mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-03 18:20:25 +02:00 
			
		
		
		
	Return crypto_aead_setkey() in order to transfer the error if
it fails.
Fixes: d2c8ac187f ("crypto: sa2ul - Add AEAD algorithm support")
Signed-off-by: Chen Ni <nichen@iscas.ac.cn>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
	
			
		
			
				
	
	
		
			2499 lines
		
	
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2499 lines
		
	
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * K3 SA2UL crypto accelerator driver
 | 
						|
 *
 | 
						|
 * Copyright (C) 2018-2020 Texas Instruments Incorporated - http://www.ti.com
 | 
						|
 *
 | 
						|
 * Authors:	Keerthy
 | 
						|
 *		Vitaly Andrianov
 | 
						|
 *		Tero Kristo
 | 
						|
 */
 | 
						|
#include <linux/bitfield.h>
 | 
						|
#include <linux/clk.h>
 | 
						|
#include <linux/dma-mapping.h>
 | 
						|
#include <linux/dmaengine.h>
 | 
						|
#include <linux/dmapool.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/of.h>
 | 
						|
#include <linux/of_platform.h>
 | 
						|
#include <linux/platform_device.h>
 | 
						|
#include <linux/pm_runtime.h>
 | 
						|
 | 
						|
#include <crypto/aes.h>
 | 
						|
#include <crypto/authenc.h>
 | 
						|
#include <crypto/des.h>
 | 
						|
#include <crypto/internal/aead.h>
 | 
						|
#include <crypto/internal/hash.h>
 | 
						|
#include <crypto/internal/skcipher.h>
 | 
						|
#include <crypto/scatterwalk.h>
 | 
						|
#include <crypto/sha1.h>
 | 
						|
#include <crypto/sha2.h>
 | 
						|
 | 
						|
#include "sa2ul.h"
 | 
						|
 | 
						|
/* Byte offset for key in encryption security context */
 | 
						|
#define SC_ENC_KEY_OFFSET (1 + 27 + 4)
 | 
						|
/* Byte offset for Aux-1 in encryption security context */
 | 
						|
#define SC_ENC_AUX1_OFFSET (1 + 27 + 4 + 32)
 | 
						|
 | 
						|
#define SA_CMDL_UPD_ENC         0x0001
 | 
						|
#define SA_CMDL_UPD_AUTH        0x0002
 | 
						|
#define SA_CMDL_UPD_ENC_IV      0x0004
 | 
						|
#define SA_CMDL_UPD_AUTH_IV     0x0008
 | 
						|
#define SA_CMDL_UPD_AUX_KEY     0x0010
 | 
						|
 | 
						|
#define SA_AUTH_SUBKEY_LEN	16
 | 
						|
#define SA_CMDL_PAYLOAD_LENGTH_MASK	0xFFFF
 | 
						|
#define SA_CMDL_SOP_BYPASS_LEN_MASK	0xFF000000
 | 
						|
 | 
						|
#define MODE_CONTROL_BYTES	27
 | 
						|
#define SA_HASH_PROCESSING	0
 | 
						|
#define SA_CRYPTO_PROCESSING	0
 | 
						|
#define SA_UPLOAD_HASH_TO_TLR	BIT(6)
 | 
						|
 | 
						|
#define SA_SW0_FLAGS_MASK	0xF0000
 | 
						|
#define SA_SW0_CMDL_INFO_MASK	0x1F00000
 | 
						|
#define SA_SW0_CMDL_PRESENT	BIT(4)
 | 
						|
#define SA_SW0_ENG_ID_MASK	0x3E000000
 | 
						|
#define SA_SW0_DEST_INFO_PRESENT	BIT(30)
 | 
						|
#define SA_SW2_EGRESS_LENGTH		0xFF000000
 | 
						|
#define SA_BASIC_HASH		0x10
 | 
						|
 | 
						|
#define SHA256_DIGEST_WORDS    8
 | 
						|
/* Make 32-bit word from 4 bytes */
 | 
						|
#define SA_MK_U32(b0, b1, b2, b3) (((b0) << 24) | ((b1) << 16) | \
 | 
						|
				   ((b2) << 8) | (b3))
 | 
						|
 | 
						|
/* size of SCCTL structure in bytes */
 | 
						|
#define SA_SCCTL_SZ 16
 | 
						|
 | 
						|
/* Max Authentication tag size */
 | 
						|
#define SA_MAX_AUTH_TAG_SZ 64
 | 
						|
 | 
						|
enum sa_algo_id {
 | 
						|
	SA_ALG_CBC_AES = 0,
 | 
						|
	SA_ALG_EBC_AES,
 | 
						|
	SA_ALG_CBC_DES3,
 | 
						|
	SA_ALG_ECB_DES3,
 | 
						|
	SA_ALG_SHA1,
 | 
						|
	SA_ALG_SHA256,
 | 
						|
	SA_ALG_SHA512,
 | 
						|
	SA_ALG_AUTHENC_SHA1_AES,
 | 
						|
	SA_ALG_AUTHENC_SHA256_AES,
 | 
						|
};
 | 
						|
 | 
						|
struct sa_match_data {
 | 
						|
	u8 priv;
 | 
						|
	u8 priv_id;
 | 
						|
	u32 supported_algos;
 | 
						|
};
 | 
						|
 | 
						|
static struct device *sa_k3_dev;
 | 
						|
 | 
						|
/**
 | 
						|
 * struct sa_cmdl_cfg - Command label configuration descriptor
 | 
						|
 * @aalg: authentication algorithm ID
 | 
						|
 * @enc_eng_id: Encryption Engine ID supported by the SA hardware
 | 
						|
 * @auth_eng_id: Authentication Engine ID
 | 
						|
 * @iv_size: Initialization Vector size
 | 
						|
 * @akey: Authentication key
 | 
						|
 * @akey_len: Authentication key length
 | 
						|
 * @enc: True, if this is an encode request
 | 
						|
 */
 | 
						|
struct sa_cmdl_cfg {
 | 
						|
	int aalg;
 | 
						|
	u8 enc_eng_id;
 | 
						|
	u8 auth_eng_id;
 | 
						|
	u8 iv_size;
 | 
						|
	const u8 *akey;
 | 
						|
	u16 akey_len;
 | 
						|
	bool enc;
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * struct algo_data - Crypto algorithm specific data
 | 
						|
 * @enc_eng: Encryption engine info structure
 | 
						|
 * @auth_eng: Authentication engine info structure
 | 
						|
 * @auth_ctrl: Authentication control word
 | 
						|
 * @hash_size: Size of digest
 | 
						|
 * @iv_idx: iv index in psdata
 | 
						|
 * @iv_out_size: iv out size
 | 
						|
 * @ealg_id: Encryption Algorithm ID
 | 
						|
 * @aalg_id: Authentication algorithm ID
 | 
						|
 * @mci_enc: Mode Control Instruction for Encryption algorithm
 | 
						|
 * @mci_dec: Mode Control Instruction for Decryption
 | 
						|
 * @inv_key: Whether the encryption algorithm demands key inversion
 | 
						|
 * @ctx: Pointer to the algorithm context
 | 
						|
 * @keyed_mac: Whether the authentication algorithm has key
 | 
						|
 * @prep_iopad: Function pointer to generate intermediate ipad/opad
 | 
						|
 */
 | 
						|
struct algo_data {
 | 
						|
	struct sa_eng_info enc_eng;
 | 
						|
	struct sa_eng_info auth_eng;
 | 
						|
	u8 auth_ctrl;
 | 
						|
	u8 hash_size;
 | 
						|
	u8 iv_idx;
 | 
						|
	u8 iv_out_size;
 | 
						|
	u8 ealg_id;
 | 
						|
	u8 aalg_id;
 | 
						|
	u8 *mci_enc;
 | 
						|
	u8 *mci_dec;
 | 
						|
	bool inv_key;
 | 
						|
	struct sa_tfm_ctx *ctx;
 | 
						|
	bool keyed_mac;
 | 
						|
	void (*prep_iopad)(struct algo_data *algo, const u8 *key,
 | 
						|
			   u16 key_sz, __be32 *ipad, __be32 *opad);
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * struct sa_alg_tmpl: A generic template encompassing crypto/aead algorithms
 | 
						|
 * @type: Type of the crypto algorithm.
 | 
						|
 * @alg: Union of crypto algorithm definitions.
 | 
						|
 * @registered: Flag indicating if the crypto algorithm is already registered
 | 
						|
 */
 | 
						|
struct sa_alg_tmpl {
 | 
						|
	u32 type;		/* CRYPTO_ALG_TYPE from <linux/crypto.h> */
 | 
						|
	union {
 | 
						|
		struct skcipher_alg skcipher;
 | 
						|
		struct ahash_alg ahash;
 | 
						|
		struct aead_alg aead;
 | 
						|
	} alg;
 | 
						|
	bool registered;
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * struct sa_mapped_sg: scatterlist information for tx and rx
 | 
						|
 * @mapped: Set to true if the @sgt is mapped
 | 
						|
 * @dir: mapping direction used for @sgt
 | 
						|
 * @split_sg: Set if the sg is split and needs to be freed up
 | 
						|
 * @static_sg: Static scatterlist entry for overriding data
 | 
						|
 * @sgt: scatterlist table for DMA API use
 | 
						|
 */
 | 
						|
struct sa_mapped_sg {
 | 
						|
	bool mapped;
 | 
						|
	enum dma_data_direction dir;
 | 
						|
	struct scatterlist static_sg;
 | 
						|
	struct scatterlist *split_sg;
 | 
						|
	struct sg_table sgt;
 | 
						|
};
 | 
						|
/**
 | 
						|
 * struct sa_rx_data: RX Packet miscellaneous data place holder
 | 
						|
 * @req: crypto request data pointer
 | 
						|
 * @ddev: pointer to the DMA device
 | 
						|
 * @tx_in: dma_async_tx_descriptor pointer for rx channel
 | 
						|
 * @mapped_sg: Information on tx (0) and rx (1) scatterlist DMA mapping
 | 
						|
 * @enc: Flag indicating either encryption or decryption
 | 
						|
 * @enc_iv_size: Initialisation vector size
 | 
						|
 * @iv_idx: Initialisation vector index
 | 
						|
 */
 | 
						|
struct sa_rx_data {
 | 
						|
	void *req;
 | 
						|
	struct device *ddev;
 | 
						|
	struct dma_async_tx_descriptor *tx_in;
 | 
						|
	struct sa_mapped_sg mapped_sg[2];
 | 
						|
	u8 enc;
 | 
						|
	u8 enc_iv_size;
 | 
						|
	u8 iv_idx;
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * struct sa_req: SA request definition
 | 
						|
 * @dev: device for the request
 | 
						|
 * @size: total data to the xmitted via DMA
 | 
						|
 * @enc_offset: offset of cipher data
 | 
						|
 * @enc_size: data to be passed to cipher engine
 | 
						|
 * @enc_iv: cipher IV
 | 
						|
 * @auth_offset: offset of the authentication data
 | 
						|
 * @auth_size: size of the authentication data
 | 
						|
 * @auth_iv: authentication IV
 | 
						|
 * @type: algorithm type for the request
 | 
						|
 * @cmdl: command label pointer
 | 
						|
 * @base: pointer to the base request
 | 
						|
 * @ctx: pointer to the algorithm context data
 | 
						|
 * @enc: true if this is an encode request
 | 
						|
 * @src: source data
 | 
						|
 * @dst: destination data
 | 
						|
 * @callback: DMA callback for the request
 | 
						|
 * @mdata_size: metadata size passed to DMA
 | 
						|
 */
 | 
						|
struct sa_req {
 | 
						|
	struct device *dev;
 | 
						|
	u16 size;
 | 
						|
	u8 enc_offset;
 | 
						|
	u16 enc_size;
 | 
						|
	u8 *enc_iv;
 | 
						|
	u8 auth_offset;
 | 
						|
	u16 auth_size;
 | 
						|
	u8 *auth_iv;
 | 
						|
	u32 type;
 | 
						|
	u32 *cmdl;
 | 
						|
	struct crypto_async_request *base;
 | 
						|
	struct sa_tfm_ctx *ctx;
 | 
						|
	bool enc;
 | 
						|
	struct scatterlist *src;
 | 
						|
	struct scatterlist *dst;
 | 
						|
	dma_async_tx_callback callback;
 | 
						|
	u16 mdata_size;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Mode Control Instructions for various Key lengths 128, 192, 256
 | 
						|
 * For CBC (Cipher Block Chaining) mode for encryption
 | 
						|
 */
 | 
						|
static u8 mci_cbc_enc_array[3][MODE_CONTROL_BYTES] = {
 | 
						|
	{	0x61, 0x00, 0x00, 0x18, 0x88, 0x0a, 0xaa, 0x4b, 0x7e, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
 | 
						|
	{	0x61, 0x00, 0x00, 0x18, 0x88, 0x4a, 0xaa, 0x4b, 0x7e, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
 | 
						|
	{	0x61, 0x00, 0x00, 0x18, 0x88, 0x8a, 0xaa, 0x4b, 0x7e, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Mode Control Instructions for various Key lengths 128, 192, 256
 | 
						|
 * For CBC (Cipher Block Chaining) mode for decryption
 | 
						|
 */
 | 
						|
static u8 mci_cbc_dec_array[3][MODE_CONTROL_BYTES] = {
 | 
						|
	{	0x71, 0x00, 0x00, 0x80, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
 | 
						|
	{	0x71, 0x00, 0x00, 0x84, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
 | 
						|
	{	0x71, 0x00, 0x00, 0x88, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Mode Control Instructions for various Key lengths 128, 192, 256
 | 
						|
 * For CBC (Cipher Block Chaining) mode for encryption
 | 
						|
 */
 | 
						|
static u8 mci_cbc_enc_no_iv_array[3][MODE_CONTROL_BYTES] = {
 | 
						|
	{	0x21, 0x00, 0x00, 0x18, 0x88, 0x0a, 0xaa, 0x4b, 0x7e, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
 | 
						|
	{	0x21, 0x00, 0x00, 0x18, 0x88, 0x4a, 0xaa, 0x4b, 0x7e, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
 | 
						|
	{	0x21, 0x00, 0x00, 0x18, 0x88, 0x8a, 0xaa, 0x4b, 0x7e, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Mode Control Instructions for various Key lengths 128, 192, 256
 | 
						|
 * For CBC (Cipher Block Chaining) mode for decryption
 | 
						|
 */
 | 
						|
static u8 mci_cbc_dec_no_iv_array[3][MODE_CONTROL_BYTES] = {
 | 
						|
	{	0x31, 0x00, 0x00, 0x80, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
 | 
						|
	{	0x31, 0x00, 0x00, 0x84, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
 | 
						|
	{	0x31, 0x00, 0x00, 0x88, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Mode Control Instructions for various Key lengths 128, 192, 256
 | 
						|
 * For ECB (Electronic Code Book) mode for encryption
 | 
						|
 */
 | 
						|
static u8 mci_ecb_enc_array[3][27] = {
 | 
						|
	{	0x21, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
 | 
						|
	{	0x21, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
 | 
						|
	{	0x21, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Mode Control Instructions for various Key lengths 128, 192, 256
 | 
						|
 * For ECB (Electronic Code Book) mode for decryption
 | 
						|
 */
 | 
						|
static u8 mci_ecb_dec_array[3][27] = {
 | 
						|
	{	0x31, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
 | 
						|
	{	0x31, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
 | 
						|
	{	0x31, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Mode Control Instructions for DES algorithm
 | 
						|
 * For CBC (Cipher Block Chaining) mode and ECB mode
 | 
						|
 * encryption and for decryption respectively
 | 
						|
 */
 | 
						|
static u8 mci_cbc_3des_enc_array[MODE_CONTROL_BYTES] = {
 | 
						|
	0x60, 0x00, 0x00, 0x18, 0x88, 0x52, 0xaa, 0x4b, 0x7e, 0x00, 0x00, 0x00,
 | 
						|
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
	0x00, 0x00, 0x00,
 | 
						|
};
 | 
						|
 | 
						|
static u8 mci_cbc_3des_dec_array[MODE_CONTROL_BYTES] = {
 | 
						|
	0x70, 0x00, 0x00, 0x85, 0x0a, 0xca, 0x98, 0xf4, 0x40, 0xc0, 0x00, 0x00,
 | 
						|
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
	0x00, 0x00, 0x00,
 | 
						|
};
 | 
						|
 | 
						|
static u8 mci_ecb_3des_enc_array[MODE_CONTROL_BYTES] = {
 | 
						|
	0x20, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00,
 | 
						|
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
	0x00, 0x00, 0x00,
 | 
						|
};
 | 
						|
 | 
						|
static u8 mci_ecb_3des_dec_array[MODE_CONTROL_BYTES] = {
 | 
						|
	0x30, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00,
 | 
						|
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
	0x00, 0x00, 0x00,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Perform 16 byte or 128 bit swizzling
 | 
						|
 * The SA2UL Expects the security context to
 | 
						|
 * be in little Endian and the bus width is 128 bits or 16 bytes
 | 
						|
 * Hence swap 16 bytes at a time from higher to lower address
 | 
						|
 */
 | 
						|
static void sa_swiz_128(u8 *in, u16 len)
 | 
						|
{
 | 
						|
	u8 data[16];
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	for (i = 0; i < len; i += 16) {
 | 
						|
		memcpy(data, &in[i], 16);
 | 
						|
		for (j = 0; j < 16; j++)
 | 
						|
			in[i + j] = data[15 - j];
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Prepare the ipad and opad from key as per SHA algorithm step 1*/
 | 
						|
static void prepare_kipad(u8 *k_ipad, const u8 *key, u16 key_sz)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < key_sz; i++)
 | 
						|
		k_ipad[i] = key[i] ^ 0x36;
 | 
						|
 | 
						|
	/* Instead of XOR with 0 */
 | 
						|
	for (; i < SHA1_BLOCK_SIZE; i++)
 | 
						|
		k_ipad[i] = 0x36;
 | 
						|
}
 | 
						|
 | 
						|
static void prepare_kopad(u8 *k_opad, const u8 *key, u16 key_sz)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < key_sz; i++)
 | 
						|
		k_opad[i] = key[i] ^ 0x5c;
 | 
						|
 | 
						|
	/* Instead of XOR with 0 */
 | 
						|
	for (; i < SHA1_BLOCK_SIZE; i++)
 | 
						|
		k_opad[i] = 0x5c;
 | 
						|
}
 | 
						|
 | 
						|
static void sa_export_shash(void *state, struct shash_desc *hash,
 | 
						|
			    int digest_size, __be32 *out)
 | 
						|
{
 | 
						|
	struct sha1_state *sha1;
 | 
						|
	struct sha256_state *sha256;
 | 
						|
	u32 *result;
 | 
						|
 | 
						|
	switch (digest_size) {
 | 
						|
	case SHA1_DIGEST_SIZE:
 | 
						|
		sha1 = state;
 | 
						|
		result = sha1->state;
 | 
						|
		break;
 | 
						|
	case SHA256_DIGEST_SIZE:
 | 
						|
		sha256 = state;
 | 
						|
		result = sha256->state;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		dev_err(sa_k3_dev, "%s: bad digest_size=%d\n", __func__,
 | 
						|
			digest_size);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	crypto_shash_export(hash, state);
 | 
						|
 | 
						|
	cpu_to_be32_array(out, result, digest_size / 4);
 | 
						|
}
 | 
						|
 | 
						|
static void sa_prepare_iopads(struct algo_data *data, const u8 *key,
 | 
						|
			      u16 key_sz, __be32 *ipad, __be32 *opad)
 | 
						|
{
 | 
						|
	SHASH_DESC_ON_STACK(shash, data->ctx->shash);
 | 
						|
	int block_size = crypto_shash_blocksize(data->ctx->shash);
 | 
						|
	int digest_size = crypto_shash_digestsize(data->ctx->shash);
 | 
						|
	union {
 | 
						|
		struct sha1_state sha1;
 | 
						|
		struct sha256_state sha256;
 | 
						|
		u8 k_pad[SHA1_BLOCK_SIZE];
 | 
						|
	} sha;
 | 
						|
 | 
						|
	shash->tfm = data->ctx->shash;
 | 
						|
 | 
						|
	prepare_kipad(sha.k_pad, key, key_sz);
 | 
						|
 | 
						|
	crypto_shash_init(shash);
 | 
						|
	crypto_shash_update(shash, sha.k_pad, block_size);
 | 
						|
	sa_export_shash(&sha, shash, digest_size, ipad);
 | 
						|
 | 
						|
	prepare_kopad(sha.k_pad, key, key_sz);
 | 
						|
 | 
						|
	crypto_shash_init(shash);
 | 
						|
	crypto_shash_update(shash, sha.k_pad, block_size);
 | 
						|
 | 
						|
	sa_export_shash(&sha, shash, digest_size, opad);
 | 
						|
 | 
						|
	memzero_explicit(&sha, sizeof(sha));
 | 
						|
}
 | 
						|
 | 
						|
/* Derive the inverse key used in AES-CBC decryption operation */
 | 
						|
static inline int sa_aes_inv_key(u8 *inv_key, const u8 *key, u16 key_sz)
 | 
						|
{
 | 
						|
	struct crypto_aes_ctx ctx;
 | 
						|
	int key_pos;
 | 
						|
 | 
						|
	if (aes_expandkey(&ctx, key, key_sz)) {
 | 
						|
		dev_err(sa_k3_dev, "%s: bad key len(%d)\n", __func__, key_sz);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* work around to get the right inverse for AES_KEYSIZE_192 size keys */
 | 
						|
	if (key_sz == AES_KEYSIZE_192) {
 | 
						|
		ctx.key_enc[52] = ctx.key_enc[51] ^ ctx.key_enc[46];
 | 
						|
		ctx.key_enc[53] = ctx.key_enc[52] ^ ctx.key_enc[47];
 | 
						|
	}
 | 
						|
 | 
						|
	/* Based crypto_aes_expand_key logic */
 | 
						|
	switch (key_sz) {
 | 
						|
	case AES_KEYSIZE_128:
 | 
						|
	case AES_KEYSIZE_192:
 | 
						|
		key_pos = key_sz + 24;
 | 
						|
		break;
 | 
						|
 | 
						|
	case AES_KEYSIZE_256:
 | 
						|
		key_pos = key_sz + 24 - 4;
 | 
						|
		break;
 | 
						|
 | 
						|
	default:
 | 
						|
		dev_err(sa_k3_dev, "%s: bad key len(%d)\n", __func__, key_sz);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	memcpy(inv_key, &ctx.key_enc[key_pos], key_sz);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Set Security context for the encryption engine */
 | 
						|
static int sa_set_sc_enc(struct algo_data *ad, const u8 *key, u16 key_sz,
 | 
						|
			 u8 enc, u8 *sc_buf)
 | 
						|
{
 | 
						|
	const u8 *mci = NULL;
 | 
						|
 | 
						|
	/* Set Encryption mode selector to crypto processing */
 | 
						|
	sc_buf[0] = SA_CRYPTO_PROCESSING;
 | 
						|
 | 
						|
	if (enc)
 | 
						|
		mci = ad->mci_enc;
 | 
						|
	else
 | 
						|
		mci = ad->mci_dec;
 | 
						|
	/* Set the mode control instructions in security context */
 | 
						|
	if (mci)
 | 
						|
		memcpy(&sc_buf[1], mci, MODE_CONTROL_BYTES);
 | 
						|
 | 
						|
	/* For AES-CBC decryption get the inverse key */
 | 
						|
	if (ad->inv_key && !enc) {
 | 
						|
		if (sa_aes_inv_key(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz))
 | 
						|
			return -EINVAL;
 | 
						|
	/* For all other cases: key is used */
 | 
						|
	} else {
 | 
						|
		memcpy(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Set Security context for the authentication engine */
 | 
						|
static void sa_set_sc_auth(struct algo_data *ad, const u8 *key, u16 key_sz,
 | 
						|
			   u8 *sc_buf)
 | 
						|
{
 | 
						|
	__be32 *ipad = (void *)(sc_buf + 32);
 | 
						|
	__be32 *opad = (void *)(sc_buf + 64);
 | 
						|
 | 
						|
	/* Set Authentication mode selector to hash processing */
 | 
						|
	sc_buf[0] = SA_HASH_PROCESSING;
 | 
						|
	/* Auth SW ctrl word: bit[6]=1 (upload computed hash to TLR section) */
 | 
						|
	sc_buf[1] = SA_UPLOAD_HASH_TO_TLR;
 | 
						|
	sc_buf[1] |= ad->auth_ctrl;
 | 
						|
 | 
						|
	/* Copy the keys or ipad/opad */
 | 
						|
	if (ad->keyed_mac)
 | 
						|
		ad->prep_iopad(ad, key, key_sz, ipad, opad);
 | 
						|
	else {
 | 
						|
		/* basic hash */
 | 
						|
		sc_buf[1] |= SA_BASIC_HASH;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static inline void sa_copy_iv(__be32 *out, const u8 *iv, bool size16)
 | 
						|
{
 | 
						|
	int j;
 | 
						|
 | 
						|
	for (j = 0; j < ((size16) ? 4 : 2); j++) {
 | 
						|
		*out = cpu_to_be32(*((u32 *)iv));
 | 
						|
		iv += 4;
 | 
						|
		out++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Format general command label */
 | 
						|
static int sa_format_cmdl_gen(struct sa_cmdl_cfg *cfg, u8 *cmdl,
 | 
						|
			      struct sa_cmdl_upd_info *upd_info)
 | 
						|
{
 | 
						|
	u8 enc_offset = 0, auth_offset = 0, total = 0;
 | 
						|
	u8 enc_next_eng = SA_ENG_ID_OUTPORT2;
 | 
						|
	u8 auth_next_eng = SA_ENG_ID_OUTPORT2;
 | 
						|
	u32 *word_ptr = (u32 *)cmdl;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* Clear the command label */
 | 
						|
	memzero_explicit(cmdl, (SA_MAX_CMDL_WORDS * sizeof(u32)));
 | 
						|
 | 
						|
	/* Iniialize the command update structure */
 | 
						|
	memzero_explicit(upd_info, sizeof(*upd_info));
 | 
						|
 | 
						|
	if (cfg->enc_eng_id && cfg->auth_eng_id) {
 | 
						|
		if (cfg->enc) {
 | 
						|
			auth_offset = SA_CMDL_HEADER_SIZE_BYTES;
 | 
						|
			enc_next_eng = cfg->auth_eng_id;
 | 
						|
 | 
						|
			if (cfg->iv_size)
 | 
						|
				auth_offset += cfg->iv_size;
 | 
						|
		} else {
 | 
						|
			enc_offset = SA_CMDL_HEADER_SIZE_BYTES;
 | 
						|
			auth_next_eng = cfg->enc_eng_id;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (cfg->enc_eng_id) {
 | 
						|
		upd_info->flags |= SA_CMDL_UPD_ENC;
 | 
						|
		upd_info->enc_size.index = enc_offset >> 2;
 | 
						|
		upd_info->enc_offset.index = upd_info->enc_size.index + 1;
 | 
						|
		/* Encryption command label */
 | 
						|
		cmdl[enc_offset + SA_CMDL_OFFSET_NESC] = enc_next_eng;
 | 
						|
 | 
						|
		/* Encryption modes requiring IV */
 | 
						|
		if (cfg->iv_size) {
 | 
						|
			upd_info->flags |= SA_CMDL_UPD_ENC_IV;
 | 
						|
			upd_info->enc_iv.index =
 | 
						|
				(enc_offset + SA_CMDL_HEADER_SIZE_BYTES) >> 2;
 | 
						|
			upd_info->enc_iv.size = cfg->iv_size;
 | 
						|
 | 
						|
			cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] =
 | 
						|
				SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size;
 | 
						|
 | 
						|
			cmdl[enc_offset + SA_CMDL_OFFSET_OPTION_CTRL1] =
 | 
						|
				(SA_CTX_ENC_AUX2_OFFSET | (cfg->iv_size >> 3));
 | 
						|
			total += SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size;
 | 
						|
		} else {
 | 
						|
			cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] =
 | 
						|
						SA_CMDL_HEADER_SIZE_BYTES;
 | 
						|
			total += SA_CMDL_HEADER_SIZE_BYTES;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (cfg->auth_eng_id) {
 | 
						|
		upd_info->flags |= SA_CMDL_UPD_AUTH;
 | 
						|
		upd_info->auth_size.index = auth_offset >> 2;
 | 
						|
		upd_info->auth_offset.index = upd_info->auth_size.index + 1;
 | 
						|
		cmdl[auth_offset + SA_CMDL_OFFSET_NESC] = auth_next_eng;
 | 
						|
		cmdl[auth_offset + SA_CMDL_OFFSET_LABEL_LEN] =
 | 
						|
			SA_CMDL_HEADER_SIZE_BYTES;
 | 
						|
		total += SA_CMDL_HEADER_SIZE_BYTES;
 | 
						|
	}
 | 
						|
 | 
						|
	total = roundup(total, 8);
 | 
						|
 | 
						|
	for (i = 0; i < total / 4; i++)
 | 
						|
		word_ptr[i] = swab32(word_ptr[i]);
 | 
						|
 | 
						|
	return total;
 | 
						|
}
 | 
						|
 | 
						|
/* Update Command label */
 | 
						|
static inline void sa_update_cmdl(struct sa_req *req, u32 *cmdl,
 | 
						|
				  struct sa_cmdl_upd_info *upd_info)
 | 
						|
{
 | 
						|
	int i = 0, j;
 | 
						|
 | 
						|
	if (likely(upd_info->flags & SA_CMDL_UPD_ENC)) {
 | 
						|
		cmdl[upd_info->enc_size.index] &= ~SA_CMDL_PAYLOAD_LENGTH_MASK;
 | 
						|
		cmdl[upd_info->enc_size.index] |= req->enc_size;
 | 
						|
		cmdl[upd_info->enc_offset.index] &=
 | 
						|
						~SA_CMDL_SOP_BYPASS_LEN_MASK;
 | 
						|
		cmdl[upd_info->enc_offset.index] |=
 | 
						|
			FIELD_PREP(SA_CMDL_SOP_BYPASS_LEN_MASK,
 | 
						|
				   req->enc_offset);
 | 
						|
 | 
						|
		if (likely(upd_info->flags & SA_CMDL_UPD_ENC_IV)) {
 | 
						|
			__be32 *data = (__be32 *)&cmdl[upd_info->enc_iv.index];
 | 
						|
			u32 *enc_iv = (u32 *)req->enc_iv;
 | 
						|
 | 
						|
			for (j = 0; i < upd_info->enc_iv.size; i += 4, j++) {
 | 
						|
				data[j] = cpu_to_be32(*enc_iv);
 | 
						|
				enc_iv++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (likely(upd_info->flags & SA_CMDL_UPD_AUTH)) {
 | 
						|
		cmdl[upd_info->auth_size.index] &= ~SA_CMDL_PAYLOAD_LENGTH_MASK;
 | 
						|
		cmdl[upd_info->auth_size.index] |= req->auth_size;
 | 
						|
		cmdl[upd_info->auth_offset.index] &=
 | 
						|
			~SA_CMDL_SOP_BYPASS_LEN_MASK;
 | 
						|
		cmdl[upd_info->auth_offset.index] |=
 | 
						|
			FIELD_PREP(SA_CMDL_SOP_BYPASS_LEN_MASK,
 | 
						|
				   req->auth_offset);
 | 
						|
		if (upd_info->flags & SA_CMDL_UPD_AUTH_IV) {
 | 
						|
			sa_copy_iv((void *)&cmdl[upd_info->auth_iv.index],
 | 
						|
				   req->auth_iv,
 | 
						|
				   (upd_info->auth_iv.size > 8));
 | 
						|
		}
 | 
						|
		if (upd_info->flags & SA_CMDL_UPD_AUX_KEY) {
 | 
						|
			int offset = (req->auth_size & 0xF) ? 4 : 0;
 | 
						|
 | 
						|
			memcpy(&cmdl[upd_info->aux_key_info.index],
 | 
						|
			       &upd_info->aux_key[offset], 16);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Format SWINFO words to be sent to SA */
 | 
						|
static
 | 
						|
void sa_set_swinfo(u8 eng_id, u16 sc_id, dma_addr_t sc_phys,
 | 
						|
		   u8 cmdl_present, u8 cmdl_offset, u8 flags,
 | 
						|
		   u8 hash_size, u32 *swinfo)
 | 
						|
{
 | 
						|
	swinfo[0] = sc_id;
 | 
						|
	swinfo[0] |= FIELD_PREP(SA_SW0_FLAGS_MASK, flags);
 | 
						|
	if (likely(cmdl_present))
 | 
						|
		swinfo[0] |= FIELD_PREP(SA_SW0_CMDL_INFO_MASK,
 | 
						|
					cmdl_offset | SA_SW0_CMDL_PRESENT);
 | 
						|
	swinfo[0] |= FIELD_PREP(SA_SW0_ENG_ID_MASK, eng_id);
 | 
						|
 | 
						|
	swinfo[0] |= SA_SW0_DEST_INFO_PRESENT;
 | 
						|
	swinfo[1] = (u32)(sc_phys & 0xFFFFFFFFULL);
 | 
						|
	swinfo[2] = (u32)((sc_phys & 0xFFFFFFFF00000000ULL) >> 32);
 | 
						|
	swinfo[2] |= FIELD_PREP(SA_SW2_EGRESS_LENGTH, hash_size);
 | 
						|
}
 | 
						|
 | 
						|
/* Dump the security context */
 | 
						|
static void sa_dump_sc(u8 *buf, dma_addr_t dma_addr)
 | 
						|
{
 | 
						|
#ifdef DEBUG
 | 
						|
	dev_info(sa_k3_dev, "Security context dump:: 0x%pad\n", &dma_addr);
 | 
						|
	print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
 | 
						|
		       16, 1, buf, SA_CTX_MAX_SZ, false);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
int sa_init_sc(struct sa_ctx_info *ctx, const struct sa_match_data *match_data,
 | 
						|
	       const u8 *enc_key, u16 enc_key_sz,
 | 
						|
	       const u8 *auth_key, u16 auth_key_sz,
 | 
						|
	       struct algo_data *ad, u8 enc, u32 *swinfo)
 | 
						|
{
 | 
						|
	int enc_sc_offset = 0;
 | 
						|
	int auth_sc_offset = 0;
 | 
						|
	u8 *sc_buf = ctx->sc;
 | 
						|
	u16 sc_id = ctx->sc_id;
 | 
						|
	u8 first_engine = 0;
 | 
						|
 | 
						|
	memzero_explicit(sc_buf, SA_CTX_MAX_SZ);
 | 
						|
 | 
						|
	if (ad->auth_eng.eng_id) {
 | 
						|
		if (enc)
 | 
						|
			first_engine = ad->enc_eng.eng_id;
 | 
						|
		else
 | 
						|
			first_engine = ad->auth_eng.eng_id;
 | 
						|
 | 
						|
		enc_sc_offset = SA_CTX_PHP_PE_CTX_SZ;
 | 
						|
		auth_sc_offset = enc_sc_offset + ad->enc_eng.sc_size;
 | 
						|
		sc_buf[1] = SA_SCCTL_FE_AUTH_ENC;
 | 
						|
		if (!ad->hash_size)
 | 
						|
			return -EINVAL;
 | 
						|
		ad->hash_size = roundup(ad->hash_size, 8);
 | 
						|
 | 
						|
	} else if (ad->enc_eng.eng_id && !ad->auth_eng.eng_id) {
 | 
						|
		enc_sc_offset = SA_CTX_PHP_PE_CTX_SZ;
 | 
						|
		first_engine = ad->enc_eng.eng_id;
 | 
						|
		sc_buf[1] = SA_SCCTL_FE_ENC;
 | 
						|
		ad->hash_size = ad->iv_out_size;
 | 
						|
	}
 | 
						|
 | 
						|
	/* SCCTL Owner info: 0=host, 1=CP_ACE */
 | 
						|
	sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0;
 | 
						|
	memcpy(&sc_buf[2], &sc_id, 2);
 | 
						|
	sc_buf[4] = 0x0;
 | 
						|
	sc_buf[5] = match_data->priv_id;
 | 
						|
	sc_buf[6] = match_data->priv;
 | 
						|
	sc_buf[7] = 0x0;
 | 
						|
 | 
						|
	/* Prepare context for encryption engine */
 | 
						|
	if (ad->enc_eng.sc_size) {
 | 
						|
		if (sa_set_sc_enc(ad, enc_key, enc_key_sz, enc,
 | 
						|
				  &sc_buf[enc_sc_offset]))
 | 
						|
			return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Prepare context for authentication engine */
 | 
						|
	if (ad->auth_eng.sc_size)
 | 
						|
		sa_set_sc_auth(ad, auth_key, auth_key_sz,
 | 
						|
			       &sc_buf[auth_sc_offset]);
 | 
						|
 | 
						|
	/* Set the ownership of context to CP_ACE */
 | 
						|
	sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0x80;
 | 
						|
 | 
						|
	/* swizzle the security context */
 | 
						|
	sa_swiz_128(sc_buf, SA_CTX_MAX_SZ);
 | 
						|
 | 
						|
	sa_set_swinfo(first_engine, ctx->sc_id, ctx->sc_phys, 1, 0,
 | 
						|
		      SA_SW_INFO_FLAG_EVICT, ad->hash_size, swinfo);
 | 
						|
 | 
						|
	sa_dump_sc(sc_buf, ctx->sc_phys);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Free the per direction context memory */
 | 
						|
static void sa_free_ctx_info(struct sa_ctx_info *ctx,
 | 
						|
			     struct sa_crypto_data *data)
 | 
						|
{
 | 
						|
	unsigned long bn;
 | 
						|
 | 
						|
	bn = ctx->sc_id - data->sc_id_start;
 | 
						|
	spin_lock(&data->scid_lock);
 | 
						|
	__clear_bit(bn, data->ctx_bm);
 | 
						|
	data->sc_id--;
 | 
						|
	spin_unlock(&data->scid_lock);
 | 
						|
 | 
						|
	if (ctx->sc) {
 | 
						|
		dma_pool_free(data->sc_pool, ctx->sc, ctx->sc_phys);
 | 
						|
		ctx->sc = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int sa_init_ctx_info(struct sa_ctx_info *ctx,
 | 
						|
			    struct sa_crypto_data *data)
 | 
						|
{
 | 
						|
	unsigned long bn;
 | 
						|
	int err;
 | 
						|
 | 
						|
	spin_lock(&data->scid_lock);
 | 
						|
	bn = find_first_zero_bit(data->ctx_bm, SA_MAX_NUM_CTX);
 | 
						|
	__set_bit(bn, data->ctx_bm);
 | 
						|
	data->sc_id++;
 | 
						|
	spin_unlock(&data->scid_lock);
 | 
						|
 | 
						|
	ctx->sc_id = (u16)(data->sc_id_start + bn);
 | 
						|
 | 
						|
	ctx->sc = dma_pool_alloc(data->sc_pool, GFP_KERNEL, &ctx->sc_phys);
 | 
						|
	if (!ctx->sc) {
 | 
						|
		dev_err(&data->pdev->dev, "Failed to allocate SC memory\n");
 | 
						|
		err = -ENOMEM;
 | 
						|
		goto scid_rollback;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
scid_rollback:
 | 
						|
	spin_lock(&data->scid_lock);
 | 
						|
	__clear_bit(bn, data->ctx_bm);
 | 
						|
	data->sc_id--;
 | 
						|
	spin_unlock(&data->scid_lock);
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static void sa_cipher_cra_exit(struct crypto_skcipher *tfm)
 | 
						|
{
 | 
						|
	struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
 | 
						|
	struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
 | 
						|
 | 
						|
	dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
 | 
						|
		__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
 | 
						|
		ctx->dec.sc_id, &ctx->dec.sc_phys);
 | 
						|
 | 
						|
	sa_free_ctx_info(&ctx->enc, data);
 | 
						|
	sa_free_ctx_info(&ctx->dec, data);
 | 
						|
 | 
						|
	crypto_free_skcipher(ctx->fallback.skcipher);
 | 
						|
}
 | 
						|
 | 
						|
static int sa_cipher_cra_init(struct crypto_skcipher *tfm)
 | 
						|
{
 | 
						|
	struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
 | 
						|
	struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
 | 
						|
	const char *name = crypto_tfm_alg_name(&tfm->base);
 | 
						|
	struct crypto_skcipher *child;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	memzero_explicit(ctx, sizeof(*ctx));
 | 
						|
	ctx->dev_data = data;
 | 
						|
 | 
						|
	ret = sa_init_ctx_info(&ctx->enc, data);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
	ret = sa_init_ctx_info(&ctx->dec, data);
 | 
						|
	if (ret) {
 | 
						|
		sa_free_ctx_info(&ctx->enc, data);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	child = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
 | 
						|
 | 
						|
	if (IS_ERR(child)) {
 | 
						|
		dev_err(sa_k3_dev, "Error allocating fallback algo %s\n", name);
 | 
						|
		return PTR_ERR(child);
 | 
						|
	}
 | 
						|
 | 
						|
	ctx->fallback.skcipher = child;
 | 
						|
	crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(child) +
 | 
						|
					 sizeof(struct skcipher_request));
 | 
						|
 | 
						|
	dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
 | 
						|
		__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
 | 
						|
		ctx->dec.sc_id, &ctx->dec.sc_phys);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int sa_cipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
 | 
						|
			    unsigned int keylen, struct algo_data *ad)
 | 
						|
{
 | 
						|
	struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
 | 
						|
	struct crypto_skcipher *child = ctx->fallback.skcipher;
 | 
						|
	int cmdl_len;
 | 
						|
	struct sa_cmdl_cfg cfg;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 | 
						|
	    keylen != AES_KEYSIZE_256)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	ad->enc_eng.eng_id = SA_ENG_ID_EM1;
 | 
						|
	ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ;
 | 
						|
 | 
						|
	memzero_explicit(&cfg, sizeof(cfg));
 | 
						|
	cfg.enc_eng_id = ad->enc_eng.eng_id;
 | 
						|
	cfg.iv_size = crypto_skcipher_ivsize(tfm);
 | 
						|
 | 
						|
	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
 | 
						|
	crypto_skcipher_set_flags(child, tfm->base.crt_flags &
 | 
						|
					 CRYPTO_TFM_REQ_MASK);
 | 
						|
	ret = crypto_skcipher_setkey(child, key, keylen);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/* Setup Encryption Security Context & Command label template */
 | 
						|
	if (sa_init_sc(&ctx->enc, ctx->dev_data->match_data, key, keylen, NULL, 0,
 | 
						|
		       ad, 1, &ctx->enc.epib[1]))
 | 
						|
		goto badkey;
 | 
						|
 | 
						|
	cmdl_len = sa_format_cmdl_gen(&cfg,
 | 
						|
				      (u8 *)ctx->enc.cmdl,
 | 
						|
				      &ctx->enc.cmdl_upd_info);
 | 
						|
	if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
 | 
						|
		goto badkey;
 | 
						|
 | 
						|
	ctx->enc.cmdl_size = cmdl_len;
 | 
						|
 | 
						|
	/* Setup Decryption Security Context & Command label template */
 | 
						|
	if (sa_init_sc(&ctx->dec, ctx->dev_data->match_data, key, keylen, NULL, 0,
 | 
						|
		       ad, 0, &ctx->dec.epib[1]))
 | 
						|
		goto badkey;
 | 
						|
 | 
						|
	cfg.enc_eng_id = ad->enc_eng.eng_id;
 | 
						|
	cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->dec.cmdl,
 | 
						|
				      &ctx->dec.cmdl_upd_info);
 | 
						|
 | 
						|
	if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
 | 
						|
		goto badkey;
 | 
						|
 | 
						|
	ctx->dec.cmdl_size = cmdl_len;
 | 
						|
	ctx->iv_idx = ad->iv_idx;
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
badkey:
 | 
						|
	dev_err(sa_k3_dev, "%s: badkey\n", __func__);
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
 | 
						|
static int sa_aes_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key,
 | 
						|
			     unsigned int keylen)
 | 
						|
{
 | 
						|
	struct algo_data ad = { 0 };
 | 
						|
	/* Convert the key size (16/24/32) to the key size index (0/1/2) */
 | 
						|
	int key_idx = (keylen >> 3) - 2;
 | 
						|
 | 
						|
	if (key_idx >= 3)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	ad.mci_enc = mci_cbc_enc_array[key_idx];
 | 
						|
	ad.mci_dec = mci_cbc_dec_array[key_idx];
 | 
						|
	ad.inv_key = true;
 | 
						|
	ad.ealg_id = SA_EALG_ID_AES_CBC;
 | 
						|
	ad.iv_idx = 4;
 | 
						|
	ad.iv_out_size = 16;
 | 
						|
 | 
						|
	return sa_cipher_setkey(tfm, key, keylen, &ad);
 | 
						|
}
 | 
						|
 | 
						|
static int sa_aes_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key,
 | 
						|
			     unsigned int keylen)
 | 
						|
{
 | 
						|
	struct algo_data ad = { 0 };
 | 
						|
	/* Convert the key size (16/24/32) to the key size index (0/1/2) */
 | 
						|
	int key_idx = (keylen >> 3) - 2;
 | 
						|
 | 
						|
	if (key_idx >= 3)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	ad.mci_enc = mci_ecb_enc_array[key_idx];
 | 
						|
	ad.mci_dec = mci_ecb_dec_array[key_idx];
 | 
						|
	ad.inv_key = true;
 | 
						|
	ad.ealg_id = SA_EALG_ID_AES_ECB;
 | 
						|
 | 
						|
	return sa_cipher_setkey(tfm, key, keylen, &ad);
 | 
						|
}
 | 
						|
 | 
						|
static int sa_3des_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key,
 | 
						|
			      unsigned int keylen)
 | 
						|
{
 | 
						|
	struct algo_data ad = { 0 };
 | 
						|
 | 
						|
	ad.mci_enc = mci_cbc_3des_enc_array;
 | 
						|
	ad.mci_dec = mci_cbc_3des_dec_array;
 | 
						|
	ad.ealg_id = SA_EALG_ID_3DES_CBC;
 | 
						|
	ad.iv_idx = 6;
 | 
						|
	ad.iv_out_size = 8;
 | 
						|
 | 
						|
	return sa_cipher_setkey(tfm, key, keylen, &ad);
 | 
						|
}
 | 
						|
 | 
						|
static int sa_3des_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key,
 | 
						|
			      unsigned int keylen)
 | 
						|
{
 | 
						|
	struct algo_data ad = { 0 };
 | 
						|
 | 
						|
	ad.mci_enc = mci_ecb_3des_enc_array;
 | 
						|
	ad.mci_dec = mci_ecb_3des_dec_array;
 | 
						|
 | 
						|
	return sa_cipher_setkey(tfm, key, keylen, &ad);
 | 
						|
}
 | 
						|
 | 
						|
static void sa_sync_from_device(struct sa_rx_data *rxd)
 | 
						|
{
 | 
						|
	struct sg_table *sgt;
 | 
						|
 | 
						|
	if (rxd->mapped_sg[0].dir == DMA_BIDIRECTIONAL)
 | 
						|
		sgt = &rxd->mapped_sg[0].sgt;
 | 
						|
	else
 | 
						|
		sgt = &rxd->mapped_sg[1].sgt;
 | 
						|
 | 
						|
	dma_sync_sgtable_for_cpu(rxd->ddev, sgt, DMA_FROM_DEVICE);
 | 
						|
}
 | 
						|
 | 
						|
static void sa_free_sa_rx_data(struct sa_rx_data *rxd)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < ARRAY_SIZE(rxd->mapped_sg); i++) {
 | 
						|
		struct sa_mapped_sg *mapped_sg = &rxd->mapped_sg[i];
 | 
						|
 | 
						|
		if (mapped_sg->mapped) {
 | 
						|
			dma_unmap_sgtable(rxd->ddev, &mapped_sg->sgt,
 | 
						|
					  mapped_sg->dir, 0);
 | 
						|
			kfree(mapped_sg->split_sg);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	kfree(rxd);
 | 
						|
}
 | 
						|
 | 
						|
static void sa_aes_dma_in_callback(void *data)
 | 
						|
{
 | 
						|
	struct sa_rx_data *rxd = data;
 | 
						|
	struct skcipher_request *req;
 | 
						|
	u32 *result;
 | 
						|
	__be32 *mdptr;
 | 
						|
	size_t ml, pl;
 | 
						|
	int i;
 | 
						|
 | 
						|
	sa_sync_from_device(rxd);
 | 
						|
	req = container_of(rxd->req, struct skcipher_request, base);
 | 
						|
 | 
						|
	if (req->iv) {
 | 
						|
		mdptr = (__be32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl,
 | 
						|
							       &ml);
 | 
						|
		result = (u32 *)req->iv;
 | 
						|
 | 
						|
		for (i = 0; i < (rxd->enc_iv_size / 4); i++)
 | 
						|
			result[i] = be32_to_cpu(mdptr[i + rxd->iv_idx]);
 | 
						|
	}
 | 
						|
 | 
						|
	sa_free_sa_rx_data(rxd);
 | 
						|
 | 
						|
	skcipher_request_complete(req, 0);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
sa_prepare_tx_desc(u32 *mdptr, u32 pslen, u32 *psdata, u32 epiblen, u32 *epib)
 | 
						|
{
 | 
						|
	u32 *out, *in;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (out = mdptr, in = epib, i = 0; i < epiblen / sizeof(u32); i++)
 | 
						|
		*out++ = *in++;
 | 
						|
 | 
						|
	mdptr[4] = (0xFFFF << 16);
 | 
						|
	for (out = &mdptr[5], in = psdata, i = 0;
 | 
						|
	     i < pslen / sizeof(u32); i++)
 | 
						|
		*out++ = *in++;
 | 
						|
}
 | 
						|
 | 
						|
static int sa_run(struct sa_req *req)
 | 
						|
{
 | 
						|
	struct sa_rx_data *rxd;
 | 
						|
	gfp_t gfp_flags;
 | 
						|
	u32 cmdl[SA_MAX_CMDL_WORDS];
 | 
						|
	struct sa_crypto_data *pdata = dev_get_drvdata(sa_k3_dev);
 | 
						|
	struct device *ddev;
 | 
						|
	struct dma_chan *dma_rx;
 | 
						|
	int sg_nents, src_nents, dst_nents;
 | 
						|
	struct scatterlist *src, *dst;
 | 
						|
	size_t pl, ml, split_size;
 | 
						|
	struct sa_ctx_info *sa_ctx = req->enc ? &req->ctx->enc : &req->ctx->dec;
 | 
						|
	int ret;
 | 
						|
	struct dma_async_tx_descriptor *tx_out;
 | 
						|
	u32 *mdptr;
 | 
						|
	bool diff_dst;
 | 
						|
	enum dma_data_direction dir_src;
 | 
						|
	struct sa_mapped_sg *mapped_sg;
 | 
						|
 | 
						|
	gfp_flags = req->base->flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
 | 
						|
		GFP_KERNEL : GFP_ATOMIC;
 | 
						|
 | 
						|
	rxd = kzalloc(sizeof(*rxd), gfp_flags);
 | 
						|
	if (!rxd)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	if (req->src != req->dst) {
 | 
						|
		diff_dst = true;
 | 
						|
		dir_src = DMA_TO_DEVICE;
 | 
						|
	} else {
 | 
						|
		diff_dst = false;
 | 
						|
		dir_src = DMA_BIDIRECTIONAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * SA2UL has an interesting feature where the receive DMA channel
 | 
						|
	 * is selected based on the data passed to the engine. Within the
 | 
						|
	 * transition range, there is also a space where it is impossible
 | 
						|
	 * to determine where the data will end up, and this should be
 | 
						|
	 * avoided. This will be handled by the SW fallback mechanism by
 | 
						|
	 * the individual algorithm implementations.
 | 
						|
	 */
 | 
						|
	if (req->size >= 256)
 | 
						|
		dma_rx = pdata->dma_rx2;
 | 
						|
	else
 | 
						|
		dma_rx = pdata->dma_rx1;
 | 
						|
 | 
						|
	ddev = dmaengine_get_dma_device(pdata->dma_tx);
 | 
						|
	rxd->ddev = ddev;
 | 
						|
 | 
						|
	memcpy(cmdl, sa_ctx->cmdl, sa_ctx->cmdl_size);
 | 
						|
 | 
						|
	sa_update_cmdl(req, cmdl, &sa_ctx->cmdl_upd_info);
 | 
						|
 | 
						|
	if (req->type != CRYPTO_ALG_TYPE_AHASH) {
 | 
						|
		if (req->enc)
 | 
						|
			req->type |=
 | 
						|
				(SA_REQ_SUBTYPE_ENC << SA_REQ_SUBTYPE_SHIFT);
 | 
						|
		else
 | 
						|
			req->type |=
 | 
						|
				(SA_REQ_SUBTYPE_DEC << SA_REQ_SUBTYPE_SHIFT);
 | 
						|
	}
 | 
						|
 | 
						|
	cmdl[sa_ctx->cmdl_size / sizeof(u32)] = req->type;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Map the packets, first we check if the data fits into a single
 | 
						|
	 * sg entry and use that if possible. If it does not fit, we check
 | 
						|
	 * if we need to do sg_split to align the scatterlist data on the
 | 
						|
	 * actual data size being processed by the crypto engine.
 | 
						|
	 */
 | 
						|
	src = req->src;
 | 
						|
	sg_nents = sg_nents_for_len(src, req->size);
 | 
						|
 | 
						|
	split_size = req->size;
 | 
						|
 | 
						|
	mapped_sg = &rxd->mapped_sg[0];
 | 
						|
	if (sg_nents == 1 && split_size <= req->src->length) {
 | 
						|
		src = &mapped_sg->static_sg;
 | 
						|
		src_nents = 1;
 | 
						|
		sg_init_table(src, 1);
 | 
						|
		sg_set_page(src, sg_page(req->src), split_size,
 | 
						|
			    req->src->offset);
 | 
						|
 | 
						|
		mapped_sg->sgt.sgl = src;
 | 
						|
		mapped_sg->sgt.orig_nents = src_nents;
 | 
						|
		ret = dma_map_sgtable(ddev, &mapped_sg->sgt, dir_src, 0);
 | 
						|
		if (ret) {
 | 
						|
			kfree(rxd);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
 | 
						|
		mapped_sg->dir = dir_src;
 | 
						|
		mapped_sg->mapped = true;
 | 
						|
	} else {
 | 
						|
		mapped_sg->sgt.sgl = req->src;
 | 
						|
		mapped_sg->sgt.orig_nents = sg_nents;
 | 
						|
		ret = dma_map_sgtable(ddev, &mapped_sg->sgt, dir_src, 0);
 | 
						|
		if (ret) {
 | 
						|
			kfree(rxd);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
 | 
						|
		mapped_sg->dir = dir_src;
 | 
						|
		mapped_sg->mapped = true;
 | 
						|
 | 
						|
		ret = sg_split(mapped_sg->sgt.sgl, mapped_sg->sgt.nents, 0, 1,
 | 
						|
			       &split_size, &src, &src_nents, gfp_flags);
 | 
						|
		if (ret) {
 | 
						|
			src_nents = mapped_sg->sgt.nents;
 | 
						|
			src = mapped_sg->sgt.sgl;
 | 
						|
		} else {
 | 
						|
			mapped_sg->split_sg = src;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	dma_sync_sgtable_for_device(ddev, &mapped_sg->sgt, DMA_TO_DEVICE);
 | 
						|
 | 
						|
	if (!diff_dst) {
 | 
						|
		dst_nents = src_nents;
 | 
						|
		dst = src;
 | 
						|
	} else {
 | 
						|
		dst_nents = sg_nents_for_len(req->dst, req->size);
 | 
						|
		mapped_sg = &rxd->mapped_sg[1];
 | 
						|
 | 
						|
		if (dst_nents == 1 && split_size <= req->dst->length) {
 | 
						|
			dst = &mapped_sg->static_sg;
 | 
						|
			dst_nents = 1;
 | 
						|
			sg_init_table(dst, 1);
 | 
						|
			sg_set_page(dst, sg_page(req->dst), split_size,
 | 
						|
				    req->dst->offset);
 | 
						|
 | 
						|
			mapped_sg->sgt.sgl = dst;
 | 
						|
			mapped_sg->sgt.orig_nents = dst_nents;
 | 
						|
			ret = dma_map_sgtable(ddev, &mapped_sg->sgt,
 | 
						|
					      DMA_FROM_DEVICE, 0);
 | 
						|
			if (ret)
 | 
						|
				goto err_cleanup;
 | 
						|
 | 
						|
			mapped_sg->dir = DMA_FROM_DEVICE;
 | 
						|
			mapped_sg->mapped = true;
 | 
						|
		} else {
 | 
						|
			mapped_sg->sgt.sgl = req->dst;
 | 
						|
			mapped_sg->sgt.orig_nents = dst_nents;
 | 
						|
			ret = dma_map_sgtable(ddev, &mapped_sg->sgt,
 | 
						|
					      DMA_FROM_DEVICE, 0);
 | 
						|
			if (ret)
 | 
						|
				goto err_cleanup;
 | 
						|
 | 
						|
			mapped_sg->dir = DMA_FROM_DEVICE;
 | 
						|
			mapped_sg->mapped = true;
 | 
						|
 | 
						|
			ret = sg_split(mapped_sg->sgt.sgl, mapped_sg->sgt.nents,
 | 
						|
				       0, 1, &split_size, &dst, &dst_nents,
 | 
						|
				       gfp_flags);
 | 
						|
			if (ret) {
 | 
						|
				dst_nents = mapped_sg->sgt.nents;
 | 
						|
				dst = mapped_sg->sgt.sgl;
 | 
						|
			} else {
 | 
						|
				mapped_sg->split_sg = dst;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	rxd->tx_in = dmaengine_prep_slave_sg(dma_rx, dst, dst_nents,
 | 
						|
					     DMA_DEV_TO_MEM,
 | 
						|
					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 | 
						|
	if (!rxd->tx_in) {
 | 
						|
		dev_err(pdata->dev, "IN prep_slave_sg() failed\n");
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto err_cleanup;
 | 
						|
	}
 | 
						|
 | 
						|
	rxd->req = (void *)req->base;
 | 
						|
	rxd->enc = req->enc;
 | 
						|
	rxd->iv_idx = req->ctx->iv_idx;
 | 
						|
	rxd->enc_iv_size = sa_ctx->cmdl_upd_info.enc_iv.size;
 | 
						|
	rxd->tx_in->callback = req->callback;
 | 
						|
	rxd->tx_in->callback_param = rxd;
 | 
						|
 | 
						|
	tx_out = dmaengine_prep_slave_sg(pdata->dma_tx, src,
 | 
						|
					 src_nents, DMA_MEM_TO_DEV,
 | 
						|
					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 | 
						|
 | 
						|
	if (!tx_out) {
 | 
						|
		dev_err(pdata->dev, "OUT prep_slave_sg() failed\n");
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto err_cleanup;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Prepare metadata for DMA engine. This essentially describes the
 | 
						|
	 * crypto algorithm to be used, data sizes, different keys etc.
 | 
						|
	 */
 | 
						|
	mdptr = (u32 *)dmaengine_desc_get_metadata_ptr(tx_out, &pl, &ml);
 | 
						|
 | 
						|
	sa_prepare_tx_desc(mdptr, (sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS *
 | 
						|
				   sizeof(u32))), cmdl, sizeof(sa_ctx->epib),
 | 
						|
			   sa_ctx->epib);
 | 
						|
 | 
						|
	ml = sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS * sizeof(u32));
 | 
						|
	dmaengine_desc_set_metadata_len(tx_out, req->mdata_size);
 | 
						|
 | 
						|
	dmaengine_submit(tx_out);
 | 
						|
	dmaengine_submit(rxd->tx_in);
 | 
						|
 | 
						|
	dma_async_issue_pending(dma_rx);
 | 
						|
	dma_async_issue_pending(pdata->dma_tx);
 | 
						|
 | 
						|
	return -EINPROGRESS;
 | 
						|
 | 
						|
err_cleanup:
 | 
						|
	sa_free_sa_rx_data(rxd);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int sa_cipher_run(struct skcipher_request *req, u8 *iv, int enc)
 | 
						|
{
 | 
						|
	struct sa_tfm_ctx *ctx =
 | 
						|
	    crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
 | 
						|
	struct crypto_alg *alg = req->base.tfm->__crt_alg;
 | 
						|
	struct sa_req sa_req = { 0 };
 | 
						|
 | 
						|
	if (!req->cryptlen)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (req->cryptlen % alg->cra_blocksize)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* Use SW fallback if the data size is not supported */
 | 
						|
	if (req->cryptlen > SA_MAX_DATA_SZ ||
 | 
						|
	    (req->cryptlen >= SA_UNSAFE_DATA_SZ_MIN &&
 | 
						|
	     req->cryptlen <= SA_UNSAFE_DATA_SZ_MAX)) {
 | 
						|
		struct skcipher_request *subreq = skcipher_request_ctx(req);
 | 
						|
 | 
						|
		skcipher_request_set_tfm(subreq, ctx->fallback.skcipher);
 | 
						|
		skcipher_request_set_callback(subreq, req->base.flags,
 | 
						|
					      req->base.complete,
 | 
						|
					      req->base.data);
 | 
						|
		skcipher_request_set_crypt(subreq, req->src, req->dst,
 | 
						|
					   req->cryptlen, req->iv);
 | 
						|
		if (enc)
 | 
						|
			return crypto_skcipher_encrypt(subreq);
 | 
						|
		else
 | 
						|
			return crypto_skcipher_decrypt(subreq);
 | 
						|
	}
 | 
						|
 | 
						|
	sa_req.size = req->cryptlen;
 | 
						|
	sa_req.enc_size = req->cryptlen;
 | 
						|
	sa_req.src = req->src;
 | 
						|
	sa_req.dst = req->dst;
 | 
						|
	sa_req.enc_iv = iv;
 | 
						|
	sa_req.type = CRYPTO_ALG_TYPE_SKCIPHER;
 | 
						|
	sa_req.enc = enc;
 | 
						|
	sa_req.callback = sa_aes_dma_in_callback;
 | 
						|
	sa_req.mdata_size = 44;
 | 
						|
	sa_req.base = &req->base;
 | 
						|
	sa_req.ctx = ctx;
 | 
						|
 | 
						|
	return sa_run(&sa_req);
 | 
						|
}
 | 
						|
 | 
						|
static int sa_encrypt(struct skcipher_request *req)
 | 
						|
{
 | 
						|
	return sa_cipher_run(req, req->iv, 1);
 | 
						|
}
 | 
						|
 | 
						|
static int sa_decrypt(struct skcipher_request *req)
 | 
						|
{
 | 
						|
	return sa_cipher_run(req, req->iv, 0);
 | 
						|
}
 | 
						|
 | 
						|
static void sa_sha_dma_in_callback(void *data)
 | 
						|
{
 | 
						|
	struct sa_rx_data *rxd = data;
 | 
						|
	struct ahash_request *req;
 | 
						|
	struct crypto_ahash *tfm;
 | 
						|
	unsigned int authsize;
 | 
						|
	int i;
 | 
						|
	size_t ml, pl;
 | 
						|
	u32 *result;
 | 
						|
	__be32 *mdptr;
 | 
						|
 | 
						|
	sa_sync_from_device(rxd);
 | 
						|
	req = container_of(rxd->req, struct ahash_request, base);
 | 
						|
	tfm = crypto_ahash_reqtfm(req);
 | 
						|
	authsize = crypto_ahash_digestsize(tfm);
 | 
						|
 | 
						|
	mdptr = (__be32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl, &ml);
 | 
						|
	result = (u32 *)req->result;
 | 
						|
 | 
						|
	for (i = 0; i < (authsize / 4); i++)
 | 
						|
		result[i] = be32_to_cpu(mdptr[i + 4]);
 | 
						|
 | 
						|
	sa_free_sa_rx_data(rxd);
 | 
						|
 | 
						|
	ahash_request_complete(req, 0);
 | 
						|
}
 | 
						|
 | 
						|
static int zero_message_process(struct ahash_request *req)
 | 
						|
{
 | 
						|
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 | 
						|
	int sa_digest_size = crypto_ahash_digestsize(tfm);
 | 
						|
 | 
						|
	switch (sa_digest_size) {
 | 
						|
	case SHA1_DIGEST_SIZE:
 | 
						|
		memcpy(req->result, sha1_zero_message_hash, sa_digest_size);
 | 
						|
		break;
 | 
						|
	case SHA256_DIGEST_SIZE:
 | 
						|
		memcpy(req->result, sha256_zero_message_hash, sa_digest_size);
 | 
						|
		break;
 | 
						|
	case SHA512_DIGEST_SIZE:
 | 
						|
		memcpy(req->result, sha512_zero_message_hash, sa_digest_size);
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int sa_sha_run(struct ahash_request *req)
 | 
						|
{
 | 
						|
	struct sa_tfm_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
 | 
						|
	struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
 | 
						|
	struct sa_req sa_req = { 0 };
 | 
						|
	size_t auth_len;
 | 
						|
 | 
						|
	auth_len = req->nbytes;
 | 
						|
 | 
						|
	if (!auth_len)
 | 
						|
		return zero_message_process(req);
 | 
						|
 | 
						|
	if (auth_len > SA_MAX_DATA_SZ ||
 | 
						|
	    (auth_len >= SA_UNSAFE_DATA_SZ_MIN &&
 | 
						|
	     auth_len <= SA_UNSAFE_DATA_SZ_MAX)) {
 | 
						|
		struct ahash_request *subreq = &rctx->fallback_req;
 | 
						|
		int ret = 0;
 | 
						|
 | 
						|
		ahash_request_set_tfm(subreq, ctx->fallback.ahash);
 | 
						|
		subreq->base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 | 
						|
 | 
						|
		crypto_ahash_init(subreq);
 | 
						|
 | 
						|
		subreq->nbytes = auth_len;
 | 
						|
		subreq->src = req->src;
 | 
						|
		subreq->result = req->result;
 | 
						|
 | 
						|
		ret |= crypto_ahash_update(subreq);
 | 
						|
 | 
						|
		subreq->nbytes = 0;
 | 
						|
 | 
						|
		ret |= crypto_ahash_final(subreq);
 | 
						|
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	sa_req.size = auth_len;
 | 
						|
	sa_req.auth_size = auth_len;
 | 
						|
	sa_req.src = req->src;
 | 
						|
	sa_req.dst = req->src;
 | 
						|
	sa_req.enc = true;
 | 
						|
	sa_req.type = CRYPTO_ALG_TYPE_AHASH;
 | 
						|
	sa_req.callback = sa_sha_dma_in_callback;
 | 
						|
	sa_req.mdata_size = 28;
 | 
						|
	sa_req.ctx = ctx;
 | 
						|
	sa_req.base = &req->base;
 | 
						|
 | 
						|
	return sa_run(&sa_req);
 | 
						|
}
 | 
						|
 | 
						|
static int sa_sha_setup(struct sa_tfm_ctx *ctx, struct  algo_data *ad)
 | 
						|
{
 | 
						|
	int bs = crypto_shash_blocksize(ctx->shash);
 | 
						|
	int cmdl_len;
 | 
						|
	struct sa_cmdl_cfg cfg;
 | 
						|
 | 
						|
	ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ;
 | 
						|
	ad->auth_eng.eng_id = SA_ENG_ID_AM1;
 | 
						|
	ad->auth_eng.sc_size = SA_CTX_AUTH_TYPE2_SZ;
 | 
						|
 | 
						|
	memset(ctx->authkey, 0, bs);
 | 
						|
	memset(&cfg, 0, sizeof(cfg));
 | 
						|
	cfg.aalg = ad->aalg_id;
 | 
						|
	cfg.enc_eng_id = ad->enc_eng.eng_id;
 | 
						|
	cfg.auth_eng_id = ad->auth_eng.eng_id;
 | 
						|
	cfg.iv_size = 0;
 | 
						|
	cfg.akey = NULL;
 | 
						|
	cfg.akey_len = 0;
 | 
						|
 | 
						|
	ctx->dev_data = dev_get_drvdata(sa_k3_dev);
 | 
						|
	/* Setup Encryption Security Context & Command label template */
 | 
						|
	if (sa_init_sc(&ctx->enc, ctx->dev_data->match_data, NULL, 0, NULL, 0,
 | 
						|
		       ad, 0, &ctx->enc.epib[1]))
 | 
						|
		goto badkey;
 | 
						|
 | 
						|
	cmdl_len = sa_format_cmdl_gen(&cfg,
 | 
						|
				      (u8 *)ctx->enc.cmdl,
 | 
						|
				      &ctx->enc.cmdl_upd_info);
 | 
						|
	if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
 | 
						|
		goto badkey;
 | 
						|
 | 
						|
	ctx->enc.cmdl_size = cmdl_len;
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
badkey:
 | 
						|
	dev_err(sa_k3_dev, "%s: badkey\n", __func__);
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
 | 
						|
static int sa_sha_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
 | 
						|
{
 | 
						|
	struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
 | 
						|
	struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
 | 
						|
	int ret;
 | 
						|
 | 
						|
	memset(ctx, 0, sizeof(*ctx));
 | 
						|
	ctx->dev_data = data;
 | 
						|
	ret = sa_init_ctx_info(&ctx->enc, data);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (alg_base) {
 | 
						|
		ctx->shash = crypto_alloc_shash(alg_base, 0,
 | 
						|
						CRYPTO_ALG_NEED_FALLBACK);
 | 
						|
		if (IS_ERR(ctx->shash)) {
 | 
						|
			dev_err(sa_k3_dev, "base driver %s couldn't be loaded\n",
 | 
						|
				alg_base);
 | 
						|
			return PTR_ERR(ctx->shash);
 | 
						|
		}
 | 
						|
		/* for fallback */
 | 
						|
		ctx->fallback.ahash =
 | 
						|
			crypto_alloc_ahash(alg_base, 0,
 | 
						|
					   CRYPTO_ALG_NEED_FALLBACK);
 | 
						|
		if (IS_ERR(ctx->fallback.ahash)) {
 | 
						|
			dev_err(ctx->dev_data->dev,
 | 
						|
				"Could not load fallback driver\n");
 | 
						|
			return PTR_ERR(ctx->fallback.ahash);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
 | 
						|
		__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
 | 
						|
		ctx->dec.sc_id, &ctx->dec.sc_phys);
 | 
						|
 | 
						|
	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 | 
						|
				 sizeof(struct sa_sha_req_ctx) +
 | 
						|
				 crypto_ahash_reqsize(ctx->fallback.ahash));
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int sa_sha_digest(struct ahash_request *req)
 | 
						|
{
 | 
						|
	return sa_sha_run(req);
 | 
						|
}
 | 
						|
 | 
						|
static int sa_sha_init(struct ahash_request *req)
 | 
						|
{
 | 
						|
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 | 
						|
	struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
 | 
						|
	struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
 | 
						|
 | 
						|
	dev_dbg(sa_k3_dev, "init: digest size: %u, rctx=%p\n",
 | 
						|
		crypto_ahash_digestsize(tfm), rctx);
 | 
						|
 | 
						|
	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
 | 
						|
	rctx->fallback_req.base.flags =
 | 
						|
		req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 | 
						|
 | 
						|
	return crypto_ahash_init(&rctx->fallback_req);
 | 
						|
}
 | 
						|
 | 
						|
static int sa_sha_update(struct ahash_request *req)
 | 
						|
{
 | 
						|
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 | 
						|
	struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
 | 
						|
	struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
 | 
						|
 | 
						|
	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
 | 
						|
	rctx->fallback_req.base.flags =
 | 
						|
		req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 | 
						|
	rctx->fallback_req.nbytes = req->nbytes;
 | 
						|
	rctx->fallback_req.src = req->src;
 | 
						|
 | 
						|
	return crypto_ahash_update(&rctx->fallback_req);
 | 
						|
}
 | 
						|
 | 
						|
static int sa_sha_final(struct ahash_request *req)
 | 
						|
{
 | 
						|
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 | 
						|
	struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
 | 
						|
	struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
 | 
						|
 | 
						|
	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
 | 
						|
	rctx->fallback_req.base.flags =
 | 
						|
		req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 | 
						|
	rctx->fallback_req.result = req->result;
 | 
						|
 | 
						|
	return crypto_ahash_final(&rctx->fallback_req);
 | 
						|
}
 | 
						|
 | 
						|
static int sa_sha_finup(struct ahash_request *req)
 | 
						|
{
 | 
						|
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 | 
						|
	struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
 | 
						|
	struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
 | 
						|
 | 
						|
	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
 | 
						|
	rctx->fallback_req.base.flags =
 | 
						|
		req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 | 
						|
 | 
						|
	rctx->fallback_req.nbytes = req->nbytes;
 | 
						|
	rctx->fallback_req.src = req->src;
 | 
						|
	rctx->fallback_req.result = req->result;
 | 
						|
 | 
						|
	return crypto_ahash_finup(&rctx->fallback_req);
 | 
						|
}
 | 
						|
 | 
						|
static int sa_sha_import(struct ahash_request *req, const void *in)
 | 
						|
{
 | 
						|
	struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
 | 
						|
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 | 
						|
	struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
 | 
						|
 | 
						|
	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
 | 
						|
	rctx->fallback_req.base.flags = req->base.flags &
 | 
						|
		CRYPTO_TFM_REQ_MAY_SLEEP;
 | 
						|
 | 
						|
	return crypto_ahash_import(&rctx->fallback_req, in);
 | 
						|
}
 | 
						|
 | 
						|
static int sa_sha_export(struct ahash_request *req, void *out)
 | 
						|
{
 | 
						|
	struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
 | 
						|
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 | 
						|
	struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
 | 
						|
	struct ahash_request *subreq = &rctx->fallback_req;
 | 
						|
 | 
						|
	ahash_request_set_tfm(subreq, ctx->fallback.ahash);
 | 
						|
	subreq->base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 | 
						|
 | 
						|
	return crypto_ahash_export(subreq, out);
 | 
						|
}
 | 
						|
 | 
						|
static int sa_sha1_cra_init(struct crypto_tfm *tfm)
 | 
						|
{
 | 
						|
	struct algo_data ad = { 0 };
 | 
						|
	struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
 | 
						|
 | 
						|
	sa_sha_cra_init_alg(tfm, "sha1");
 | 
						|
 | 
						|
	ad.aalg_id = SA_AALG_ID_SHA1;
 | 
						|
	ad.hash_size = SHA1_DIGEST_SIZE;
 | 
						|
	ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA1;
 | 
						|
 | 
						|
	sa_sha_setup(ctx, &ad);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int sa_sha256_cra_init(struct crypto_tfm *tfm)
 | 
						|
{
 | 
						|
	struct algo_data ad = { 0 };
 | 
						|
	struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
 | 
						|
 | 
						|
	sa_sha_cra_init_alg(tfm, "sha256");
 | 
						|
 | 
						|
	ad.aalg_id = SA_AALG_ID_SHA2_256;
 | 
						|
	ad.hash_size = SHA256_DIGEST_SIZE;
 | 
						|
	ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA256;
 | 
						|
 | 
						|
	sa_sha_setup(ctx, &ad);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int sa_sha512_cra_init(struct crypto_tfm *tfm)
 | 
						|
{
 | 
						|
	struct algo_data ad = { 0 };
 | 
						|
	struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
 | 
						|
 | 
						|
	sa_sha_cra_init_alg(tfm, "sha512");
 | 
						|
 | 
						|
	ad.aalg_id = SA_AALG_ID_SHA2_512;
 | 
						|
	ad.hash_size = SHA512_DIGEST_SIZE;
 | 
						|
	ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA512;
 | 
						|
 | 
						|
	sa_sha_setup(ctx, &ad);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void sa_sha_cra_exit(struct crypto_tfm *tfm)
 | 
						|
{
 | 
						|
	struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
 | 
						|
	struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
 | 
						|
 | 
						|
	dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
 | 
						|
		__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
 | 
						|
		ctx->dec.sc_id, &ctx->dec.sc_phys);
 | 
						|
 | 
						|
	if (crypto_tfm_alg_type(tfm) == CRYPTO_ALG_TYPE_AHASH)
 | 
						|
		sa_free_ctx_info(&ctx->enc, data);
 | 
						|
 | 
						|
	crypto_free_shash(ctx->shash);
 | 
						|
	crypto_free_ahash(ctx->fallback.ahash);
 | 
						|
}
 | 
						|
 | 
						|
static void sa_aead_dma_in_callback(void *data)
 | 
						|
{
 | 
						|
	struct sa_rx_data *rxd = data;
 | 
						|
	struct aead_request *req;
 | 
						|
	struct crypto_aead *tfm;
 | 
						|
	unsigned int start;
 | 
						|
	unsigned int authsize;
 | 
						|
	u8 auth_tag[SA_MAX_AUTH_TAG_SZ];
 | 
						|
	size_t pl, ml;
 | 
						|
	int i;
 | 
						|
	int err = 0;
 | 
						|
	u32 *mdptr;
 | 
						|
 | 
						|
	sa_sync_from_device(rxd);
 | 
						|
	req = container_of(rxd->req, struct aead_request, base);
 | 
						|
	tfm = crypto_aead_reqtfm(req);
 | 
						|
	start = req->assoclen + req->cryptlen;
 | 
						|
	authsize = crypto_aead_authsize(tfm);
 | 
						|
 | 
						|
	mdptr = (u32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl, &ml);
 | 
						|
	for (i = 0; i < (authsize / 4); i++)
 | 
						|
		mdptr[i + 4] = swab32(mdptr[i + 4]);
 | 
						|
 | 
						|
	if (rxd->enc) {
 | 
						|
		scatterwalk_map_and_copy(&mdptr[4], req->dst, start, authsize,
 | 
						|
					 1);
 | 
						|
	} else {
 | 
						|
		start -= authsize;
 | 
						|
		scatterwalk_map_and_copy(auth_tag, req->src, start, authsize,
 | 
						|
					 0);
 | 
						|
 | 
						|
		err = memcmp(&mdptr[4], auth_tag, authsize) ? -EBADMSG : 0;
 | 
						|
	}
 | 
						|
 | 
						|
	sa_free_sa_rx_data(rxd);
 | 
						|
 | 
						|
	aead_request_complete(req, err);
 | 
						|
}
 | 
						|
 | 
						|
static int sa_cra_init_aead(struct crypto_aead *tfm, const char *hash,
 | 
						|
			    const char *fallback)
 | 
						|
{
 | 
						|
	struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm);
 | 
						|
	struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
 | 
						|
	int ret;
 | 
						|
 | 
						|
	memzero_explicit(ctx, sizeof(*ctx));
 | 
						|
	ctx->dev_data = data;
 | 
						|
 | 
						|
	ctx->shash = crypto_alloc_shash(hash, 0, CRYPTO_ALG_NEED_FALLBACK);
 | 
						|
	if (IS_ERR(ctx->shash)) {
 | 
						|
		dev_err(sa_k3_dev, "base driver %s couldn't be loaded\n", hash);
 | 
						|
		return PTR_ERR(ctx->shash);
 | 
						|
	}
 | 
						|
 | 
						|
	ctx->fallback.aead = crypto_alloc_aead(fallback, 0,
 | 
						|
					       CRYPTO_ALG_NEED_FALLBACK);
 | 
						|
 | 
						|
	if (IS_ERR(ctx->fallback.aead)) {
 | 
						|
		dev_err(sa_k3_dev, "fallback driver %s couldn't be loaded\n",
 | 
						|
			fallback);
 | 
						|
		return PTR_ERR(ctx->fallback.aead);
 | 
						|
	}
 | 
						|
 | 
						|
	crypto_aead_set_reqsize(tfm, sizeof(struct aead_request) +
 | 
						|
				crypto_aead_reqsize(ctx->fallback.aead));
 | 
						|
 | 
						|
	ret = sa_init_ctx_info(&ctx->enc, data);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = sa_init_ctx_info(&ctx->dec, data);
 | 
						|
	if (ret) {
 | 
						|
		sa_free_ctx_info(&ctx->enc, data);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
 | 
						|
		__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
 | 
						|
		ctx->dec.sc_id, &ctx->dec.sc_phys);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int sa_cra_init_aead_sha1(struct crypto_aead *tfm)
 | 
						|
{
 | 
						|
	return sa_cra_init_aead(tfm, "sha1",
 | 
						|
				"authenc(hmac(sha1-ce),cbc(aes-ce))");
 | 
						|
}
 | 
						|
 | 
						|
static int sa_cra_init_aead_sha256(struct crypto_aead *tfm)
 | 
						|
{
 | 
						|
	return sa_cra_init_aead(tfm, "sha256",
 | 
						|
				"authenc(hmac(sha256-ce),cbc(aes-ce))");
 | 
						|
}
 | 
						|
 | 
						|
static void sa_exit_tfm_aead(struct crypto_aead *tfm)
 | 
						|
{
 | 
						|
	struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm);
 | 
						|
	struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
 | 
						|
 | 
						|
	crypto_free_shash(ctx->shash);
 | 
						|
	crypto_free_aead(ctx->fallback.aead);
 | 
						|
 | 
						|
	sa_free_ctx_info(&ctx->enc, data);
 | 
						|
	sa_free_ctx_info(&ctx->dec, data);
 | 
						|
}
 | 
						|
 | 
						|
/* AEAD algorithm configuration interface function */
 | 
						|
static int sa_aead_setkey(struct crypto_aead *authenc,
 | 
						|
			  const u8 *key, unsigned int keylen,
 | 
						|
			  struct algo_data *ad)
 | 
						|
{
 | 
						|
	struct sa_tfm_ctx *ctx = crypto_aead_ctx(authenc);
 | 
						|
	struct crypto_authenc_keys keys;
 | 
						|
	int cmdl_len;
 | 
						|
	struct sa_cmdl_cfg cfg;
 | 
						|
	int key_idx;
 | 
						|
 | 
						|
	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* Convert the key size (16/24/32) to the key size index (0/1/2) */
 | 
						|
	key_idx = (keys.enckeylen >> 3) - 2;
 | 
						|
	if (key_idx >= 3)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	ad->ctx = ctx;
 | 
						|
	ad->enc_eng.eng_id = SA_ENG_ID_EM1;
 | 
						|
	ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ;
 | 
						|
	ad->auth_eng.eng_id = SA_ENG_ID_AM1;
 | 
						|
	ad->auth_eng.sc_size = SA_CTX_AUTH_TYPE2_SZ;
 | 
						|
	ad->mci_enc = mci_cbc_enc_no_iv_array[key_idx];
 | 
						|
	ad->mci_dec = mci_cbc_dec_no_iv_array[key_idx];
 | 
						|
	ad->inv_key = true;
 | 
						|
	ad->keyed_mac = true;
 | 
						|
	ad->ealg_id = SA_EALG_ID_AES_CBC;
 | 
						|
	ad->prep_iopad = sa_prepare_iopads;
 | 
						|
 | 
						|
	memset(&cfg, 0, sizeof(cfg));
 | 
						|
	cfg.enc = true;
 | 
						|
	cfg.aalg = ad->aalg_id;
 | 
						|
	cfg.enc_eng_id = ad->enc_eng.eng_id;
 | 
						|
	cfg.auth_eng_id = ad->auth_eng.eng_id;
 | 
						|
	cfg.iv_size = crypto_aead_ivsize(authenc);
 | 
						|
	cfg.akey = keys.authkey;
 | 
						|
	cfg.akey_len = keys.authkeylen;
 | 
						|
 | 
						|
	/* Setup Encryption Security Context & Command label template */
 | 
						|
	if (sa_init_sc(&ctx->enc, ctx->dev_data->match_data, keys.enckey,
 | 
						|
		       keys.enckeylen, keys.authkey, keys.authkeylen,
 | 
						|
		       ad, 1, &ctx->enc.epib[1]))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	cmdl_len = sa_format_cmdl_gen(&cfg,
 | 
						|
				      (u8 *)ctx->enc.cmdl,
 | 
						|
				      &ctx->enc.cmdl_upd_info);
 | 
						|
	if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	ctx->enc.cmdl_size = cmdl_len;
 | 
						|
 | 
						|
	/* Setup Decryption Security Context & Command label template */
 | 
						|
	if (sa_init_sc(&ctx->dec, ctx->dev_data->match_data, keys.enckey,
 | 
						|
		       keys.enckeylen, keys.authkey, keys.authkeylen,
 | 
						|
		       ad, 0, &ctx->dec.epib[1]))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	cfg.enc = false;
 | 
						|
	cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->dec.cmdl,
 | 
						|
				      &ctx->dec.cmdl_upd_info);
 | 
						|
 | 
						|
	if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	ctx->dec.cmdl_size = cmdl_len;
 | 
						|
 | 
						|
	crypto_aead_clear_flags(ctx->fallback.aead, CRYPTO_TFM_REQ_MASK);
 | 
						|
	crypto_aead_set_flags(ctx->fallback.aead,
 | 
						|
			      crypto_aead_get_flags(authenc) &
 | 
						|
			      CRYPTO_TFM_REQ_MASK);
 | 
						|
 | 
						|
	return crypto_aead_setkey(ctx->fallback.aead, key, keylen);
 | 
						|
}
 | 
						|
 | 
						|
static int sa_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
 | 
						|
{
 | 
						|
	struct sa_tfm_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
 | 
						|
 | 
						|
	return crypto_aead_setauthsize(ctx->fallback.aead, authsize);
 | 
						|
}
 | 
						|
 | 
						|
static int sa_aead_cbc_sha1_setkey(struct crypto_aead *authenc,
 | 
						|
				   const u8 *key, unsigned int keylen)
 | 
						|
{
 | 
						|
	struct algo_data ad = { 0 };
 | 
						|
 | 
						|
	ad.ealg_id = SA_EALG_ID_AES_CBC;
 | 
						|
	ad.aalg_id = SA_AALG_ID_HMAC_SHA1;
 | 
						|
	ad.hash_size = SHA1_DIGEST_SIZE;
 | 
						|
	ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA1;
 | 
						|
 | 
						|
	return sa_aead_setkey(authenc, key, keylen, &ad);
 | 
						|
}
 | 
						|
 | 
						|
static int sa_aead_cbc_sha256_setkey(struct crypto_aead *authenc,
 | 
						|
				     const u8 *key, unsigned int keylen)
 | 
						|
{
 | 
						|
	struct algo_data ad = { 0 };
 | 
						|
 | 
						|
	ad.ealg_id = SA_EALG_ID_AES_CBC;
 | 
						|
	ad.aalg_id = SA_AALG_ID_HMAC_SHA2_256;
 | 
						|
	ad.hash_size = SHA256_DIGEST_SIZE;
 | 
						|
	ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA256;
 | 
						|
 | 
						|
	return sa_aead_setkey(authenc, key, keylen, &ad);
 | 
						|
}
 | 
						|
 | 
						|
static int sa_aead_run(struct aead_request *req, u8 *iv, int enc)
 | 
						|
{
 | 
						|
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
 | 
						|
	struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm);
 | 
						|
	struct sa_req sa_req = { 0 };
 | 
						|
	size_t auth_size, enc_size;
 | 
						|
 | 
						|
	enc_size = req->cryptlen;
 | 
						|
	auth_size = req->assoclen + req->cryptlen;
 | 
						|
 | 
						|
	if (!enc) {
 | 
						|
		enc_size -= crypto_aead_authsize(tfm);
 | 
						|
		auth_size -= crypto_aead_authsize(tfm);
 | 
						|
	}
 | 
						|
 | 
						|
	if (auth_size > SA_MAX_DATA_SZ ||
 | 
						|
	    (auth_size >= SA_UNSAFE_DATA_SZ_MIN &&
 | 
						|
	     auth_size <= SA_UNSAFE_DATA_SZ_MAX)) {
 | 
						|
		struct aead_request *subreq = aead_request_ctx(req);
 | 
						|
		int ret;
 | 
						|
 | 
						|
		aead_request_set_tfm(subreq, ctx->fallback.aead);
 | 
						|
		aead_request_set_callback(subreq, req->base.flags,
 | 
						|
					  req->base.complete, req->base.data);
 | 
						|
		aead_request_set_crypt(subreq, req->src, req->dst,
 | 
						|
				       req->cryptlen, req->iv);
 | 
						|
		aead_request_set_ad(subreq, req->assoclen);
 | 
						|
 | 
						|
		ret = enc ? crypto_aead_encrypt(subreq) :
 | 
						|
			crypto_aead_decrypt(subreq);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	sa_req.enc_offset = req->assoclen;
 | 
						|
	sa_req.enc_size = enc_size;
 | 
						|
	sa_req.auth_size = auth_size;
 | 
						|
	sa_req.size = auth_size;
 | 
						|
	sa_req.enc_iv = iv;
 | 
						|
	sa_req.type = CRYPTO_ALG_TYPE_AEAD;
 | 
						|
	sa_req.enc = enc;
 | 
						|
	sa_req.callback = sa_aead_dma_in_callback;
 | 
						|
	sa_req.mdata_size = 52;
 | 
						|
	sa_req.base = &req->base;
 | 
						|
	sa_req.ctx = ctx;
 | 
						|
	sa_req.src = req->src;
 | 
						|
	sa_req.dst = req->dst;
 | 
						|
 | 
						|
	return sa_run(&sa_req);
 | 
						|
}
 | 
						|
 | 
						|
/* AEAD algorithm encrypt interface function */
 | 
						|
static int sa_aead_encrypt(struct aead_request *req)
 | 
						|
{
 | 
						|
	return sa_aead_run(req, req->iv, 1);
 | 
						|
}
 | 
						|
 | 
						|
/* AEAD algorithm decrypt interface function */
 | 
						|
static int sa_aead_decrypt(struct aead_request *req)
 | 
						|
{
 | 
						|
	return sa_aead_run(req, req->iv, 0);
 | 
						|
}
 | 
						|
 | 
						|
static struct sa_alg_tmpl sa_algs[] = {
 | 
						|
	[SA_ALG_CBC_AES] = {
 | 
						|
		.type = CRYPTO_ALG_TYPE_SKCIPHER,
 | 
						|
		.alg.skcipher = {
 | 
						|
			.base.cra_name		= "cbc(aes)",
 | 
						|
			.base.cra_driver_name	= "cbc-aes-sa2ul",
 | 
						|
			.base.cra_priority	= 30000,
 | 
						|
			.base.cra_flags		= CRYPTO_ALG_TYPE_SKCIPHER |
 | 
						|
						  CRYPTO_ALG_KERN_DRIVER_ONLY |
 | 
						|
						  CRYPTO_ALG_ASYNC |
 | 
						|
						  CRYPTO_ALG_NEED_FALLBACK,
 | 
						|
			.base.cra_blocksize	= AES_BLOCK_SIZE,
 | 
						|
			.base.cra_ctxsize	= sizeof(struct sa_tfm_ctx),
 | 
						|
			.base.cra_module	= THIS_MODULE,
 | 
						|
			.init			= sa_cipher_cra_init,
 | 
						|
			.exit			= sa_cipher_cra_exit,
 | 
						|
			.min_keysize		= AES_MIN_KEY_SIZE,
 | 
						|
			.max_keysize		= AES_MAX_KEY_SIZE,
 | 
						|
			.ivsize			= AES_BLOCK_SIZE,
 | 
						|
			.setkey			= sa_aes_cbc_setkey,
 | 
						|
			.encrypt		= sa_encrypt,
 | 
						|
			.decrypt		= sa_decrypt,
 | 
						|
		}
 | 
						|
	},
 | 
						|
	[SA_ALG_EBC_AES] = {
 | 
						|
		.type = CRYPTO_ALG_TYPE_SKCIPHER,
 | 
						|
		.alg.skcipher = {
 | 
						|
			.base.cra_name		= "ecb(aes)",
 | 
						|
			.base.cra_driver_name	= "ecb-aes-sa2ul",
 | 
						|
			.base.cra_priority	= 30000,
 | 
						|
			.base.cra_flags		= CRYPTO_ALG_TYPE_SKCIPHER |
 | 
						|
						  CRYPTO_ALG_KERN_DRIVER_ONLY |
 | 
						|
						  CRYPTO_ALG_ASYNC |
 | 
						|
						  CRYPTO_ALG_NEED_FALLBACK,
 | 
						|
			.base.cra_blocksize	= AES_BLOCK_SIZE,
 | 
						|
			.base.cra_ctxsize	= sizeof(struct sa_tfm_ctx),
 | 
						|
			.base.cra_module	= THIS_MODULE,
 | 
						|
			.init			= sa_cipher_cra_init,
 | 
						|
			.exit			= sa_cipher_cra_exit,
 | 
						|
			.min_keysize		= AES_MIN_KEY_SIZE,
 | 
						|
			.max_keysize		= AES_MAX_KEY_SIZE,
 | 
						|
			.setkey			= sa_aes_ecb_setkey,
 | 
						|
			.encrypt		= sa_encrypt,
 | 
						|
			.decrypt		= sa_decrypt,
 | 
						|
		}
 | 
						|
	},
 | 
						|
	[SA_ALG_CBC_DES3] = {
 | 
						|
		.type = CRYPTO_ALG_TYPE_SKCIPHER,
 | 
						|
		.alg.skcipher = {
 | 
						|
			.base.cra_name		= "cbc(des3_ede)",
 | 
						|
			.base.cra_driver_name	= "cbc-des3-sa2ul",
 | 
						|
			.base.cra_priority	= 30000,
 | 
						|
			.base.cra_flags		= CRYPTO_ALG_TYPE_SKCIPHER |
 | 
						|
						  CRYPTO_ALG_KERN_DRIVER_ONLY |
 | 
						|
						  CRYPTO_ALG_ASYNC |
 | 
						|
						  CRYPTO_ALG_NEED_FALLBACK,
 | 
						|
			.base.cra_blocksize	= DES_BLOCK_SIZE,
 | 
						|
			.base.cra_ctxsize	= sizeof(struct sa_tfm_ctx),
 | 
						|
			.base.cra_module	= THIS_MODULE,
 | 
						|
			.init			= sa_cipher_cra_init,
 | 
						|
			.exit			= sa_cipher_cra_exit,
 | 
						|
			.min_keysize		= 3 * DES_KEY_SIZE,
 | 
						|
			.max_keysize		= 3 * DES_KEY_SIZE,
 | 
						|
			.ivsize			= DES_BLOCK_SIZE,
 | 
						|
			.setkey			= sa_3des_cbc_setkey,
 | 
						|
			.encrypt		= sa_encrypt,
 | 
						|
			.decrypt		= sa_decrypt,
 | 
						|
		}
 | 
						|
	},
 | 
						|
	[SA_ALG_ECB_DES3] = {
 | 
						|
		.type = CRYPTO_ALG_TYPE_SKCIPHER,
 | 
						|
		.alg.skcipher = {
 | 
						|
			.base.cra_name		= "ecb(des3_ede)",
 | 
						|
			.base.cra_driver_name	= "ecb-des3-sa2ul",
 | 
						|
			.base.cra_priority	= 30000,
 | 
						|
			.base.cra_flags		= CRYPTO_ALG_TYPE_SKCIPHER |
 | 
						|
						  CRYPTO_ALG_KERN_DRIVER_ONLY |
 | 
						|
						  CRYPTO_ALG_ASYNC |
 | 
						|
						  CRYPTO_ALG_NEED_FALLBACK,
 | 
						|
			.base.cra_blocksize	= DES_BLOCK_SIZE,
 | 
						|
			.base.cra_ctxsize	= sizeof(struct sa_tfm_ctx),
 | 
						|
			.base.cra_module	= THIS_MODULE,
 | 
						|
			.init			= sa_cipher_cra_init,
 | 
						|
			.exit			= sa_cipher_cra_exit,
 | 
						|
			.min_keysize		= 3 * DES_KEY_SIZE,
 | 
						|
			.max_keysize		= 3 * DES_KEY_SIZE,
 | 
						|
			.setkey			= sa_3des_ecb_setkey,
 | 
						|
			.encrypt		= sa_encrypt,
 | 
						|
			.decrypt		= sa_decrypt,
 | 
						|
		}
 | 
						|
	},
 | 
						|
	[SA_ALG_SHA1] = {
 | 
						|
		.type = CRYPTO_ALG_TYPE_AHASH,
 | 
						|
		.alg.ahash = {
 | 
						|
			.halg.base = {
 | 
						|
				.cra_name	= "sha1",
 | 
						|
				.cra_driver_name	= "sha1-sa2ul",
 | 
						|
				.cra_priority	= 400,
 | 
						|
				.cra_flags	= CRYPTO_ALG_TYPE_AHASH |
 | 
						|
						  CRYPTO_ALG_ASYNC |
 | 
						|
						  CRYPTO_ALG_KERN_DRIVER_ONLY |
 | 
						|
						  CRYPTO_ALG_NEED_FALLBACK,
 | 
						|
				.cra_blocksize	= SHA1_BLOCK_SIZE,
 | 
						|
				.cra_ctxsize	= sizeof(struct sa_tfm_ctx),
 | 
						|
				.cra_module	= THIS_MODULE,
 | 
						|
				.cra_init	= sa_sha1_cra_init,
 | 
						|
				.cra_exit	= sa_sha_cra_exit,
 | 
						|
			},
 | 
						|
			.halg.digestsize	= SHA1_DIGEST_SIZE,
 | 
						|
			.halg.statesize		= sizeof(struct sa_sha_req_ctx) +
 | 
						|
						  sizeof(struct sha1_state),
 | 
						|
			.init			= sa_sha_init,
 | 
						|
			.update			= sa_sha_update,
 | 
						|
			.final			= sa_sha_final,
 | 
						|
			.finup			= sa_sha_finup,
 | 
						|
			.digest			= sa_sha_digest,
 | 
						|
			.export			= sa_sha_export,
 | 
						|
			.import			= sa_sha_import,
 | 
						|
		},
 | 
						|
	},
 | 
						|
	[SA_ALG_SHA256] = {
 | 
						|
		.type = CRYPTO_ALG_TYPE_AHASH,
 | 
						|
		.alg.ahash = {
 | 
						|
			.halg.base = {
 | 
						|
				.cra_name	= "sha256",
 | 
						|
				.cra_driver_name	= "sha256-sa2ul",
 | 
						|
				.cra_priority	= 400,
 | 
						|
				.cra_flags	= CRYPTO_ALG_TYPE_AHASH |
 | 
						|
						  CRYPTO_ALG_ASYNC |
 | 
						|
						  CRYPTO_ALG_KERN_DRIVER_ONLY |
 | 
						|
						  CRYPTO_ALG_NEED_FALLBACK,
 | 
						|
				.cra_blocksize	= SHA256_BLOCK_SIZE,
 | 
						|
				.cra_ctxsize	= sizeof(struct sa_tfm_ctx),
 | 
						|
				.cra_module	= THIS_MODULE,
 | 
						|
				.cra_init	= sa_sha256_cra_init,
 | 
						|
				.cra_exit	= sa_sha_cra_exit,
 | 
						|
			},
 | 
						|
			.halg.digestsize	= SHA256_DIGEST_SIZE,
 | 
						|
			.halg.statesize		= sizeof(struct sa_sha_req_ctx) +
 | 
						|
						  sizeof(struct sha256_state),
 | 
						|
			.init			= sa_sha_init,
 | 
						|
			.update			= sa_sha_update,
 | 
						|
			.final			= sa_sha_final,
 | 
						|
			.finup			= sa_sha_finup,
 | 
						|
			.digest			= sa_sha_digest,
 | 
						|
			.export			= sa_sha_export,
 | 
						|
			.import			= sa_sha_import,
 | 
						|
		},
 | 
						|
	},
 | 
						|
	[SA_ALG_SHA512] = {
 | 
						|
		.type = CRYPTO_ALG_TYPE_AHASH,
 | 
						|
		.alg.ahash = {
 | 
						|
			.halg.base = {
 | 
						|
				.cra_name	= "sha512",
 | 
						|
				.cra_driver_name	= "sha512-sa2ul",
 | 
						|
				.cra_priority	= 400,
 | 
						|
				.cra_flags	= CRYPTO_ALG_TYPE_AHASH |
 | 
						|
						  CRYPTO_ALG_ASYNC |
 | 
						|
						  CRYPTO_ALG_KERN_DRIVER_ONLY |
 | 
						|
						  CRYPTO_ALG_NEED_FALLBACK,
 | 
						|
				.cra_blocksize	= SHA512_BLOCK_SIZE,
 | 
						|
				.cra_ctxsize	= sizeof(struct sa_tfm_ctx),
 | 
						|
				.cra_module	= THIS_MODULE,
 | 
						|
				.cra_init	= sa_sha512_cra_init,
 | 
						|
				.cra_exit	= sa_sha_cra_exit,
 | 
						|
			},
 | 
						|
			.halg.digestsize	= SHA512_DIGEST_SIZE,
 | 
						|
			.halg.statesize		= sizeof(struct sa_sha_req_ctx) +
 | 
						|
						  sizeof(struct sha512_state),
 | 
						|
			.init			= sa_sha_init,
 | 
						|
			.update			= sa_sha_update,
 | 
						|
			.final			= sa_sha_final,
 | 
						|
			.finup			= sa_sha_finup,
 | 
						|
			.digest			= sa_sha_digest,
 | 
						|
			.export			= sa_sha_export,
 | 
						|
			.import			= sa_sha_import,
 | 
						|
		},
 | 
						|
	},
 | 
						|
	[SA_ALG_AUTHENC_SHA1_AES] = {
 | 
						|
		.type	= CRYPTO_ALG_TYPE_AEAD,
 | 
						|
		.alg.aead = {
 | 
						|
			.base = {
 | 
						|
				.cra_name = "authenc(hmac(sha1),cbc(aes))",
 | 
						|
				.cra_driver_name =
 | 
						|
					"authenc(hmac(sha1),cbc(aes))-sa2ul",
 | 
						|
				.cra_blocksize = AES_BLOCK_SIZE,
 | 
						|
				.cra_flags = CRYPTO_ALG_TYPE_AEAD |
 | 
						|
					CRYPTO_ALG_KERN_DRIVER_ONLY |
 | 
						|
					CRYPTO_ALG_ASYNC |
 | 
						|
					CRYPTO_ALG_NEED_FALLBACK,
 | 
						|
				.cra_ctxsize = sizeof(struct sa_tfm_ctx),
 | 
						|
				.cra_module = THIS_MODULE,
 | 
						|
				.cra_priority = 3000,
 | 
						|
			},
 | 
						|
			.ivsize = AES_BLOCK_SIZE,
 | 
						|
			.maxauthsize = SHA1_DIGEST_SIZE,
 | 
						|
 | 
						|
			.init = sa_cra_init_aead_sha1,
 | 
						|
			.exit = sa_exit_tfm_aead,
 | 
						|
			.setkey = sa_aead_cbc_sha1_setkey,
 | 
						|
			.setauthsize = sa_aead_setauthsize,
 | 
						|
			.encrypt = sa_aead_encrypt,
 | 
						|
			.decrypt = sa_aead_decrypt,
 | 
						|
		},
 | 
						|
	},
 | 
						|
	[SA_ALG_AUTHENC_SHA256_AES] = {
 | 
						|
		.type	= CRYPTO_ALG_TYPE_AEAD,
 | 
						|
		.alg.aead = {
 | 
						|
			.base = {
 | 
						|
				.cra_name = "authenc(hmac(sha256),cbc(aes))",
 | 
						|
				.cra_driver_name =
 | 
						|
					"authenc(hmac(sha256),cbc(aes))-sa2ul",
 | 
						|
				.cra_blocksize = AES_BLOCK_SIZE,
 | 
						|
				.cra_flags = CRYPTO_ALG_TYPE_AEAD |
 | 
						|
					CRYPTO_ALG_KERN_DRIVER_ONLY |
 | 
						|
					CRYPTO_ALG_ASYNC |
 | 
						|
					CRYPTO_ALG_NEED_FALLBACK,
 | 
						|
				.cra_ctxsize = sizeof(struct sa_tfm_ctx),
 | 
						|
				.cra_module = THIS_MODULE,
 | 
						|
				.cra_alignmask = 0,
 | 
						|
				.cra_priority = 3000,
 | 
						|
			},
 | 
						|
			.ivsize = AES_BLOCK_SIZE,
 | 
						|
			.maxauthsize = SHA256_DIGEST_SIZE,
 | 
						|
 | 
						|
			.init = sa_cra_init_aead_sha256,
 | 
						|
			.exit = sa_exit_tfm_aead,
 | 
						|
			.setkey = sa_aead_cbc_sha256_setkey,
 | 
						|
			.setauthsize = sa_aead_setauthsize,
 | 
						|
			.encrypt = sa_aead_encrypt,
 | 
						|
			.decrypt = sa_aead_decrypt,
 | 
						|
		},
 | 
						|
	},
 | 
						|
};
 | 
						|
 | 
						|
/* Register the algorithms in crypto framework */
 | 
						|
static void sa_register_algos(struct sa_crypto_data *dev_data)
 | 
						|
{
 | 
						|
	const struct sa_match_data *match_data = dev_data->match_data;
 | 
						|
	struct device *dev = dev_data->dev;
 | 
						|
	char *alg_name;
 | 
						|
	u32 type;
 | 
						|
	int i, err;
 | 
						|
 | 
						|
	for (i = 0; i < ARRAY_SIZE(sa_algs); i++) {
 | 
						|
		/* Skip unsupported algos */
 | 
						|
		if (!(match_data->supported_algos & BIT(i)))
 | 
						|
			continue;
 | 
						|
 | 
						|
		type = sa_algs[i].type;
 | 
						|
		if (type == CRYPTO_ALG_TYPE_SKCIPHER) {
 | 
						|
			alg_name = sa_algs[i].alg.skcipher.base.cra_name;
 | 
						|
			err = crypto_register_skcipher(&sa_algs[i].alg.skcipher);
 | 
						|
		} else if (type == CRYPTO_ALG_TYPE_AHASH) {
 | 
						|
			alg_name = sa_algs[i].alg.ahash.halg.base.cra_name;
 | 
						|
			err = crypto_register_ahash(&sa_algs[i].alg.ahash);
 | 
						|
		} else if (type == CRYPTO_ALG_TYPE_AEAD) {
 | 
						|
			alg_name = sa_algs[i].alg.aead.base.cra_name;
 | 
						|
			err = crypto_register_aead(&sa_algs[i].alg.aead);
 | 
						|
		} else {
 | 
						|
			dev_err(dev,
 | 
						|
				"un-supported crypto algorithm (%d)",
 | 
						|
				sa_algs[i].type);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (err)
 | 
						|
			dev_err(dev, "Failed to register '%s'\n", alg_name);
 | 
						|
		else
 | 
						|
			sa_algs[i].registered = true;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Unregister the algorithms in crypto framework */
 | 
						|
static void sa_unregister_algos(const struct device *dev)
 | 
						|
{
 | 
						|
	u32 type;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < ARRAY_SIZE(sa_algs); i++) {
 | 
						|
		type = sa_algs[i].type;
 | 
						|
		if (!sa_algs[i].registered)
 | 
						|
			continue;
 | 
						|
		if (type == CRYPTO_ALG_TYPE_SKCIPHER)
 | 
						|
			crypto_unregister_skcipher(&sa_algs[i].alg.skcipher);
 | 
						|
		else if (type == CRYPTO_ALG_TYPE_AHASH)
 | 
						|
			crypto_unregister_ahash(&sa_algs[i].alg.ahash);
 | 
						|
		else if (type == CRYPTO_ALG_TYPE_AEAD)
 | 
						|
			crypto_unregister_aead(&sa_algs[i].alg.aead);
 | 
						|
 | 
						|
		sa_algs[i].registered = false;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int sa_init_mem(struct sa_crypto_data *dev_data)
 | 
						|
{
 | 
						|
	struct device *dev = &dev_data->pdev->dev;
 | 
						|
	/* Setup dma pool for security context buffers */
 | 
						|
	dev_data->sc_pool = dma_pool_create("keystone-sc", dev,
 | 
						|
					    SA_CTX_MAX_SZ, 64, 0);
 | 
						|
	if (!dev_data->sc_pool) {
 | 
						|
		dev_err(dev, "Failed to create dma pool");
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int sa_dma_init(struct sa_crypto_data *dd)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct dma_slave_config cfg;
 | 
						|
 | 
						|
	dd->dma_rx1 = NULL;
 | 
						|
	dd->dma_tx = NULL;
 | 
						|
	dd->dma_rx2 = NULL;
 | 
						|
 | 
						|
	ret = dma_coerce_mask_and_coherent(dd->dev, DMA_BIT_MASK(48));
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	dd->dma_rx1 = dma_request_chan(dd->dev, "rx1");
 | 
						|
	if (IS_ERR(dd->dma_rx1))
 | 
						|
		return dev_err_probe(dd->dev, PTR_ERR(dd->dma_rx1),
 | 
						|
				     "Unable to request rx1 DMA channel\n");
 | 
						|
 | 
						|
	dd->dma_rx2 = dma_request_chan(dd->dev, "rx2");
 | 
						|
	if (IS_ERR(dd->dma_rx2)) {
 | 
						|
		ret = dev_err_probe(dd->dev, PTR_ERR(dd->dma_rx2),
 | 
						|
				    "Unable to request rx2 DMA channel\n");
 | 
						|
		goto err_dma_rx2;
 | 
						|
	}
 | 
						|
 | 
						|
	dd->dma_tx = dma_request_chan(dd->dev, "tx");
 | 
						|
	if (IS_ERR(dd->dma_tx)) {
 | 
						|
		ret = dev_err_probe(dd->dev, PTR_ERR(dd->dma_tx),
 | 
						|
				    "Unable to request tx DMA channel\n");
 | 
						|
		goto err_dma_tx;
 | 
						|
	}
 | 
						|
 | 
						|
	memzero_explicit(&cfg, sizeof(cfg));
 | 
						|
 | 
						|
	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 | 
						|
	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 | 
						|
	cfg.src_maxburst = 4;
 | 
						|
	cfg.dst_maxburst = 4;
 | 
						|
 | 
						|
	ret = dmaengine_slave_config(dd->dma_rx1, &cfg);
 | 
						|
	if (ret) {
 | 
						|
		dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n",
 | 
						|
			ret);
 | 
						|
		goto err_dma_config;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = dmaengine_slave_config(dd->dma_rx2, &cfg);
 | 
						|
	if (ret) {
 | 
						|
		dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n",
 | 
						|
			ret);
 | 
						|
		goto err_dma_config;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = dmaengine_slave_config(dd->dma_tx, &cfg);
 | 
						|
	if (ret) {
 | 
						|
		dev_err(dd->dev, "can't configure OUT dmaengine slave: %d\n",
 | 
						|
			ret);
 | 
						|
		goto err_dma_config;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
err_dma_config:
 | 
						|
	dma_release_channel(dd->dma_tx);
 | 
						|
err_dma_tx:
 | 
						|
	dma_release_channel(dd->dma_rx2);
 | 
						|
err_dma_rx2:
 | 
						|
	dma_release_channel(dd->dma_rx1);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int sa_link_child(struct device *dev, void *data)
 | 
						|
{
 | 
						|
	struct device *parent = data;
 | 
						|
 | 
						|
	device_link_add(dev, parent, DL_FLAG_AUTOPROBE_CONSUMER);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static struct sa_match_data am654_match_data = {
 | 
						|
	.priv = 1,
 | 
						|
	.priv_id = 1,
 | 
						|
	.supported_algos = BIT(SA_ALG_CBC_AES) |
 | 
						|
			   BIT(SA_ALG_EBC_AES) |
 | 
						|
			   BIT(SA_ALG_CBC_DES3) |
 | 
						|
			   BIT(SA_ALG_ECB_DES3) |
 | 
						|
			   BIT(SA_ALG_SHA1) |
 | 
						|
			   BIT(SA_ALG_SHA256) |
 | 
						|
			   BIT(SA_ALG_SHA512) |
 | 
						|
			   BIT(SA_ALG_AUTHENC_SHA1_AES) |
 | 
						|
			   BIT(SA_ALG_AUTHENC_SHA256_AES),
 | 
						|
};
 | 
						|
 | 
						|
static struct sa_match_data am64_match_data = {
 | 
						|
	.priv = 0,
 | 
						|
	.priv_id = 0,
 | 
						|
	.supported_algos = BIT(SA_ALG_CBC_AES) |
 | 
						|
			   BIT(SA_ALG_EBC_AES) |
 | 
						|
			   BIT(SA_ALG_SHA256) |
 | 
						|
			   BIT(SA_ALG_SHA512) |
 | 
						|
			   BIT(SA_ALG_AUTHENC_SHA256_AES),
 | 
						|
};
 | 
						|
 | 
						|
static const struct of_device_id of_match[] = {
 | 
						|
	{ .compatible = "ti,j721e-sa2ul", .data = &am654_match_data, },
 | 
						|
	{ .compatible = "ti,am654-sa2ul", .data = &am654_match_data, },
 | 
						|
	{ .compatible = "ti,am64-sa2ul", .data = &am64_match_data, },
 | 
						|
	{ .compatible = "ti,am62-sa3ul", .data = &am64_match_data, },
 | 
						|
	{},
 | 
						|
};
 | 
						|
MODULE_DEVICE_TABLE(of, of_match);
 | 
						|
 | 
						|
static int sa_ul_probe(struct platform_device *pdev)
 | 
						|
{
 | 
						|
	struct device *dev = &pdev->dev;
 | 
						|
	struct device_node *node = dev->of_node;
 | 
						|
	static void __iomem *saul_base;
 | 
						|
	struct sa_crypto_data *dev_data;
 | 
						|
	u32 status, val;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	dev_data = devm_kzalloc(dev, sizeof(*dev_data), GFP_KERNEL);
 | 
						|
	if (!dev_data)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	dev_data->match_data = of_device_get_match_data(dev);
 | 
						|
	if (!dev_data->match_data)
 | 
						|
		return -ENODEV;
 | 
						|
 | 
						|
	saul_base = devm_platform_ioremap_resource(pdev, 0);
 | 
						|
	if (IS_ERR(saul_base))
 | 
						|
		return PTR_ERR(saul_base);
 | 
						|
 | 
						|
	sa_k3_dev = dev;
 | 
						|
	dev_data->dev = dev;
 | 
						|
	dev_data->pdev = pdev;
 | 
						|
	dev_data->base = saul_base;
 | 
						|
	platform_set_drvdata(pdev, dev_data);
 | 
						|
	dev_set_drvdata(sa_k3_dev, dev_data);
 | 
						|
 | 
						|
	pm_runtime_enable(dev);
 | 
						|
	ret = pm_runtime_resume_and_get(dev);
 | 
						|
	if (ret < 0) {
 | 
						|
		dev_err(dev, "%s: failed to get sync: %d\n", __func__, ret);
 | 
						|
		pm_runtime_disable(dev);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	sa_init_mem(dev_data);
 | 
						|
	ret = sa_dma_init(dev_data);
 | 
						|
	if (ret)
 | 
						|
		goto destroy_dma_pool;
 | 
						|
 | 
						|
	spin_lock_init(&dev_data->scid_lock);
 | 
						|
 | 
						|
	val = SA_EEC_ENCSS_EN | SA_EEC_AUTHSS_EN | SA_EEC_CTXCACH_EN |
 | 
						|
	      SA_EEC_CPPI_PORT_IN_EN | SA_EEC_CPPI_PORT_OUT_EN |
 | 
						|
	      SA_EEC_TRNG_EN;
 | 
						|
	status = readl_relaxed(saul_base + SA_ENGINE_STATUS);
 | 
						|
	/* Only enable engines if all are not already enabled */
 | 
						|
	if (val & ~status)
 | 
						|
		writel_relaxed(val, saul_base + SA_ENGINE_ENABLE_CONTROL);
 | 
						|
 | 
						|
	sa_register_algos(dev_data);
 | 
						|
 | 
						|
	ret = of_platform_populate(node, NULL, NULL, dev);
 | 
						|
	if (ret)
 | 
						|
		goto release_dma;
 | 
						|
 | 
						|
	device_for_each_child(dev, dev, sa_link_child);
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
release_dma:
 | 
						|
	sa_unregister_algos(dev);
 | 
						|
 | 
						|
	dma_release_channel(dev_data->dma_rx2);
 | 
						|
	dma_release_channel(dev_data->dma_rx1);
 | 
						|
	dma_release_channel(dev_data->dma_tx);
 | 
						|
 | 
						|
destroy_dma_pool:
 | 
						|
	dma_pool_destroy(dev_data->sc_pool);
 | 
						|
 | 
						|
	pm_runtime_put_sync(dev);
 | 
						|
	pm_runtime_disable(dev);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void sa_ul_remove(struct platform_device *pdev)
 | 
						|
{
 | 
						|
	struct sa_crypto_data *dev_data = platform_get_drvdata(pdev);
 | 
						|
 | 
						|
	of_platform_depopulate(&pdev->dev);
 | 
						|
 | 
						|
	sa_unregister_algos(&pdev->dev);
 | 
						|
 | 
						|
	dma_release_channel(dev_data->dma_rx2);
 | 
						|
	dma_release_channel(dev_data->dma_rx1);
 | 
						|
	dma_release_channel(dev_data->dma_tx);
 | 
						|
 | 
						|
	dma_pool_destroy(dev_data->sc_pool);
 | 
						|
 | 
						|
	platform_set_drvdata(pdev, NULL);
 | 
						|
 | 
						|
	pm_runtime_put_sync(&pdev->dev);
 | 
						|
	pm_runtime_disable(&pdev->dev);
 | 
						|
}
 | 
						|
 | 
						|
static struct platform_driver sa_ul_driver = {
 | 
						|
	.probe = sa_ul_probe,
 | 
						|
	.remove_new = sa_ul_remove,
 | 
						|
	.driver = {
 | 
						|
		   .name = "saul-crypto",
 | 
						|
		   .of_match_table = of_match,
 | 
						|
		   },
 | 
						|
};
 | 
						|
module_platform_driver(sa_ul_driver);
 | 
						|
MODULE_LICENSE("GPL v2");
 |