mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 7ee47dcfff
			
		
	
	
		7ee47dcfff
		
	
	
	
	
		
			
			We must prevent the CPU from reordering the files->count read with the
FD table access like this, on architectures where read-read reordering is
possible:
    files_lookup_fd_raw()
                                  close_fd()
                                  put_files_struct()
    atomic_read(&files->count)
I would like to mark this for stable, but the stable rules explicitly say
"no theoretical races", and given that the FD table pointer and
files->count are explicitly stored in the same cacheline, this sort of
reordering seems quite unlikely in practice...
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
		
	
			
		
			
				
	
	
		
			1319 lines
		
	
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1319 lines
		
	
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  *  linux/fs/file.c
 | |
|  *
 | |
|  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
 | |
|  *
 | |
|  *  Manage the dynamic fd arrays in the process files_struct.
 | |
|  */
 | |
| 
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fdtable.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/close_range.h>
 | |
| #include <net/sock.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| unsigned int sysctl_nr_open __read_mostly = 1024*1024;
 | |
| unsigned int sysctl_nr_open_min = BITS_PER_LONG;
 | |
| /* our min() is unusable in constant expressions ;-/ */
 | |
| #define __const_min(x, y) ((x) < (y) ? (x) : (y))
 | |
| unsigned int sysctl_nr_open_max =
 | |
| 	__const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
 | |
| 
 | |
| static void __free_fdtable(struct fdtable *fdt)
 | |
| {
 | |
| 	kvfree(fdt->fd);
 | |
| 	kvfree(fdt->open_fds);
 | |
| 	kfree(fdt);
 | |
| }
 | |
| 
 | |
| static void free_fdtable_rcu(struct rcu_head *rcu)
 | |
| {
 | |
| 	__free_fdtable(container_of(rcu, struct fdtable, rcu));
 | |
| }
 | |
| 
 | |
| #define BITBIT_NR(nr)	BITS_TO_LONGS(BITS_TO_LONGS(nr))
 | |
| #define BITBIT_SIZE(nr)	(BITBIT_NR(nr) * sizeof(long))
 | |
| 
 | |
| /*
 | |
|  * Copy 'count' fd bits from the old table to the new table and clear the extra
 | |
|  * space if any.  This does not copy the file pointers.  Called with the files
 | |
|  * spinlock held for write.
 | |
|  */
 | |
| static void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
 | |
| 			    unsigned int count)
 | |
| {
 | |
| 	unsigned int cpy, set;
 | |
| 
 | |
| 	cpy = count / BITS_PER_BYTE;
 | |
| 	set = (nfdt->max_fds - count) / BITS_PER_BYTE;
 | |
| 	memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
 | |
| 	memset((char *)nfdt->open_fds + cpy, 0, set);
 | |
| 	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
 | |
| 	memset((char *)nfdt->close_on_exec + cpy, 0, set);
 | |
| 
 | |
| 	cpy = BITBIT_SIZE(count);
 | |
| 	set = BITBIT_SIZE(nfdt->max_fds) - cpy;
 | |
| 	memcpy(nfdt->full_fds_bits, ofdt->full_fds_bits, cpy);
 | |
| 	memset((char *)nfdt->full_fds_bits + cpy, 0, set);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy all file descriptors from the old table to the new, expanded table and
 | |
|  * clear the extra space.  Called with the files spinlock held for write.
 | |
|  */
 | |
| static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
 | |
| {
 | |
| 	size_t cpy, set;
 | |
| 
 | |
| 	BUG_ON(nfdt->max_fds < ofdt->max_fds);
 | |
| 
 | |
| 	cpy = ofdt->max_fds * sizeof(struct file *);
 | |
| 	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
 | |
| 	memcpy(nfdt->fd, ofdt->fd, cpy);
 | |
| 	memset((char *)nfdt->fd + cpy, 0, set);
 | |
| 
 | |
| 	copy_fd_bitmaps(nfdt, ofdt, ofdt->max_fds);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note how the fdtable bitmap allocations very much have to be a multiple of
 | |
|  * BITS_PER_LONG. This is not only because we walk those things in chunks of
 | |
|  * 'unsigned long' in some places, but simply because that is how the Linux
 | |
|  * kernel bitmaps are defined to work: they are not "bits in an array of bytes",
 | |
|  * they are very much "bits in an array of unsigned long".
 | |
|  *
 | |
|  * The ALIGN(nr, BITS_PER_LONG) here is for clarity: since we just multiplied
 | |
|  * by that "1024/sizeof(ptr)" before, we already know there are sufficient
 | |
|  * clear low bits. Clang seems to realize that, gcc ends up being confused.
 | |
|  *
 | |
|  * On a 128-bit machine, the ALIGN() would actually matter. In the meantime,
 | |
|  * let's consider it documentation (and maybe a test-case for gcc to improve
 | |
|  * its code generation ;)
 | |
|  */
 | |
| static struct fdtable * alloc_fdtable(unsigned int nr)
 | |
| {
 | |
| 	struct fdtable *fdt;
 | |
| 	void *data;
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out how many fds we actually want to support in this fdtable.
 | |
| 	 * Allocation steps are keyed to the size of the fdarray, since it
 | |
| 	 * grows far faster than any of the other dynamic data. We try to fit
 | |
| 	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
 | |
| 	 * and growing in powers of two from there on.
 | |
| 	 */
 | |
| 	nr /= (1024 / sizeof(struct file *));
 | |
| 	nr = roundup_pow_of_two(nr + 1);
 | |
| 	nr *= (1024 / sizeof(struct file *));
 | |
| 	nr = ALIGN(nr, BITS_PER_LONG);
 | |
| 	/*
 | |
| 	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
 | |
| 	 * had been set lower between the check in expand_files() and here.  Deal
 | |
| 	 * with that in caller, it's cheaper that way.
 | |
| 	 *
 | |
| 	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
 | |
| 	 * bitmaps handling below becomes unpleasant, to put it mildly...
 | |
| 	 */
 | |
| 	if (unlikely(nr > sysctl_nr_open))
 | |
| 		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
 | |
| 
 | |
| 	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
 | |
| 	if (!fdt)
 | |
| 		goto out;
 | |
| 	fdt->max_fds = nr;
 | |
| 	data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
 | |
| 	if (!data)
 | |
| 		goto out_fdt;
 | |
| 	fdt->fd = data;
 | |
| 
 | |
| 	data = kvmalloc(max_t(size_t,
 | |
| 				 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
 | |
| 				 GFP_KERNEL_ACCOUNT);
 | |
| 	if (!data)
 | |
| 		goto out_arr;
 | |
| 	fdt->open_fds = data;
 | |
| 	data += nr / BITS_PER_BYTE;
 | |
| 	fdt->close_on_exec = data;
 | |
| 	data += nr / BITS_PER_BYTE;
 | |
| 	fdt->full_fds_bits = data;
 | |
| 
 | |
| 	return fdt;
 | |
| 
 | |
| out_arr:
 | |
| 	kvfree(fdt->fd);
 | |
| out_fdt:
 | |
| 	kfree(fdt);
 | |
| out:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Expand the file descriptor table.
 | |
|  * This function will allocate a new fdtable and both fd array and fdset, of
 | |
|  * the given size.
 | |
|  * Return <0 error code on error; 1 on successful completion.
 | |
|  * The files->file_lock should be held on entry, and will be held on exit.
 | |
|  */
 | |
| static int expand_fdtable(struct files_struct *files, unsigned int nr)
 | |
| 	__releases(files->file_lock)
 | |
| 	__acquires(files->file_lock)
 | |
| {
 | |
| 	struct fdtable *new_fdt, *cur_fdt;
 | |
| 
 | |
| 	spin_unlock(&files->file_lock);
 | |
| 	new_fdt = alloc_fdtable(nr);
 | |
| 
 | |
| 	/* make sure all fd_install() have seen resize_in_progress
 | |
| 	 * or have finished their rcu_read_lock_sched() section.
 | |
| 	 */
 | |
| 	if (atomic_read(&files->count) > 1)
 | |
| 		synchronize_rcu();
 | |
| 
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	if (!new_fdt)
 | |
| 		return -ENOMEM;
 | |
| 	/*
 | |
| 	 * extremely unlikely race - sysctl_nr_open decreased between the check in
 | |
| 	 * caller and alloc_fdtable().  Cheaper to catch it here...
 | |
| 	 */
 | |
| 	if (unlikely(new_fdt->max_fds <= nr)) {
 | |
| 		__free_fdtable(new_fdt);
 | |
| 		return -EMFILE;
 | |
| 	}
 | |
| 	cur_fdt = files_fdtable(files);
 | |
| 	BUG_ON(nr < cur_fdt->max_fds);
 | |
| 	copy_fdtable(new_fdt, cur_fdt);
 | |
| 	rcu_assign_pointer(files->fdt, new_fdt);
 | |
| 	if (cur_fdt != &files->fdtab)
 | |
| 		call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
 | |
| 	/* coupled with smp_rmb() in fd_install() */
 | |
| 	smp_wmb();
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Expand files.
 | |
|  * This function will expand the file structures, if the requested size exceeds
 | |
|  * the current capacity and there is room for expansion.
 | |
|  * Return <0 error code on error; 0 when nothing done; 1 when files were
 | |
|  * expanded and execution may have blocked.
 | |
|  * The files->file_lock should be held on entry, and will be held on exit.
 | |
|  */
 | |
| static int expand_files(struct files_struct *files, unsigned int nr)
 | |
| 	__releases(files->file_lock)
 | |
| 	__acquires(files->file_lock)
 | |
| {
 | |
| 	struct fdtable *fdt;
 | |
| 	int expanded = 0;
 | |
| 
 | |
| repeat:
 | |
| 	fdt = files_fdtable(files);
 | |
| 
 | |
| 	/* Do we need to expand? */
 | |
| 	if (nr < fdt->max_fds)
 | |
| 		return expanded;
 | |
| 
 | |
| 	/* Can we expand? */
 | |
| 	if (nr >= sysctl_nr_open)
 | |
| 		return -EMFILE;
 | |
| 
 | |
| 	if (unlikely(files->resize_in_progress)) {
 | |
| 		spin_unlock(&files->file_lock);
 | |
| 		expanded = 1;
 | |
| 		wait_event(files->resize_wait, !files->resize_in_progress);
 | |
| 		spin_lock(&files->file_lock);
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 
 | |
| 	/* All good, so we try */
 | |
| 	files->resize_in_progress = true;
 | |
| 	expanded = expand_fdtable(files, nr);
 | |
| 	files->resize_in_progress = false;
 | |
| 
 | |
| 	wake_up_all(&files->resize_wait);
 | |
| 	return expanded;
 | |
| }
 | |
| 
 | |
| static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt)
 | |
| {
 | |
| 	__set_bit(fd, fdt->close_on_exec);
 | |
| }
 | |
| 
 | |
| static inline void __clear_close_on_exec(unsigned int fd, struct fdtable *fdt)
 | |
| {
 | |
| 	if (test_bit(fd, fdt->close_on_exec))
 | |
| 		__clear_bit(fd, fdt->close_on_exec);
 | |
| }
 | |
| 
 | |
| static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt)
 | |
| {
 | |
| 	__set_bit(fd, fdt->open_fds);
 | |
| 	fd /= BITS_PER_LONG;
 | |
| 	if (!~fdt->open_fds[fd])
 | |
| 		__set_bit(fd, fdt->full_fds_bits);
 | |
| }
 | |
| 
 | |
| static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
 | |
| {
 | |
| 	__clear_bit(fd, fdt->open_fds);
 | |
| 	__clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits);
 | |
| }
 | |
| 
 | |
| static unsigned int count_open_files(struct fdtable *fdt)
 | |
| {
 | |
| 	unsigned int size = fdt->max_fds;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/* Find the last open fd */
 | |
| 	for (i = size / BITS_PER_LONG; i > 0; ) {
 | |
| 		if (fdt->open_fds[--i])
 | |
| 			break;
 | |
| 	}
 | |
| 	i = (i + 1) * BITS_PER_LONG;
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note that a sane fdtable size always has to be a multiple of
 | |
|  * BITS_PER_LONG, since we have bitmaps that are sized by this.
 | |
|  *
 | |
|  * 'max_fds' will normally already be properly aligned, but it
 | |
|  * turns out that in the close_range() -> __close_range() ->
 | |
|  * unshare_fd() -> dup_fd() -> sane_fdtable_size() we can end
 | |
|  * up having a 'max_fds' value that isn't already aligned.
 | |
|  *
 | |
|  * Rather than make close_range() have to worry about this,
 | |
|  * just make that BITS_PER_LONG alignment be part of a sane
 | |
|  * fdtable size. Becuase that's really what it is.
 | |
|  */
 | |
| static unsigned int sane_fdtable_size(struct fdtable *fdt, unsigned int max_fds)
 | |
| {
 | |
| 	unsigned int count;
 | |
| 
 | |
| 	count = count_open_files(fdt);
 | |
| 	if (max_fds < NR_OPEN_DEFAULT)
 | |
| 		max_fds = NR_OPEN_DEFAULT;
 | |
| 	return ALIGN(min(count, max_fds), BITS_PER_LONG);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a new files structure and copy contents from the
 | |
|  * passed in files structure.
 | |
|  * errorp will be valid only when the returned files_struct is NULL.
 | |
|  */
 | |
| struct files_struct *dup_fd(struct files_struct *oldf, unsigned int max_fds, int *errorp)
 | |
| {
 | |
| 	struct files_struct *newf;
 | |
| 	struct file **old_fds, **new_fds;
 | |
| 	unsigned int open_files, i;
 | |
| 	struct fdtable *old_fdt, *new_fdt;
 | |
| 
 | |
| 	*errorp = -ENOMEM;
 | |
| 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
 | |
| 	if (!newf)
 | |
| 		goto out;
 | |
| 
 | |
| 	atomic_set(&newf->count, 1);
 | |
| 
 | |
| 	spin_lock_init(&newf->file_lock);
 | |
| 	newf->resize_in_progress = false;
 | |
| 	init_waitqueue_head(&newf->resize_wait);
 | |
| 	newf->next_fd = 0;
 | |
| 	new_fdt = &newf->fdtab;
 | |
| 	new_fdt->max_fds = NR_OPEN_DEFAULT;
 | |
| 	new_fdt->close_on_exec = newf->close_on_exec_init;
 | |
| 	new_fdt->open_fds = newf->open_fds_init;
 | |
| 	new_fdt->full_fds_bits = newf->full_fds_bits_init;
 | |
| 	new_fdt->fd = &newf->fd_array[0];
 | |
| 
 | |
| 	spin_lock(&oldf->file_lock);
 | |
| 	old_fdt = files_fdtable(oldf);
 | |
| 	open_files = sane_fdtable_size(old_fdt, max_fds);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether we need to allocate a larger fd array and fd set.
 | |
| 	 */
 | |
| 	while (unlikely(open_files > new_fdt->max_fds)) {
 | |
| 		spin_unlock(&oldf->file_lock);
 | |
| 
 | |
| 		if (new_fdt != &newf->fdtab)
 | |
| 			__free_fdtable(new_fdt);
 | |
| 
 | |
| 		new_fdt = alloc_fdtable(open_files - 1);
 | |
| 		if (!new_fdt) {
 | |
| 			*errorp = -ENOMEM;
 | |
| 			goto out_release;
 | |
| 		}
 | |
| 
 | |
| 		/* beyond sysctl_nr_open; nothing to do */
 | |
| 		if (unlikely(new_fdt->max_fds < open_files)) {
 | |
| 			__free_fdtable(new_fdt);
 | |
| 			*errorp = -EMFILE;
 | |
| 			goto out_release;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Reacquire the oldf lock and a pointer to its fd table
 | |
| 		 * who knows it may have a new bigger fd table. We need
 | |
| 		 * the latest pointer.
 | |
| 		 */
 | |
| 		spin_lock(&oldf->file_lock);
 | |
| 		old_fdt = files_fdtable(oldf);
 | |
| 		open_files = sane_fdtable_size(old_fdt, max_fds);
 | |
| 	}
 | |
| 
 | |
| 	copy_fd_bitmaps(new_fdt, old_fdt, open_files);
 | |
| 
 | |
| 	old_fds = old_fdt->fd;
 | |
| 	new_fds = new_fdt->fd;
 | |
| 
 | |
| 	for (i = open_files; i != 0; i--) {
 | |
| 		struct file *f = *old_fds++;
 | |
| 		if (f) {
 | |
| 			get_file(f);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * The fd may be claimed in the fd bitmap but not yet
 | |
| 			 * instantiated in the files array if a sibling thread
 | |
| 			 * is partway through open().  So make sure that this
 | |
| 			 * fd is available to the new process.
 | |
| 			 */
 | |
| 			__clear_open_fd(open_files - i, new_fdt);
 | |
| 		}
 | |
| 		rcu_assign_pointer(*new_fds++, f);
 | |
| 	}
 | |
| 	spin_unlock(&oldf->file_lock);
 | |
| 
 | |
| 	/* clear the remainder */
 | |
| 	memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
 | |
| 
 | |
| 	rcu_assign_pointer(newf->fdt, new_fdt);
 | |
| 
 | |
| 	return newf;
 | |
| 
 | |
| out_release:
 | |
| 	kmem_cache_free(files_cachep, newf);
 | |
| out:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct fdtable *close_files(struct files_struct * files)
 | |
| {
 | |
| 	/*
 | |
| 	 * It is safe to dereference the fd table without RCU or
 | |
| 	 * ->file_lock because this is the last reference to the
 | |
| 	 * files structure.
 | |
| 	 */
 | |
| 	struct fdtable *fdt = rcu_dereference_raw(files->fdt);
 | |
| 	unsigned int i, j = 0;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		unsigned long set;
 | |
| 		i = j * BITS_PER_LONG;
 | |
| 		if (i >= fdt->max_fds)
 | |
| 			break;
 | |
| 		set = fdt->open_fds[j++];
 | |
| 		while (set) {
 | |
| 			if (set & 1) {
 | |
| 				struct file * file = xchg(&fdt->fd[i], NULL);
 | |
| 				if (file) {
 | |
| 					filp_close(file, files);
 | |
| 					cond_resched();
 | |
| 				}
 | |
| 			}
 | |
| 			i++;
 | |
| 			set >>= 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return fdt;
 | |
| }
 | |
| 
 | |
| void put_files_struct(struct files_struct *files)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&files->count)) {
 | |
| 		struct fdtable *fdt = close_files(files);
 | |
| 
 | |
| 		/* free the arrays if they are not embedded */
 | |
| 		if (fdt != &files->fdtab)
 | |
| 			__free_fdtable(fdt);
 | |
| 		kmem_cache_free(files_cachep, files);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void exit_files(struct task_struct *tsk)
 | |
| {
 | |
| 	struct files_struct * files = tsk->files;
 | |
| 
 | |
| 	if (files) {
 | |
| 		task_lock(tsk);
 | |
| 		tsk->files = NULL;
 | |
| 		task_unlock(tsk);
 | |
| 		put_files_struct(files);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct files_struct init_files = {
 | |
| 	.count		= ATOMIC_INIT(1),
 | |
| 	.fdt		= &init_files.fdtab,
 | |
| 	.fdtab		= {
 | |
| 		.max_fds	= NR_OPEN_DEFAULT,
 | |
| 		.fd		= &init_files.fd_array[0],
 | |
| 		.close_on_exec	= init_files.close_on_exec_init,
 | |
| 		.open_fds	= init_files.open_fds_init,
 | |
| 		.full_fds_bits	= init_files.full_fds_bits_init,
 | |
| 	},
 | |
| 	.file_lock	= __SPIN_LOCK_UNLOCKED(init_files.file_lock),
 | |
| 	.resize_wait	= __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
 | |
| };
 | |
| 
 | |
| static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
 | |
| {
 | |
| 	unsigned int maxfd = fdt->max_fds;
 | |
| 	unsigned int maxbit = maxfd / BITS_PER_LONG;
 | |
| 	unsigned int bitbit = start / BITS_PER_LONG;
 | |
| 
 | |
| 	bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
 | |
| 	if (bitbit > maxfd)
 | |
| 		return maxfd;
 | |
| 	if (bitbit > start)
 | |
| 		start = bitbit;
 | |
| 	return find_next_zero_bit(fdt->open_fds, maxfd, start);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * allocate a file descriptor, mark it busy.
 | |
|  */
 | |
| static int alloc_fd(unsigned start, unsigned end, unsigned flags)
 | |
| {
 | |
| 	struct files_struct *files = current->files;
 | |
| 	unsigned int fd;
 | |
| 	int error;
 | |
| 	struct fdtable *fdt;
 | |
| 
 | |
| 	spin_lock(&files->file_lock);
 | |
| repeat:
 | |
| 	fdt = files_fdtable(files);
 | |
| 	fd = start;
 | |
| 	if (fd < files->next_fd)
 | |
| 		fd = files->next_fd;
 | |
| 
 | |
| 	if (fd < fdt->max_fds)
 | |
| 		fd = find_next_fd(fdt, fd);
 | |
| 
 | |
| 	/*
 | |
| 	 * N.B. For clone tasks sharing a files structure, this test
 | |
| 	 * will limit the total number of files that can be opened.
 | |
| 	 */
 | |
| 	error = -EMFILE;
 | |
| 	if (fd >= end)
 | |
| 		goto out;
 | |
| 
 | |
| 	error = expand_files(files, fd);
 | |
| 	if (error < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we needed to expand the fs array we
 | |
| 	 * might have blocked - try again.
 | |
| 	 */
 | |
| 	if (error)
 | |
| 		goto repeat;
 | |
| 
 | |
| 	if (start <= files->next_fd)
 | |
| 		files->next_fd = fd + 1;
 | |
| 
 | |
| 	__set_open_fd(fd, fdt);
 | |
| 	if (flags & O_CLOEXEC)
 | |
| 		__set_close_on_exec(fd, fdt);
 | |
| 	else
 | |
| 		__clear_close_on_exec(fd, fdt);
 | |
| 	error = fd;
 | |
| #if 1
 | |
| 	/* Sanity check */
 | |
| 	if (rcu_access_pointer(fdt->fd[fd]) != NULL) {
 | |
| 		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
 | |
| 		rcu_assign_pointer(fdt->fd[fd], NULL);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| out:
 | |
| 	spin_unlock(&files->file_lock);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
 | |
| {
 | |
| 	return alloc_fd(0, nofile, flags);
 | |
| }
 | |
| 
 | |
| int get_unused_fd_flags(unsigned flags)
 | |
| {
 | |
| 	return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
 | |
| }
 | |
| EXPORT_SYMBOL(get_unused_fd_flags);
 | |
| 
 | |
| static void __put_unused_fd(struct files_struct *files, unsigned int fd)
 | |
| {
 | |
| 	struct fdtable *fdt = files_fdtable(files);
 | |
| 	__clear_open_fd(fd, fdt);
 | |
| 	if (fd < files->next_fd)
 | |
| 		files->next_fd = fd;
 | |
| }
 | |
| 
 | |
| void put_unused_fd(unsigned int fd)
 | |
| {
 | |
| 	struct files_struct *files = current->files;
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	__put_unused_fd(files, fd);
 | |
| 	spin_unlock(&files->file_lock);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(put_unused_fd);
 | |
| 
 | |
| /*
 | |
|  * Install a file pointer in the fd array.
 | |
|  *
 | |
|  * The VFS is full of places where we drop the files lock between
 | |
|  * setting the open_fds bitmap and installing the file in the file
 | |
|  * array.  At any such point, we are vulnerable to a dup2() race
 | |
|  * installing a file in the array before us.  We need to detect this and
 | |
|  * fput() the struct file we are about to overwrite in this case.
 | |
|  *
 | |
|  * It should never happen - if we allow dup2() do it, _really_ bad things
 | |
|  * will follow.
 | |
|  *
 | |
|  * This consumes the "file" refcount, so callers should treat it
 | |
|  * as if they had called fput(file).
 | |
|  */
 | |
| 
 | |
| void fd_install(unsigned int fd, struct file *file)
 | |
| {
 | |
| 	struct files_struct *files = current->files;
 | |
| 	struct fdtable *fdt;
 | |
| 
 | |
| 	rcu_read_lock_sched();
 | |
| 
 | |
| 	if (unlikely(files->resize_in_progress)) {
 | |
| 		rcu_read_unlock_sched();
 | |
| 		spin_lock(&files->file_lock);
 | |
| 		fdt = files_fdtable(files);
 | |
| 		BUG_ON(fdt->fd[fd] != NULL);
 | |
| 		rcu_assign_pointer(fdt->fd[fd], file);
 | |
| 		spin_unlock(&files->file_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 	/* coupled with smp_wmb() in expand_fdtable() */
 | |
| 	smp_rmb();
 | |
| 	fdt = rcu_dereference_sched(files->fdt);
 | |
| 	BUG_ON(fdt->fd[fd] != NULL);
 | |
| 	rcu_assign_pointer(fdt->fd[fd], file);
 | |
| 	rcu_read_unlock_sched();
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(fd_install);
 | |
| 
 | |
| /**
 | |
|  * pick_file - return file associatd with fd
 | |
|  * @files: file struct to retrieve file from
 | |
|  * @fd: file descriptor to retrieve file for
 | |
|  *
 | |
|  * Context: files_lock must be held.
 | |
|  *
 | |
|  * Returns: The file associated with @fd (NULL if @fd is not open)
 | |
|  */
 | |
| static struct file *pick_file(struct files_struct *files, unsigned fd)
 | |
| {
 | |
| 	struct fdtable *fdt = files_fdtable(files);
 | |
| 	struct file *file;
 | |
| 
 | |
| 	if (fd >= fdt->max_fds)
 | |
| 		return NULL;
 | |
| 
 | |
| 	file = fdt->fd[fd];
 | |
| 	if (file) {
 | |
| 		rcu_assign_pointer(fdt->fd[fd], NULL);
 | |
| 		__put_unused_fd(files, fd);
 | |
| 	}
 | |
| 	return file;
 | |
| }
 | |
| 
 | |
| int close_fd(unsigned fd)
 | |
| {
 | |
| 	struct files_struct *files = current->files;
 | |
| 	struct file *file;
 | |
| 
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	file = pick_file(files, fd);
 | |
| 	spin_unlock(&files->file_lock);
 | |
| 	if (!file)
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	return filp_close(file, files);
 | |
| }
 | |
| EXPORT_SYMBOL(close_fd); /* for ksys_close() */
 | |
| 
 | |
| /**
 | |
|  * last_fd - return last valid index into fd table
 | |
|  * @cur_fds: files struct
 | |
|  *
 | |
|  * Context: Either rcu read lock or files_lock must be held.
 | |
|  *
 | |
|  * Returns: Last valid index into fdtable.
 | |
|  */
 | |
| static inline unsigned last_fd(struct fdtable *fdt)
 | |
| {
 | |
| 	return fdt->max_fds - 1;
 | |
| }
 | |
| 
 | |
| static inline void __range_cloexec(struct files_struct *cur_fds,
 | |
| 				   unsigned int fd, unsigned int max_fd)
 | |
| {
 | |
| 	struct fdtable *fdt;
 | |
| 
 | |
| 	/* make sure we're using the correct maximum value */
 | |
| 	spin_lock(&cur_fds->file_lock);
 | |
| 	fdt = files_fdtable(cur_fds);
 | |
| 	max_fd = min(last_fd(fdt), max_fd);
 | |
| 	if (fd <= max_fd)
 | |
| 		bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1);
 | |
| 	spin_unlock(&cur_fds->file_lock);
 | |
| }
 | |
| 
 | |
| static inline void __range_close(struct files_struct *cur_fds, unsigned int fd,
 | |
| 				 unsigned int max_fd)
 | |
| {
 | |
| 	unsigned n;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	n = last_fd(files_fdtable(cur_fds));
 | |
| 	rcu_read_unlock();
 | |
| 	max_fd = min(max_fd, n);
 | |
| 
 | |
| 	while (fd <= max_fd) {
 | |
| 		struct file *file;
 | |
| 
 | |
| 		spin_lock(&cur_fds->file_lock);
 | |
| 		file = pick_file(cur_fds, fd++);
 | |
| 		spin_unlock(&cur_fds->file_lock);
 | |
| 
 | |
| 		if (file) {
 | |
| 			/* found a valid file to close */
 | |
| 			filp_close(file, cur_fds);
 | |
| 			cond_resched();
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __close_range() - Close all file descriptors in a given range.
 | |
|  *
 | |
|  * @fd:     starting file descriptor to close
 | |
|  * @max_fd: last file descriptor to close
 | |
|  *
 | |
|  * This closes a range of file descriptors. All file descriptors
 | |
|  * from @fd up to and including @max_fd are closed.
 | |
|  */
 | |
| int __close_range(unsigned fd, unsigned max_fd, unsigned int flags)
 | |
| {
 | |
| 	struct task_struct *me = current;
 | |
| 	struct files_struct *cur_fds = me->files, *fds = NULL;
 | |
| 
 | |
| 	if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (fd > max_fd)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (flags & CLOSE_RANGE_UNSHARE) {
 | |
| 		int ret;
 | |
| 		unsigned int max_unshare_fds = NR_OPEN_MAX;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the caller requested all fds to be made cloexec we always
 | |
| 		 * copy all of the file descriptors since they still want to
 | |
| 		 * use them.
 | |
| 		 */
 | |
| 		if (!(flags & CLOSE_RANGE_CLOEXEC)) {
 | |
| 			/*
 | |
| 			 * If the requested range is greater than the current
 | |
| 			 * maximum, we're closing everything so only copy all
 | |
| 			 * file descriptors beneath the lowest file descriptor.
 | |
| 			 */
 | |
| 			rcu_read_lock();
 | |
| 			if (max_fd >= last_fd(files_fdtable(cur_fds)))
 | |
| 				max_unshare_fds = fd;
 | |
| 			rcu_read_unlock();
 | |
| 		}
 | |
| 
 | |
| 		ret = unshare_fd(CLONE_FILES, max_unshare_fds, &fds);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		/*
 | |
| 		 * We used to share our file descriptor table, and have now
 | |
| 		 * created a private one, make sure we're using it below.
 | |
| 		 */
 | |
| 		if (fds)
 | |
| 			swap(cur_fds, fds);
 | |
| 	}
 | |
| 
 | |
| 	if (flags & CLOSE_RANGE_CLOEXEC)
 | |
| 		__range_cloexec(cur_fds, fd, max_fd);
 | |
| 	else
 | |
| 		__range_close(cur_fds, fd, max_fd);
 | |
| 
 | |
| 	if (fds) {
 | |
| 		/*
 | |
| 		 * We're done closing the files we were supposed to. Time to install
 | |
| 		 * the new file descriptor table and drop the old one.
 | |
| 		 */
 | |
| 		task_lock(me);
 | |
| 		me->files = cur_fds;
 | |
| 		task_unlock(me);
 | |
| 		put_files_struct(fds);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See close_fd_get_file() below, this variant assumes current->files->file_lock
 | |
|  * is held.
 | |
|  */
 | |
| struct file *__close_fd_get_file(unsigned int fd)
 | |
| {
 | |
| 	return pick_file(current->files, fd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * variant of close_fd that gets a ref on the file for later fput.
 | |
|  * The caller must ensure that filp_close() called on the file.
 | |
|  */
 | |
| struct file *close_fd_get_file(unsigned int fd)
 | |
| {
 | |
| 	struct files_struct *files = current->files;
 | |
| 	struct file *file;
 | |
| 
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	file = pick_file(files, fd);
 | |
| 	spin_unlock(&files->file_lock);
 | |
| 
 | |
| 	return file;
 | |
| }
 | |
| 
 | |
| void do_close_on_exec(struct files_struct *files)
 | |
| {
 | |
| 	unsigned i;
 | |
| 	struct fdtable *fdt;
 | |
| 
 | |
| 	/* exec unshares first */
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	for (i = 0; ; i++) {
 | |
| 		unsigned long set;
 | |
| 		unsigned fd = i * BITS_PER_LONG;
 | |
| 		fdt = files_fdtable(files);
 | |
| 		if (fd >= fdt->max_fds)
 | |
| 			break;
 | |
| 		set = fdt->close_on_exec[i];
 | |
| 		if (!set)
 | |
| 			continue;
 | |
| 		fdt->close_on_exec[i] = 0;
 | |
| 		for ( ; set ; fd++, set >>= 1) {
 | |
| 			struct file *file;
 | |
| 			if (!(set & 1))
 | |
| 				continue;
 | |
| 			file = fdt->fd[fd];
 | |
| 			if (!file)
 | |
| 				continue;
 | |
| 			rcu_assign_pointer(fdt->fd[fd], NULL);
 | |
| 			__put_unused_fd(files, fd);
 | |
| 			spin_unlock(&files->file_lock);
 | |
| 			filp_close(file, files);
 | |
| 			cond_resched();
 | |
| 			spin_lock(&files->file_lock);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	spin_unlock(&files->file_lock);
 | |
| }
 | |
| 
 | |
| static inline struct file *__fget_files_rcu(struct files_struct *files,
 | |
| 	unsigned int fd, fmode_t mask)
 | |
| {
 | |
| 	for (;;) {
 | |
| 		struct file *file;
 | |
| 		struct fdtable *fdt = rcu_dereference_raw(files->fdt);
 | |
| 		struct file __rcu **fdentry;
 | |
| 
 | |
| 		if (unlikely(fd >= fdt->max_fds))
 | |
| 			return NULL;
 | |
| 
 | |
| 		fdentry = fdt->fd + array_index_nospec(fd, fdt->max_fds);
 | |
| 		file = rcu_dereference_raw(*fdentry);
 | |
| 		if (unlikely(!file))
 | |
| 			return NULL;
 | |
| 
 | |
| 		if (unlikely(file->f_mode & mask))
 | |
| 			return NULL;
 | |
| 
 | |
| 		/*
 | |
| 		 * Ok, we have a file pointer. However, because we do
 | |
| 		 * this all locklessly under RCU, we may be racing with
 | |
| 		 * that file being closed.
 | |
| 		 *
 | |
| 		 * Such a race can take two forms:
 | |
| 		 *
 | |
| 		 *  (a) the file ref already went down to zero,
 | |
| 		 *      and get_file_rcu() fails. Just try again:
 | |
| 		 */
 | |
| 		if (unlikely(!get_file_rcu(file)))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 *  (b) the file table entry has changed under us.
 | |
| 		 *       Note that we don't need to re-check the 'fdt->fd'
 | |
| 		 *       pointer having changed, because it always goes
 | |
| 		 *       hand-in-hand with 'fdt'.
 | |
| 		 *
 | |
| 		 * If so, we need to put our ref and try again.
 | |
| 		 */
 | |
| 		if (unlikely(rcu_dereference_raw(files->fdt) != fdt) ||
 | |
| 		    unlikely(rcu_dereference_raw(*fdentry) != file)) {
 | |
| 			fput(file);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Ok, we have a ref to the file, and checked that it
 | |
| 		 * still exists.
 | |
| 		 */
 | |
| 		return file;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct file *__fget_files(struct files_struct *files, unsigned int fd,
 | |
| 				 fmode_t mask)
 | |
| {
 | |
| 	struct file *file;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	file = __fget_files_rcu(files, fd, mask);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return file;
 | |
| }
 | |
| 
 | |
| static inline struct file *__fget(unsigned int fd, fmode_t mask)
 | |
| {
 | |
| 	return __fget_files(current->files, fd, mask);
 | |
| }
 | |
| 
 | |
| struct file *fget(unsigned int fd)
 | |
| {
 | |
| 	return __fget(fd, FMODE_PATH);
 | |
| }
 | |
| EXPORT_SYMBOL(fget);
 | |
| 
 | |
| struct file *fget_raw(unsigned int fd)
 | |
| {
 | |
| 	return __fget(fd, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(fget_raw);
 | |
| 
 | |
| struct file *fget_task(struct task_struct *task, unsigned int fd)
 | |
| {
 | |
| 	struct file *file = NULL;
 | |
| 
 | |
| 	task_lock(task);
 | |
| 	if (task->files)
 | |
| 		file = __fget_files(task->files, fd, 0);
 | |
| 	task_unlock(task);
 | |
| 
 | |
| 	return file;
 | |
| }
 | |
| 
 | |
| struct file *task_lookup_fd_rcu(struct task_struct *task, unsigned int fd)
 | |
| {
 | |
| 	/* Must be called with rcu_read_lock held */
 | |
| 	struct files_struct *files;
 | |
| 	struct file *file = NULL;
 | |
| 
 | |
| 	task_lock(task);
 | |
| 	files = task->files;
 | |
| 	if (files)
 | |
| 		file = files_lookup_fd_rcu(files, fd);
 | |
| 	task_unlock(task);
 | |
| 
 | |
| 	return file;
 | |
| }
 | |
| 
 | |
| struct file *task_lookup_next_fd_rcu(struct task_struct *task, unsigned int *ret_fd)
 | |
| {
 | |
| 	/* Must be called with rcu_read_lock held */
 | |
| 	struct files_struct *files;
 | |
| 	unsigned int fd = *ret_fd;
 | |
| 	struct file *file = NULL;
 | |
| 
 | |
| 	task_lock(task);
 | |
| 	files = task->files;
 | |
| 	if (files) {
 | |
| 		for (; fd < files_fdtable(files)->max_fds; fd++) {
 | |
| 			file = files_lookup_fd_rcu(files, fd);
 | |
| 			if (file)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	task_unlock(task);
 | |
| 	*ret_fd = fd;
 | |
| 	return file;
 | |
| }
 | |
| EXPORT_SYMBOL(task_lookup_next_fd_rcu);
 | |
| 
 | |
| /*
 | |
|  * Lightweight file lookup - no refcnt increment if fd table isn't shared.
 | |
|  *
 | |
|  * You can use this instead of fget if you satisfy all of the following
 | |
|  * conditions:
 | |
|  * 1) You must call fput_light before exiting the syscall and returning control
 | |
|  *    to userspace (i.e. you cannot remember the returned struct file * after
 | |
|  *    returning to userspace).
 | |
|  * 2) You must not call filp_close on the returned struct file * in between
 | |
|  *    calls to fget_light and fput_light.
 | |
|  * 3) You must not clone the current task in between the calls to fget_light
 | |
|  *    and fput_light.
 | |
|  *
 | |
|  * The fput_needed flag returned by fget_light should be passed to the
 | |
|  * corresponding fput_light.
 | |
|  */
 | |
| static unsigned long __fget_light(unsigned int fd, fmode_t mask)
 | |
| {
 | |
| 	struct files_struct *files = current->files;
 | |
| 	struct file *file;
 | |
| 
 | |
| 	/*
 | |
| 	 * If another thread is concurrently calling close_fd() followed
 | |
| 	 * by put_files_struct(), we must not observe the old table
 | |
| 	 * entry combined with the new refcount - otherwise we could
 | |
| 	 * return a file that is concurrently being freed.
 | |
| 	 *
 | |
| 	 * atomic_read_acquire() pairs with atomic_dec_and_test() in
 | |
| 	 * put_files_struct().
 | |
| 	 */
 | |
| 	if (atomic_read_acquire(&files->count) == 1) {
 | |
| 		file = files_lookup_fd_raw(files, fd);
 | |
| 		if (!file || unlikely(file->f_mode & mask))
 | |
| 			return 0;
 | |
| 		return (unsigned long)file;
 | |
| 	} else {
 | |
| 		file = __fget(fd, mask);
 | |
| 		if (!file)
 | |
| 			return 0;
 | |
| 		return FDPUT_FPUT | (unsigned long)file;
 | |
| 	}
 | |
| }
 | |
| unsigned long __fdget(unsigned int fd)
 | |
| {
 | |
| 	return __fget_light(fd, FMODE_PATH);
 | |
| }
 | |
| EXPORT_SYMBOL(__fdget);
 | |
| 
 | |
| unsigned long __fdget_raw(unsigned int fd)
 | |
| {
 | |
| 	return __fget_light(fd, 0);
 | |
| }
 | |
| 
 | |
| unsigned long __fdget_pos(unsigned int fd)
 | |
| {
 | |
| 	unsigned long v = __fdget(fd);
 | |
| 	struct file *file = (struct file *)(v & ~3);
 | |
| 
 | |
| 	if (file && (file->f_mode & FMODE_ATOMIC_POS)) {
 | |
| 		if (file_count(file) > 1) {
 | |
| 			v |= FDPUT_POS_UNLOCK;
 | |
| 			mutex_lock(&file->f_pos_lock);
 | |
| 		}
 | |
| 	}
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| void __f_unlock_pos(struct file *f)
 | |
| {
 | |
| 	mutex_unlock(&f->f_pos_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We only lock f_pos if we have threads or if the file might be
 | |
|  * shared with another process. In both cases we'll have an elevated
 | |
|  * file count (done either by fdget() or by fork()).
 | |
|  */
 | |
| 
 | |
| void set_close_on_exec(unsigned int fd, int flag)
 | |
| {
 | |
| 	struct files_struct *files = current->files;
 | |
| 	struct fdtable *fdt;
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	fdt = files_fdtable(files);
 | |
| 	if (flag)
 | |
| 		__set_close_on_exec(fd, fdt);
 | |
| 	else
 | |
| 		__clear_close_on_exec(fd, fdt);
 | |
| 	spin_unlock(&files->file_lock);
 | |
| }
 | |
| 
 | |
| bool get_close_on_exec(unsigned int fd)
 | |
| {
 | |
| 	struct files_struct *files = current->files;
 | |
| 	struct fdtable *fdt;
 | |
| 	bool res;
 | |
| 	rcu_read_lock();
 | |
| 	fdt = files_fdtable(files);
 | |
| 	res = close_on_exec(fd, fdt);
 | |
| 	rcu_read_unlock();
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static int do_dup2(struct files_struct *files,
 | |
| 	struct file *file, unsigned fd, unsigned flags)
 | |
| __releases(&files->file_lock)
 | |
| {
 | |
| 	struct file *tofree;
 | |
| 	struct fdtable *fdt;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to detect attempts to do dup2() over allocated but still
 | |
| 	 * not finished descriptor.  NB: OpenBSD avoids that at the price of
 | |
| 	 * extra work in their equivalent of fget() - they insert struct
 | |
| 	 * file immediately after grabbing descriptor, mark it larval if
 | |
| 	 * more work (e.g. actual opening) is needed and make sure that
 | |
| 	 * fget() treats larval files as absent.  Potentially interesting,
 | |
| 	 * but while extra work in fget() is trivial, locking implications
 | |
| 	 * and amount of surgery on open()-related paths in VFS are not.
 | |
| 	 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
 | |
| 	 * deadlocks in rather amusing ways, AFAICS.  All of that is out of
 | |
| 	 * scope of POSIX or SUS, since neither considers shared descriptor
 | |
| 	 * tables and this condition does not arise without those.
 | |
| 	 */
 | |
| 	fdt = files_fdtable(files);
 | |
| 	tofree = fdt->fd[fd];
 | |
| 	if (!tofree && fd_is_open(fd, fdt))
 | |
| 		goto Ebusy;
 | |
| 	get_file(file);
 | |
| 	rcu_assign_pointer(fdt->fd[fd], file);
 | |
| 	__set_open_fd(fd, fdt);
 | |
| 	if (flags & O_CLOEXEC)
 | |
| 		__set_close_on_exec(fd, fdt);
 | |
| 	else
 | |
| 		__clear_close_on_exec(fd, fdt);
 | |
| 	spin_unlock(&files->file_lock);
 | |
| 
 | |
| 	if (tofree)
 | |
| 		filp_close(tofree, files);
 | |
| 
 | |
| 	return fd;
 | |
| 
 | |
| Ebusy:
 | |
| 	spin_unlock(&files->file_lock);
 | |
| 	return -EBUSY;
 | |
| }
 | |
| 
 | |
| int replace_fd(unsigned fd, struct file *file, unsigned flags)
 | |
| {
 | |
| 	int err;
 | |
| 	struct files_struct *files = current->files;
 | |
| 
 | |
| 	if (!file)
 | |
| 		return close_fd(fd);
 | |
| 
 | |
| 	if (fd >= rlimit(RLIMIT_NOFILE))
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	err = expand_files(files, fd);
 | |
| 	if (unlikely(err < 0))
 | |
| 		goto out_unlock;
 | |
| 	return do_dup2(files, file, fd, flags);
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock(&files->file_lock);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __receive_fd() - Install received file into file descriptor table
 | |
|  * @file: struct file that was received from another process
 | |
|  * @ufd: __user pointer to write new fd number to
 | |
|  * @o_flags: the O_* flags to apply to the new fd entry
 | |
|  *
 | |
|  * Installs a received file into the file descriptor table, with appropriate
 | |
|  * checks and count updates. Optionally writes the fd number to userspace, if
 | |
|  * @ufd is non-NULL.
 | |
|  *
 | |
|  * This helper handles its own reference counting of the incoming
 | |
|  * struct file.
 | |
|  *
 | |
|  * Returns newly install fd or -ve on error.
 | |
|  */
 | |
| int __receive_fd(struct file *file, int __user *ufd, unsigned int o_flags)
 | |
| {
 | |
| 	int new_fd;
 | |
| 	int error;
 | |
| 
 | |
| 	error = security_file_receive(file);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	new_fd = get_unused_fd_flags(o_flags);
 | |
| 	if (new_fd < 0)
 | |
| 		return new_fd;
 | |
| 
 | |
| 	if (ufd) {
 | |
| 		error = put_user(new_fd, ufd);
 | |
| 		if (error) {
 | |
| 			put_unused_fd(new_fd);
 | |
| 			return error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	fd_install(new_fd, get_file(file));
 | |
| 	__receive_sock(file);
 | |
| 	return new_fd;
 | |
| }
 | |
| 
 | |
| int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	error = security_file_receive(file);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	error = replace_fd(new_fd, file, o_flags);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	__receive_sock(file);
 | |
| 	return new_fd;
 | |
| }
 | |
| 
 | |
| int receive_fd(struct file *file, unsigned int o_flags)
 | |
| {
 | |
| 	return __receive_fd(file, NULL, o_flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(receive_fd);
 | |
| 
 | |
| static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
 | |
| {
 | |
| 	int err = -EBADF;
 | |
| 	struct file *file;
 | |
| 	struct files_struct *files = current->files;
 | |
| 
 | |
| 	if ((flags & ~O_CLOEXEC) != 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (unlikely(oldfd == newfd))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (newfd >= rlimit(RLIMIT_NOFILE))
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	err = expand_files(files, newfd);
 | |
| 	file = files_lookup_fd_locked(files, oldfd);
 | |
| 	if (unlikely(!file))
 | |
| 		goto Ebadf;
 | |
| 	if (unlikely(err < 0)) {
 | |
| 		if (err == -EMFILE)
 | |
| 			goto Ebadf;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	return do_dup2(files, file, newfd, flags);
 | |
| 
 | |
| Ebadf:
 | |
| 	err = -EBADF;
 | |
| out_unlock:
 | |
| 	spin_unlock(&files->file_lock);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
 | |
| {
 | |
| 	return ksys_dup3(oldfd, newfd, flags);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
 | |
| {
 | |
| 	if (unlikely(newfd == oldfd)) { /* corner case */
 | |
| 		struct files_struct *files = current->files;
 | |
| 		int retval = oldfd;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		if (!files_lookup_fd_rcu(files, oldfd))
 | |
| 			retval = -EBADF;
 | |
| 		rcu_read_unlock();
 | |
| 		return retval;
 | |
| 	}
 | |
| 	return ksys_dup3(oldfd, newfd, 0);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(dup, unsigned int, fildes)
 | |
| {
 | |
| 	int ret = -EBADF;
 | |
| 	struct file *file = fget_raw(fildes);
 | |
| 
 | |
| 	if (file) {
 | |
| 		ret = get_unused_fd_flags(0);
 | |
| 		if (ret >= 0)
 | |
| 			fd_install(ret, file);
 | |
| 		else
 | |
| 			fput(file);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int f_dupfd(unsigned int from, struct file *file, unsigned flags)
 | |
| {
 | |
| 	unsigned long nofile = rlimit(RLIMIT_NOFILE);
 | |
| 	int err;
 | |
| 	if (from >= nofile)
 | |
| 		return -EINVAL;
 | |
| 	err = alloc_fd(from, nofile, flags);
 | |
| 	if (err >= 0) {
 | |
| 		get_file(file);
 | |
| 		fd_install(err, file);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int iterate_fd(struct files_struct *files, unsigned n,
 | |
| 		int (*f)(const void *, struct file *, unsigned),
 | |
| 		const void *p)
 | |
| {
 | |
| 	struct fdtable *fdt;
 | |
| 	int res = 0;
 | |
| 	if (!files)
 | |
| 		return 0;
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
 | |
| 		struct file *file;
 | |
| 		file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
 | |
| 		if (!file)
 | |
| 			continue;
 | |
| 		res = f(p, file, n);
 | |
| 		if (res)
 | |
| 			break;
 | |
| 	}
 | |
| 	spin_unlock(&files->file_lock);
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL(iterate_fd);
 |