomap_fault(struct vm_fault *vmf, unsigned int order,
 | |
| 			unsigned long *pfnp, int *iomap_errp,
 | |
| 			const struct iomap_ops *ops)
 | |
| {
 | |
| 	if (order == 0)
 | |
| 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
 | |
| 	else if (order == PMD_ORDER)
 | |
| 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
 | |
| 	else
 | |
| 		return VM_FAULT_FALLBACK;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_iomap_fault);
 | |
| 
 | |
| /*
 | |
|  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
 | |
|  * @vmf: The description of the fault
 | |
|  * @pfn: PFN to insert
 | |
|  * @order: Order of entry to insert.
 | |
|  *
 | |
|  * This function inserts a writeable PTE or PMD entry into the page tables
 | |
|  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
 | |
|  */
 | |
| static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf,
 | |
| 					unsigned long pfn, unsigned int order)
 | |
| {
 | |
| 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
 | |
| 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
 | |
| 	struct folio *folio;
 | |
| 	void *entry;
 | |
| 	vm_fault_t ret;
 | |
| 
 | |
| 	xas_lock_irq(&xas);
 | |
| 	entry = get_next_unlocked_entry(&xas, order);
 | |
| 	/* Did we race with someone splitting entry or so? */
 | |
| 	if (!entry || dax_is_conflict(entry) ||
 | |
| 	    (order == 0 && !dax_is_pte_entry(entry))) {
 | |
| 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
 | |
| 		xas_unlock_irq(&xas);
 | |
| 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
 | |
| 						      VM_FAULT_NOPAGE);
 | |
| 		return VM_FAULT_NOPAGE;
 | |
| 	}
 | |
| 	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
 | |
| 	dax_lock_entry(&xas, entry);
 | |
| 	xas_unlock_irq(&xas);
 | |
| 	folio = pfn_folio(pfn);
 | |
| 	folio_ref_inc(folio);
 | |
| 	if (order == 0)
 | |
| 		ret = vmf_insert_page_mkwrite(vmf, &folio->page, true);
 | |
| #ifdef CONFIG_FS_DAX_PMD
 | |
| 	else if (order == PMD_ORDER)
 | |
| 		ret = vmf_insert_folio_pmd(vmf, folio, FAULT_FLAG_WRITE);
 | |
| #endif
 | |
| 	else
 | |
| 		ret = VM_FAULT_FALLBACK;
 | |
| 	folio_put(folio);
 | |
| 	dax_unlock_entry(&xas, entry);
 | |
| 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dax_finish_sync_fault - finish synchronous page fault
 | |
|  * @vmf: The description of the fault
 | |
|  * @order: Order of entry to be inserted
 | |
|  * @pfn: PFN to insert
 | |
|  *
 | |
|  * This function ensures that the file range touched by the page fault is
 | |
|  * stored persistently on the media and handles inserting of appropriate page
 | |
|  * table entry.
 | |
|  */
 | |
| vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, unsigned int order,
 | |
| 		unsigned long pfn)
 | |
| {
 | |
| 	int err;
 | |
| 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
 | |
| 	size_t len = PAGE_SIZE << order;
 | |
| 
 | |
| 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
 | |
| 	if (err)
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 	return dax_insert_pfn_mkwrite(vmf, pfn, order);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
 | |
| 
 | |
| static int dax_range_compare_iter(struct iomap_iter *it_src,
 | |
| 		struct iomap_iter *it_dest, u64 len, bool *same)
 | |
| {
 | |
| 	const struct iomap *smap = &it_src->iomap;
 | |
| 	const struct iomap *dmap = &it_dest->iomap;
 | |
| 	loff_t pos1 = it_src->pos, pos2 = it_dest->pos;
 | |
| 	u64 dest_len;
 | |
| 	void *saddr, *daddr;
 | |
| 	int id, ret;
 | |
| 
 | |
| 	len = min(len, min(smap->length, dmap->length));
 | |
| 
 | |
| 	if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) {
 | |
| 		*same = true;
 | |
| 		goto advance;
 | |
| 	}
 | |
| 
 | |
| 	if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) {
 | |
| 		*same = false;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	id = dax_read_lock();
 | |
| 	ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE),
 | |
| 				      &saddr, NULL);
 | |
| 	if (ret < 0)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE),
 | |
| 				      &daddr, NULL);
 | |
| 	if (ret < 0)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	*same = !memcmp(saddr, daddr, len);
 | |
| 	if (!*same)
 | |
| 		len = 0;
 | |
| 	dax_read_unlock(id);
 | |
| 
 | |
| advance:
 | |
| 	dest_len = len;
 | |
| 	ret = iomap_iter_advance(it_src, &len);
 | |
| 	if (!ret)
 | |
| 		ret = iomap_iter_advance(it_dest, &dest_len);
 | |
| 	return ret;
 | |
| 
 | |
| out_unlock:
 | |
| 	dax_read_unlock(id);
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff,
 | |
| 		struct inode *dst, loff_t dstoff, loff_t len, bool *same,
 | |
| 		const struct iomap_ops *ops)
 | |
| {
 | |
| 	struct iomap_iter src_iter = {
 | |
| 		.inode		= src,
 | |
| 		.pos		= srcoff,
 | |
| 		.len		= len,
 | |
| 		.flags		= IOMAP_DAX,
 | |
| 	};
 | |
| 	struct iomap_iter dst_iter = {
 | |
| 		.inode		= dst,
 | |
| 		.pos		= dstoff,
 | |
| 		.len		= len,
 | |
| 		.flags		= IOMAP_DAX,
 | |
| 	};
 | |
| 	int ret, status;
 | |
| 
 | |
| 	while ((ret = iomap_iter(&src_iter, ops)) > 0 &&
 | |
| 	       (ret = iomap_iter(&dst_iter, ops)) > 0) {
 | |
| 		status = dax_range_compare_iter(&src_iter, &dst_iter,
 | |
| 				min(src_iter.len, dst_iter.len), same);
 | |
| 		if (status < 0)
 | |
| 			return ret;
 | |
| 		src_iter.status = dst_iter.status = status;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in,
 | |
| 			      struct file *file_out, loff_t pos_out,
 | |
| 			      loff_t *len, unsigned int remap_flags,
 | |
| 			      const struct iomap_ops *ops)
 | |
| {
 | |
| 	return __generic_remap_file_range_prep(file_in, pos_in, file_out,
 | |
| 					       pos_out, len, remap_flags, ops);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_remap_file_range_prep);
 |