mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	Change legacy name master to modern name host or controller. No functional changed. Signed-off-by: Yang Yingliang <yangyingliang@huawei.com> Link: https://lore.kernel.org/r/20230728093221.3312026-20-yangyingliang@huawei.com Signed-off-by: Mark Brown <broonie@kernel.org>
		
			
				
	
	
		
			1012 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1012 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-only
 | 
						|
/*
 | 
						|
 * Designware SPI core controller driver (refer pxa2xx_spi.c)
 | 
						|
 *
 | 
						|
 * Copyright (c) 2009, Intel Corporation.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/bitfield.h>
 | 
						|
#include <linux/dma-mapping.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/preempt.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/spi/spi.h>
 | 
						|
#include <linux/spi/spi-mem.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/of.h>
 | 
						|
 | 
						|
#include "spi-dw.h"
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_FS
 | 
						|
#include <linux/debugfs.h>
 | 
						|
#endif
 | 
						|
 | 
						|
/* Slave spi_device related */
 | 
						|
struct dw_spi_chip_data {
 | 
						|
	u32 cr0;
 | 
						|
	u32 rx_sample_dly;	/* RX sample delay */
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_FS
 | 
						|
 | 
						|
#define DW_SPI_DBGFS_REG(_name, _off)	\
 | 
						|
{					\
 | 
						|
	.name = _name,			\
 | 
						|
	.offset = _off,			\
 | 
						|
}
 | 
						|
 | 
						|
static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
 | 
						|
	DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
 | 
						|
	DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
 | 
						|
	DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
 | 
						|
	DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
 | 
						|
	DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
 | 
						|
	DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
 | 
						|
	DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
 | 
						|
	DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
 | 
						|
	DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
 | 
						|
	DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
 | 
						|
	DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
 | 
						|
	DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
 | 
						|
	DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
 | 
						|
	DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
 | 
						|
	DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
 | 
						|
	DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY),
 | 
						|
};
 | 
						|
 | 
						|
static void dw_spi_debugfs_init(struct dw_spi *dws)
 | 
						|
{
 | 
						|
	char name[32];
 | 
						|
 | 
						|
	snprintf(name, 32, "dw_spi%d", dws->host->bus_num);
 | 
						|
	dws->debugfs = debugfs_create_dir(name, NULL);
 | 
						|
 | 
						|
	dws->regset.regs = dw_spi_dbgfs_regs;
 | 
						|
	dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
 | 
						|
	dws->regset.base = dws->regs;
 | 
						|
	debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);
 | 
						|
}
 | 
						|
 | 
						|
static void dw_spi_debugfs_remove(struct dw_spi *dws)
 | 
						|
{
 | 
						|
	debugfs_remove_recursive(dws->debugfs);
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
static inline void dw_spi_debugfs_init(struct dw_spi *dws)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif /* CONFIG_DEBUG_FS */
 | 
						|
 | 
						|
void dw_spi_set_cs(struct spi_device *spi, bool enable)
 | 
						|
{
 | 
						|
	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
 | 
						|
	bool cs_high = !!(spi->mode & SPI_CS_HIGH);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * DW SPI controller demands any native CS being set in order to
 | 
						|
	 * proceed with data transfer. So in order to activate the SPI
 | 
						|
	 * communications we must set a corresponding bit in the Slave
 | 
						|
	 * Enable register no matter whether the SPI core is configured to
 | 
						|
	 * support active-high or active-low CS level.
 | 
						|
	 */
 | 
						|
	if (cs_high == enable)
 | 
						|
		dw_writel(dws, DW_SPI_SER, BIT(spi_get_chipselect(spi, 0)));
 | 
						|
	else
 | 
						|
		dw_writel(dws, DW_SPI_SER, 0);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_NS_GPL(dw_spi_set_cs, SPI_DW_CORE);
 | 
						|
 | 
						|
/* Return the max entries we can fill into tx fifo */
 | 
						|
static inline u32 dw_spi_tx_max(struct dw_spi *dws)
 | 
						|
{
 | 
						|
	u32 tx_room, rxtx_gap;
 | 
						|
 | 
						|
	tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Another concern is about the tx/rx mismatch, we
 | 
						|
	 * though to use (dws->fifo_len - rxflr - txflr) as
 | 
						|
	 * one maximum value for tx, but it doesn't cover the
 | 
						|
	 * data which is out of tx/rx fifo and inside the
 | 
						|
	 * shift registers. So a control from sw point of
 | 
						|
	 * view is taken.
 | 
						|
	 */
 | 
						|
	rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len);
 | 
						|
 | 
						|
	return min3((u32)dws->tx_len, tx_room, rxtx_gap);
 | 
						|
}
 | 
						|
 | 
						|
/* Return the max entries we should read out of rx fifo */
 | 
						|
static inline u32 dw_spi_rx_max(struct dw_spi *dws)
 | 
						|
{
 | 
						|
	return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR));
 | 
						|
}
 | 
						|
 | 
						|
static void dw_writer(struct dw_spi *dws)
 | 
						|
{
 | 
						|
	u32 max = dw_spi_tx_max(dws);
 | 
						|
	u32 txw = 0;
 | 
						|
 | 
						|
	while (max--) {
 | 
						|
		if (dws->tx) {
 | 
						|
			if (dws->n_bytes == 1)
 | 
						|
				txw = *(u8 *)(dws->tx);
 | 
						|
			else if (dws->n_bytes == 2)
 | 
						|
				txw = *(u16 *)(dws->tx);
 | 
						|
			else
 | 
						|
				txw = *(u32 *)(dws->tx);
 | 
						|
 | 
						|
			dws->tx += dws->n_bytes;
 | 
						|
		}
 | 
						|
		dw_write_io_reg(dws, DW_SPI_DR, txw);
 | 
						|
		--dws->tx_len;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void dw_reader(struct dw_spi *dws)
 | 
						|
{
 | 
						|
	u32 max = dw_spi_rx_max(dws);
 | 
						|
	u32 rxw;
 | 
						|
 | 
						|
	while (max--) {
 | 
						|
		rxw = dw_read_io_reg(dws, DW_SPI_DR);
 | 
						|
		if (dws->rx) {
 | 
						|
			if (dws->n_bytes == 1)
 | 
						|
				*(u8 *)(dws->rx) = rxw;
 | 
						|
			else if (dws->n_bytes == 2)
 | 
						|
				*(u16 *)(dws->rx) = rxw;
 | 
						|
			else
 | 
						|
				*(u32 *)(dws->rx) = rxw;
 | 
						|
 | 
						|
			dws->rx += dws->n_bytes;
 | 
						|
		}
 | 
						|
		--dws->rx_len;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int dw_spi_check_status(struct dw_spi *dws, bool raw)
 | 
						|
{
 | 
						|
	u32 irq_status;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (raw)
 | 
						|
		irq_status = dw_readl(dws, DW_SPI_RISR);
 | 
						|
	else
 | 
						|
		irq_status = dw_readl(dws, DW_SPI_ISR);
 | 
						|
 | 
						|
	if (irq_status & DW_SPI_INT_RXOI) {
 | 
						|
		dev_err(&dws->host->dev, "RX FIFO overflow detected\n");
 | 
						|
		ret = -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	if (irq_status & DW_SPI_INT_RXUI) {
 | 
						|
		dev_err(&dws->host->dev, "RX FIFO underflow detected\n");
 | 
						|
		ret = -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	if (irq_status & DW_SPI_INT_TXOI) {
 | 
						|
		dev_err(&dws->host->dev, "TX FIFO overflow detected\n");
 | 
						|
		ret = -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Generically handle the erroneous situation */
 | 
						|
	if (ret) {
 | 
						|
		dw_spi_reset_chip(dws);
 | 
						|
		if (dws->host->cur_msg)
 | 
						|
			dws->host->cur_msg->status = ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_NS_GPL(dw_spi_check_status, SPI_DW_CORE);
 | 
						|
 | 
						|
static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws)
 | 
						|
{
 | 
						|
	u16 irq_status = dw_readl(dws, DW_SPI_ISR);
 | 
						|
 | 
						|
	if (dw_spi_check_status(dws, false)) {
 | 
						|
		spi_finalize_current_transfer(dws->host);
 | 
						|
		return IRQ_HANDLED;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Read data from the Rx FIFO every time we've got a chance executing
 | 
						|
	 * this method. If there is nothing left to receive, terminate the
 | 
						|
	 * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
 | 
						|
	 * final stage of the transfer. By doing so we'll get the next IRQ
 | 
						|
	 * right when the leftover incoming data is received.
 | 
						|
	 */
 | 
						|
	dw_reader(dws);
 | 
						|
	if (!dws->rx_len) {
 | 
						|
		dw_spi_mask_intr(dws, 0xff);
 | 
						|
		spi_finalize_current_transfer(dws->host);
 | 
						|
	} else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) {
 | 
						|
		dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
 | 
						|
	 * disabled after the data transmission is finished so not to
 | 
						|
	 * have the TXE IRQ flood at the final stage of the transfer.
 | 
						|
	 */
 | 
						|
	if (irq_status & DW_SPI_INT_TXEI) {
 | 
						|
		dw_writer(dws);
 | 
						|
		if (!dws->tx_len)
 | 
						|
			dw_spi_mask_intr(dws, DW_SPI_INT_TXEI);
 | 
						|
	}
 | 
						|
 | 
						|
	return IRQ_HANDLED;
 | 
						|
}
 | 
						|
 | 
						|
static irqreturn_t dw_spi_irq(int irq, void *dev_id)
 | 
						|
{
 | 
						|
	struct spi_controller *host = dev_id;
 | 
						|
	struct dw_spi *dws = spi_controller_get_devdata(host);
 | 
						|
	u16 irq_status = dw_readl(dws, DW_SPI_ISR) & DW_SPI_INT_MASK;
 | 
						|
 | 
						|
	if (!irq_status)
 | 
						|
		return IRQ_NONE;
 | 
						|
 | 
						|
	if (!host->cur_msg) {
 | 
						|
		dw_spi_mask_intr(dws, 0xff);
 | 
						|
		return IRQ_HANDLED;
 | 
						|
	}
 | 
						|
 | 
						|
	return dws->transfer_handler(dws);
 | 
						|
}
 | 
						|
 | 
						|
static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi)
 | 
						|
{
 | 
						|
	u32 cr0 = 0;
 | 
						|
 | 
						|
	if (dw_spi_ip_is(dws, PSSI)) {
 | 
						|
		/* CTRLR0[ 5: 4] Frame Format */
 | 
						|
		cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * SPI mode (SCPOL|SCPH)
 | 
						|
		 * CTRLR0[ 6] Serial Clock Phase
 | 
						|
		 * CTRLR0[ 7] Serial Clock Polarity
 | 
						|
		 */
 | 
						|
		if (spi->mode & SPI_CPOL)
 | 
						|
			cr0 |= DW_PSSI_CTRLR0_SCPOL;
 | 
						|
		if (spi->mode & SPI_CPHA)
 | 
						|
			cr0 |= DW_PSSI_CTRLR0_SCPHA;
 | 
						|
 | 
						|
		/* CTRLR0[11] Shift Register Loop */
 | 
						|
		if (spi->mode & SPI_LOOP)
 | 
						|
			cr0 |= DW_PSSI_CTRLR0_SRL;
 | 
						|
	} else {
 | 
						|
		/* CTRLR0[ 7: 6] Frame Format */
 | 
						|
		cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * SPI mode (SCPOL|SCPH)
 | 
						|
		 * CTRLR0[ 8] Serial Clock Phase
 | 
						|
		 * CTRLR0[ 9] Serial Clock Polarity
 | 
						|
		 */
 | 
						|
		if (spi->mode & SPI_CPOL)
 | 
						|
			cr0 |= DW_HSSI_CTRLR0_SCPOL;
 | 
						|
		if (spi->mode & SPI_CPHA)
 | 
						|
			cr0 |= DW_HSSI_CTRLR0_SCPHA;
 | 
						|
 | 
						|
		/* CTRLR0[13] Shift Register Loop */
 | 
						|
		if (spi->mode & SPI_LOOP)
 | 
						|
			cr0 |= DW_HSSI_CTRLR0_SRL;
 | 
						|
 | 
						|
		/* CTRLR0[31] MST */
 | 
						|
		if (dw_spi_ver_is_ge(dws, HSSI, 102A))
 | 
						|
			cr0 |= DW_HSSI_CTRLR0_MST;
 | 
						|
	}
 | 
						|
 | 
						|
	return cr0;
 | 
						|
}
 | 
						|
 | 
						|
void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi,
 | 
						|
			  struct dw_spi_cfg *cfg)
 | 
						|
{
 | 
						|
	struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
 | 
						|
	u32 cr0 = chip->cr0;
 | 
						|
	u32 speed_hz;
 | 
						|
	u16 clk_div;
 | 
						|
 | 
						|
	/* CTRLR0[ 4/3: 0] or CTRLR0[ 20: 16] Data Frame Size */
 | 
						|
	cr0 |= (cfg->dfs - 1) << dws->dfs_offset;
 | 
						|
 | 
						|
	if (dw_spi_ip_is(dws, PSSI))
 | 
						|
		/* CTRLR0[ 9:8] Transfer Mode */
 | 
						|
		cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_TMOD_MASK, cfg->tmode);
 | 
						|
	else
 | 
						|
		/* CTRLR0[11:10] Transfer Mode */
 | 
						|
		cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_TMOD_MASK, cfg->tmode);
 | 
						|
 | 
						|
	dw_writel(dws, DW_SPI_CTRLR0, cr0);
 | 
						|
 | 
						|
	if (cfg->tmode == DW_SPI_CTRLR0_TMOD_EPROMREAD ||
 | 
						|
	    cfg->tmode == DW_SPI_CTRLR0_TMOD_RO)
 | 
						|
		dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0);
 | 
						|
 | 
						|
	/* Note DW APB SSI clock divider doesn't support odd numbers */
 | 
						|
	clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe;
 | 
						|
	speed_hz = dws->max_freq / clk_div;
 | 
						|
 | 
						|
	if (dws->current_freq != speed_hz) {
 | 
						|
		dw_spi_set_clk(dws, clk_div);
 | 
						|
		dws->current_freq = speed_hz;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Update RX sample delay if required */
 | 
						|
	if (dws->cur_rx_sample_dly != chip->rx_sample_dly) {
 | 
						|
		dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly);
 | 
						|
		dws->cur_rx_sample_dly = chip->rx_sample_dly;
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_NS_GPL(dw_spi_update_config, SPI_DW_CORE);
 | 
						|
 | 
						|
static void dw_spi_irq_setup(struct dw_spi *dws)
 | 
						|
{
 | 
						|
	u16 level;
 | 
						|
	u8 imask;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Originally Tx and Rx data lengths match. Rx FIFO Threshold level
 | 
						|
	 * will be adjusted at the final stage of the IRQ-based SPI transfer
 | 
						|
	 * execution so not to lose the leftover of the incoming data.
 | 
						|
	 */
 | 
						|
	level = min_t(unsigned int, dws->fifo_len / 2, dws->tx_len);
 | 
						|
	dw_writel(dws, DW_SPI_TXFTLR, level);
 | 
						|
	dw_writel(dws, DW_SPI_RXFTLR, level - 1);
 | 
						|
 | 
						|
	dws->transfer_handler = dw_spi_transfer_handler;
 | 
						|
 | 
						|
	imask = DW_SPI_INT_TXEI | DW_SPI_INT_TXOI |
 | 
						|
		DW_SPI_INT_RXUI | DW_SPI_INT_RXOI | DW_SPI_INT_RXFI;
 | 
						|
	dw_spi_umask_intr(dws, imask);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The iterative procedure of the poll-based transfer is simple: write as much
 | 
						|
 * as possible to the Tx FIFO, wait until the pending to receive data is ready
 | 
						|
 * to be read, read it from the Rx FIFO and check whether the performed
 | 
						|
 * procedure has been successful.
 | 
						|
 *
 | 
						|
 * Note this method the same way as the IRQ-based transfer won't work well for
 | 
						|
 * the SPI devices connected to the controller with native CS due to the
 | 
						|
 * automatic CS assertion/de-assertion.
 | 
						|
 */
 | 
						|
static int dw_spi_poll_transfer(struct dw_spi *dws,
 | 
						|
				struct spi_transfer *transfer)
 | 
						|
{
 | 
						|
	struct spi_delay delay;
 | 
						|
	u16 nbits;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	delay.unit = SPI_DELAY_UNIT_SCK;
 | 
						|
	nbits = dws->n_bytes * BITS_PER_BYTE;
 | 
						|
 | 
						|
	do {
 | 
						|
		dw_writer(dws);
 | 
						|
 | 
						|
		delay.value = nbits * (dws->rx_len - dws->tx_len);
 | 
						|
		spi_delay_exec(&delay, transfer);
 | 
						|
 | 
						|
		dw_reader(dws);
 | 
						|
 | 
						|
		ret = dw_spi_check_status(dws, true);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	} while (dws->rx_len);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int dw_spi_transfer_one(struct spi_controller *host,
 | 
						|
			       struct spi_device *spi,
 | 
						|
			       struct spi_transfer *transfer)
 | 
						|
{
 | 
						|
	struct dw_spi *dws = spi_controller_get_devdata(host);
 | 
						|
	struct dw_spi_cfg cfg = {
 | 
						|
		.tmode = DW_SPI_CTRLR0_TMOD_TR,
 | 
						|
		.dfs = transfer->bits_per_word,
 | 
						|
		.freq = transfer->speed_hz,
 | 
						|
	};
 | 
						|
	int ret;
 | 
						|
 | 
						|
	dws->dma_mapped = 0;
 | 
						|
	dws->n_bytes =
 | 
						|
		roundup_pow_of_two(DIV_ROUND_UP(transfer->bits_per_word,
 | 
						|
						BITS_PER_BYTE));
 | 
						|
 | 
						|
	dws->tx = (void *)transfer->tx_buf;
 | 
						|
	dws->tx_len = transfer->len / dws->n_bytes;
 | 
						|
	dws->rx = transfer->rx_buf;
 | 
						|
	dws->rx_len = dws->tx_len;
 | 
						|
 | 
						|
	/* Ensure the data above is visible for all CPUs */
 | 
						|
	smp_mb();
 | 
						|
 | 
						|
	dw_spi_enable_chip(dws, 0);
 | 
						|
 | 
						|
	dw_spi_update_config(dws, spi, &cfg);
 | 
						|
 | 
						|
	transfer->effective_speed_hz = dws->current_freq;
 | 
						|
 | 
						|
	/* Check if current transfer is a DMA transaction */
 | 
						|
	if (host->can_dma && host->can_dma(host, spi, transfer))
 | 
						|
		dws->dma_mapped = host->cur_msg_mapped;
 | 
						|
 | 
						|
	/* For poll mode just disable all interrupts */
 | 
						|
	dw_spi_mask_intr(dws, 0xff);
 | 
						|
 | 
						|
	if (dws->dma_mapped) {
 | 
						|
		ret = dws->dma_ops->dma_setup(dws, transfer);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	dw_spi_enable_chip(dws, 1);
 | 
						|
 | 
						|
	if (dws->dma_mapped)
 | 
						|
		return dws->dma_ops->dma_transfer(dws, transfer);
 | 
						|
	else if (dws->irq == IRQ_NOTCONNECTED)
 | 
						|
		return dw_spi_poll_transfer(dws, transfer);
 | 
						|
 | 
						|
	dw_spi_irq_setup(dws);
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static void dw_spi_handle_err(struct spi_controller *host,
 | 
						|
			      struct spi_message *msg)
 | 
						|
{
 | 
						|
	struct dw_spi *dws = spi_controller_get_devdata(host);
 | 
						|
 | 
						|
	if (dws->dma_mapped)
 | 
						|
		dws->dma_ops->dma_stop(dws);
 | 
						|
 | 
						|
	dw_spi_reset_chip(dws);
 | 
						|
}
 | 
						|
 | 
						|
static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
 | 
						|
{
 | 
						|
	if (op->data.dir == SPI_MEM_DATA_IN)
 | 
						|
		op->data.nbytes = clamp_val(op->data.nbytes, 0, DW_SPI_NDF_MASK + 1);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static bool dw_spi_supports_mem_op(struct spi_mem *mem,
 | 
						|
				   const struct spi_mem_op *op)
 | 
						|
{
 | 
						|
	if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
 | 
						|
	    op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
 | 
						|
		return false;
 | 
						|
 | 
						|
	return spi_mem_default_supports_op(mem, op);
 | 
						|
}
 | 
						|
 | 
						|
static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op)
 | 
						|
{
 | 
						|
	unsigned int i, j, len;
 | 
						|
	u8 *out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Calculate the total length of the EEPROM command transfer and
 | 
						|
	 * either use the pre-allocated buffer or create a temporary one.
 | 
						|
	 */
 | 
						|
	len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
 | 
						|
	if (op->data.dir == SPI_MEM_DATA_OUT)
 | 
						|
		len += op->data.nbytes;
 | 
						|
 | 
						|
	if (len <= DW_SPI_BUF_SIZE) {
 | 
						|
		out = dws->buf;
 | 
						|
	} else {
 | 
						|
		out = kzalloc(len, GFP_KERNEL);
 | 
						|
		if (!out)
 | 
						|
			return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Collect the operation code, address and dummy bytes into the single
 | 
						|
	 * buffer. If it's a transfer with data to be sent, also copy it into the
 | 
						|
	 * single buffer in order to speed the data transmission up.
 | 
						|
	 */
 | 
						|
	for (i = 0; i < op->cmd.nbytes; ++i)
 | 
						|
		out[i] = DW_SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1);
 | 
						|
	for (j = 0; j < op->addr.nbytes; ++i, ++j)
 | 
						|
		out[i] = DW_SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1);
 | 
						|
	for (j = 0; j < op->dummy.nbytes; ++i, ++j)
 | 
						|
		out[i] = 0x0;
 | 
						|
 | 
						|
	if (op->data.dir == SPI_MEM_DATA_OUT)
 | 
						|
		memcpy(&out[i], op->data.buf.out, op->data.nbytes);
 | 
						|
 | 
						|
	dws->n_bytes = 1;
 | 
						|
	dws->tx = out;
 | 
						|
	dws->tx_len = len;
 | 
						|
	if (op->data.dir == SPI_MEM_DATA_IN) {
 | 
						|
		dws->rx = op->data.buf.in;
 | 
						|
		dws->rx_len = op->data.nbytes;
 | 
						|
	} else {
 | 
						|
		dws->rx = NULL;
 | 
						|
		dws->rx_len = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void dw_spi_free_mem_buf(struct dw_spi *dws)
 | 
						|
{
 | 
						|
	if (dws->tx != dws->buf)
 | 
						|
		kfree(dws->tx);
 | 
						|
}
 | 
						|
 | 
						|
static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi)
 | 
						|
{
 | 
						|
	u32 room, entries, sts;
 | 
						|
	unsigned int len;
 | 
						|
	u8 *buf;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * At initial stage we just pre-fill the Tx FIFO in with no rush,
 | 
						|
	 * since native CS hasn't been enabled yet and the automatic data
 | 
						|
	 * transmission won't start til we do that.
 | 
						|
	 */
 | 
						|
	len = min(dws->fifo_len, dws->tx_len);
 | 
						|
	buf = dws->tx;
 | 
						|
	while (len--)
 | 
						|
		dw_write_io_reg(dws, DW_SPI_DR, *buf++);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * After setting any bit in the SER register the transmission will
 | 
						|
	 * start automatically. We have to keep up with that procedure
 | 
						|
	 * otherwise the CS de-assertion will happen whereupon the memory
 | 
						|
	 * operation will be pre-terminated.
 | 
						|
	 */
 | 
						|
	len = dws->tx_len - ((void *)buf - dws->tx);
 | 
						|
	dw_spi_set_cs(spi, false);
 | 
						|
	while (len) {
 | 
						|
		entries = readl_relaxed(dws->regs + DW_SPI_TXFLR);
 | 
						|
		if (!entries) {
 | 
						|
			dev_err(&dws->host->dev, "CS de-assertion on Tx\n");
 | 
						|
			return -EIO;
 | 
						|
		}
 | 
						|
		room = min(dws->fifo_len - entries, len);
 | 
						|
		for (; room; --room, --len)
 | 
						|
			dw_write_io_reg(dws, DW_SPI_DR, *buf++);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Data fetching will start automatically if the EEPROM-read mode is
 | 
						|
	 * activated. We have to keep up with the incoming data pace to
 | 
						|
	 * prevent the Rx FIFO overflow causing the inbound data loss.
 | 
						|
	 */
 | 
						|
	len = dws->rx_len;
 | 
						|
	buf = dws->rx;
 | 
						|
	while (len) {
 | 
						|
		entries = readl_relaxed(dws->regs + DW_SPI_RXFLR);
 | 
						|
		if (!entries) {
 | 
						|
			sts = readl_relaxed(dws->regs + DW_SPI_RISR);
 | 
						|
			if (sts & DW_SPI_INT_RXOI) {
 | 
						|
				dev_err(&dws->host->dev, "FIFO overflow on Rx\n");
 | 
						|
				return -EIO;
 | 
						|
			}
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		entries = min(entries, len);
 | 
						|
		for (; entries; --entries, --len)
 | 
						|
			*buf++ = dw_read_io_reg(dws, DW_SPI_DR);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool dw_spi_ctlr_busy(struct dw_spi *dws)
 | 
						|
{
 | 
						|
	return dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_BUSY;
 | 
						|
}
 | 
						|
 | 
						|
static int dw_spi_wait_mem_op_done(struct dw_spi *dws)
 | 
						|
{
 | 
						|
	int retry = DW_SPI_WAIT_RETRIES;
 | 
						|
	struct spi_delay delay;
 | 
						|
	unsigned long ns, us;
 | 
						|
	u32 nents;
 | 
						|
 | 
						|
	nents = dw_readl(dws, DW_SPI_TXFLR);
 | 
						|
	ns = NSEC_PER_SEC / dws->current_freq * nents;
 | 
						|
	ns *= dws->n_bytes * BITS_PER_BYTE;
 | 
						|
	if (ns <= NSEC_PER_USEC) {
 | 
						|
		delay.unit = SPI_DELAY_UNIT_NSECS;
 | 
						|
		delay.value = ns;
 | 
						|
	} else {
 | 
						|
		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
 | 
						|
		delay.unit = SPI_DELAY_UNIT_USECS;
 | 
						|
		delay.value = clamp_val(us, 0, USHRT_MAX);
 | 
						|
	}
 | 
						|
 | 
						|
	while (dw_spi_ctlr_busy(dws) && retry--)
 | 
						|
		spi_delay_exec(&delay, NULL);
 | 
						|
 | 
						|
	if (retry < 0) {
 | 
						|
		dev_err(&dws->host->dev, "Mem op hanged up\n");
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi)
 | 
						|
{
 | 
						|
	dw_spi_enable_chip(dws, 0);
 | 
						|
	dw_spi_set_cs(spi, true);
 | 
						|
	dw_spi_enable_chip(dws, 1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The SPI memory operation implementation below is the best choice for the
 | 
						|
 * devices, which are selected by the native chip-select lane. It's
 | 
						|
 * specifically developed to workaround the problem with automatic chip-select
 | 
						|
 * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
 | 
						|
 * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
 | 
						|
 * unavailable.
 | 
						|
 */
 | 
						|
static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
 | 
						|
{
 | 
						|
	struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller);
 | 
						|
	struct dw_spi_cfg cfg;
 | 
						|
	unsigned long flags;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Collect the outbound data into a single buffer to speed the
 | 
						|
	 * transmission up at least on the initial stage.
 | 
						|
	 */
 | 
						|
	ret = dw_spi_init_mem_buf(dws, op);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
 | 
						|
	 * operation. Transmit-only mode is suitable for the rest of them.
 | 
						|
	 */
 | 
						|
	cfg.dfs = 8;
 | 
						|
	cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq);
 | 
						|
	if (op->data.dir == SPI_MEM_DATA_IN) {
 | 
						|
		cfg.tmode = DW_SPI_CTRLR0_TMOD_EPROMREAD;
 | 
						|
		cfg.ndf = op->data.nbytes;
 | 
						|
	} else {
 | 
						|
		cfg.tmode = DW_SPI_CTRLR0_TMOD_TO;
 | 
						|
	}
 | 
						|
 | 
						|
	dw_spi_enable_chip(dws, 0);
 | 
						|
 | 
						|
	dw_spi_update_config(dws, mem->spi, &cfg);
 | 
						|
 | 
						|
	dw_spi_mask_intr(dws, 0xff);
 | 
						|
 | 
						|
	dw_spi_enable_chip(dws, 1);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * DW APB SSI controller has very nasty peculiarities. First originally
 | 
						|
	 * (without any vendor-specific modifications) it doesn't provide a
 | 
						|
	 * direct way to set and clear the native chip-select signal. Instead
 | 
						|
	 * the controller asserts the CS lane if Tx FIFO isn't empty and a
 | 
						|
	 * transmission is going on, and automatically de-asserts it back to
 | 
						|
	 * the high level if the Tx FIFO doesn't have anything to be pushed
 | 
						|
	 * out. Due to that a multi-tasking or heavy IRQs activity might be
 | 
						|
	 * fatal, since the transfer procedure preemption may cause the Tx FIFO
 | 
						|
	 * getting empty and sudden CS de-assertion, which in the middle of the
 | 
						|
	 * transfer will most likely cause the data loss. Secondly the
 | 
						|
	 * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
 | 
						|
	 * data being automatically pulled in into the Rx FIFO. So if the
 | 
						|
	 * driver software is late in fetching the data from the FIFO before
 | 
						|
	 * it's overflown, new incoming data will be lost. In order to make
 | 
						|
	 * sure the executed memory operations are CS-atomic and to prevent the
 | 
						|
	 * Rx FIFO overflow we have to disable the local interrupts so to block
 | 
						|
	 * any preemption during the subsequent IO operations.
 | 
						|
	 *
 | 
						|
	 * Note. At some circumstances disabling IRQs may not help to prevent
 | 
						|
	 * the problems described above. The CS de-assertion and Rx FIFO
 | 
						|
	 * overflow may still happen due to the relatively slow system bus or
 | 
						|
	 * CPU not working fast enough, so the write-then-read algo implemented
 | 
						|
	 * here just won't keep up with the SPI bus data transfer. Such
 | 
						|
	 * situation is highly platform specific and is supposed to be fixed by
 | 
						|
	 * manually restricting the SPI bus frequency using the
 | 
						|
	 * dws->max_mem_freq parameter.
 | 
						|
	 */
 | 
						|
	local_irq_save(flags);
 | 
						|
	preempt_disable();
 | 
						|
 | 
						|
	ret = dw_spi_write_then_read(dws, mem->spi);
 | 
						|
 | 
						|
	local_irq_restore(flags);
 | 
						|
	preempt_enable();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Wait for the operation being finished and check the controller
 | 
						|
	 * status only if there hasn't been any run-time error detected. In the
 | 
						|
	 * former case it's just pointless. In the later one to prevent an
 | 
						|
	 * additional error message printing since any hw error flag being set
 | 
						|
	 * would be due to an error detected on the data transfer.
 | 
						|
	 */
 | 
						|
	if (!ret) {
 | 
						|
		ret = dw_spi_wait_mem_op_done(dws);
 | 
						|
		if (!ret)
 | 
						|
			ret = dw_spi_check_status(dws, true);
 | 
						|
	}
 | 
						|
 | 
						|
	dw_spi_stop_mem_op(dws, mem->spi);
 | 
						|
 | 
						|
	dw_spi_free_mem_buf(dws);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize the default memory operations if a glue layer hasn't specified
 | 
						|
 * custom ones. Direct mapping operations will be preserved anyway since DW SPI
 | 
						|
 * controller doesn't have an embedded dirmap interface. Note the memory
 | 
						|
 * operations implemented in this driver is the best choice only for the DW APB
 | 
						|
 * SSI controller with standard native CS functionality. If a hardware vendor
 | 
						|
 * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
 | 
						|
 * be safer to use the normal SPI-messages-based transfers implementation.
 | 
						|
 */
 | 
						|
static void dw_spi_init_mem_ops(struct dw_spi *dws)
 | 
						|
{
 | 
						|
	if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) &&
 | 
						|
	    !dws->set_cs) {
 | 
						|
		dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size;
 | 
						|
		dws->mem_ops.supports_op = dw_spi_supports_mem_op;
 | 
						|
		dws->mem_ops.exec_op = dw_spi_exec_mem_op;
 | 
						|
		if (!dws->max_mem_freq)
 | 
						|
			dws->max_mem_freq = dws->max_freq;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* This may be called twice for each spi dev */
 | 
						|
static int dw_spi_setup(struct spi_device *spi)
 | 
						|
{
 | 
						|
	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
 | 
						|
	struct dw_spi_chip_data *chip;
 | 
						|
 | 
						|
	/* Only alloc on first setup */
 | 
						|
	chip = spi_get_ctldata(spi);
 | 
						|
	if (!chip) {
 | 
						|
		struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
 | 
						|
		u32 rx_sample_dly_ns;
 | 
						|
 | 
						|
		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
 | 
						|
		if (!chip)
 | 
						|
			return -ENOMEM;
 | 
						|
		spi_set_ctldata(spi, chip);
 | 
						|
		/* Get specific / default rx-sample-delay */
 | 
						|
		if (device_property_read_u32(&spi->dev,
 | 
						|
					     "rx-sample-delay-ns",
 | 
						|
					     &rx_sample_dly_ns) != 0)
 | 
						|
			/* Use default controller value */
 | 
						|
			rx_sample_dly_ns = dws->def_rx_sample_dly_ns;
 | 
						|
		chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns,
 | 
						|
							NSEC_PER_SEC /
 | 
						|
							dws->max_freq);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Update CR0 data each time the setup callback is invoked since
 | 
						|
	 * the device parameters could have been changed, for instance, by
 | 
						|
	 * the MMC SPI driver or something else.
 | 
						|
	 */
 | 
						|
	chip->cr0 = dw_spi_prepare_cr0(dws, spi);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void dw_spi_cleanup(struct spi_device *spi)
 | 
						|
{
 | 
						|
	struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
 | 
						|
 | 
						|
	kfree(chip);
 | 
						|
	spi_set_ctldata(spi, NULL);
 | 
						|
}
 | 
						|
 | 
						|
/* Restart the controller, disable all interrupts, clean rx fifo */
 | 
						|
static void dw_spi_hw_init(struct device *dev, struct dw_spi *dws)
 | 
						|
{
 | 
						|
	dw_spi_reset_chip(dws);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Retrieve the Synopsys component version if it hasn't been specified
 | 
						|
	 * by the platform. CoreKit version ID is encoded as a 3-chars ASCII
 | 
						|
	 * code enclosed with '*' (typical for the most of Synopsys IP-cores).
 | 
						|
	 */
 | 
						|
	if (!dws->ver) {
 | 
						|
		dws->ver = dw_readl(dws, DW_SPI_VERSION);
 | 
						|
 | 
						|
		dev_dbg(dev, "Synopsys DWC%sSSI v%c.%c%c\n",
 | 
						|
			dw_spi_ip_is(dws, PSSI) ? " APB " : " ",
 | 
						|
			DW_SPI_GET_BYTE(dws->ver, 3), DW_SPI_GET_BYTE(dws->ver, 2),
 | 
						|
			DW_SPI_GET_BYTE(dws->ver, 1));
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Try to detect the FIFO depth if not set by interface driver,
 | 
						|
	 * the depth could be from 2 to 256 from HW spec
 | 
						|
	 */
 | 
						|
	if (!dws->fifo_len) {
 | 
						|
		u32 fifo;
 | 
						|
 | 
						|
		for (fifo = 1; fifo < 256; fifo++) {
 | 
						|
			dw_writel(dws, DW_SPI_TXFTLR, fifo);
 | 
						|
			if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		dw_writel(dws, DW_SPI_TXFTLR, 0);
 | 
						|
 | 
						|
		dws->fifo_len = (fifo == 1) ? 0 : fifo;
 | 
						|
		dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Detect CTRLR0.DFS field size and offset by testing the lowest bits
 | 
						|
	 * writability. Note DWC SSI controller also has the extended DFS, but
 | 
						|
	 * with zero offset.
 | 
						|
	 */
 | 
						|
	if (dw_spi_ip_is(dws, PSSI)) {
 | 
						|
		u32 cr0, tmp = dw_readl(dws, DW_SPI_CTRLR0);
 | 
						|
 | 
						|
		dw_spi_enable_chip(dws, 0);
 | 
						|
		dw_writel(dws, DW_SPI_CTRLR0, 0xffffffff);
 | 
						|
		cr0 = dw_readl(dws, DW_SPI_CTRLR0);
 | 
						|
		dw_writel(dws, DW_SPI_CTRLR0, tmp);
 | 
						|
		dw_spi_enable_chip(dws, 1);
 | 
						|
 | 
						|
		if (!(cr0 & DW_PSSI_CTRLR0_DFS_MASK)) {
 | 
						|
			dws->caps |= DW_SPI_CAP_DFS32;
 | 
						|
			dws->dfs_offset = __bf_shf(DW_PSSI_CTRLR0_DFS32_MASK);
 | 
						|
			dev_dbg(dev, "Detected 32-bits max data frame size\n");
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		dws->caps |= DW_SPI_CAP_DFS32;
 | 
						|
	}
 | 
						|
 | 
						|
	/* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
 | 
						|
	if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
 | 
						|
		dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF);
 | 
						|
}
 | 
						|
 | 
						|
int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
 | 
						|
{
 | 
						|
	struct spi_controller *host;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (!dws)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	host = spi_alloc_host(dev, 0);
 | 
						|
	if (!host)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	device_set_node(&host->dev, dev_fwnode(dev));
 | 
						|
 | 
						|
	dws->host = host;
 | 
						|
	dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);
 | 
						|
 | 
						|
	spi_controller_set_devdata(host, dws);
 | 
						|
 | 
						|
	/* Basic HW init */
 | 
						|
	dw_spi_hw_init(dev, dws);
 | 
						|
 | 
						|
	ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
 | 
						|
			  host);
 | 
						|
	if (ret < 0 && ret != -ENOTCONN) {
 | 
						|
		dev_err(dev, "can not get IRQ\n");
 | 
						|
		goto err_free_host;
 | 
						|
	}
 | 
						|
 | 
						|
	dw_spi_init_mem_ops(dws);
 | 
						|
 | 
						|
	host->use_gpio_descriptors = true;
 | 
						|
	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
 | 
						|
	if (dws->caps & DW_SPI_CAP_DFS32)
 | 
						|
		host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
 | 
						|
	else
 | 
						|
		host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
 | 
						|
	host->bus_num = dws->bus_num;
 | 
						|
	host->num_chipselect = dws->num_cs;
 | 
						|
	host->setup = dw_spi_setup;
 | 
						|
	host->cleanup = dw_spi_cleanup;
 | 
						|
	if (dws->set_cs)
 | 
						|
		host->set_cs = dws->set_cs;
 | 
						|
	else
 | 
						|
		host->set_cs = dw_spi_set_cs;
 | 
						|
	host->transfer_one = dw_spi_transfer_one;
 | 
						|
	host->handle_err = dw_spi_handle_err;
 | 
						|
	if (dws->mem_ops.exec_op)
 | 
						|
		host->mem_ops = &dws->mem_ops;
 | 
						|
	host->max_speed_hz = dws->max_freq;
 | 
						|
	host->flags = SPI_CONTROLLER_GPIO_SS;
 | 
						|
	host->auto_runtime_pm = true;
 | 
						|
 | 
						|
	/* Get default rx sample delay */
 | 
						|
	device_property_read_u32(dev, "rx-sample-delay-ns",
 | 
						|
				 &dws->def_rx_sample_dly_ns);
 | 
						|
 | 
						|
	if (dws->dma_ops && dws->dma_ops->dma_init) {
 | 
						|
		ret = dws->dma_ops->dma_init(dev, dws);
 | 
						|
		if (ret == -EPROBE_DEFER) {
 | 
						|
			goto err_free_irq;
 | 
						|
		} else if (ret) {
 | 
						|
			dev_warn(dev, "DMA init failed\n");
 | 
						|
		} else {
 | 
						|
			host->can_dma = dws->dma_ops->can_dma;
 | 
						|
			host->flags |= SPI_CONTROLLER_MUST_TX;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	ret = spi_register_controller(host);
 | 
						|
	if (ret) {
 | 
						|
		dev_err_probe(dev, ret, "problem registering spi host\n");
 | 
						|
		goto err_dma_exit;
 | 
						|
	}
 | 
						|
 | 
						|
	dw_spi_debugfs_init(dws);
 | 
						|
	return 0;
 | 
						|
 | 
						|
err_dma_exit:
 | 
						|
	if (dws->dma_ops && dws->dma_ops->dma_exit)
 | 
						|
		dws->dma_ops->dma_exit(dws);
 | 
						|
	dw_spi_enable_chip(dws, 0);
 | 
						|
err_free_irq:
 | 
						|
	free_irq(dws->irq, host);
 | 
						|
err_free_host:
 | 
						|
	spi_controller_put(host);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_NS_GPL(dw_spi_add_host, SPI_DW_CORE);
 | 
						|
 | 
						|
void dw_spi_remove_host(struct dw_spi *dws)
 | 
						|
{
 | 
						|
	dw_spi_debugfs_remove(dws);
 | 
						|
 | 
						|
	spi_unregister_controller(dws->host);
 | 
						|
 | 
						|
	if (dws->dma_ops && dws->dma_ops->dma_exit)
 | 
						|
		dws->dma_ops->dma_exit(dws);
 | 
						|
 | 
						|
	dw_spi_shutdown_chip(dws);
 | 
						|
 | 
						|
	free_irq(dws->irq, dws->host);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_NS_GPL(dw_spi_remove_host, SPI_DW_CORE);
 | 
						|
 | 
						|
int dw_spi_suspend_host(struct dw_spi *dws)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = spi_controller_suspend(dws->host);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	dw_spi_shutdown_chip(dws);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_NS_GPL(dw_spi_suspend_host, SPI_DW_CORE);
 | 
						|
 | 
						|
int dw_spi_resume_host(struct dw_spi *dws)
 | 
						|
{
 | 
						|
	dw_spi_hw_init(&dws->host->dev, dws);
 | 
						|
	return spi_controller_resume(dws->host);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_NS_GPL(dw_spi_resume_host, SPI_DW_CORE);
 | 
						|
 | 
						|
MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
 | 
						|
MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
 | 
						|
MODULE_LICENSE("GPL v2");
 |