mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	Gao Xiang has reported that on ext4 O_SYNC direct IO does not properly
sync file size update and thus if we crash at unfortunate moment, the
file can have smaller size although O_SYNC IO has reported successful
completion. The problem happens because update of on-disk inode size is
handled in ext4_dio_write_iter() *after* iomap_dio_rw() (and thus
dio_complete() in particular) has returned and generic_file_sync() gets
called by dio_complete(). Fix the problem by handling on-disk inode size
update directly in our ->end_io completion handler.
References: https://lore.kernel.org/all/02d18236-26ef-09b0-90ad-030c4fe3ee20@linux.alibaba.com
Reported-by: Gao Xiang <hsiangkao@linux.alibaba.com>
CC: stable@vger.kernel.org
Fixes: 378f32bab3 ("ext4: introduce direct I/O write using iomap infrastructure")
Signed-off-by: Jan Kara <jack@suse.cz>
Tested-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Reviewed-by: "Ritesh Harjani (IBM)" <ritesh.list@gmail.com>
Link: https://lore.kernel.org/r/20231013121350.26872-1-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
		
	
			
		
			
				
	
	
		
			959 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			959 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 *  linux/fs/ext4/file.c
 | 
						|
 *
 | 
						|
 * Copyright (C) 1992, 1993, 1994, 1995
 | 
						|
 * Remy Card (card@masi.ibp.fr)
 | 
						|
 * Laboratoire MASI - Institut Blaise Pascal
 | 
						|
 * Universite Pierre et Marie Curie (Paris VI)
 | 
						|
 *
 | 
						|
 *  from
 | 
						|
 *
 | 
						|
 *  linux/fs/minix/file.c
 | 
						|
 *
 | 
						|
 *  Copyright (C) 1991, 1992  Linus Torvalds
 | 
						|
 *
 | 
						|
 *  ext4 fs regular file handling primitives
 | 
						|
 *
 | 
						|
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 | 
						|
 *	(jj@sunsite.ms.mff.cuni.cz)
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/time.h>
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/iomap.h>
 | 
						|
#include <linux/mount.h>
 | 
						|
#include <linux/path.h>
 | 
						|
#include <linux/dax.h>
 | 
						|
#include <linux/quotaops.h>
 | 
						|
#include <linux/pagevec.h>
 | 
						|
#include <linux/uio.h>
 | 
						|
#include <linux/mman.h>
 | 
						|
#include <linux/backing-dev.h>
 | 
						|
#include "ext4.h"
 | 
						|
#include "ext4_jbd2.h"
 | 
						|
#include "xattr.h"
 | 
						|
#include "acl.h"
 | 
						|
#include "truncate.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns %true if the given DIO request should be attempted with DIO, or
 | 
						|
 * %false if it should fall back to buffered I/O.
 | 
						|
 *
 | 
						|
 * DIO isn't well specified; when it's unsupported (either due to the request
 | 
						|
 * being misaligned, or due to the file not supporting DIO at all), filesystems
 | 
						|
 * either fall back to buffered I/O or return EINVAL.  For files that don't use
 | 
						|
 * any special features like encryption or verity, ext4 has traditionally
 | 
						|
 * returned EINVAL for misaligned DIO.  iomap_dio_rw() uses this convention too.
 | 
						|
 * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
 | 
						|
 *
 | 
						|
 * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
 | 
						|
 * traditionally falls back to buffered I/O.
 | 
						|
 *
 | 
						|
 * This function implements the traditional ext4 behavior in all these cases.
 | 
						|
 */
 | 
						|
static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
 | 
						|
{
 | 
						|
	struct inode *inode = file_inode(iocb->ki_filp);
 | 
						|
	u32 dio_align = ext4_dio_alignment(inode);
 | 
						|
 | 
						|
	if (dio_align == 0)
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (dio_align == 1)
 | 
						|
		return true;
 | 
						|
 | 
						|
	return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
 | 
						|
{
 | 
						|
	ssize_t ret;
 | 
						|
	struct inode *inode = file_inode(iocb->ki_filp);
 | 
						|
 | 
						|
	if (iocb->ki_flags & IOCB_NOWAIT) {
 | 
						|
		if (!inode_trylock_shared(inode))
 | 
						|
			return -EAGAIN;
 | 
						|
	} else {
 | 
						|
		inode_lock_shared(inode);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!ext4_should_use_dio(iocb, to)) {
 | 
						|
		inode_unlock_shared(inode);
 | 
						|
		/*
 | 
						|
		 * Fallback to buffered I/O if the operation being performed on
 | 
						|
		 * the inode is not supported by direct I/O. The IOCB_DIRECT
 | 
						|
		 * flag needs to be cleared here in order to ensure that the
 | 
						|
		 * direct I/O path within generic_file_read_iter() is not
 | 
						|
		 * taken.
 | 
						|
		 */
 | 
						|
		iocb->ki_flags &= ~IOCB_DIRECT;
 | 
						|
		return generic_file_read_iter(iocb, to);
 | 
						|
	}
 | 
						|
 | 
						|
	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
 | 
						|
	inode_unlock_shared(inode);
 | 
						|
 | 
						|
	file_accessed(iocb->ki_filp);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_FS_DAX
 | 
						|
static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
 | 
						|
{
 | 
						|
	struct inode *inode = file_inode(iocb->ki_filp);
 | 
						|
	ssize_t ret;
 | 
						|
 | 
						|
	if (iocb->ki_flags & IOCB_NOWAIT) {
 | 
						|
		if (!inode_trylock_shared(inode))
 | 
						|
			return -EAGAIN;
 | 
						|
	} else {
 | 
						|
		inode_lock_shared(inode);
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Recheck under inode lock - at this point we are sure it cannot
 | 
						|
	 * change anymore
 | 
						|
	 */
 | 
						|
	if (!IS_DAX(inode)) {
 | 
						|
		inode_unlock_shared(inode);
 | 
						|
		/* Fallback to buffered IO in case we cannot support DAX */
 | 
						|
		return generic_file_read_iter(iocb, to);
 | 
						|
	}
 | 
						|
	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
 | 
						|
	inode_unlock_shared(inode);
 | 
						|
 | 
						|
	file_accessed(iocb->ki_filp);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
 | 
						|
{
 | 
						|
	struct inode *inode = file_inode(iocb->ki_filp);
 | 
						|
 | 
						|
	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	if (!iov_iter_count(to))
 | 
						|
		return 0; /* skip atime */
 | 
						|
 | 
						|
#ifdef CONFIG_FS_DAX
 | 
						|
	if (IS_DAX(inode))
 | 
						|
		return ext4_dax_read_iter(iocb, to);
 | 
						|
#endif
 | 
						|
	if (iocb->ki_flags & IOCB_DIRECT)
 | 
						|
		return ext4_dio_read_iter(iocb, to);
 | 
						|
 | 
						|
	return generic_file_read_iter(iocb, to);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t ext4_file_splice_read(struct file *in, loff_t *ppos,
 | 
						|
				     struct pipe_inode_info *pipe,
 | 
						|
				     size_t len, unsigned int flags)
 | 
						|
{
 | 
						|
	struct inode *inode = file_inode(in);
 | 
						|
 | 
						|
	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
 | 
						|
		return -EIO;
 | 
						|
	return filemap_splice_read(in, ppos, pipe, len, flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called when an inode is released. Note that this is different
 | 
						|
 * from ext4_file_open: open gets called at every open, but release
 | 
						|
 * gets called only when /all/ the files are closed.
 | 
						|
 */
 | 
						|
static int ext4_release_file(struct inode *inode, struct file *filp)
 | 
						|
{
 | 
						|
	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
 | 
						|
		ext4_alloc_da_blocks(inode);
 | 
						|
		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
 | 
						|
	}
 | 
						|
	/* if we are the last writer on the inode, drop the block reservation */
 | 
						|
	if ((filp->f_mode & FMODE_WRITE) &&
 | 
						|
			(atomic_read(&inode->i_writecount) == 1) &&
 | 
						|
			!EXT4_I(inode)->i_reserved_data_blocks) {
 | 
						|
		down_write(&EXT4_I(inode)->i_data_sem);
 | 
						|
		ext4_discard_preallocations(inode, 0);
 | 
						|
		up_write(&EXT4_I(inode)->i_data_sem);
 | 
						|
	}
 | 
						|
	if (is_dx(inode) && filp->private_data)
 | 
						|
		ext4_htree_free_dir_info(filp->private_data);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This tests whether the IO in question is block-aligned or not.
 | 
						|
 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
 | 
						|
 * are converted to written only after the IO is complete.  Until they are
 | 
						|
 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
 | 
						|
 * it needs to zero out portions of the start and/or end block.  If 2 AIO
 | 
						|
 * threads are at work on the same unwritten block, they must be synchronized
 | 
						|
 * or one thread will zero the other's data, causing corruption.
 | 
						|
 */
 | 
						|
static bool
 | 
						|
ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
 | 
						|
{
 | 
						|
	struct super_block *sb = inode->i_sb;
 | 
						|
	unsigned long blockmask = sb->s_blocksize - 1;
 | 
						|
 | 
						|
	if ((pos | iov_iter_alignment(from)) & blockmask)
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool
 | 
						|
ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
 | 
						|
{
 | 
						|
	if (offset + len > i_size_read(inode) ||
 | 
						|
	    offset + len > EXT4_I(inode)->i_disksize)
 | 
						|
		return true;
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/* Is IO overwriting allocated or initialized blocks? */
 | 
						|
static bool ext4_overwrite_io(struct inode *inode,
 | 
						|
			      loff_t pos, loff_t len, bool *unwritten)
 | 
						|
{
 | 
						|
	struct ext4_map_blocks map;
 | 
						|
	unsigned int blkbits = inode->i_blkbits;
 | 
						|
	int err, blklen;
 | 
						|
 | 
						|
	if (pos + len > i_size_read(inode))
 | 
						|
		return false;
 | 
						|
 | 
						|
	map.m_lblk = pos >> blkbits;
 | 
						|
	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
 | 
						|
	blklen = map.m_len;
 | 
						|
 | 
						|
	err = ext4_map_blocks(NULL, inode, &map, 0);
 | 
						|
	if (err != blklen)
 | 
						|
		return false;
 | 
						|
	/*
 | 
						|
	 * 'err==len' means that all of the blocks have been preallocated,
 | 
						|
	 * regardless of whether they have been initialized or not. We need to
 | 
						|
	 * check m_flags to distinguish the unwritten extents.
 | 
						|
	 */
 | 
						|
	*unwritten = !(map.m_flags & EXT4_MAP_MAPPED);
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
 | 
						|
					 struct iov_iter *from)
 | 
						|
{
 | 
						|
	struct inode *inode = file_inode(iocb->ki_filp);
 | 
						|
	ssize_t ret;
 | 
						|
 | 
						|
	if (unlikely(IS_IMMUTABLE(inode)))
 | 
						|
		return -EPERM;
 | 
						|
 | 
						|
	ret = generic_write_checks(iocb, from);
 | 
						|
	if (ret <= 0)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we have encountered a bitmap-format file, the size limit
 | 
						|
	 * is smaller than s_maxbytes, which is for extent-mapped files.
 | 
						|
	 */
 | 
						|
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
 | 
						|
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | 
						|
 | 
						|
		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
 | 
						|
			return -EFBIG;
 | 
						|
		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
 | 
						|
	}
 | 
						|
 | 
						|
	return iov_iter_count(from);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
 | 
						|
{
 | 
						|
	ssize_t ret, count;
 | 
						|
 | 
						|
	count = ext4_generic_write_checks(iocb, from);
 | 
						|
	if (count <= 0)
 | 
						|
		return count;
 | 
						|
 | 
						|
	ret = file_modified(iocb->ki_filp);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
	return count;
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
 | 
						|
					struct iov_iter *from)
 | 
						|
{
 | 
						|
	ssize_t ret;
 | 
						|
	struct inode *inode = file_inode(iocb->ki_filp);
 | 
						|
 | 
						|
	if (iocb->ki_flags & IOCB_NOWAIT)
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	inode_lock(inode);
 | 
						|
	ret = ext4_write_checks(iocb, from);
 | 
						|
	if (ret <= 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	ret = generic_perform_write(iocb, from);
 | 
						|
 | 
						|
out:
 | 
						|
	inode_unlock(inode);
 | 
						|
	if (unlikely(ret <= 0))
 | 
						|
		return ret;
 | 
						|
	return generic_write_sync(iocb, ret);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
 | 
						|
					   ssize_t count)
 | 
						|
{
 | 
						|
	handle_t *handle;
 | 
						|
 | 
						|
	lockdep_assert_held_write(&inode->i_rwsem);
 | 
						|
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
 | 
						|
	if (IS_ERR(handle))
 | 
						|
		return PTR_ERR(handle);
 | 
						|
 | 
						|
	if (ext4_update_inode_size(inode, offset + count)) {
 | 
						|
		int ret = ext4_mark_inode_dirty(handle, inode);
 | 
						|
		if (unlikely(ret)) {
 | 
						|
			ext4_journal_stop(handle);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (inode->i_nlink)
 | 
						|
		ext4_orphan_del(handle, inode);
 | 
						|
	ext4_journal_stop(handle);
 | 
						|
 | 
						|
	return count;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Clean up the inode after DIO or DAX extending write has completed and the
 | 
						|
 * inode size has been updated using ext4_handle_inode_extension().
 | 
						|
 */
 | 
						|
static void ext4_inode_extension_cleanup(struct inode *inode, ssize_t count)
 | 
						|
{
 | 
						|
	lockdep_assert_held_write(&inode->i_rwsem);
 | 
						|
	if (count < 0) {
 | 
						|
		ext4_truncate_failed_write(inode);
 | 
						|
		/*
 | 
						|
		 * If the truncate operation failed early, then the inode may
 | 
						|
		 * still be on the orphan list. In that case, we need to try
 | 
						|
		 * remove the inode from the in-memory linked list.
 | 
						|
		 */
 | 
						|
		if (inode->i_nlink)
 | 
						|
			ext4_orphan_del(NULL, inode);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * If i_disksize got extended due to writeback of delalloc blocks while
 | 
						|
	 * the DIO was running we could fail to cleanup the orphan list in
 | 
						|
	 * ext4_handle_inode_extension(). Do it now.
 | 
						|
	 */
 | 
						|
	if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
 | 
						|
		handle_t *handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
 | 
						|
 | 
						|
		if (IS_ERR(handle)) {
 | 
						|
			/*
 | 
						|
			 * The write has successfully completed. Not much to
 | 
						|
			 * do with the error here so just cleanup the orphan
 | 
						|
			 * list and hope for the best.
 | 
						|
			 */
 | 
						|
			ext4_orphan_del(NULL, inode);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		ext4_orphan_del(handle, inode);
 | 
						|
		ext4_journal_stop(handle);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
 | 
						|
				 int error, unsigned int flags)
 | 
						|
{
 | 
						|
	loff_t pos = iocb->ki_pos;
 | 
						|
	struct inode *inode = file_inode(iocb->ki_filp);
 | 
						|
 | 
						|
	if (!error && size && flags & IOMAP_DIO_UNWRITTEN)
 | 
						|
		error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
	/*
 | 
						|
	 * Note that EXT4_I(inode)->i_disksize can get extended up to
 | 
						|
	 * inode->i_size while the I/O was running due to writeback of delalloc
 | 
						|
	 * blocks. But the code in ext4_iomap_alloc() is careful to use
 | 
						|
	 * zeroed/unwritten extents if this is possible; thus we won't leave
 | 
						|
	 * uninitialized blocks in a file even if we didn't succeed in writing
 | 
						|
	 * as much as we intended.
 | 
						|
	 */
 | 
						|
	WARN_ON_ONCE(i_size_read(inode) < READ_ONCE(EXT4_I(inode)->i_disksize));
 | 
						|
	if (pos + size <= READ_ONCE(EXT4_I(inode)->i_disksize))
 | 
						|
		return size;
 | 
						|
	return ext4_handle_inode_extension(inode, pos, size);
 | 
						|
}
 | 
						|
 | 
						|
static const struct iomap_dio_ops ext4_dio_write_ops = {
 | 
						|
	.end_io = ext4_dio_write_end_io,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * The intention here is to start with shared lock acquired then see if any
 | 
						|
 * condition requires an exclusive inode lock. If yes, then we restart the
 | 
						|
 * whole operation by releasing the shared lock and acquiring exclusive lock.
 | 
						|
 *
 | 
						|
 * - For unaligned_io we never take shared lock as it may cause data corruption
 | 
						|
 *   when two unaligned IO tries to modify the same block e.g. while zeroing.
 | 
						|
 *
 | 
						|
 * - For extending writes case we don't take the shared lock, since it requires
 | 
						|
 *   updating inode i_disksize and/or orphan handling with exclusive lock.
 | 
						|
 *
 | 
						|
 * - shared locking will only be true mostly with overwrites, including
 | 
						|
 *   initialized blocks and unwritten blocks. For overwrite unwritten blocks
 | 
						|
 *   we protect splitting extents by i_data_sem in ext4_inode_info, so we can
 | 
						|
 *   also release exclusive i_rwsem lock.
 | 
						|
 *
 | 
						|
 * - Otherwise we will switch to exclusive i_rwsem lock.
 | 
						|
 */
 | 
						|
static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
 | 
						|
				     bool *ilock_shared, bool *extend,
 | 
						|
				     bool *unwritten, int *dio_flags)
 | 
						|
{
 | 
						|
	struct file *file = iocb->ki_filp;
 | 
						|
	struct inode *inode = file_inode(file);
 | 
						|
	loff_t offset;
 | 
						|
	size_t count;
 | 
						|
	ssize_t ret;
 | 
						|
	bool overwrite, unaligned_io;
 | 
						|
 | 
						|
restart:
 | 
						|
	ret = ext4_generic_write_checks(iocb, from);
 | 
						|
	if (ret <= 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	offset = iocb->ki_pos;
 | 
						|
	count = ret;
 | 
						|
 | 
						|
	unaligned_io = ext4_unaligned_io(inode, from, offset);
 | 
						|
	*extend = ext4_extending_io(inode, offset, count);
 | 
						|
	overwrite = ext4_overwrite_io(inode, offset, count, unwritten);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Determine whether we need to upgrade to an exclusive lock. This is
 | 
						|
	 * required to change security info in file_modified(), for extending
 | 
						|
	 * I/O, any form of non-overwrite I/O, and unaligned I/O to unwritten
 | 
						|
	 * extents (as partial block zeroing may be required).
 | 
						|
	 *
 | 
						|
	 * Note that unaligned writes are allowed under shared lock so long as
 | 
						|
	 * they are pure overwrites. Otherwise, concurrent unaligned writes risk
 | 
						|
	 * data corruption due to partial block zeroing in the dio layer, and so
 | 
						|
	 * the I/O must occur exclusively.
 | 
						|
	 */
 | 
						|
	if (*ilock_shared &&
 | 
						|
	    ((!IS_NOSEC(inode) || *extend || !overwrite ||
 | 
						|
	     (unaligned_io && *unwritten)))) {
 | 
						|
		if (iocb->ki_flags & IOCB_NOWAIT) {
 | 
						|
			ret = -EAGAIN;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		inode_unlock_shared(inode);
 | 
						|
		*ilock_shared = false;
 | 
						|
		inode_lock(inode);
 | 
						|
		goto restart;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now that locking is settled, determine dio flags and exclusivity
 | 
						|
	 * requirements. We don't use DIO_OVERWRITE_ONLY because we enforce
 | 
						|
	 * behavior already. The inode lock is already held exclusive if the
 | 
						|
	 * write is non-overwrite or extending, so drain all outstanding dio and
 | 
						|
	 * set the force wait dio flag.
 | 
						|
	 */
 | 
						|
	if (!*ilock_shared && (unaligned_io || *extend)) {
 | 
						|
		if (iocb->ki_flags & IOCB_NOWAIT) {
 | 
						|
			ret = -EAGAIN;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		if (unaligned_io && (!overwrite || *unwritten))
 | 
						|
			inode_dio_wait(inode);
 | 
						|
		*dio_flags = IOMAP_DIO_FORCE_WAIT;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = file_modified(file);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	return count;
 | 
						|
out:
 | 
						|
	if (*ilock_shared)
 | 
						|
		inode_unlock_shared(inode);
 | 
						|
	else
 | 
						|
		inode_unlock(inode);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
 | 
						|
{
 | 
						|
	ssize_t ret;
 | 
						|
	handle_t *handle;
 | 
						|
	struct inode *inode = file_inode(iocb->ki_filp);
 | 
						|
	loff_t offset = iocb->ki_pos;
 | 
						|
	size_t count = iov_iter_count(from);
 | 
						|
	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
 | 
						|
	bool extend = false, unwritten = false;
 | 
						|
	bool ilock_shared = true;
 | 
						|
	int dio_flags = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Quick check here without any i_rwsem lock to see if it is extending
 | 
						|
	 * IO. A more reliable check is done in ext4_dio_write_checks() with
 | 
						|
	 * proper locking in place.
 | 
						|
	 */
 | 
						|
	if (offset + count > i_size_read(inode))
 | 
						|
		ilock_shared = false;
 | 
						|
 | 
						|
	if (iocb->ki_flags & IOCB_NOWAIT) {
 | 
						|
		if (ilock_shared) {
 | 
						|
			if (!inode_trylock_shared(inode))
 | 
						|
				return -EAGAIN;
 | 
						|
		} else {
 | 
						|
			if (!inode_trylock(inode))
 | 
						|
				return -EAGAIN;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		if (ilock_shared)
 | 
						|
			inode_lock_shared(inode);
 | 
						|
		else
 | 
						|
			inode_lock(inode);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Fallback to buffered I/O if the inode does not support direct I/O. */
 | 
						|
	if (!ext4_should_use_dio(iocb, from)) {
 | 
						|
		if (ilock_shared)
 | 
						|
			inode_unlock_shared(inode);
 | 
						|
		else
 | 
						|
			inode_unlock(inode);
 | 
						|
		return ext4_buffered_write_iter(iocb, from);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Prevent inline data from being created since we are going to allocate
 | 
						|
	 * blocks for DIO. We know the inode does not currently have inline data
 | 
						|
	 * because ext4_should_use_dio() checked for it, but we have to clear
 | 
						|
	 * the state flag before the write checks because a lock cycle could
 | 
						|
	 * introduce races with other writers.
 | 
						|
	 */
 | 
						|
	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
 | 
						|
 | 
						|
	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend,
 | 
						|
				    &unwritten, &dio_flags);
 | 
						|
	if (ret <= 0)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	offset = iocb->ki_pos;
 | 
						|
	count = ret;
 | 
						|
 | 
						|
	if (extend) {
 | 
						|
		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
 | 
						|
		if (IS_ERR(handle)) {
 | 
						|
			ret = PTR_ERR(handle);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		ret = ext4_orphan_add(handle, inode);
 | 
						|
		if (ret) {
 | 
						|
			ext4_journal_stop(handle);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		ext4_journal_stop(handle);
 | 
						|
	}
 | 
						|
 | 
						|
	if (ilock_shared && !unwritten)
 | 
						|
		iomap_ops = &ext4_iomap_overwrite_ops;
 | 
						|
	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
 | 
						|
			   dio_flags, NULL, 0);
 | 
						|
	if (ret == -ENOTBLK)
 | 
						|
		ret = 0;
 | 
						|
	if (extend) {
 | 
						|
		/*
 | 
						|
		 * We always perform extending DIO write synchronously so by
 | 
						|
		 * now the IO is completed and ext4_handle_inode_extension()
 | 
						|
		 * was called. Cleanup the inode in case of error or race with
 | 
						|
		 * writeback of delalloc blocks.
 | 
						|
		 */
 | 
						|
		WARN_ON_ONCE(ret == -EIOCBQUEUED);
 | 
						|
		ext4_inode_extension_cleanup(inode, ret);
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	if (ilock_shared)
 | 
						|
		inode_unlock_shared(inode);
 | 
						|
	else
 | 
						|
		inode_unlock(inode);
 | 
						|
 | 
						|
	if (ret >= 0 && iov_iter_count(from)) {
 | 
						|
		ssize_t err;
 | 
						|
		loff_t endbyte;
 | 
						|
 | 
						|
		offset = iocb->ki_pos;
 | 
						|
		err = ext4_buffered_write_iter(iocb, from);
 | 
						|
		if (err < 0)
 | 
						|
			return err;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We need to ensure that the pages within the page cache for
 | 
						|
		 * the range covered by this I/O are written to disk and
 | 
						|
		 * invalidated. This is in attempt to preserve the expected
 | 
						|
		 * direct I/O semantics in the case we fallback to buffered I/O
 | 
						|
		 * to complete off the I/O request.
 | 
						|
		 */
 | 
						|
		ret += err;
 | 
						|
		endbyte = offset + err - 1;
 | 
						|
		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
 | 
						|
						   offset, endbyte);
 | 
						|
		if (!err)
 | 
						|
			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
 | 
						|
						 offset >> PAGE_SHIFT,
 | 
						|
						 endbyte >> PAGE_SHIFT);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_FS_DAX
 | 
						|
static ssize_t
 | 
						|
ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
 | 
						|
{
 | 
						|
	ssize_t ret;
 | 
						|
	size_t count;
 | 
						|
	loff_t offset;
 | 
						|
	handle_t *handle;
 | 
						|
	bool extend = false;
 | 
						|
	struct inode *inode = file_inode(iocb->ki_filp);
 | 
						|
 | 
						|
	if (iocb->ki_flags & IOCB_NOWAIT) {
 | 
						|
		if (!inode_trylock(inode))
 | 
						|
			return -EAGAIN;
 | 
						|
	} else {
 | 
						|
		inode_lock(inode);
 | 
						|
	}
 | 
						|
 | 
						|
	ret = ext4_write_checks(iocb, from);
 | 
						|
	if (ret <= 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	offset = iocb->ki_pos;
 | 
						|
	count = iov_iter_count(from);
 | 
						|
 | 
						|
	if (offset + count > EXT4_I(inode)->i_disksize) {
 | 
						|
		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
 | 
						|
		if (IS_ERR(handle)) {
 | 
						|
			ret = PTR_ERR(handle);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		ret = ext4_orphan_add(handle, inode);
 | 
						|
		if (ret) {
 | 
						|
			ext4_journal_stop(handle);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		extend = true;
 | 
						|
		ext4_journal_stop(handle);
 | 
						|
	}
 | 
						|
 | 
						|
	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
 | 
						|
 | 
						|
	if (extend) {
 | 
						|
		ret = ext4_handle_inode_extension(inode, offset, ret);
 | 
						|
		ext4_inode_extension_cleanup(inode, ret);
 | 
						|
	}
 | 
						|
out:
 | 
						|
	inode_unlock(inode);
 | 
						|
	if (ret > 0)
 | 
						|
		ret = generic_write_sync(iocb, ret);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static ssize_t
 | 
						|
ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 | 
						|
{
 | 
						|
	struct inode *inode = file_inode(iocb->ki_filp);
 | 
						|
 | 
						|
	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
#ifdef CONFIG_FS_DAX
 | 
						|
	if (IS_DAX(inode))
 | 
						|
		return ext4_dax_write_iter(iocb, from);
 | 
						|
#endif
 | 
						|
	if (iocb->ki_flags & IOCB_DIRECT)
 | 
						|
		return ext4_dio_write_iter(iocb, from);
 | 
						|
	else
 | 
						|
		return ext4_buffered_write_iter(iocb, from);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_FS_DAX
 | 
						|
static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, unsigned int order)
 | 
						|
{
 | 
						|
	int error = 0;
 | 
						|
	vm_fault_t result;
 | 
						|
	int retries = 0;
 | 
						|
	handle_t *handle = NULL;
 | 
						|
	struct inode *inode = file_inode(vmf->vma->vm_file);
 | 
						|
	struct super_block *sb = inode->i_sb;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We have to distinguish real writes from writes which will result in a
 | 
						|
	 * COW page; COW writes should *not* poke the journal (the file will not
 | 
						|
	 * be changed). Doing so would cause unintended failures when mounted
 | 
						|
	 * read-only.
 | 
						|
	 *
 | 
						|
	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
 | 
						|
	 * unset for order != 0 (i.e. only in do_cow_fault); for
 | 
						|
	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
 | 
						|
	 * we eventually come back with a COW page.
 | 
						|
	 */
 | 
						|
	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
 | 
						|
		(vmf->vma->vm_flags & VM_SHARED);
 | 
						|
	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
 | 
						|
	pfn_t pfn;
 | 
						|
 | 
						|
	if (write) {
 | 
						|
		sb_start_pagefault(sb);
 | 
						|
		file_update_time(vmf->vma->vm_file);
 | 
						|
		filemap_invalidate_lock_shared(mapping);
 | 
						|
retry:
 | 
						|
		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
 | 
						|
					       EXT4_DATA_TRANS_BLOCKS(sb));
 | 
						|
		if (IS_ERR(handle)) {
 | 
						|
			filemap_invalidate_unlock_shared(mapping);
 | 
						|
			sb_end_pagefault(sb);
 | 
						|
			return VM_FAULT_SIGBUS;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		filemap_invalidate_lock_shared(mapping);
 | 
						|
	}
 | 
						|
	result = dax_iomap_fault(vmf, order, &pfn, &error, &ext4_iomap_ops);
 | 
						|
	if (write) {
 | 
						|
		ext4_journal_stop(handle);
 | 
						|
 | 
						|
		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
 | 
						|
		    ext4_should_retry_alloc(sb, &retries))
 | 
						|
			goto retry;
 | 
						|
		/* Handling synchronous page fault? */
 | 
						|
		if (result & VM_FAULT_NEEDDSYNC)
 | 
						|
			result = dax_finish_sync_fault(vmf, order, pfn);
 | 
						|
		filemap_invalidate_unlock_shared(mapping);
 | 
						|
		sb_end_pagefault(sb);
 | 
						|
	} else {
 | 
						|
		filemap_invalidate_unlock_shared(mapping);
 | 
						|
	}
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
 | 
						|
{
 | 
						|
	return ext4_dax_huge_fault(vmf, 0);
 | 
						|
}
 | 
						|
 | 
						|
static const struct vm_operations_struct ext4_dax_vm_ops = {
 | 
						|
	.fault		= ext4_dax_fault,
 | 
						|
	.huge_fault	= ext4_dax_huge_fault,
 | 
						|
	.page_mkwrite	= ext4_dax_fault,
 | 
						|
	.pfn_mkwrite	= ext4_dax_fault,
 | 
						|
};
 | 
						|
#else
 | 
						|
#define ext4_dax_vm_ops	ext4_file_vm_ops
 | 
						|
#endif
 | 
						|
 | 
						|
static const struct vm_operations_struct ext4_file_vm_ops = {
 | 
						|
	.fault		= filemap_fault,
 | 
						|
	.map_pages	= filemap_map_pages,
 | 
						|
	.page_mkwrite   = ext4_page_mkwrite,
 | 
						|
};
 | 
						|
 | 
						|
static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	struct inode *inode = file->f_mapping->host;
 | 
						|
	struct dax_device *dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
 | 
						|
 | 
						|
	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't support synchronous mappings for non-DAX files and
 | 
						|
	 * for DAX files if underneath dax_device is not synchronous.
 | 
						|
	 */
 | 
						|
	if (!daxdev_mapping_supported(vma, dax_dev))
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	file_accessed(file);
 | 
						|
	if (IS_DAX(file_inode(file))) {
 | 
						|
		vma->vm_ops = &ext4_dax_vm_ops;
 | 
						|
		vm_flags_set(vma, VM_HUGEPAGE);
 | 
						|
	} else {
 | 
						|
		vma->vm_ops = &ext4_file_vm_ops;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int ext4_sample_last_mounted(struct super_block *sb,
 | 
						|
				    struct vfsmount *mnt)
 | 
						|
{
 | 
						|
	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | 
						|
	struct path path;
 | 
						|
	char buf[64], *cp;
 | 
						|
	handle_t *handle;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
 | 
						|
	/*
 | 
						|
	 * Sample where the filesystem has been mounted and
 | 
						|
	 * store it in the superblock for sysadmin convenience
 | 
						|
	 * when trying to sort through large numbers of block
 | 
						|
	 * devices or filesystem images.
 | 
						|
	 */
 | 
						|
	memset(buf, 0, sizeof(buf));
 | 
						|
	path.mnt = mnt;
 | 
						|
	path.dentry = mnt->mnt_root;
 | 
						|
	cp = d_path(&path, buf, sizeof(buf));
 | 
						|
	err = 0;
 | 
						|
	if (IS_ERR(cp))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
 | 
						|
	err = PTR_ERR(handle);
 | 
						|
	if (IS_ERR(handle))
 | 
						|
		goto out;
 | 
						|
	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
 | 
						|
	err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
 | 
						|
					    EXT4_JTR_NONE);
 | 
						|
	if (err)
 | 
						|
		goto out_journal;
 | 
						|
	lock_buffer(sbi->s_sbh);
 | 
						|
	strncpy(sbi->s_es->s_last_mounted, cp,
 | 
						|
		sizeof(sbi->s_es->s_last_mounted));
 | 
						|
	ext4_superblock_csum_set(sb);
 | 
						|
	unlock_buffer(sbi->s_sbh);
 | 
						|
	ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
 | 
						|
out_journal:
 | 
						|
	ext4_journal_stop(handle);
 | 
						|
out:
 | 
						|
	sb_end_intwrite(sb);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static int ext4_file_open(struct inode *inode, struct file *filp)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = fscrypt_file_open(inode, filp);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = fsverity_file_open(inode, filp);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set up the jbd2_inode if we are opening the inode for
 | 
						|
	 * writing and the journal is present
 | 
						|
	 */
 | 
						|
	if (filp->f_mode & FMODE_WRITE) {
 | 
						|
		ret = ext4_inode_attach_jinode(inode);
 | 
						|
		if (ret < 0)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC |
 | 
						|
			FMODE_DIO_PARALLEL_WRITE;
 | 
						|
	return dquot_file_open(inode, filp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
 | 
						|
 * by calling generic_file_llseek_size() with the appropriate maxbytes
 | 
						|
 * value for each.
 | 
						|
 */
 | 
						|
loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
 | 
						|
{
 | 
						|
	struct inode *inode = file->f_mapping->host;
 | 
						|
	loff_t maxbytes;
 | 
						|
 | 
						|
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
 | 
						|
		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
 | 
						|
	else
 | 
						|
		maxbytes = inode->i_sb->s_maxbytes;
 | 
						|
 | 
						|
	switch (whence) {
 | 
						|
	default:
 | 
						|
		return generic_file_llseek_size(file, offset, whence,
 | 
						|
						maxbytes, i_size_read(inode));
 | 
						|
	case SEEK_HOLE:
 | 
						|
		inode_lock_shared(inode);
 | 
						|
		offset = iomap_seek_hole(inode, offset,
 | 
						|
					 &ext4_iomap_report_ops);
 | 
						|
		inode_unlock_shared(inode);
 | 
						|
		break;
 | 
						|
	case SEEK_DATA:
 | 
						|
		inode_lock_shared(inode);
 | 
						|
		offset = iomap_seek_data(inode, offset,
 | 
						|
					 &ext4_iomap_report_ops);
 | 
						|
		inode_unlock_shared(inode);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (offset < 0)
 | 
						|
		return offset;
 | 
						|
	return vfs_setpos(file, offset, maxbytes);
 | 
						|
}
 | 
						|
 | 
						|
const struct file_operations ext4_file_operations = {
 | 
						|
	.llseek		= ext4_llseek,
 | 
						|
	.read_iter	= ext4_file_read_iter,
 | 
						|
	.write_iter	= ext4_file_write_iter,
 | 
						|
	.iopoll		= iocb_bio_iopoll,
 | 
						|
	.unlocked_ioctl = ext4_ioctl,
 | 
						|
#ifdef CONFIG_COMPAT
 | 
						|
	.compat_ioctl	= ext4_compat_ioctl,
 | 
						|
#endif
 | 
						|
	.mmap		= ext4_file_mmap,
 | 
						|
	.mmap_supported_flags = MAP_SYNC,
 | 
						|
	.open		= ext4_file_open,
 | 
						|
	.release	= ext4_release_file,
 | 
						|
	.fsync		= ext4_sync_file,
 | 
						|
	.get_unmapped_area = thp_get_unmapped_area,
 | 
						|
	.splice_read	= ext4_file_splice_read,
 | 
						|
	.splice_write	= iter_file_splice_write,
 | 
						|
	.fallocate	= ext4_fallocate,
 | 
						|
};
 | 
						|
 | 
						|
const struct inode_operations ext4_file_inode_operations = {
 | 
						|
	.setattr	= ext4_setattr,
 | 
						|
	.getattr	= ext4_file_getattr,
 | 
						|
	.listxattr	= ext4_listxattr,
 | 
						|
	.get_inode_acl	= ext4_get_acl,
 | 
						|
	.set_acl	= ext4_set_acl,
 | 
						|
	.fiemap		= ext4_fiemap,
 | 
						|
	.fileattr_get	= ext4_fileattr_get,
 | 
						|
	.fileattr_set	= ext4_fileattr_set,
 | 
						|
};
 | 
						|
 |