mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-01 00:58:39 +02:00 
			
		
		
		
	 19e183b545
			
		
	
	
		19e183b545
		
	
	
	
	
		
			
			A subsequent fix for arm64 will use this parameter to parse the vma
information from the snapshot created by dump_vma_snapshot() rather than
traversing the vma list without the mmap_lock.
Fixes: 6dd8b1a0b6 ("arm64: mte: Dump the MTE tags in the core file")
Cc: <stable@vger.kernel.org> # 5.18.x
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Seth Jenkins <sethjenkins@google.com>
Suggested-by: Seth Jenkins <sethjenkins@google.com>
Cc: Will Deacon <will@kernel.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221222181251.1345752-3-catalin.marinas@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
		
	
			
		
			
				
	
	
		
			2176 lines
		
	
	
	
		
			57 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2176 lines
		
	
	
	
		
			57 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * linux/fs/binfmt_elf.c
 | |
|  *
 | |
|  * These are the functions used to load ELF format executables as used
 | |
|  * on SVr4 machines.  Information on the format may be found in the book
 | |
|  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
 | |
|  * Tools".
 | |
|  *
 | |
|  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/log2.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/binfmts.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/personality.h>
 | |
| #include <linux/elfcore.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/highuid.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/elf.h>
 | |
| #include <linux/elf-randomize.h>
 | |
| #include <linux/utsname.h>
 | |
| #include <linux/coredump.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/coredump.h>
 | |
| #include <linux/sched/task_stack.h>
 | |
| #include <linux/sched/cputime.h>
 | |
| #include <linux/sizes.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/cred.h>
 | |
| #include <linux/dax.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/param.h>
 | |
| #include <asm/page.h>
 | |
| 
 | |
| #ifndef ELF_COMPAT
 | |
| #define ELF_COMPAT 0
 | |
| #endif
 | |
| 
 | |
| #ifndef user_long_t
 | |
| #define user_long_t long
 | |
| #endif
 | |
| #ifndef user_siginfo_t
 | |
| #define user_siginfo_t siginfo_t
 | |
| #endif
 | |
| 
 | |
| /* That's for binfmt_elf_fdpic to deal with */
 | |
| #ifndef elf_check_fdpic
 | |
| #define elf_check_fdpic(ex) false
 | |
| #endif
 | |
| 
 | |
| static int load_elf_binary(struct linux_binprm *bprm);
 | |
| 
 | |
| #ifdef CONFIG_USELIB
 | |
| static int load_elf_library(struct file *);
 | |
| #else
 | |
| #define load_elf_library NULL
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * If we don't support core dumping, then supply a NULL so we
 | |
|  * don't even try.
 | |
|  */
 | |
| #ifdef CONFIG_ELF_CORE
 | |
| static int elf_core_dump(struct coredump_params *cprm);
 | |
| #else
 | |
| #define elf_core_dump	NULL
 | |
| #endif
 | |
| 
 | |
| #if ELF_EXEC_PAGESIZE > PAGE_SIZE
 | |
| #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
 | |
| #else
 | |
| #define ELF_MIN_ALIGN	PAGE_SIZE
 | |
| #endif
 | |
| 
 | |
| #ifndef ELF_CORE_EFLAGS
 | |
| #define ELF_CORE_EFLAGS	0
 | |
| #endif
 | |
| 
 | |
| #define ELF_PAGESTART(_v) ((_v) & ~(int)(ELF_MIN_ALIGN-1))
 | |
| #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
 | |
| #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
 | |
| 
 | |
| static struct linux_binfmt elf_format = {
 | |
| 	.module		= THIS_MODULE,
 | |
| 	.load_binary	= load_elf_binary,
 | |
| 	.load_shlib	= load_elf_library,
 | |
| #ifdef CONFIG_COREDUMP
 | |
| 	.core_dump	= elf_core_dump,
 | |
| 	.min_coredump	= ELF_EXEC_PAGESIZE,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
 | |
| 
 | |
| static int set_brk(unsigned long start, unsigned long end, int prot)
 | |
| {
 | |
| 	start = ELF_PAGEALIGN(start);
 | |
| 	end = ELF_PAGEALIGN(end);
 | |
| 	if (end > start) {
 | |
| 		/*
 | |
| 		 * Map the last of the bss segment.
 | |
| 		 * If the header is requesting these pages to be
 | |
| 		 * executable, honour that (ppc32 needs this).
 | |
| 		 */
 | |
| 		int error = vm_brk_flags(start, end - start,
 | |
| 				prot & PROT_EXEC ? VM_EXEC : 0);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	}
 | |
| 	current->mm->start_brk = current->mm->brk = end;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* We need to explicitly zero any fractional pages
 | |
|    after the data section (i.e. bss).  This would
 | |
|    contain the junk from the file that should not
 | |
|    be in memory
 | |
|  */
 | |
| static int padzero(unsigned long elf_bss)
 | |
| {
 | |
| 	unsigned long nbyte;
 | |
| 
 | |
| 	nbyte = ELF_PAGEOFFSET(elf_bss);
 | |
| 	if (nbyte) {
 | |
| 		nbyte = ELF_MIN_ALIGN - nbyte;
 | |
| 		if (clear_user((void __user *) elf_bss, nbyte))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Let's use some macros to make this stack manipulation a little clearer */
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
 | |
| #define STACK_ROUND(sp, items) \
 | |
| 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
 | |
| #define STACK_ALLOC(sp, len) ({ \
 | |
| 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
 | |
| 	old_sp; })
 | |
| #else
 | |
| #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
 | |
| #define STACK_ROUND(sp, items) \
 | |
| 	(((unsigned long) (sp - items)) &~ 15UL)
 | |
| #define STACK_ALLOC(sp, len) (sp -= len)
 | |
| #endif
 | |
| 
 | |
| #ifndef ELF_BASE_PLATFORM
 | |
| /*
 | |
|  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
 | |
|  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
 | |
|  * will be copied to the user stack in the same manner as AT_PLATFORM.
 | |
|  */
 | |
| #define ELF_BASE_PLATFORM NULL
 | |
| #endif
 | |
| 
 | |
| static int
 | |
| create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
 | |
| 		unsigned long interp_load_addr,
 | |
| 		unsigned long e_entry, unsigned long phdr_addr)
 | |
| {
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	unsigned long p = bprm->p;
 | |
| 	int argc = bprm->argc;
 | |
| 	int envc = bprm->envc;
 | |
| 	elf_addr_t __user *sp;
 | |
| 	elf_addr_t __user *u_platform;
 | |
| 	elf_addr_t __user *u_base_platform;
 | |
| 	elf_addr_t __user *u_rand_bytes;
 | |
| 	const char *k_platform = ELF_PLATFORM;
 | |
| 	const char *k_base_platform = ELF_BASE_PLATFORM;
 | |
| 	unsigned char k_rand_bytes[16];
 | |
| 	int items;
 | |
| 	elf_addr_t *elf_info;
 | |
| 	elf_addr_t flags = 0;
 | |
| 	int ei_index;
 | |
| 	const struct cred *cred = current_cred();
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	/*
 | |
| 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
 | |
| 	 * evictions by the processes running on the same package. One
 | |
| 	 * thing we can do is to shuffle the initial stack for them.
 | |
| 	 */
 | |
| 
 | |
| 	p = arch_align_stack(p);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this architecture has a platform capability string, copy it
 | |
| 	 * to userspace.  In some cases (Sparc), this info is impossible
 | |
| 	 * for userspace to get any other way, in others (i386) it is
 | |
| 	 * merely difficult.
 | |
| 	 */
 | |
| 	u_platform = NULL;
 | |
| 	if (k_platform) {
 | |
| 		size_t len = strlen(k_platform) + 1;
 | |
| 
 | |
| 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 | |
| 		if (copy_to_user(u_platform, k_platform, len))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this architecture has a "base" platform capability
 | |
| 	 * string, copy it to userspace.
 | |
| 	 */
 | |
| 	u_base_platform = NULL;
 | |
| 	if (k_base_platform) {
 | |
| 		size_t len = strlen(k_base_platform) + 1;
 | |
| 
 | |
| 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 | |
| 		if (copy_to_user(u_base_platform, k_base_platform, len))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Generate 16 random bytes for userspace PRNG seeding.
 | |
| 	 */
 | |
| 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
 | |
| 	u_rand_bytes = (elf_addr_t __user *)
 | |
| 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
 | |
| 	if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/* Create the ELF interpreter info */
 | |
| 	elf_info = (elf_addr_t *)mm->saved_auxv;
 | |
| 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
 | |
| #define NEW_AUX_ENT(id, val) \
 | |
| 	do { \
 | |
| 		*elf_info++ = id; \
 | |
| 		*elf_info++ = val; \
 | |
| 	} while (0)
 | |
| 
 | |
| #ifdef ARCH_DLINFO
 | |
| 	/*
 | |
| 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
 | |
| 	 * AUXV.
 | |
| 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
 | |
| 	 * ARCH_DLINFO changes
 | |
| 	 */
 | |
| 	ARCH_DLINFO;
 | |
| #endif
 | |
| 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
 | |
| 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
 | |
| 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
 | |
| 	NEW_AUX_ENT(AT_PHDR, phdr_addr);
 | |
| 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
 | |
| 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
 | |
| 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
 | |
| 	if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0)
 | |
| 		flags |= AT_FLAGS_PRESERVE_ARGV0;
 | |
| 	NEW_AUX_ENT(AT_FLAGS, flags);
 | |
| 	NEW_AUX_ENT(AT_ENTRY, e_entry);
 | |
| 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
 | |
| 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
 | |
| 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
 | |
| 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
 | |
| 	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
 | |
| 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
 | |
| #ifdef ELF_HWCAP2
 | |
| 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
 | |
| #endif
 | |
| 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
 | |
| 	if (k_platform) {
 | |
| 		NEW_AUX_ENT(AT_PLATFORM,
 | |
| 			    (elf_addr_t)(unsigned long)u_platform);
 | |
| 	}
 | |
| 	if (k_base_platform) {
 | |
| 		NEW_AUX_ENT(AT_BASE_PLATFORM,
 | |
| 			    (elf_addr_t)(unsigned long)u_base_platform);
 | |
| 	}
 | |
| 	if (bprm->have_execfd) {
 | |
| 		NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
 | |
| 	}
 | |
| #undef NEW_AUX_ENT
 | |
| 	/* AT_NULL is zero; clear the rest too */
 | |
| 	memset(elf_info, 0, (char *)mm->saved_auxv +
 | |
| 			sizeof(mm->saved_auxv) - (char *)elf_info);
 | |
| 
 | |
| 	/* And advance past the AT_NULL entry.  */
 | |
| 	elf_info += 2;
 | |
| 
 | |
| 	ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
 | |
| 	sp = STACK_ADD(p, ei_index);
 | |
| 
 | |
| 	items = (argc + 1) + (envc + 1) + 1;
 | |
| 	bprm->p = STACK_ROUND(sp, items);
 | |
| 
 | |
| 	/* Point sp at the lowest address on the stack */
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
 | |
| 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
 | |
| #else
 | |
| 	sp = (elf_addr_t __user *)bprm->p;
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Grow the stack manually; some architectures have a limit on how
 | |
| 	 * far ahead a user-space access may be in order to grow the stack.
 | |
| 	 */
 | |
| 	if (mmap_read_lock_killable(mm))
 | |
| 		return -EINTR;
 | |
| 	vma = find_extend_vma(mm, bprm->p);
 | |
| 	mmap_read_unlock(mm);
 | |
| 	if (!vma)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
 | |
| 	if (put_user(argc, sp++))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/* Populate list of argv pointers back to argv strings. */
 | |
| 	p = mm->arg_end = mm->arg_start;
 | |
| 	while (argc-- > 0) {
 | |
| 		size_t len;
 | |
| 		if (put_user((elf_addr_t)p, sp++))
 | |
| 			return -EFAULT;
 | |
| 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
 | |
| 		if (!len || len > MAX_ARG_STRLEN)
 | |
| 			return -EINVAL;
 | |
| 		p += len;
 | |
| 	}
 | |
| 	if (put_user(0, sp++))
 | |
| 		return -EFAULT;
 | |
| 	mm->arg_end = p;
 | |
| 
 | |
| 	/* Populate list of envp pointers back to envp strings. */
 | |
| 	mm->env_end = mm->env_start = p;
 | |
| 	while (envc-- > 0) {
 | |
| 		size_t len;
 | |
| 		if (put_user((elf_addr_t)p, sp++))
 | |
| 			return -EFAULT;
 | |
| 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
 | |
| 		if (!len || len > MAX_ARG_STRLEN)
 | |
| 			return -EINVAL;
 | |
| 		p += len;
 | |
| 	}
 | |
| 	if (put_user(0, sp++))
 | |
| 		return -EFAULT;
 | |
| 	mm->env_end = p;
 | |
| 
 | |
| 	/* Put the elf_info on the stack in the right place.  */
 | |
| 	if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned long elf_map(struct file *filep, unsigned long addr,
 | |
| 		const struct elf_phdr *eppnt, int prot, int type,
 | |
| 		unsigned long total_size)
 | |
| {
 | |
| 	unsigned long map_addr;
 | |
| 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
 | |
| 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
 | |
| 	addr = ELF_PAGESTART(addr);
 | |
| 	size = ELF_PAGEALIGN(size);
 | |
| 
 | |
| 	/* mmap() will return -EINVAL if given a zero size, but a
 | |
| 	 * segment with zero filesize is perfectly valid */
 | |
| 	if (!size)
 | |
| 		return addr;
 | |
| 
 | |
| 	/*
 | |
| 	* total_size is the size of the ELF (interpreter) image.
 | |
| 	* The _first_ mmap needs to know the full size, otherwise
 | |
| 	* randomization might put this image into an overlapping
 | |
| 	* position with the ELF binary image. (since size < total_size)
 | |
| 	* So we first map the 'big' image - and unmap the remainder at
 | |
| 	* the end. (which unmap is needed for ELF images with holes.)
 | |
| 	*/
 | |
| 	if (total_size) {
 | |
| 		total_size = ELF_PAGEALIGN(total_size);
 | |
| 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
 | |
| 		if (!BAD_ADDR(map_addr))
 | |
| 			vm_munmap(map_addr+size, total_size-size);
 | |
| 	} else
 | |
| 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
 | |
| 
 | |
| 	if ((type & MAP_FIXED_NOREPLACE) &&
 | |
| 	    PTR_ERR((void *)map_addr) == -EEXIST)
 | |
| 		pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
 | |
| 			task_pid_nr(current), current->comm, (void *)addr);
 | |
| 
 | |
| 	return(map_addr);
 | |
| }
 | |
| 
 | |
| static unsigned long total_mapping_size(const struct elf_phdr *phdr, int nr)
 | |
| {
 | |
| 	elf_addr_t min_addr = -1;
 | |
| 	elf_addr_t max_addr = 0;
 | |
| 	bool pt_load = false;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		if (phdr[i].p_type == PT_LOAD) {
 | |
| 			min_addr = min(min_addr, ELF_PAGESTART(phdr[i].p_vaddr));
 | |
| 			max_addr = max(max_addr, phdr[i].p_vaddr + phdr[i].p_memsz);
 | |
| 			pt_load = true;
 | |
| 		}
 | |
| 	}
 | |
| 	return pt_load ? (max_addr - min_addr) : 0;
 | |
| }
 | |
| 
 | |
| static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
 | |
| {
 | |
| 	ssize_t rv;
 | |
| 
 | |
| 	rv = kernel_read(file, buf, len, &pos);
 | |
| 	if (unlikely(rv != len)) {
 | |
| 		return (rv < 0) ? rv : -EIO;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr)
 | |
| {
 | |
| 	unsigned long alignment = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		if (cmds[i].p_type == PT_LOAD) {
 | |
| 			unsigned long p_align = cmds[i].p_align;
 | |
| 
 | |
| 			/* skip non-power of two alignments as invalid */
 | |
| 			if (!is_power_of_2(p_align))
 | |
| 				continue;
 | |
| 			alignment = max(alignment, p_align);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* ensure we align to at least one page */
 | |
| 	return ELF_PAGEALIGN(alignment);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * load_elf_phdrs() - load ELF program headers
 | |
|  * @elf_ex:   ELF header of the binary whose program headers should be loaded
 | |
|  * @elf_file: the opened ELF binary file
 | |
|  *
 | |
|  * Loads ELF program headers from the binary file elf_file, which has the ELF
 | |
|  * header pointed to by elf_ex, into a newly allocated array. The caller is
 | |
|  * responsible for freeing the allocated data. Returns NULL upon failure.
 | |
|  */
 | |
| static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
 | |
| 				       struct file *elf_file)
 | |
| {
 | |
| 	struct elf_phdr *elf_phdata = NULL;
 | |
| 	int retval = -1;
 | |
| 	unsigned int size;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the size of this structure has changed, then punt, since
 | |
| 	 * we will be doing the wrong thing.
 | |
| 	 */
 | |
| 	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Sanity check the number of program headers... */
 | |
| 	/* ...and their total size. */
 | |
| 	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
 | |
| 	if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
 | |
| 		goto out;
 | |
| 
 | |
| 	elf_phdata = kmalloc(size, GFP_KERNEL);
 | |
| 	if (!elf_phdata)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Read in the program headers */
 | |
| 	retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
 | |
| 
 | |
| out:
 | |
| 	if (retval) {
 | |
| 		kfree(elf_phdata);
 | |
| 		elf_phdata = NULL;
 | |
| 	}
 | |
| 	return elf_phdata;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
 | |
| 
 | |
| /**
 | |
|  * struct arch_elf_state - arch-specific ELF loading state
 | |
|  *
 | |
|  * This structure is used to preserve architecture specific data during
 | |
|  * the loading of an ELF file, throughout the checking of architecture
 | |
|  * specific ELF headers & through to the point where the ELF load is
 | |
|  * known to be proceeding (ie. SET_PERSONALITY).
 | |
|  *
 | |
|  * This implementation is a dummy for architectures which require no
 | |
|  * specific state.
 | |
|  */
 | |
| struct arch_elf_state {
 | |
| };
 | |
| 
 | |
| #define INIT_ARCH_ELF_STATE {}
 | |
| 
 | |
| /**
 | |
|  * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
 | |
|  * @ehdr:	The main ELF header
 | |
|  * @phdr:	The program header to check
 | |
|  * @elf:	The open ELF file
 | |
|  * @is_interp:	True if the phdr is from the interpreter of the ELF being
 | |
|  *		loaded, else false.
 | |
|  * @state:	Architecture-specific state preserved throughout the process
 | |
|  *		of loading the ELF.
 | |
|  *
 | |
|  * Inspects the program header phdr to validate its correctness and/or
 | |
|  * suitability for the system. Called once per ELF program header in the
 | |
|  * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
 | |
|  * interpreter.
 | |
|  *
 | |
|  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
 | |
|  *         with that return code.
 | |
|  */
 | |
| static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
 | |
| 				   struct elf_phdr *phdr,
 | |
| 				   struct file *elf, bool is_interp,
 | |
| 				   struct arch_elf_state *state)
 | |
| {
 | |
| 	/* Dummy implementation, always proceed */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arch_check_elf() - check an ELF executable
 | |
|  * @ehdr:	The main ELF header
 | |
|  * @has_interp:	True if the ELF has an interpreter, else false.
 | |
|  * @interp_ehdr: The interpreter's ELF header
 | |
|  * @state:	Architecture-specific state preserved throughout the process
 | |
|  *		of loading the ELF.
 | |
|  *
 | |
|  * Provides a final opportunity for architecture code to reject the loading
 | |
|  * of the ELF & cause an exec syscall to return an error. This is called after
 | |
|  * all program headers to be checked by arch_elf_pt_proc have been.
 | |
|  *
 | |
|  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
 | |
|  *         with that return code.
 | |
|  */
 | |
| static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
 | |
| 				 struct elfhdr *interp_ehdr,
 | |
| 				 struct arch_elf_state *state)
 | |
| {
 | |
| 	/* Dummy implementation, always proceed */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
 | |
| 
 | |
| static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
 | |
| 			    bool has_interp, bool is_interp)
 | |
| {
 | |
| 	int prot = 0;
 | |
| 
 | |
| 	if (p_flags & PF_R)
 | |
| 		prot |= PROT_READ;
 | |
| 	if (p_flags & PF_W)
 | |
| 		prot |= PROT_WRITE;
 | |
| 	if (p_flags & PF_X)
 | |
| 		prot |= PROT_EXEC;
 | |
| 
 | |
| 	return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp);
 | |
| }
 | |
| 
 | |
| /* This is much more generalized than the library routine read function,
 | |
|    so we keep this separate.  Technically the library read function
 | |
|    is only provided so that we can read a.out libraries that have
 | |
|    an ELF header */
 | |
| 
 | |
| static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
 | |
| 		struct file *interpreter,
 | |
| 		unsigned long no_base, struct elf_phdr *interp_elf_phdata,
 | |
| 		struct arch_elf_state *arch_state)
 | |
| {
 | |
| 	struct elf_phdr *eppnt;
 | |
| 	unsigned long load_addr = 0;
 | |
| 	int load_addr_set = 0;
 | |
| 	unsigned long last_bss = 0, elf_bss = 0;
 | |
| 	int bss_prot = 0;
 | |
| 	unsigned long error = ~0UL;
 | |
| 	unsigned long total_size;
 | |
| 	int i;
 | |
| 
 | |
| 	/* First of all, some simple consistency checks */
 | |
| 	if (interp_elf_ex->e_type != ET_EXEC &&
 | |
| 	    interp_elf_ex->e_type != ET_DYN)
 | |
| 		goto out;
 | |
| 	if (!elf_check_arch(interp_elf_ex) ||
 | |
| 	    elf_check_fdpic(interp_elf_ex))
 | |
| 		goto out;
 | |
| 	if (!interpreter->f_op->mmap)
 | |
| 		goto out;
 | |
| 
 | |
| 	total_size = total_mapping_size(interp_elf_phdata,
 | |
| 					interp_elf_ex->e_phnum);
 | |
| 	if (!total_size) {
 | |
| 		error = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	eppnt = interp_elf_phdata;
 | |
| 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
 | |
| 		if (eppnt->p_type == PT_LOAD) {
 | |
| 			int elf_type = MAP_PRIVATE;
 | |
| 			int elf_prot = make_prot(eppnt->p_flags, arch_state,
 | |
| 						 true, true);
 | |
| 			unsigned long vaddr = 0;
 | |
| 			unsigned long k, map_addr;
 | |
| 
 | |
| 			vaddr = eppnt->p_vaddr;
 | |
| 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
 | |
| 				elf_type |= MAP_FIXED;
 | |
| 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
 | |
| 				load_addr = -vaddr;
 | |
| 
 | |
| 			map_addr = elf_map(interpreter, load_addr + vaddr,
 | |
| 					eppnt, elf_prot, elf_type, total_size);
 | |
| 			total_size = 0;
 | |
| 			error = map_addr;
 | |
| 			if (BAD_ADDR(map_addr))
 | |
| 				goto out;
 | |
| 
 | |
| 			if (!load_addr_set &&
 | |
| 			    interp_elf_ex->e_type == ET_DYN) {
 | |
| 				load_addr = map_addr - ELF_PAGESTART(vaddr);
 | |
| 				load_addr_set = 1;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Check to see if the section's size will overflow the
 | |
| 			 * allowed task size. Note that p_filesz must always be
 | |
| 			 * <= p_memsize so it's only necessary to check p_memsz.
 | |
| 			 */
 | |
| 			k = load_addr + eppnt->p_vaddr;
 | |
| 			if (BAD_ADDR(k) ||
 | |
| 			    eppnt->p_filesz > eppnt->p_memsz ||
 | |
| 			    eppnt->p_memsz > TASK_SIZE ||
 | |
| 			    TASK_SIZE - eppnt->p_memsz < k) {
 | |
| 				error = -ENOMEM;
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Find the end of the file mapping for this phdr, and
 | |
| 			 * keep track of the largest address we see for this.
 | |
| 			 */
 | |
| 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
 | |
| 			if (k > elf_bss)
 | |
| 				elf_bss = k;
 | |
| 
 | |
| 			/*
 | |
| 			 * Do the same thing for the memory mapping - between
 | |
| 			 * elf_bss and last_bss is the bss section.
 | |
| 			 */
 | |
| 			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
 | |
| 			if (k > last_bss) {
 | |
| 				last_bss = k;
 | |
| 				bss_prot = elf_prot;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now fill out the bss section: first pad the last page from
 | |
| 	 * the file up to the page boundary, and zero it from elf_bss
 | |
| 	 * up to the end of the page.
 | |
| 	 */
 | |
| 	if (padzero(elf_bss)) {
 | |
| 		error = -EFAULT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Next, align both the file and mem bss up to the page size,
 | |
| 	 * since this is where elf_bss was just zeroed up to, and where
 | |
| 	 * last_bss will end after the vm_brk_flags() below.
 | |
| 	 */
 | |
| 	elf_bss = ELF_PAGEALIGN(elf_bss);
 | |
| 	last_bss = ELF_PAGEALIGN(last_bss);
 | |
| 	/* Finally, if there is still more bss to allocate, do it. */
 | |
| 	if (last_bss > elf_bss) {
 | |
| 		error = vm_brk_flags(elf_bss, last_bss - elf_bss,
 | |
| 				bss_prot & PROT_EXEC ? VM_EXEC : 0);
 | |
| 		if (error)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	error = load_addr;
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are the functions used to load ELF style executables and shared
 | |
|  * libraries.  There is no binary dependent code anywhere else.
 | |
|  */
 | |
| 
 | |
| static int parse_elf_property(const char *data, size_t *off, size_t datasz,
 | |
| 			      struct arch_elf_state *arch,
 | |
| 			      bool have_prev_type, u32 *prev_type)
 | |
| {
 | |
| 	size_t o, step;
 | |
| 	const struct gnu_property *pr;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (*off == datasz)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
 | |
| 		return -EIO;
 | |
| 	o = *off;
 | |
| 	datasz -= *off;
 | |
| 
 | |
| 	if (datasz < sizeof(*pr))
 | |
| 		return -ENOEXEC;
 | |
| 	pr = (const struct gnu_property *)(data + o);
 | |
| 	o += sizeof(*pr);
 | |
| 	datasz -= sizeof(*pr);
 | |
| 
 | |
| 	if (pr->pr_datasz > datasz)
 | |
| 		return -ENOEXEC;
 | |
| 
 | |
| 	WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
 | |
| 	step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
 | |
| 	if (step > datasz)
 | |
| 		return -ENOEXEC;
 | |
| 
 | |
| 	/* Properties are supposed to be unique and sorted on pr_type: */
 | |
| 	if (have_prev_type && pr->pr_type <= *prev_type)
 | |
| 		return -ENOEXEC;
 | |
| 	*prev_type = pr->pr_type;
 | |
| 
 | |
| 	ret = arch_parse_elf_property(pr->pr_type, data + o,
 | |
| 				      pr->pr_datasz, ELF_COMPAT, arch);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	*off = o + step;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define NOTE_DATA_SZ SZ_1K
 | |
| #define GNU_PROPERTY_TYPE_0_NAME "GNU"
 | |
| #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME))
 | |
| 
 | |
| static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
 | |
| 				struct arch_elf_state *arch)
 | |
| {
 | |
| 	union {
 | |
| 		struct elf_note nhdr;
 | |
| 		char data[NOTE_DATA_SZ];
 | |
| 	} note;
 | |
| 	loff_t pos;
 | |
| 	ssize_t n;
 | |
| 	size_t off, datasz;
 | |
| 	int ret;
 | |
| 	bool have_prev_type;
 | |
| 	u32 prev_type;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* load_elf_binary() shouldn't call us unless this is true... */
 | |
| 	if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
 | |
| 		return -ENOEXEC;
 | |
| 
 | |
| 	/* If the properties are crazy large, that's too bad (for now): */
 | |
| 	if (phdr->p_filesz > sizeof(note))
 | |
| 		return -ENOEXEC;
 | |
| 
 | |
| 	pos = phdr->p_offset;
 | |
| 	n = kernel_read(f, ¬e, phdr->p_filesz, &pos);
 | |
| 
 | |
| 	BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
 | |
| 	if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
 | |
| 	    note.nhdr.n_namesz != NOTE_NAME_SZ ||
 | |
| 	    strncmp(note.data + sizeof(note.nhdr),
 | |
| 		    GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr)))
 | |
| 		return -ENOEXEC;
 | |
| 
 | |
| 	off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
 | |
| 		       ELF_GNU_PROPERTY_ALIGN);
 | |
| 	if (off > n)
 | |
| 		return -ENOEXEC;
 | |
| 
 | |
| 	if (note.nhdr.n_descsz > n - off)
 | |
| 		return -ENOEXEC;
 | |
| 	datasz = off + note.nhdr.n_descsz;
 | |
| 
 | |
| 	have_prev_type = false;
 | |
| 	do {
 | |
| 		ret = parse_elf_property(note.data, &off, datasz, arch,
 | |
| 					 have_prev_type, &prev_type);
 | |
| 		have_prev_type = true;
 | |
| 	} while (!ret);
 | |
| 
 | |
| 	return ret == -ENOENT ? 0 : ret;
 | |
| }
 | |
| 
 | |
| static int load_elf_binary(struct linux_binprm *bprm)
 | |
| {
 | |
| 	struct file *interpreter = NULL; /* to shut gcc up */
 | |
| 	unsigned long load_bias = 0, phdr_addr = 0;
 | |
| 	int first_pt_load = 1;
 | |
| 	unsigned long error;
 | |
| 	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
 | |
| 	struct elf_phdr *elf_property_phdata = NULL;
 | |
| 	unsigned long elf_bss, elf_brk;
 | |
| 	int bss_prot = 0;
 | |
| 	int retval, i;
 | |
| 	unsigned long elf_entry;
 | |
| 	unsigned long e_entry;
 | |
| 	unsigned long interp_load_addr = 0;
 | |
| 	unsigned long start_code, end_code, start_data, end_data;
 | |
| 	unsigned long reloc_func_desc __maybe_unused = 0;
 | |
| 	int executable_stack = EXSTACK_DEFAULT;
 | |
| 	struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
 | |
| 	struct elfhdr *interp_elf_ex = NULL;
 | |
| 	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
 | |
| 	struct mm_struct *mm;
 | |
| 	struct pt_regs *regs;
 | |
| 
 | |
| 	retval = -ENOEXEC;
 | |
| 	/* First of all, some simple consistency checks */
 | |
| 	if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
 | |
| 		goto out;
 | |
| 	if (!elf_check_arch(elf_ex))
 | |
| 		goto out;
 | |
| 	if (elf_check_fdpic(elf_ex))
 | |
| 		goto out;
 | |
| 	if (!bprm->file->f_op->mmap)
 | |
| 		goto out;
 | |
| 
 | |
| 	elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
 | |
| 	if (!elf_phdata)
 | |
| 		goto out;
 | |
| 
 | |
| 	elf_ppnt = elf_phdata;
 | |
| 	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
 | |
| 		char *elf_interpreter;
 | |
| 
 | |
| 		if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
 | |
| 			elf_property_phdata = elf_ppnt;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (elf_ppnt->p_type != PT_INTERP)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * This is the program interpreter used for shared libraries -
 | |
| 		 * for now assume that this is an a.out format binary.
 | |
| 		 */
 | |
| 		retval = -ENOEXEC;
 | |
| 		if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
 | |
| 			goto out_free_ph;
 | |
| 
 | |
| 		retval = -ENOMEM;
 | |
| 		elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
 | |
| 		if (!elf_interpreter)
 | |
| 			goto out_free_ph;
 | |
| 
 | |
| 		retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
 | |
| 				  elf_ppnt->p_offset);
 | |
| 		if (retval < 0)
 | |
| 			goto out_free_interp;
 | |
| 		/* make sure path is NULL terminated */
 | |
| 		retval = -ENOEXEC;
 | |
| 		if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
 | |
| 			goto out_free_interp;
 | |
| 
 | |
| 		interpreter = open_exec(elf_interpreter);
 | |
| 		kfree(elf_interpreter);
 | |
| 		retval = PTR_ERR(interpreter);
 | |
| 		if (IS_ERR(interpreter))
 | |
| 			goto out_free_ph;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the binary is not readable then enforce mm->dumpable = 0
 | |
| 		 * regardless of the interpreter's permissions.
 | |
| 		 */
 | |
| 		would_dump(bprm, interpreter);
 | |
| 
 | |
| 		interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL);
 | |
| 		if (!interp_elf_ex) {
 | |
| 			retval = -ENOMEM;
 | |
| 			goto out_free_file;
 | |
| 		}
 | |
| 
 | |
| 		/* Get the exec headers */
 | |
| 		retval = elf_read(interpreter, interp_elf_ex,
 | |
| 				  sizeof(*interp_elf_ex), 0);
 | |
| 		if (retval < 0)
 | |
| 			goto out_free_dentry;
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| out_free_interp:
 | |
| 		kfree(elf_interpreter);
 | |
| 		goto out_free_ph;
 | |
| 	}
 | |
| 
 | |
| 	elf_ppnt = elf_phdata;
 | |
| 	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
 | |
| 		switch (elf_ppnt->p_type) {
 | |
| 		case PT_GNU_STACK:
 | |
| 			if (elf_ppnt->p_flags & PF_X)
 | |
| 				executable_stack = EXSTACK_ENABLE_X;
 | |
| 			else
 | |
| 				executable_stack = EXSTACK_DISABLE_X;
 | |
| 			break;
 | |
| 
 | |
| 		case PT_LOPROC ... PT_HIPROC:
 | |
| 			retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
 | |
| 						  bprm->file, false,
 | |
| 						  &arch_state);
 | |
| 			if (retval)
 | |
| 				goto out_free_dentry;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	/* Some simple consistency checks for the interpreter */
 | |
| 	if (interpreter) {
 | |
| 		retval = -ELIBBAD;
 | |
| 		/* Not an ELF interpreter */
 | |
| 		if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
 | |
| 			goto out_free_dentry;
 | |
| 		/* Verify the interpreter has a valid arch */
 | |
| 		if (!elf_check_arch(interp_elf_ex) ||
 | |
| 		    elf_check_fdpic(interp_elf_ex))
 | |
| 			goto out_free_dentry;
 | |
| 
 | |
| 		/* Load the interpreter program headers */
 | |
| 		interp_elf_phdata = load_elf_phdrs(interp_elf_ex,
 | |
| 						   interpreter);
 | |
| 		if (!interp_elf_phdata)
 | |
| 			goto out_free_dentry;
 | |
| 
 | |
| 		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
 | |
| 		elf_property_phdata = NULL;
 | |
| 		elf_ppnt = interp_elf_phdata;
 | |
| 		for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
 | |
| 			switch (elf_ppnt->p_type) {
 | |
| 			case PT_GNU_PROPERTY:
 | |
| 				elf_property_phdata = elf_ppnt;
 | |
| 				break;
 | |
| 
 | |
| 			case PT_LOPROC ... PT_HIPROC:
 | |
| 				retval = arch_elf_pt_proc(interp_elf_ex,
 | |
| 							  elf_ppnt, interpreter,
 | |
| 							  true, &arch_state);
 | |
| 				if (retval)
 | |
| 					goto out_free_dentry;
 | |
| 				break;
 | |
| 			}
 | |
| 	}
 | |
| 
 | |
| 	retval = parse_elf_properties(interpreter ?: bprm->file,
 | |
| 				      elf_property_phdata, &arch_state);
 | |
| 	if (retval)
 | |
| 		goto out_free_dentry;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow arch code to reject the ELF at this point, whilst it's
 | |
| 	 * still possible to return an error to the code that invoked
 | |
| 	 * the exec syscall.
 | |
| 	 */
 | |
| 	retval = arch_check_elf(elf_ex,
 | |
| 				!!interpreter, interp_elf_ex,
 | |
| 				&arch_state);
 | |
| 	if (retval)
 | |
| 		goto out_free_dentry;
 | |
| 
 | |
| 	/* Flush all traces of the currently running executable */
 | |
| 	retval = begin_new_exec(bprm);
 | |
| 	if (retval)
 | |
| 		goto out_free_dentry;
 | |
| 
 | |
| 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
 | |
| 	   may depend on the personality.  */
 | |
| 	SET_PERSONALITY2(*elf_ex, &arch_state);
 | |
| 	if (elf_read_implies_exec(*elf_ex, executable_stack))
 | |
| 		current->personality |= READ_IMPLIES_EXEC;
 | |
| 
 | |
| 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 | |
| 		current->flags |= PF_RANDOMIZE;
 | |
| 
 | |
| 	setup_new_exec(bprm);
 | |
| 
 | |
| 	/* Do this so that we can load the interpreter, if need be.  We will
 | |
| 	   change some of these later */
 | |
| 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
 | |
| 				 executable_stack);
 | |
| 	if (retval < 0)
 | |
| 		goto out_free_dentry;
 | |
| 
 | |
| 	elf_bss = 0;
 | |
| 	elf_brk = 0;
 | |
| 
 | |
| 	start_code = ~0UL;
 | |
| 	end_code = 0;
 | |
| 	start_data = 0;
 | |
| 	end_data = 0;
 | |
| 
 | |
| 	/* Now we do a little grungy work by mmapping the ELF image into
 | |
| 	   the correct location in memory. */
 | |
| 	for(i = 0, elf_ppnt = elf_phdata;
 | |
| 	    i < elf_ex->e_phnum; i++, elf_ppnt++) {
 | |
| 		int elf_prot, elf_flags;
 | |
| 		unsigned long k, vaddr;
 | |
| 		unsigned long total_size = 0;
 | |
| 		unsigned long alignment;
 | |
| 
 | |
| 		if (elf_ppnt->p_type != PT_LOAD)
 | |
| 			continue;
 | |
| 
 | |
| 		if (unlikely (elf_brk > elf_bss)) {
 | |
| 			unsigned long nbyte;
 | |
| 
 | |
| 			/* There was a PT_LOAD segment with p_memsz > p_filesz
 | |
| 			   before this one. Map anonymous pages, if needed,
 | |
| 			   and clear the area.  */
 | |
| 			retval = set_brk(elf_bss + load_bias,
 | |
| 					 elf_brk + load_bias,
 | |
| 					 bss_prot);
 | |
| 			if (retval)
 | |
| 				goto out_free_dentry;
 | |
| 			nbyte = ELF_PAGEOFFSET(elf_bss);
 | |
| 			if (nbyte) {
 | |
| 				nbyte = ELF_MIN_ALIGN - nbyte;
 | |
| 				if (nbyte > elf_brk - elf_bss)
 | |
| 					nbyte = elf_brk - elf_bss;
 | |
| 				if (clear_user((void __user *)elf_bss +
 | |
| 							load_bias, nbyte)) {
 | |
| 					/*
 | |
| 					 * This bss-zeroing can fail if the ELF
 | |
| 					 * file specifies odd protections. So
 | |
| 					 * we don't check the return value
 | |
| 					 */
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		elf_prot = make_prot(elf_ppnt->p_flags, &arch_state,
 | |
| 				     !!interpreter, false);
 | |
| 
 | |
| 		elf_flags = MAP_PRIVATE;
 | |
| 
 | |
| 		vaddr = elf_ppnt->p_vaddr;
 | |
| 		/*
 | |
| 		 * The first time through the loop, first_pt_load is true:
 | |
| 		 * layout will be calculated. Once set, use MAP_FIXED since
 | |
| 		 * we know we've already safely mapped the entire region with
 | |
| 		 * MAP_FIXED_NOREPLACE in the once-per-binary logic following.
 | |
| 		 */
 | |
| 		if (!first_pt_load) {
 | |
| 			elf_flags |= MAP_FIXED;
 | |
| 		} else if (elf_ex->e_type == ET_EXEC) {
 | |
| 			/*
 | |
| 			 * This logic is run once for the first LOAD Program
 | |
| 			 * Header for ET_EXEC binaries. No special handling
 | |
| 			 * is needed.
 | |
| 			 */
 | |
| 			elf_flags |= MAP_FIXED_NOREPLACE;
 | |
| 		} else if (elf_ex->e_type == ET_DYN) {
 | |
| 			/*
 | |
| 			 * This logic is run once for the first LOAD Program
 | |
| 			 * Header for ET_DYN binaries to calculate the
 | |
| 			 * randomization (load_bias) for all the LOAD
 | |
| 			 * Program Headers.
 | |
| 			 *
 | |
| 			 * There are effectively two types of ET_DYN
 | |
| 			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
 | |
| 			 * and loaders (ET_DYN without INTERP, since they
 | |
| 			 * _are_ the ELF interpreter). The loaders must
 | |
| 			 * be loaded away from programs since the program
 | |
| 			 * may otherwise collide with the loader (especially
 | |
| 			 * for ET_EXEC which does not have a randomized
 | |
| 			 * position). For example to handle invocations of
 | |
| 			 * "./ld.so someprog" to test out a new version of
 | |
| 			 * the loader, the subsequent program that the
 | |
| 			 * loader loads must avoid the loader itself, so
 | |
| 			 * they cannot share the same load range. Sufficient
 | |
| 			 * room for the brk must be allocated with the
 | |
| 			 * loader as well, since brk must be available with
 | |
| 			 * the loader.
 | |
| 			 *
 | |
| 			 * Therefore, programs are loaded offset from
 | |
| 			 * ELF_ET_DYN_BASE and loaders are loaded into the
 | |
| 			 * independently randomized mmap region (0 load_bias
 | |
| 			 * without MAP_FIXED nor MAP_FIXED_NOREPLACE).
 | |
| 			 */
 | |
| 			if (interpreter) {
 | |
| 				load_bias = ELF_ET_DYN_BASE;
 | |
| 				if (current->flags & PF_RANDOMIZE)
 | |
| 					load_bias += arch_mmap_rnd();
 | |
| 				alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum);
 | |
| 				if (alignment)
 | |
| 					load_bias &= ~(alignment - 1);
 | |
| 				elf_flags |= MAP_FIXED_NOREPLACE;
 | |
| 			} else
 | |
| 				load_bias = 0;
 | |
| 
 | |
| 			/*
 | |
| 			 * Since load_bias is used for all subsequent loading
 | |
| 			 * calculations, we must lower it by the first vaddr
 | |
| 			 * so that the remaining calculations based on the
 | |
| 			 * ELF vaddrs will be correctly offset. The result
 | |
| 			 * is then page aligned.
 | |
| 			 */
 | |
| 			load_bias = ELF_PAGESTART(load_bias - vaddr);
 | |
| 
 | |
| 			/*
 | |
| 			 * Calculate the entire size of the ELF mapping
 | |
| 			 * (total_size), used for the initial mapping,
 | |
| 			 * due to load_addr_set which is set to true later
 | |
| 			 * once the initial mapping is performed.
 | |
| 			 *
 | |
| 			 * Note that this is only sensible when the LOAD
 | |
| 			 * segments are contiguous (or overlapping). If
 | |
| 			 * used for LOADs that are far apart, this would
 | |
| 			 * cause the holes between LOADs to be mapped,
 | |
| 			 * running the risk of having the mapping fail,
 | |
| 			 * as it would be larger than the ELF file itself.
 | |
| 			 *
 | |
| 			 * As a result, only ET_DYN does this, since
 | |
| 			 * some ET_EXEC (e.g. ia64) may have large virtual
 | |
| 			 * memory holes between LOADs.
 | |
| 			 *
 | |
| 			 */
 | |
| 			total_size = total_mapping_size(elf_phdata,
 | |
| 							elf_ex->e_phnum);
 | |
| 			if (!total_size) {
 | |
| 				retval = -EINVAL;
 | |
| 				goto out_free_dentry;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
 | |
| 				elf_prot, elf_flags, total_size);
 | |
| 		if (BAD_ADDR(error)) {
 | |
| 			retval = IS_ERR_VALUE(error) ?
 | |
| 				PTR_ERR((void*)error) : -EINVAL;
 | |
| 			goto out_free_dentry;
 | |
| 		}
 | |
| 
 | |
| 		if (first_pt_load) {
 | |
| 			first_pt_load = 0;
 | |
| 			if (elf_ex->e_type == ET_DYN) {
 | |
| 				load_bias += error -
 | |
| 				             ELF_PAGESTART(load_bias + vaddr);
 | |
| 				reloc_func_desc = load_bias;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Figure out which segment in the file contains the Program
 | |
| 		 * Header table, and map to the associated memory address.
 | |
| 		 */
 | |
| 		if (elf_ppnt->p_offset <= elf_ex->e_phoff &&
 | |
| 		    elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) {
 | |
| 			phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset +
 | |
| 				    elf_ppnt->p_vaddr;
 | |
| 		}
 | |
| 
 | |
| 		k = elf_ppnt->p_vaddr;
 | |
| 		if ((elf_ppnt->p_flags & PF_X) && k < start_code)
 | |
| 			start_code = k;
 | |
| 		if (start_data < k)
 | |
| 			start_data = k;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check to see if the section's size will overflow the
 | |
| 		 * allowed task size. Note that p_filesz must always be
 | |
| 		 * <= p_memsz so it is only necessary to check p_memsz.
 | |
| 		 */
 | |
| 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
 | |
| 		    elf_ppnt->p_memsz > TASK_SIZE ||
 | |
| 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
 | |
| 			/* set_brk can never work. Avoid overflows. */
 | |
| 			retval = -EINVAL;
 | |
| 			goto out_free_dentry;
 | |
| 		}
 | |
| 
 | |
| 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
 | |
| 
 | |
| 		if (k > elf_bss)
 | |
| 			elf_bss = k;
 | |
| 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
 | |
| 			end_code = k;
 | |
| 		if (end_data < k)
 | |
| 			end_data = k;
 | |
| 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
 | |
| 		if (k > elf_brk) {
 | |
| 			bss_prot = elf_prot;
 | |
| 			elf_brk = k;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	e_entry = elf_ex->e_entry + load_bias;
 | |
| 	phdr_addr += load_bias;
 | |
| 	elf_bss += load_bias;
 | |
| 	elf_brk += load_bias;
 | |
| 	start_code += load_bias;
 | |
| 	end_code += load_bias;
 | |
| 	start_data += load_bias;
 | |
| 	end_data += load_bias;
 | |
| 
 | |
| 	/* Calling set_brk effectively mmaps the pages that we need
 | |
| 	 * for the bss and break sections.  We must do this before
 | |
| 	 * mapping in the interpreter, to make sure it doesn't wind
 | |
| 	 * up getting placed where the bss needs to go.
 | |
| 	 */
 | |
| 	retval = set_brk(elf_bss, elf_brk, bss_prot);
 | |
| 	if (retval)
 | |
| 		goto out_free_dentry;
 | |
| 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
 | |
| 		retval = -EFAULT; /* Nobody gets to see this, but.. */
 | |
| 		goto out_free_dentry;
 | |
| 	}
 | |
| 
 | |
| 	if (interpreter) {
 | |
| 		elf_entry = load_elf_interp(interp_elf_ex,
 | |
| 					    interpreter,
 | |
| 					    load_bias, interp_elf_phdata,
 | |
| 					    &arch_state);
 | |
| 		if (!IS_ERR_VALUE(elf_entry)) {
 | |
| 			/*
 | |
| 			 * load_elf_interp() returns relocation
 | |
| 			 * adjustment
 | |
| 			 */
 | |
| 			interp_load_addr = elf_entry;
 | |
| 			elf_entry += interp_elf_ex->e_entry;
 | |
| 		}
 | |
| 		if (BAD_ADDR(elf_entry)) {
 | |
| 			retval = IS_ERR_VALUE(elf_entry) ?
 | |
| 					(int)elf_entry : -EINVAL;
 | |
| 			goto out_free_dentry;
 | |
| 		}
 | |
| 		reloc_func_desc = interp_load_addr;
 | |
| 
 | |
| 		allow_write_access(interpreter);
 | |
| 		fput(interpreter);
 | |
| 
 | |
| 		kfree(interp_elf_ex);
 | |
| 		kfree(interp_elf_phdata);
 | |
| 	} else {
 | |
| 		elf_entry = e_entry;
 | |
| 		if (BAD_ADDR(elf_entry)) {
 | |
| 			retval = -EINVAL;
 | |
| 			goto out_free_dentry;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kfree(elf_phdata);
 | |
| 
 | |
| 	set_binfmt(&elf_format);
 | |
| 
 | |
| #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
 | |
| 	retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter);
 | |
| 	if (retval < 0)
 | |
| 		goto out;
 | |
| #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
 | |
| 
 | |
| 	retval = create_elf_tables(bprm, elf_ex, interp_load_addr,
 | |
| 				   e_entry, phdr_addr);
 | |
| 	if (retval < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	mm = current->mm;
 | |
| 	mm->end_code = end_code;
 | |
| 	mm->start_code = start_code;
 | |
| 	mm->start_data = start_data;
 | |
| 	mm->end_data = end_data;
 | |
| 	mm->start_stack = bprm->p;
 | |
| 
 | |
| 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
 | |
| 		/*
 | |
| 		 * For architectures with ELF randomization, when executing
 | |
| 		 * a loader directly (i.e. no interpreter listed in ELF
 | |
| 		 * headers), move the brk area out of the mmap region
 | |
| 		 * (since it grows up, and may collide early with the stack
 | |
| 		 * growing down), and into the unused ELF_ET_DYN_BASE region.
 | |
| 		 */
 | |
| 		if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
 | |
| 		    elf_ex->e_type == ET_DYN && !interpreter) {
 | |
| 			mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
 | |
| 		}
 | |
| 
 | |
| 		mm->brk = mm->start_brk = arch_randomize_brk(mm);
 | |
| #ifdef compat_brk_randomized
 | |
| 		current->brk_randomized = 1;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	if (current->personality & MMAP_PAGE_ZERO) {
 | |
| 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
 | |
| 		   and some applications "depend" upon this behavior.
 | |
| 		   Since we do not have the power to recompile these, we
 | |
| 		   emulate the SVr4 behavior. Sigh. */
 | |
| 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
 | |
| 				MAP_FIXED | MAP_PRIVATE, 0);
 | |
| 	}
 | |
| 
 | |
| 	regs = current_pt_regs();
 | |
| #ifdef ELF_PLAT_INIT
 | |
| 	/*
 | |
| 	 * The ABI may specify that certain registers be set up in special
 | |
| 	 * ways (on i386 %edx is the address of a DT_FINI function, for
 | |
| 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
 | |
| 	 * that the e_entry field is the address of the function descriptor
 | |
| 	 * for the startup routine, rather than the address of the startup
 | |
| 	 * routine itself.  This macro performs whatever initialization to
 | |
| 	 * the regs structure is required as well as any relocations to the
 | |
| 	 * function descriptor entries when executing dynamically links apps.
 | |
| 	 */
 | |
| 	ELF_PLAT_INIT(regs, reloc_func_desc);
 | |
| #endif
 | |
| 
 | |
| 	finalize_exec(bprm);
 | |
| 	START_THREAD(elf_ex, regs, elf_entry, bprm->p);
 | |
| 	retval = 0;
 | |
| out:
 | |
| 	return retval;
 | |
| 
 | |
| 	/* error cleanup */
 | |
| out_free_dentry:
 | |
| 	kfree(interp_elf_ex);
 | |
| 	kfree(interp_elf_phdata);
 | |
| out_free_file:
 | |
| 	allow_write_access(interpreter);
 | |
| 	if (interpreter)
 | |
| 		fput(interpreter);
 | |
| out_free_ph:
 | |
| 	kfree(elf_phdata);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_USELIB
 | |
| /* This is really simpleminded and specialized - we are loading an
 | |
|    a.out library that is given an ELF header. */
 | |
| static int load_elf_library(struct file *file)
 | |
| {
 | |
| 	struct elf_phdr *elf_phdata;
 | |
| 	struct elf_phdr *eppnt;
 | |
| 	unsigned long elf_bss, bss, len;
 | |
| 	int retval, error, i, j;
 | |
| 	struct elfhdr elf_ex;
 | |
| 
 | |
| 	error = -ENOEXEC;
 | |
| 	retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
 | |
| 	if (retval < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* First of all, some simple consistency checks */
 | |
| 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
 | |
| 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
 | |
| 		goto out;
 | |
| 	if (elf_check_fdpic(&elf_ex))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Now read in all of the header information */
 | |
| 
 | |
| 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
 | |
| 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
 | |
| 
 | |
| 	error = -ENOMEM;
 | |
| 	elf_phdata = kmalloc(j, GFP_KERNEL);
 | |
| 	if (!elf_phdata)
 | |
| 		goto out;
 | |
| 
 | |
| 	eppnt = elf_phdata;
 | |
| 	error = -ENOEXEC;
 | |
| 	retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
 | |
| 	if (retval < 0)
 | |
| 		goto out_free_ph;
 | |
| 
 | |
| 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
 | |
| 		if ((eppnt + i)->p_type == PT_LOAD)
 | |
| 			j++;
 | |
| 	if (j != 1)
 | |
| 		goto out_free_ph;
 | |
| 
 | |
| 	while (eppnt->p_type != PT_LOAD)
 | |
| 		eppnt++;
 | |
| 
 | |
| 	/* Now use mmap to map the library into memory. */
 | |
| 	error = vm_mmap(file,
 | |
| 			ELF_PAGESTART(eppnt->p_vaddr),
 | |
| 			(eppnt->p_filesz +
 | |
| 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
 | |
| 			PROT_READ | PROT_WRITE | PROT_EXEC,
 | |
| 			MAP_FIXED_NOREPLACE | MAP_PRIVATE,
 | |
| 			(eppnt->p_offset -
 | |
| 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
 | |
| 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
 | |
| 		goto out_free_ph;
 | |
| 
 | |
| 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
 | |
| 	if (padzero(elf_bss)) {
 | |
| 		error = -EFAULT;
 | |
| 		goto out_free_ph;
 | |
| 	}
 | |
| 
 | |
| 	len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
 | |
| 	bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
 | |
| 	if (bss > len) {
 | |
| 		error = vm_brk(len, bss - len);
 | |
| 		if (error)
 | |
| 			goto out_free_ph;
 | |
| 	}
 | |
| 	error = 0;
 | |
| 
 | |
| out_free_ph:
 | |
| 	kfree(elf_phdata);
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| #endif /* #ifdef CONFIG_USELIB */
 | |
| 
 | |
| #ifdef CONFIG_ELF_CORE
 | |
| /*
 | |
|  * ELF core dumper
 | |
|  *
 | |
|  * Modelled on fs/exec.c:aout_core_dump()
 | |
|  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
 | |
|  */
 | |
| 
 | |
| /* An ELF note in memory */
 | |
| struct memelfnote
 | |
| {
 | |
| 	const char *name;
 | |
| 	int type;
 | |
| 	unsigned int datasz;
 | |
| 	void *data;
 | |
| };
 | |
| 
 | |
| static int notesize(struct memelfnote *en)
 | |
| {
 | |
| 	int sz;
 | |
| 
 | |
| 	sz = sizeof(struct elf_note);
 | |
| 	sz += roundup(strlen(en->name) + 1, 4);
 | |
| 	sz += roundup(en->datasz, 4);
 | |
| 
 | |
| 	return sz;
 | |
| }
 | |
| 
 | |
| static int writenote(struct memelfnote *men, struct coredump_params *cprm)
 | |
| {
 | |
| 	struct elf_note en;
 | |
| 	en.n_namesz = strlen(men->name) + 1;
 | |
| 	en.n_descsz = men->datasz;
 | |
| 	en.n_type = men->type;
 | |
| 
 | |
| 	return dump_emit(cprm, &en, sizeof(en)) &&
 | |
| 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
 | |
| 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
 | |
| }
 | |
| 
 | |
| static void fill_elf_header(struct elfhdr *elf, int segs,
 | |
| 			    u16 machine, u32 flags)
 | |
| {
 | |
| 	memset(elf, 0, sizeof(*elf));
 | |
| 
 | |
| 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
 | |
| 	elf->e_ident[EI_CLASS] = ELF_CLASS;
 | |
| 	elf->e_ident[EI_DATA] = ELF_DATA;
 | |
| 	elf->e_ident[EI_VERSION] = EV_CURRENT;
 | |
| 	elf->e_ident[EI_OSABI] = ELF_OSABI;
 | |
| 
 | |
| 	elf->e_type = ET_CORE;
 | |
| 	elf->e_machine = machine;
 | |
| 	elf->e_version = EV_CURRENT;
 | |
| 	elf->e_phoff = sizeof(struct elfhdr);
 | |
| 	elf->e_flags = flags;
 | |
| 	elf->e_ehsize = sizeof(struct elfhdr);
 | |
| 	elf->e_phentsize = sizeof(struct elf_phdr);
 | |
| 	elf->e_phnum = segs;
 | |
| }
 | |
| 
 | |
| static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
 | |
| {
 | |
| 	phdr->p_type = PT_NOTE;
 | |
| 	phdr->p_offset = offset;
 | |
| 	phdr->p_vaddr = 0;
 | |
| 	phdr->p_paddr = 0;
 | |
| 	phdr->p_filesz = sz;
 | |
| 	phdr->p_memsz = 0;
 | |
| 	phdr->p_flags = 0;
 | |
| 	phdr->p_align = 0;
 | |
| }
 | |
| 
 | |
| static void fill_note(struct memelfnote *note, const char *name, int type,
 | |
| 		unsigned int sz, void *data)
 | |
| {
 | |
| 	note->name = name;
 | |
| 	note->type = type;
 | |
| 	note->datasz = sz;
 | |
| 	note->data = data;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * fill up all the fields in prstatus from the given task struct, except
 | |
|  * registers which need to be filled up separately.
 | |
|  */
 | |
| static void fill_prstatus(struct elf_prstatus_common *prstatus,
 | |
| 		struct task_struct *p, long signr)
 | |
| {
 | |
| 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
 | |
| 	prstatus->pr_sigpend = p->pending.signal.sig[0];
 | |
| 	prstatus->pr_sighold = p->blocked.sig[0];
 | |
| 	rcu_read_lock();
 | |
| 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
 | |
| 	rcu_read_unlock();
 | |
| 	prstatus->pr_pid = task_pid_vnr(p);
 | |
| 	prstatus->pr_pgrp = task_pgrp_vnr(p);
 | |
| 	prstatus->pr_sid = task_session_vnr(p);
 | |
| 	if (thread_group_leader(p)) {
 | |
| 		struct task_cputime cputime;
 | |
| 
 | |
| 		/*
 | |
| 		 * This is the record for the group leader.  It shows the
 | |
| 		 * group-wide total, not its individual thread total.
 | |
| 		 */
 | |
| 		thread_group_cputime(p, &cputime);
 | |
| 		prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
 | |
| 		prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
 | |
| 	} else {
 | |
| 		u64 utime, stime;
 | |
| 
 | |
| 		task_cputime(p, &utime, &stime);
 | |
| 		prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
 | |
| 		prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
 | |
| 	}
 | |
| 
 | |
| 	prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
 | |
| 	prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
 | |
| }
 | |
| 
 | |
| static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
 | |
| 		       struct mm_struct *mm)
 | |
| {
 | |
| 	const struct cred *cred;
 | |
| 	unsigned int i, len;
 | |
| 	unsigned int state;
 | |
| 
 | |
| 	/* first copy the parameters from user space */
 | |
| 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
 | |
| 
 | |
| 	len = mm->arg_end - mm->arg_start;
 | |
| 	if (len >= ELF_PRARGSZ)
 | |
| 		len = ELF_PRARGSZ-1;
 | |
| 	if (copy_from_user(&psinfo->pr_psargs,
 | |
| 		           (const char __user *)mm->arg_start, len))
 | |
| 		return -EFAULT;
 | |
| 	for(i = 0; i < len; i++)
 | |
| 		if (psinfo->pr_psargs[i] == 0)
 | |
| 			psinfo->pr_psargs[i] = ' ';
 | |
| 	psinfo->pr_psargs[len] = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
 | |
| 	rcu_read_unlock();
 | |
| 	psinfo->pr_pid = task_pid_vnr(p);
 | |
| 	psinfo->pr_pgrp = task_pgrp_vnr(p);
 | |
| 	psinfo->pr_sid = task_session_vnr(p);
 | |
| 
 | |
| 	state = READ_ONCE(p->__state);
 | |
| 	i = state ? ffz(~state) + 1 : 0;
 | |
| 	psinfo->pr_state = i;
 | |
| 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
 | |
| 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
 | |
| 	psinfo->pr_nice = task_nice(p);
 | |
| 	psinfo->pr_flag = p->flags;
 | |
| 	rcu_read_lock();
 | |
| 	cred = __task_cred(p);
 | |
| 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
 | |
| 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
 | |
| 	rcu_read_unlock();
 | |
| 	get_task_comm(psinfo->pr_fname, p);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
 | |
| {
 | |
| 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
 | |
| 	int i = 0;
 | |
| 	do
 | |
| 		i += 2;
 | |
| 	while (auxv[i - 2] != AT_NULL);
 | |
| 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
 | |
| }
 | |
| 
 | |
| static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
 | |
| 		const kernel_siginfo_t *siginfo)
 | |
| {
 | |
| 	copy_siginfo_to_external(csigdata, siginfo);
 | |
| 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
 | |
| }
 | |
| 
 | |
| #define MAX_FILE_NOTE_SIZE (4*1024*1024)
 | |
| /*
 | |
|  * Format of NT_FILE note:
 | |
|  *
 | |
|  * long count     -- how many files are mapped
 | |
|  * long page_size -- units for file_ofs
 | |
|  * array of [COUNT] elements of
 | |
|  *   long start
 | |
|  *   long end
 | |
|  *   long file_ofs
 | |
|  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
 | |
|  */
 | |
| static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm)
 | |
| {
 | |
| 	unsigned count, size, names_ofs, remaining, n;
 | |
| 	user_long_t *data;
 | |
| 	user_long_t *start_end_ofs;
 | |
| 	char *name_base, *name_curpos;
 | |
| 	int i;
 | |
| 
 | |
| 	/* *Estimated* file count and total data size needed */
 | |
| 	count = cprm->vma_count;
 | |
| 	if (count > UINT_MAX / 64)
 | |
| 		return -EINVAL;
 | |
| 	size = count * 64;
 | |
| 
 | |
| 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
 | |
|  alloc:
 | |
| 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
 | |
| 		return -EINVAL;
 | |
| 	size = round_up(size, PAGE_SIZE);
 | |
| 	/*
 | |
| 	 * "size" can be 0 here legitimately.
 | |
| 	 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
 | |
| 	 */
 | |
| 	data = kvmalloc(size, GFP_KERNEL);
 | |
| 	if (ZERO_OR_NULL_PTR(data))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	start_end_ofs = data + 2;
 | |
| 	name_base = name_curpos = ((char *)data) + names_ofs;
 | |
| 	remaining = size - names_ofs;
 | |
| 	count = 0;
 | |
| 	for (i = 0; i < cprm->vma_count; i++) {
 | |
| 		struct core_vma_metadata *m = &cprm->vma_meta[i];
 | |
| 		struct file *file;
 | |
| 		const char *filename;
 | |
| 
 | |
| 		file = m->file;
 | |
| 		if (!file)
 | |
| 			continue;
 | |
| 		filename = file_path(file, name_curpos, remaining);
 | |
| 		if (IS_ERR(filename)) {
 | |
| 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
 | |
| 				kvfree(data);
 | |
| 				size = size * 5 / 4;
 | |
| 				goto alloc;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* file_path() fills at the end, move name down */
 | |
| 		/* n = strlen(filename) + 1: */
 | |
| 		n = (name_curpos + remaining) - filename;
 | |
| 		remaining = filename - name_curpos;
 | |
| 		memmove(name_curpos, filename, n);
 | |
| 		name_curpos += n;
 | |
| 
 | |
| 		*start_end_ofs++ = m->start;
 | |
| 		*start_end_ofs++ = m->end;
 | |
| 		*start_end_ofs++ = m->pgoff;
 | |
| 		count++;
 | |
| 	}
 | |
| 
 | |
| 	/* Now we know exact count of files, can store it */
 | |
| 	data[0] = count;
 | |
| 	data[1] = PAGE_SIZE;
 | |
| 	/*
 | |
| 	 * Count usually is less than mm->map_count,
 | |
| 	 * we need to move filenames down.
 | |
| 	 */
 | |
| 	n = cprm->vma_count - count;
 | |
| 	if (n != 0) {
 | |
| 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
 | |
| 		memmove(name_base - shift_bytes, name_base,
 | |
| 			name_curpos - name_base);
 | |
| 		name_curpos -= shift_bytes;
 | |
| 	}
 | |
| 
 | |
| 	size = name_curpos - (char *)data;
 | |
| 	fill_note(note, "CORE", NT_FILE, size, data);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #include <linux/regset.h>
 | |
| 
 | |
| struct elf_thread_core_info {
 | |
| 	struct elf_thread_core_info *next;
 | |
| 	struct task_struct *task;
 | |
| 	struct elf_prstatus prstatus;
 | |
| 	struct memelfnote notes[];
 | |
| };
 | |
| 
 | |
| struct elf_note_info {
 | |
| 	struct elf_thread_core_info *thread;
 | |
| 	struct memelfnote psinfo;
 | |
| 	struct memelfnote signote;
 | |
| 	struct memelfnote auxv;
 | |
| 	struct memelfnote files;
 | |
| 	user_siginfo_t csigdata;
 | |
| 	size_t size;
 | |
| 	int thread_notes;
 | |
| };
 | |
| 
 | |
| #ifdef CORE_DUMP_USE_REGSET
 | |
| /*
 | |
|  * When a regset has a writeback hook, we call it on each thread before
 | |
|  * dumping user memory.  On register window machines, this makes sure the
 | |
|  * user memory backing the register data is up to date before we read it.
 | |
|  */
 | |
| static void do_thread_regset_writeback(struct task_struct *task,
 | |
| 				       const struct user_regset *regset)
 | |
| {
 | |
| 	if (regset->writeback)
 | |
| 		regset->writeback(task, regset, 1);
 | |
| }
 | |
| 
 | |
| #ifndef PRSTATUS_SIZE
 | |
| #define PRSTATUS_SIZE sizeof(struct elf_prstatus)
 | |
| #endif
 | |
| 
 | |
| #ifndef SET_PR_FPVALID
 | |
| #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1)
 | |
| #endif
 | |
| 
 | |
| static int fill_thread_core_info(struct elf_thread_core_info *t,
 | |
| 				 const struct user_regset_view *view,
 | |
| 				 long signr, struct elf_note_info *info)
 | |
| {
 | |
| 	unsigned int note_iter, view_iter;
 | |
| 
 | |
| 	/*
 | |
| 	 * NT_PRSTATUS is the one special case, because the regset data
 | |
| 	 * goes into the pr_reg field inside the note contents, rather
 | |
| 	 * than being the whole note contents.  We fill the reset in here.
 | |
| 	 * We assume that regset 0 is NT_PRSTATUS.
 | |
| 	 */
 | |
| 	fill_prstatus(&t->prstatus.common, t->task, signr);
 | |
| 	regset_get(t->task, &view->regsets[0],
 | |
| 		   sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg);
 | |
| 
 | |
| 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
 | |
| 		  PRSTATUS_SIZE, &t->prstatus);
 | |
| 	info->size += notesize(&t->notes[0]);
 | |
| 
 | |
| 	do_thread_regset_writeback(t->task, &view->regsets[0]);
 | |
| 
 | |
| 	/*
 | |
| 	 * Each other regset might generate a note too.  For each regset
 | |
| 	 * that has no core_note_type or is inactive, skip it.
 | |
| 	 */
 | |
| 	note_iter = 1;
 | |
| 	for (view_iter = 1; view_iter < view->n; ++view_iter) {
 | |
| 		const struct user_regset *regset = &view->regsets[view_iter];
 | |
| 		int note_type = regset->core_note_type;
 | |
| 		bool is_fpreg = note_type == NT_PRFPREG;
 | |
| 		void *data;
 | |
| 		int ret;
 | |
| 
 | |
| 		do_thread_regset_writeback(t->task, regset);
 | |
| 		if (!note_type) // not for coredumps
 | |
| 			continue;
 | |
| 		if (regset->active && regset->active(t->task, regset) <= 0)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = regset_get_alloc(t->task, regset, ~0U, &data);
 | |
| 		if (ret < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		if (WARN_ON_ONCE(note_iter >= info->thread_notes))
 | |
| 			break;
 | |
| 
 | |
| 		if (is_fpreg)
 | |
| 			SET_PR_FPVALID(&t->prstatus);
 | |
| 
 | |
| 		fill_note(&t->notes[note_iter], is_fpreg ? "CORE" : "LINUX",
 | |
| 			  note_type, ret, data);
 | |
| 
 | |
| 		info->size += notesize(&t->notes[note_iter]);
 | |
| 		note_iter++;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| #else
 | |
| static int fill_thread_core_info(struct elf_thread_core_info *t,
 | |
| 				 const struct user_regset_view *view,
 | |
| 				 long signr, struct elf_note_info *info)
 | |
| {
 | |
| 	struct task_struct *p = t->task;
 | |
| 	elf_fpregset_t *fpu;
 | |
| 
 | |
| 	fill_prstatus(&t->prstatus.common, p, signr);
 | |
| 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
 | |
| 
 | |
| 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
 | |
| 		  &(t->prstatus));
 | |
| 	info->size += notesize(&t->notes[0]);
 | |
| 
 | |
| 	fpu = kzalloc(sizeof(elf_fpregset_t), GFP_KERNEL);
 | |
| 	if (!fpu || !elf_core_copy_task_fpregs(p, fpu)) {
 | |
| 		kfree(fpu);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	t->prstatus.pr_fpvalid = 1;
 | |
| 	fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(*fpu), fpu);
 | |
| 	info->size += notesize(&t->notes[1]);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int fill_note_info(struct elfhdr *elf, int phdrs,
 | |
| 			  struct elf_note_info *info,
 | |
| 			  struct coredump_params *cprm)
 | |
| {
 | |
| 	struct task_struct *dump_task = current;
 | |
| 	const struct user_regset_view *view;
 | |
| 	struct elf_thread_core_info *t;
 | |
| 	struct elf_prpsinfo *psinfo;
 | |
| 	struct core_thread *ct;
 | |
| 
 | |
| 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
 | |
| 	if (!psinfo)
 | |
| 		return 0;
 | |
| 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
 | |
| 
 | |
| #ifdef CORE_DUMP_USE_REGSET
 | |
| 	view = task_user_regset_view(dump_task);
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out how many notes we're going to need for each thread.
 | |
| 	 */
 | |
| 	info->thread_notes = 0;
 | |
| 	for (int i = 0; i < view->n; ++i)
 | |
| 		if (view->regsets[i].core_note_type != 0)
 | |
| 			++info->thread_notes;
 | |
| 
 | |
| 	/*
 | |
| 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
 | |
| 	 * since it is our one special case.
 | |
| 	 */
 | |
| 	if (unlikely(info->thread_notes == 0) ||
 | |
| 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
 | |
| 		WARN_ON(1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the ELF file header.
 | |
| 	 */
 | |
| 	fill_elf_header(elf, phdrs,
 | |
| 			view->e_machine, view->e_flags);
 | |
| #else
 | |
| 	view = NULL;
 | |
| 	info->thread_notes = 2;
 | |
| 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate a structure for each thread.
 | |
| 	 */
 | |
| 	info->thread = kzalloc(offsetof(struct elf_thread_core_info,
 | |
| 				     notes[info->thread_notes]),
 | |
| 			    GFP_KERNEL);
 | |
| 	if (unlikely(!info->thread))
 | |
| 		return 0;
 | |
| 
 | |
| 	info->thread->task = dump_task;
 | |
| 	for (ct = dump_task->signal->core_state->dumper.next; ct; ct = ct->next) {
 | |
| 		t = kzalloc(offsetof(struct elf_thread_core_info,
 | |
| 				     notes[info->thread_notes]),
 | |
| 			    GFP_KERNEL);
 | |
| 		if (unlikely(!t))
 | |
| 			return 0;
 | |
| 
 | |
| 		t->task = ct->task;
 | |
| 		t->next = info->thread->next;
 | |
| 		info->thread->next = t;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now fill in each thread's information.
 | |
| 	 */
 | |
| 	for (t = info->thread; t != NULL; t = t->next)
 | |
| 		if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, info))
 | |
| 			return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Fill in the two process-wide notes.
 | |
| 	 */
 | |
| 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
 | |
| 	info->size += notesize(&info->psinfo);
 | |
| 
 | |
| 	fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo);
 | |
| 	info->size += notesize(&info->signote);
 | |
| 
 | |
| 	fill_auxv_note(&info->auxv, current->mm);
 | |
| 	info->size += notesize(&info->auxv);
 | |
| 
 | |
| 	if (fill_files_note(&info->files, cprm) == 0)
 | |
| 		info->size += notesize(&info->files);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write all the notes for each thread.  When writing the first thread, the
 | |
|  * process-wide notes are interleaved after the first thread-specific note.
 | |
|  */
 | |
| static int write_note_info(struct elf_note_info *info,
 | |
| 			   struct coredump_params *cprm)
 | |
| {
 | |
| 	bool first = true;
 | |
| 	struct elf_thread_core_info *t = info->thread;
 | |
| 
 | |
| 	do {
 | |
| 		int i;
 | |
| 
 | |
| 		if (!writenote(&t->notes[0], cprm))
 | |
| 			return 0;
 | |
| 
 | |
| 		if (first && !writenote(&info->psinfo, cprm))
 | |
| 			return 0;
 | |
| 		if (first && !writenote(&info->signote, cprm))
 | |
| 			return 0;
 | |
| 		if (first && !writenote(&info->auxv, cprm))
 | |
| 			return 0;
 | |
| 		if (first && info->files.data &&
 | |
| 				!writenote(&info->files, cprm))
 | |
| 			return 0;
 | |
| 
 | |
| 		for (i = 1; i < info->thread_notes; ++i)
 | |
| 			if (t->notes[i].data &&
 | |
| 			    !writenote(&t->notes[i], cprm))
 | |
| 				return 0;
 | |
| 
 | |
| 		first = false;
 | |
| 		t = t->next;
 | |
| 	} while (t);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void free_note_info(struct elf_note_info *info)
 | |
| {
 | |
| 	struct elf_thread_core_info *threads = info->thread;
 | |
| 	while (threads) {
 | |
| 		unsigned int i;
 | |
| 		struct elf_thread_core_info *t = threads;
 | |
| 		threads = t->next;
 | |
| 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
 | |
| 		for (i = 1; i < info->thread_notes; ++i)
 | |
| 			kfree(t->notes[i].data);
 | |
| 		kfree(t);
 | |
| 	}
 | |
| 	kfree(info->psinfo.data);
 | |
| 	kvfree(info->files.data);
 | |
| }
 | |
| 
 | |
| static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
 | |
| 			     elf_addr_t e_shoff, int segs)
 | |
| {
 | |
| 	elf->e_shoff = e_shoff;
 | |
| 	elf->e_shentsize = sizeof(*shdr4extnum);
 | |
| 	elf->e_shnum = 1;
 | |
| 	elf->e_shstrndx = SHN_UNDEF;
 | |
| 
 | |
| 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
 | |
| 
 | |
| 	shdr4extnum->sh_type = SHT_NULL;
 | |
| 	shdr4extnum->sh_size = elf->e_shnum;
 | |
| 	shdr4extnum->sh_link = elf->e_shstrndx;
 | |
| 	shdr4extnum->sh_info = segs;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Actual dumper
 | |
|  *
 | |
|  * This is a two-pass process; first we find the offsets of the bits,
 | |
|  * and then they are actually written out.  If we run out of core limit
 | |
|  * we just truncate.
 | |
|  */
 | |
| static int elf_core_dump(struct coredump_params *cprm)
 | |
| {
 | |
| 	int has_dumped = 0;
 | |
| 	int segs, i;
 | |
| 	struct elfhdr elf;
 | |
| 	loff_t offset = 0, dataoff;
 | |
| 	struct elf_note_info info = { };
 | |
| 	struct elf_phdr *phdr4note = NULL;
 | |
| 	struct elf_shdr *shdr4extnum = NULL;
 | |
| 	Elf_Half e_phnum;
 | |
| 	elf_addr_t e_shoff;
 | |
| 
 | |
| 	/*
 | |
| 	 * The number of segs are recored into ELF header as 16bit value.
 | |
| 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
 | |
| 	 */
 | |
| 	segs = cprm->vma_count + elf_core_extra_phdrs(cprm);
 | |
| 
 | |
| 	/* for notes section */
 | |
| 	segs++;
 | |
| 
 | |
| 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
 | |
| 	 * this, kernel supports extended numbering. Have a look at
 | |
| 	 * include/linux/elf.h for further information. */
 | |
| 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
 | |
| 
 | |
| 	/*
 | |
| 	 * Collect all the non-memory information about the process for the
 | |
| 	 * notes.  This also sets up the file header.
 | |
| 	 */
 | |
| 	if (!fill_note_info(&elf, e_phnum, &info, cprm))
 | |
| 		goto end_coredump;
 | |
| 
 | |
| 	has_dumped = 1;
 | |
| 
 | |
| 	offset += sizeof(elf);				/* Elf header */
 | |
| 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
 | |
| 
 | |
| 	/* Write notes phdr entry */
 | |
| 	{
 | |
| 		size_t sz = info.size;
 | |
| 
 | |
| 		/* For cell spufs */
 | |
| 		sz += elf_coredump_extra_notes_size();
 | |
| 
 | |
| 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
 | |
| 		if (!phdr4note)
 | |
| 			goto end_coredump;
 | |
| 
 | |
| 		fill_elf_note_phdr(phdr4note, sz, offset);
 | |
| 		offset += sz;
 | |
| 	}
 | |
| 
 | |
| 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
 | |
| 
 | |
| 	offset += cprm->vma_data_size;
 | |
| 	offset += elf_core_extra_data_size(cprm);
 | |
| 	e_shoff = offset;
 | |
| 
 | |
| 	if (e_phnum == PN_XNUM) {
 | |
| 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
 | |
| 		if (!shdr4extnum)
 | |
| 			goto end_coredump;
 | |
| 		fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
 | |
| 	}
 | |
| 
 | |
| 	offset = dataoff;
 | |
| 
 | |
| 	if (!dump_emit(cprm, &elf, sizeof(elf)))
 | |
| 		goto end_coredump;
 | |
| 
 | |
| 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
 | |
| 		goto end_coredump;
 | |
| 
 | |
| 	/* Write program headers for segments dump */
 | |
| 	for (i = 0; i < cprm->vma_count; i++) {
 | |
| 		struct core_vma_metadata *meta = cprm->vma_meta + i;
 | |
| 		struct elf_phdr phdr;
 | |
| 
 | |
| 		phdr.p_type = PT_LOAD;
 | |
| 		phdr.p_offset = offset;
 | |
| 		phdr.p_vaddr = meta->start;
 | |
| 		phdr.p_paddr = 0;
 | |
| 		phdr.p_filesz = meta->dump_size;
 | |
| 		phdr.p_memsz = meta->end - meta->start;
 | |
| 		offset += phdr.p_filesz;
 | |
| 		phdr.p_flags = 0;
 | |
| 		if (meta->flags & VM_READ)
 | |
| 			phdr.p_flags |= PF_R;
 | |
| 		if (meta->flags & VM_WRITE)
 | |
| 			phdr.p_flags |= PF_W;
 | |
| 		if (meta->flags & VM_EXEC)
 | |
| 			phdr.p_flags |= PF_X;
 | |
| 		phdr.p_align = ELF_EXEC_PAGESIZE;
 | |
| 
 | |
| 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
 | |
| 			goto end_coredump;
 | |
| 	}
 | |
| 
 | |
| 	if (!elf_core_write_extra_phdrs(cprm, offset))
 | |
| 		goto end_coredump;
 | |
| 
 | |
| 	/* write out the notes section */
 | |
| 	if (!write_note_info(&info, cprm))
 | |
| 		goto end_coredump;
 | |
| 
 | |
| 	/* For cell spufs */
 | |
| 	if (elf_coredump_extra_notes_write(cprm))
 | |
| 		goto end_coredump;
 | |
| 
 | |
| 	/* Align to page */
 | |
| 	dump_skip_to(cprm, dataoff);
 | |
| 
 | |
| 	for (i = 0; i < cprm->vma_count; i++) {
 | |
| 		struct core_vma_metadata *meta = cprm->vma_meta + i;
 | |
| 
 | |
| 		if (!dump_user_range(cprm, meta->start, meta->dump_size))
 | |
| 			goto end_coredump;
 | |
| 	}
 | |
| 
 | |
| 	if (!elf_core_write_extra_data(cprm))
 | |
| 		goto end_coredump;
 | |
| 
 | |
| 	if (e_phnum == PN_XNUM) {
 | |
| 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
 | |
| 			goto end_coredump;
 | |
| 	}
 | |
| 
 | |
| end_coredump:
 | |
| 	free_note_info(&info);
 | |
| 	kfree(shdr4extnum);
 | |
| 	kfree(phdr4note);
 | |
| 	return has_dumped;
 | |
| }
 | |
| 
 | |
| #endif		/* CONFIG_ELF_CORE */
 | |
| 
 | |
| static int __init init_elf_binfmt(void)
 | |
| {
 | |
| 	register_binfmt(&elf_format);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __exit exit_elf_binfmt(void)
 | |
| {
 | |
| 	/* Remove the COFF and ELF loaders. */
 | |
| 	unregister_binfmt(&elf_format);
 | |
| }
 | |
| 
 | |
| core_initcall(init_elf_binfmt);
 | |
| module_exit(exit_elf_binfmt);
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| #ifdef CONFIG_BINFMT_ELF_KUNIT_TEST
 | |
| #include "binfmt_elf_test.c"
 | |
| #endif
 |