mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 b32273ee89
			
		
	
	
		b32273ee89
		
	
	
	
	
		
			
			- Drop needless error path code in remove_arg_zero() (Li kunyu, Kees Cook) - binfmt_elf_efpic: Don't use missing interpreter's properties (Max Filippov) - Use /bin/bash for execveat selftests -----BEGIN PGP SIGNATURE----- iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmXvlWUWHGtlZXNjb29r QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJueMEACVrxXuXlpozupTtixMzWkvoUjo bDmsyuX55PEmKwZXppD7cyxzHM0cdOzQmwMTBB8RWlMzZDMB/U6A8vxwKdoqGNT6 8nQ7/+GkeZLL32BSf8rtMsCrnFx58elOzEuiogkUwz73G/fBe+tbbZAFsR7q5cvr 6sHT9gP2Topycr01fHUwL41yDLZReCasxWdR+kYfn2akmpBGHpw12auHmZcVmWCc /uJTF4FUBt6Fa2h2OmQ3IByNZ50UoORfFkpP93ZaL1MUlILWMXo3DHOAM9vhowut PMa/9Blw86hZBIjKEkeeCIU83LSnI5PQCd7V+zCJmaslxkNPvoeH09rqHfGL37Pv DAOPpTEEm0l6ifunIAruSRmislBzQgO6n5ALPmMp4PcdBi5bbsk9PCLDEFwaTCeV 9H4kZnPl00Q7yyEXwHSJi1FFF3/DM0ntXVND2KQJVzqrszB51lALkI8fypWvTb9h POmU7PrYEXdjiTcMsWarajHYeV/VjmY7vwzjl8lXiw5nWnLJYQua8TAx4dEhpM3z qwa5K2L724ncsgKkwDZPDA3DsUAN9jYK+eqRRi6kD5zWdTkBHVvdLQrBjkUhndw/ DL2FkcLDewbHInEdbbIFOJUUmBxbRLcXEqb2nzQtiYIBQm4VqZFKTQqZVDWHF1UP +VeLTdDf6piwoP0cvQ== =MLV7 -----END PGP SIGNATURE----- Merge tag 'execve-v6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull execve updates from Kees Cook: - Drop needless error path code in remove_arg_zero() (Li kunyu, Kees Cook) - binfmt_elf_efpic: Don't use missing interpreter's properties (Max Filippov) - Use /bin/bash for execveat selftests * tag 'execve-v6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: exec: Simplify remove_arg_zero() error path selftests/exec: Perform script checks with /bin/bash exec: Delete unnecessary statements in remove_arg_zero() fs: binfmt_elf_efpic: don't use missing interpreter's properties
		
			
				
	
	
		
			2193 lines
		
	
	
	
		
			52 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2193 lines
		
	
	
	
		
			52 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *  linux/fs/exec.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * #!-checking implemented by tytso.
 | |
|  */
 | |
| /*
 | |
|  * Demand-loading implemented 01.12.91 - no need to read anything but
 | |
|  * the header into memory. The inode of the executable is put into
 | |
|  * "current->executable", and page faults do the actual loading. Clean.
 | |
|  *
 | |
|  * Once more I can proudly say that linux stood up to being changed: it
 | |
|  * was less than 2 hours work to get demand-loading completely implemented.
 | |
|  *
 | |
|  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
 | |
|  * current->executable is only used by the procfs.  This allows a dispatch
 | |
|  * table to check for several different types  of binary formats.  We keep
 | |
|  * trying until we recognize the file or we run out of supported binary
 | |
|  * formats.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel_read_file.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fdtable.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/stat.h>
 | |
| #include <linux/fcntl.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/sched/coredump.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/sched/numa_balancing.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/key.h>
 | |
| #include <linux/personality.h>
 | |
| #include <linux/binfmts.h>
 | |
| #include <linux/utsname.h>
 | |
| #include <linux/pid_namespace.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/namei.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/tsacct_kern.h>
 | |
| #include <linux/cn_proc.h>
 | |
| #include <linux/audit.h>
 | |
| #include <linux/kmod.h>
 | |
| #include <linux/fsnotify.h>
 | |
| #include <linux/fs_struct.h>
 | |
| #include <linux/oom.h>
 | |
| #include <linux/compat.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/io_uring.h>
 | |
| #include <linux/syscall_user_dispatch.h>
 | |
| #include <linux/coredump.h>
 | |
| #include <linux/time_namespace.h>
 | |
| #include <linux/user_events.h>
 | |
| #include <linux/rseq.h>
 | |
| 
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/tlb.h>
 | |
| 
 | |
| #include <trace/events/task.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| #include <trace/events/sched.h>
 | |
| 
 | |
| static int bprm_creds_from_file(struct linux_binprm *bprm);
 | |
| 
 | |
| int suid_dumpable = 0;
 | |
| 
 | |
| static LIST_HEAD(formats);
 | |
| static DEFINE_RWLOCK(binfmt_lock);
 | |
| 
 | |
| void __register_binfmt(struct linux_binfmt * fmt, int insert)
 | |
| {
 | |
| 	write_lock(&binfmt_lock);
 | |
| 	insert ? list_add(&fmt->lh, &formats) :
 | |
| 		 list_add_tail(&fmt->lh, &formats);
 | |
| 	write_unlock(&binfmt_lock);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(__register_binfmt);
 | |
| 
 | |
| void unregister_binfmt(struct linux_binfmt * fmt)
 | |
| {
 | |
| 	write_lock(&binfmt_lock);
 | |
| 	list_del(&fmt->lh);
 | |
| 	write_unlock(&binfmt_lock);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(unregister_binfmt);
 | |
| 
 | |
| static inline void put_binfmt(struct linux_binfmt * fmt)
 | |
| {
 | |
| 	module_put(fmt->module);
 | |
| }
 | |
| 
 | |
| bool path_noexec(const struct path *path)
 | |
| {
 | |
| 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
 | |
| 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_USELIB
 | |
| /*
 | |
|  * Note that a shared library must be both readable and executable due to
 | |
|  * security reasons.
 | |
|  *
 | |
|  * Also note that we take the address to load from the file itself.
 | |
|  */
 | |
| SYSCALL_DEFINE1(uselib, const char __user *, library)
 | |
| {
 | |
| 	struct linux_binfmt *fmt;
 | |
| 	struct file *file;
 | |
| 	struct filename *tmp = getname(library);
 | |
| 	int error = PTR_ERR(tmp);
 | |
| 	static const struct open_flags uselib_flags = {
 | |
| 		.open_flag = O_LARGEFILE | O_RDONLY,
 | |
| 		.acc_mode = MAY_READ | MAY_EXEC,
 | |
| 		.intent = LOOKUP_OPEN,
 | |
| 		.lookup_flags = LOOKUP_FOLLOW,
 | |
| 	};
 | |
| 
 | |
| 	if (IS_ERR(tmp))
 | |
| 		goto out;
 | |
| 
 | |
| 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
 | |
| 	putname(tmp);
 | |
| 	error = PTR_ERR(file);
 | |
| 	if (IS_ERR(file))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * may_open() has already checked for this, so it should be
 | |
| 	 * impossible to trip now. But we need to be extra cautious
 | |
| 	 * and check again at the very end too.
 | |
| 	 */
 | |
| 	error = -EACCES;
 | |
| 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
 | |
| 			 path_noexec(&file->f_path)))
 | |
| 		goto exit;
 | |
| 
 | |
| 	error = -ENOEXEC;
 | |
| 
 | |
| 	read_lock(&binfmt_lock);
 | |
| 	list_for_each_entry(fmt, &formats, lh) {
 | |
| 		if (!fmt->load_shlib)
 | |
| 			continue;
 | |
| 		if (!try_module_get(fmt->module))
 | |
| 			continue;
 | |
| 		read_unlock(&binfmt_lock);
 | |
| 		error = fmt->load_shlib(file);
 | |
| 		read_lock(&binfmt_lock);
 | |
| 		put_binfmt(fmt);
 | |
| 		if (error != -ENOEXEC)
 | |
| 			break;
 | |
| 	}
 | |
| 	read_unlock(&binfmt_lock);
 | |
| exit:
 | |
| 	fput(file);
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| #endif /* #ifdef CONFIG_USELIB */
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| /*
 | |
|  * The nascent bprm->mm is not visible until exec_mmap() but it can
 | |
|  * use a lot of memory, account these pages in current->mm temporary
 | |
|  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
 | |
|  * change the counter back via acct_arg_size(0).
 | |
|  */
 | |
| static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 | |
| {
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	long diff = (long)(pages - bprm->vma_pages);
 | |
| 
 | |
| 	if (!mm || !diff)
 | |
| 		return;
 | |
| 
 | |
| 	bprm->vma_pages = pages;
 | |
| 	add_mm_counter(mm, MM_ANONPAGES, diff);
 | |
| }
 | |
| 
 | |
| static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 | |
| 		int write)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct vm_area_struct *vma = bprm->vma;
 | |
| 	struct mm_struct *mm = bprm->mm;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid relying on expanding the stack down in GUP (which
 | |
| 	 * does not work for STACK_GROWSUP anyway), and just do it
 | |
| 	 * by hand ahead of time.
 | |
| 	 */
 | |
| 	if (write && pos < vma->vm_start) {
 | |
| 		mmap_write_lock(mm);
 | |
| 		ret = expand_downwards(vma, pos);
 | |
| 		if (unlikely(ret < 0)) {
 | |
| 			mmap_write_unlock(mm);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		mmap_write_downgrade(mm);
 | |
| 	} else
 | |
| 		mmap_read_lock(mm);
 | |
| 
 | |
| 	/*
 | |
| 	 * We are doing an exec().  'current' is the process
 | |
| 	 * doing the exec and 'mm' is the new process's mm.
 | |
| 	 */
 | |
| 	ret = get_user_pages_remote(mm, pos, 1,
 | |
| 			write ? FOLL_WRITE : 0,
 | |
| 			&page, NULL);
 | |
| 	mmap_read_unlock(mm);
 | |
| 	if (ret <= 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (write)
 | |
| 		acct_arg_size(bprm, vma_pages(vma));
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static void put_arg_page(struct page *page)
 | |
| {
 | |
| 	put_page(page);
 | |
| }
 | |
| 
 | |
| static void free_arg_pages(struct linux_binprm *bprm)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 | |
| 		struct page *page)
 | |
| {
 | |
| 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
 | |
| }
 | |
| 
 | |
| static int __bprm_mm_init(struct linux_binprm *bprm)
 | |
| {
 | |
| 	int err;
 | |
| 	struct vm_area_struct *vma = NULL;
 | |
| 	struct mm_struct *mm = bprm->mm;
 | |
| 
 | |
| 	bprm->vma = vma = vm_area_alloc(mm);
 | |
| 	if (!vma)
 | |
| 		return -ENOMEM;
 | |
| 	vma_set_anonymous(vma);
 | |
| 
 | |
| 	if (mmap_write_lock_killable(mm)) {
 | |
| 		err = -EINTR;
 | |
| 		goto err_free;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Place the stack at the largest stack address the architecture
 | |
| 	 * supports. Later, we'll move this to an appropriate place. We don't
 | |
| 	 * use STACK_TOP because that can depend on attributes which aren't
 | |
| 	 * configured yet.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
 | |
| 	vma->vm_end = STACK_TOP_MAX;
 | |
| 	vma->vm_start = vma->vm_end - PAGE_SIZE;
 | |
| 	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
 | |
| 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 | |
| 
 | |
| 	err = insert_vm_struct(mm, vma);
 | |
| 	if (err)
 | |
| 		goto err;
 | |
| 
 | |
| 	mm->stack_vm = mm->total_vm = 1;
 | |
| 	mmap_write_unlock(mm);
 | |
| 	bprm->p = vma->vm_end - sizeof(void *);
 | |
| 	return 0;
 | |
| err:
 | |
| 	mmap_write_unlock(mm);
 | |
| err_free:
 | |
| 	bprm->vma = NULL;
 | |
| 	vm_area_free(vma);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static bool valid_arg_len(struct linux_binprm *bprm, long len)
 | |
| {
 | |
| 	return len <= MAX_ARG_STRLEN;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 | |
| {
 | |
| }
 | |
| 
 | |
| static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 | |
| 		int write)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = bprm->page[pos / PAGE_SIZE];
 | |
| 	if (!page && write) {
 | |
| 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
 | |
| 		if (!page)
 | |
| 			return NULL;
 | |
| 		bprm->page[pos / PAGE_SIZE] = page;
 | |
| 	}
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static void put_arg_page(struct page *page)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void free_arg_page(struct linux_binprm *bprm, int i)
 | |
| {
 | |
| 	if (bprm->page[i]) {
 | |
| 		__free_page(bprm->page[i]);
 | |
| 		bprm->page[i] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void free_arg_pages(struct linux_binprm *bprm)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MAX_ARG_PAGES; i++)
 | |
| 		free_arg_page(bprm, i);
 | |
| }
 | |
| 
 | |
| static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 | |
| 		struct page *page)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int __bprm_mm_init(struct linux_binprm *bprm)
 | |
| {
 | |
| 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool valid_arg_len(struct linux_binprm *bprm, long len)
 | |
| {
 | |
| 	return len <= bprm->p;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| /*
 | |
|  * Create a new mm_struct and populate it with a temporary stack
 | |
|  * vm_area_struct.  We don't have enough context at this point to set the stack
 | |
|  * flags, permissions, and offset, so we use temporary values.  We'll update
 | |
|  * them later in setup_arg_pages().
 | |
|  */
 | |
| static int bprm_mm_init(struct linux_binprm *bprm)
 | |
| {
 | |
| 	int err;
 | |
| 	struct mm_struct *mm = NULL;
 | |
| 
 | |
| 	bprm->mm = mm = mm_alloc();
 | |
| 	err = -ENOMEM;
 | |
| 	if (!mm)
 | |
| 		goto err;
 | |
| 
 | |
| 	/* Save current stack limit for all calculations made during exec. */
 | |
| 	task_lock(current->group_leader);
 | |
| 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
 | |
| 	task_unlock(current->group_leader);
 | |
| 
 | |
| 	err = __bprm_mm_init(bprm);
 | |
| 	if (err)
 | |
| 		goto err;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	if (mm) {
 | |
| 		bprm->mm = NULL;
 | |
| 		mmdrop(mm);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| struct user_arg_ptr {
 | |
| #ifdef CONFIG_COMPAT
 | |
| 	bool is_compat;
 | |
| #endif
 | |
| 	union {
 | |
| 		const char __user *const __user *native;
 | |
| #ifdef CONFIG_COMPAT
 | |
| 		const compat_uptr_t __user *compat;
 | |
| #endif
 | |
| 	} ptr;
 | |
| };
 | |
| 
 | |
| static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
 | |
| {
 | |
| 	const char __user *native;
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| 	if (unlikely(argv.is_compat)) {
 | |
| 		compat_uptr_t compat;
 | |
| 
 | |
| 		if (get_user(compat, argv.ptr.compat + nr))
 | |
| 			return ERR_PTR(-EFAULT);
 | |
| 
 | |
| 		return compat_ptr(compat);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (get_user(native, argv.ptr.native + nr))
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 
 | |
| 	return native;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * count() counts the number of strings in array ARGV.
 | |
|  */
 | |
| static int count(struct user_arg_ptr argv, int max)
 | |
| {
 | |
| 	int i = 0;
 | |
| 
 | |
| 	if (argv.ptr.native != NULL) {
 | |
| 		for (;;) {
 | |
| 			const char __user *p = get_user_arg_ptr(argv, i);
 | |
| 
 | |
| 			if (!p)
 | |
| 				break;
 | |
| 
 | |
| 			if (IS_ERR(p))
 | |
| 				return -EFAULT;
 | |
| 
 | |
| 			if (i >= max)
 | |
| 				return -E2BIG;
 | |
| 			++i;
 | |
| 
 | |
| 			if (fatal_signal_pending(current))
 | |
| 				return -ERESTARTNOHAND;
 | |
| 			cond_resched();
 | |
| 		}
 | |
| 	}
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| static int count_strings_kernel(const char *const *argv)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!argv)
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; argv[i]; ++i) {
 | |
| 		if (i >= MAX_ARG_STRINGS)
 | |
| 			return -E2BIG;
 | |
| 		if (fatal_signal_pending(current))
 | |
| 			return -ERESTARTNOHAND;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| static int bprm_stack_limits(struct linux_binprm *bprm)
 | |
| {
 | |
| 	unsigned long limit, ptr_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
 | |
| 	 * (whichever is smaller) for the argv+env strings.
 | |
| 	 * This ensures that:
 | |
| 	 *  - the remaining binfmt code will not run out of stack space,
 | |
| 	 *  - the program will have a reasonable amount of stack left
 | |
| 	 *    to work from.
 | |
| 	 */
 | |
| 	limit = _STK_LIM / 4 * 3;
 | |
| 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
 | |
| 	/*
 | |
| 	 * We've historically supported up to 32 pages (ARG_MAX)
 | |
| 	 * of argument strings even with small stacks
 | |
| 	 */
 | |
| 	limit = max_t(unsigned long, limit, ARG_MAX);
 | |
| 	/*
 | |
| 	 * We must account for the size of all the argv and envp pointers to
 | |
| 	 * the argv and envp strings, since they will also take up space in
 | |
| 	 * the stack. They aren't stored until much later when we can't
 | |
| 	 * signal to the parent that the child has run out of stack space.
 | |
| 	 * Instead, calculate it here so it's possible to fail gracefully.
 | |
| 	 *
 | |
| 	 * In the case of argc = 0, make sure there is space for adding a
 | |
| 	 * empty string (which will bump argc to 1), to ensure confused
 | |
| 	 * userspace programs don't start processing from argv[1], thinking
 | |
| 	 * argc can never be 0, to keep them from walking envp by accident.
 | |
| 	 * See do_execveat_common().
 | |
| 	 */
 | |
| 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
 | |
| 	if (limit <= ptr_size)
 | |
| 		return -E2BIG;
 | |
| 	limit -= ptr_size;
 | |
| 
 | |
| 	bprm->argmin = bprm->p - limit;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 'copy_strings()' copies argument/environment strings from the old
 | |
|  * processes's memory to the new process's stack.  The call to get_user_pages()
 | |
|  * ensures the destination page is created and not swapped out.
 | |
|  */
 | |
| static int copy_strings(int argc, struct user_arg_ptr argv,
 | |
| 			struct linux_binprm *bprm)
 | |
| {
 | |
| 	struct page *kmapped_page = NULL;
 | |
| 	char *kaddr = NULL;
 | |
| 	unsigned long kpos = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	while (argc-- > 0) {
 | |
| 		const char __user *str;
 | |
| 		int len;
 | |
| 		unsigned long pos;
 | |
| 
 | |
| 		ret = -EFAULT;
 | |
| 		str = get_user_arg_ptr(argv, argc);
 | |
| 		if (IS_ERR(str))
 | |
| 			goto out;
 | |
| 
 | |
| 		len = strnlen_user(str, MAX_ARG_STRLEN);
 | |
| 		if (!len)
 | |
| 			goto out;
 | |
| 
 | |
| 		ret = -E2BIG;
 | |
| 		if (!valid_arg_len(bprm, len))
 | |
| 			goto out;
 | |
| 
 | |
| 		/* We're going to work our way backwards. */
 | |
| 		pos = bprm->p;
 | |
| 		str += len;
 | |
| 		bprm->p -= len;
 | |
| #ifdef CONFIG_MMU
 | |
| 		if (bprm->p < bprm->argmin)
 | |
| 			goto out;
 | |
| #endif
 | |
| 
 | |
| 		while (len > 0) {
 | |
| 			int offset, bytes_to_copy;
 | |
| 
 | |
| 			if (fatal_signal_pending(current)) {
 | |
| 				ret = -ERESTARTNOHAND;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			cond_resched();
 | |
| 
 | |
| 			offset = pos % PAGE_SIZE;
 | |
| 			if (offset == 0)
 | |
| 				offset = PAGE_SIZE;
 | |
| 
 | |
| 			bytes_to_copy = offset;
 | |
| 			if (bytes_to_copy > len)
 | |
| 				bytes_to_copy = len;
 | |
| 
 | |
| 			offset -= bytes_to_copy;
 | |
| 			pos -= bytes_to_copy;
 | |
| 			str -= bytes_to_copy;
 | |
| 			len -= bytes_to_copy;
 | |
| 
 | |
| 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
 | |
| 				struct page *page;
 | |
| 
 | |
| 				page = get_arg_page(bprm, pos, 1);
 | |
| 				if (!page) {
 | |
| 					ret = -E2BIG;
 | |
| 					goto out;
 | |
| 				}
 | |
| 
 | |
| 				if (kmapped_page) {
 | |
| 					flush_dcache_page(kmapped_page);
 | |
| 					kunmap_local(kaddr);
 | |
| 					put_arg_page(kmapped_page);
 | |
| 				}
 | |
| 				kmapped_page = page;
 | |
| 				kaddr = kmap_local_page(kmapped_page);
 | |
| 				kpos = pos & PAGE_MASK;
 | |
| 				flush_arg_page(bprm, kpos, kmapped_page);
 | |
| 			}
 | |
| 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
 | |
| 				ret = -EFAULT;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	if (kmapped_page) {
 | |
| 		flush_dcache_page(kmapped_page);
 | |
| 		kunmap_local(kaddr);
 | |
| 		put_arg_page(kmapped_page);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy and argument/environment string from the kernel to the processes stack.
 | |
|  */
 | |
| int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
 | |
| {
 | |
| 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
 | |
| 	unsigned long pos = bprm->p;
 | |
| 
 | |
| 	if (len == 0)
 | |
| 		return -EFAULT;
 | |
| 	if (!valid_arg_len(bprm, len))
 | |
| 		return -E2BIG;
 | |
| 
 | |
| 	/* We're going to work our way backwards. */
 | |
| 	arg += len;
 | |
| 	bprm->p -= len;
 | |
| 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
 | |
| 		return -E2BIG;
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		unsigned int bytes_to_copy = min_t(unsigned int, len,
 | |
| 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
 | |
| 		struct page *page;
 | |
| 
 | |
| 		pos -= bytes_to_copy;
 | |
| 		arg -= bytes_to_copy;
 | |
| 		len -= bytes_to_copy;
 | |
| 
 | |
| 		page = get_arg_page(bprm, pos, 1);
 | |
| 		if (!page)
 | |
| 			return -E2BIG;
 | |
| 		flush_arg_page(bprm, pos & PAGE_MASK, page);
 | |
| 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
 | |
| 		put_arg_page(page);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(copy_string_kernel);
 | |
| 
 | |
| static int copy_strings_kernel(int argc, const char *const *argv,
 | |
| 			       struct linux_binprm *bprm)
 | |
| {
 | |
| 	while (argc-- > 0) {
 | |
| 		int ret = copy_string_kernel(argv[argc], bprm);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		if (fatal_signal_pending(current))
 | |
| 			return -ERESTARTNOHAND;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| 
 | |
| /*
 | |
|  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
 | |
|  * the binfmt code determines where the new stack should reside, we shift it to
 | |
|  * its final location.  The process proceeds as follows:
 | |
|  *
 | |
|  * 1) Use shift to calculate the new vma endpoints.
 | |
|  * 2) Extend vma to cover both the old and new ranges.  This ensures the
 | |
|  *    arguments passed to subsequent functions are consistent.
 | |
|  * 3) Move vma's page tables to the new range.
 | |
|  * 4) Free up any cleared pgd range.
 | |
|  * 5) Shrink the vma to cover only the new range.
 | |
|  */
 | |
| static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	unsigned long old_start = vma->vm_start;
 | |
| 	unsigned long old_end = vma->vm_end;
 | |
| 	unsigned long length = old_end - old_start;
 | |
| 	unsigned long new_start = old_start - shift;
 | |
| 	unsigned long new_end = old_end - shift;
 | |
| 	VMA_ITERATOR(vmi, mm, new_start);
 | |
| 	struct vm_area_struct *next;
 | |
| 	struct mmu_gather tlb;
 | |
| 
 | |
| 	BUG_ON(new_start > new_end);
 | |
| 
 | |
| 	/*
 | |
| 	 * ensure there are no vmas between where we want to go
 | |
| 	 * and where we are
 | |
| 	 */
 | |
| 	if (vma != vma_next(&vmi))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	vma_iter_prev_range(&vmi);
 | |
| 	/*
 | |
| 	 * cover the whole range: [new_start, old_end)
 | |
| 	 */
 | |
| 	if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * move the page tables downwards, on failure we rely on
 | |
| 	 * process cleanup to remove whatever mess we made.
 | |
| 	 */
 | |
| 	if (length != move_page_tables(vma, old_start,
 | |
| 				       vma, new_start, length, false, true))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	lru_add_drain();
 | |
| 	tlb_gather_mmu(&tlb, mm);
 | |
| 	next = vma_next(&vmi);
 | |
| 	if (new_end > old_start) {
 | |
| 		/*
 | |
| 		 * when the old and new regions overlap clear from new_end.
 | |
| 		 */
 | |
| 		free_pgd_range(&tlb, new_end, old_end, new_end,
 | |
| 			next ? next->vm_start : USER_PGTABLES_CEILING);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * otherwise, clean from old_start; this is done to not touch
 | |
| 		 * the address space in [new_end, old_start) some architectures
 | |
| 		 * have constraints on va-space that make this illegal (IA64) -
 | |
| 		 * for the others its just a little faster.
 | |
| 		 */
 | |
| 		free_pgd_range(&tlb, old_start, old_end, new_end,
 | |
| 			next ? next->vm_start : USER_PGTABLES_CEILING);
 | |
| 	}
 | |
| 	tlb_finish_mmu(&tlb);
 | |
| 
 | |
| 	vma_prev(&vmi);
 | |
| 	/* Shrink the vma to just the new range */
 | |
| 	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
 | |
|  * the stack is optionally relocated, and some extra space is added.
 | |
|  */
 | |
| int setup_arg_pages(struct linux_binprm *bprm,
 | |
| 		    unsigned long stack_top,
 | |
| 		    int executable_stack)
 | |
| {
 | |
| 	unsigned long ret;
 | |
| 	unsigned long stack_shift;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct vm_area_struct *vma = bprm->vma;
 | |
| 	struct vm_area_struct *prev = NULL;
 | |
| 	unsigned long vm_flags;
 | |
| 	unsigned long stack_base;
 | |
| 	unsigned long stack_size;
 | |
| 	unsigned long stack_expand;
 | |
| 	unsigned long rlim_stack;
 | |
| 	struct mmu_gather tlb;
 | |
| 	struct vma_iterator vmi;
 | |
| 
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| 	/* Limit stack size */
 | |
| 	stack_base = bprm->rlim_stack.rlim_max;
 | |
| 
 | |
| 	stack_base = calc_max_stack_size(stack_base);
 | |
| 
 | |
| 	/* Add space for stack randomization. */
 | |
| 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
 | |
| 
 | |
| 	/* Make sure we didn't let the argument array grow too large. */
 | |
| 	if (vma->vm_end - vma->vm_start > stack_base)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	stack_base = PAGE_ALIGN(stack_top - stack_base);
 | |
| 
 | |
| 	stack_shift = vma->vm_start - stack_base;
 | |
| 	mm->arg_start = bprm->p - stack_shift;
 | |
| 	bprm->p = vma->vm_end - stack_shift;
 | |
| #else
 | |
| 	stack_top = arch_align_stack(stack_top);
 | |
| 	stack_top = PAGE_ALIGN(stack_top);
 | |
| 
 | |
| 	if (unlikely(stack_top < mmap_min_addr) ||
 | |
| 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	stack_shift = vma->vm_end - stack_top;
 | |
| 
 | |
| 	bprm->p -= stack_shift;
 | |
| 	mm->arg_start = bprm->p;
 | |
| #endif
 | |
| 
 | |
| 	if (bprm->loader)
 | |
| 		bprm->loader -= stack_shift;
 | |
| 	bprm->exec -= stack_shift;
 | |
| 
 | |
| 	if (mmap_write_lock_killable(mm))
 | |
| 		return -EINTR;
 | |
| 
 | |
| 	vm_flags = VM_STACK_FLAGS;
 | |
| 
 | |
| 	/*
 | |
| 	 * Adjust stack execute permissions; explicitly enable for
 | |
| 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
 | |
| 	 * (arch default) otherwise.
 | |
| 	 */
 | |
| 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
 | |
| 		vm_flags |= VM_EXEC;
 | |
| 	else if (executable_stack == EXSTACK_DISABLE_X)
 | |
| 		vm_flags &= ~VM_EXEC;
 | |
| 	vm_flags |= mm->def_flags;
 | |
| 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
 | |
| 
 | |
| 	vma_iter_init(&vmi, mm, vma->vm_start);
 | |
| 
 | |
| 	tlb_gather_mmu(&tlb, mm);
 | |
| 	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
 | |
| 			vm_flags);
 | |
| 	tlb_finish_mmu(&tlb);
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 	BUG_ON(prev != vma);
 | |
| 
 | |
| 	if (unlikely(vm_flags & VM_EXEC)) {
 | |
| 		pr_warn_once("process '%pD4' started with executable stack\n",
 | |
| 			     bprm->file);
 | |
| 	}
 | |
| 
 | |
| 	/* Move stack pages down in memory. */
 | |
| 	if (stack_shift) {
 | |
| 		ret = shift_arg_pages(vma, stack_shift);
 | |
| 		if (ret)
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* mprotect_fixup is overkill to remove the temporary stack flags */
 | |
| 	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
 | |
| 
 | |
| 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
 | |
| 	stack_size = vma->vm_end - vma->vm_start;
 | |
| 	/*
 | |
| 	 * Align this down to a page boundary as expand_stack
 | |
| 	 * will align it up.
 | |
| 	 */
 | |
| 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
 | |
| 
 | |
| 	stack_expand = min(rlim_stack, stack_size + stack_expand);
 | |
| 
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| 	stack_base = vma->vm_start + stack_expand;
 | |
| #else
 | |
| 	stack_base = vma->vm_end - stack_expand;
 | |
| #endif
 | |
| 	current->mm->start_stack = bprm->p;
 | |
| 	ret = expand_stack_locked(vma, stack_base);
 | |
| 	if (ret)
 | |
| 		ret = -EFAULT;
 | |
| 
 | |
| out_unlock:
 | |
| 	mmap_write_unlock(mm);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(setup_arg_pages);
 | |
| 
 | |
| #else
 | |
| 
 | |
| /*
 | |
|  * Transfer the program arguments and environment from the holding pages
 | |
|  * onto the stack. The provided stack pointer is adjusted accordingly.
 | |
|  */
 | |
| int transfer_args_to_stack(struct linux_binprm *bprm,
 | |
| 			   unsigned long *sp_location)
 | |
| {
 | |
| 	unsigned long index, stop, sp;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	stop = bprm->p >> PAGE_SHIFT;
 | |
| 	sp = *sp_location;
 | |
| 
 | |
| 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
 | |
| 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
 | |
| 		char *src = kmap_local_page(bprm->page[index]) + offset;
 | |
| 		sp -= PAGE_SIZE - offset;
 | |
| 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
 | |
| 			ret = -EFAULT;
 | |
| 		kunmap_local(src);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	*sp_location = sp;
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(transfer_args_to_stack);
 | |
| 
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| /*
 | |
|  * On success, caller must call do_close_execat() on the returned
 | |
|  * struct file to close it.
 | |
|  */
 | |
| static struct file *do_open_execat(int fd, struct filename *name, int flags)
 | |
| {
 | |
| 	struct file *file;
 | |
| 	int err;
 | |
| 	struct open_flags open_exec_flags = {
 | |
| 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 | |
| 		.acc_mode = MAY_EXEC,
 | |
| 		.intent = LOOKUP_OPEN,
 | |
| 		.lookup_flags = LOOKUP_FOLLOW,
 | |
| 	};
 | |
| 
 | |
| 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	if (flags & AT_SYMLINK_NOFOLLOW)
 | |
| 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
 | |
| 	if (flags & AT_EMPTY_PATH)
 | |
| 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
 | |
| 
 | |
| 	file = do_filp_open(fd, name, &open_exec_flags);
 | |
| 	if (IS_ERR(file))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * may_open() has already checked for this, so it should be
 | |
| 	 * impossible to trip now. But we need to be extra cautious
 | |
| 	 * and check again at the very end too.
 | |
| 	 */
 | |
| 	err = -EACCES;
 | |
| 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
 | |
| 			 path_noexec(&file->f_path)))
 | |
| 		goto exit;
 | |
| 
 | |
| 	err = deny_write_access(file);
 | |
| 	if (err)
 | |
| 		goto exit;
 | |
| 
 | |
| out:
 | |
| 	return file;
 | |
| 
 | |
| exit:
 | |
| 	fput(file);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * open_exec - Open a path name for execution
 | |
|  *
 | |
|  * @name: path name to open with the intent of executing it.
 | |
|  *
 | |
|  * Returns ERR_PTR on failure or allocated struct file on success.
 | |
|  *
 | |
|  * As this is a wrapper for the internal do_open_execat(), callers
 | |
|  * must call allow_write_access() before fput() on release. Also see
 | |
|  * do_close_execat().
 | |
|  */
 | |
| struct file *open_exec(const char *name)
 | |
| {
 | |
| 	struct filename *filename = getname_kernel(name);
 | |
| 	struct file *f = ERR_CAST(filename);
 | |
| 
 | |
| 	if (!IS_ERR(filename)) {
 | |
| 		f = do_open_execat(AT_FDCWD, filename, 0);
 | |
| 		putname(filename);
 | |
| 	}
 | |
| 	return f;
 | |
| }
 | |
| EXPORT_SYMBOL(open_exec);
 | |
| 
 | |
| #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
 | |
| ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
 | |
| {
 | |
| 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
 | |
| 	if (res > 0)
 | |
| 		flush_icache_user_range(addr, addr + len);
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL(read_code);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Maps the mm_struct mm into the current task struct.
 | |
|  * On success, this function returns with exec_update_lock
 | |
|  * held for writing.
 | |
|  */
 | |
| static int exec_mmap(struct mm_struct *mm)
 | |
| {
 | |
| 	struct task_struct *tsk;
 | |
| 	struct mm_struct *old_mm, *active_mm;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Notify parent that we're no longer interested in the old VM */
 | |
| 	tsk = current;
 | |
| 	old_mm = current->mm;
 | |
| 	exec_mm_release(tsk, old_mm);
 | |
| 
 | |
| 	ret = down_write_killable(&tsk->signal->exec_update_lock);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (old_mm) {
 | |
| 		/*
 | |
| 		 * If there is a pending fatal signal perhaps a signal
 | |
| 		 * whose default action is to create a coredump get
 | |
| 		 * out and die instead of going through with the exec.
 | |
| 		 */
 | |
| 		ret = mmap_read_lock_killable(old_mm);
 | |
| 		if (ret) {
 | |
| 			up_write(&tsk->signal->exec_update_lock);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	task_lock(tsk);
 | |
| 	membarrier_exec_mmap(mm);
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 	active_mm = tsk->active_mm;
 | |
| 	tsk->active_mm = mm;
 | |
| 	tsk->mm = mm;
 | |
| 	mm_init_cid(mm);
 | |
| 	/*
 | |
| 	 * This prevents preemption while active_mm is being loaded and
 | |
| 	 * it and mm are being updated, which could cause problems for
 | |
| 	 * lazy tlb mm refcounting when these are updated by context
 | |
| 	 * switches. Not all architectures can handle irqs off over
 | |
| 	 * activate_mm yet.
 | |
| 	 */
 | |
| 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
 | |
| 		local_irq_enable();
 | |
| 	activate_mm(active_mm, mm);
 | |
| 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
 | |
| 		local_irq_enable();
 | |
| 	lru_gen_add_mm(mm);
 | |
| 	task_unlock(tsk);
 | |
| 	lru_gen_use_mm(mm);
 | |
| 	if (old_mm) {
 | |
| 		mmap_read_unlock(old_mm);
 | |
| 		BUG_ON(active_mm != old_mm);
 | |
| 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
 | |
| 		mm_update_next_owner(old_mm);
 | |
| 		mmput(old_mm);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	mmdrop_lazy_tlb(active_mm);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int de_thread(struct task_struct *tsk)
 | |
| {
 | |
| 	struct signal_struct *sig = tsk->signal;
 | |
| 	struct sighand_struct *oldsighand = tsk->sighand;
 | |
| 	spinlock_t *lock = &oldsighand->siglock;
 | |
| 
 | |
| 	if (thread_group_empty(tsk))
 | |
| 		goto no_thread_group;
 | |
| 
 | |
| 	/*
 | |
| 	 * Kill all other threads in the thread group.
 | |
| 	 */
 | |
| 	spin_lock_irq(lock);
 | |
| 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
 | |
| 		/*
 | |
| 		 * Another group action in progress, just
 | |
| 		 * return so that the signal is processed.
 | |
| 		 */
 | |
| 		spin_unlock_irq(lock);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	sig->group_exec_task = tsk;
 | |
| 	sig->notify_count = zap_other_threads(tsk);
 | |
| 	if (!thread_group_leader(tsk))
 | |
| 		sig->notify_count--;
 | |
| 
 | |
| 	while (sig->notify_count) {
 | |
| 		__set_current_state(TASK_KILLABLE);
 | |
| 		spin_unlock_irq(lock);
 | |
| 		schedule();
 | |
| 		if (__fatal_signal_pending(tsk))
 | |
| 			goto killed;
 | |
| 		spin_lock_irq(lock);
 | |
| 	}
 | |
| 	spin_unlock_irq(lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point all other threads have exited, all we have to
 | |
| 	 * do is to wait for the thread group leader to become inactive,
 | |
| 	 * and to assume its PID:
 | |
| 	 */
 | |
| 	if (!thread_group_leader(tsk)) {
 | |
| 		struct task_struct *leader = tsk->group_leader;
 | |
| 
 | |
| 		for (;;) {
 | |
| 			cgroup_threadgroup_change_begin(tsk);
 | |
| 			write_lock_irq(&tasklist_lock);
 | |
| 			/*
 | |
| 			 * Do this under tasklist_lock to ensure that
 | |
| 			 * exit_notify() can't miss ->group_exec_task
 | |
| 			 */
 | |
| 			sig->notify_count = -1;
 | |
| 			if (likely(leader->exit_state))
 | |
| 				break;
 | |
| 			__set_current_state(TASK_KILLABLE);
 | |
| 			write_unlock_irq(&tasklist_lock);
 | |
| 			cgroup_threadgroup_change_end(tsk);
 | |
| 			schedule();
 | |
| 			if (__fatal_signal_pending(tsk))
 | |
| 				goto killed;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The only record we have of the real-time age of a
 | |
| 		 * process, regardless of execs it's done, is start_time.
 | |
| 		 * All the past CPU time is accumulated in signal_struct
 | |
| 		 * from sister threads now dead.  But in this non-leader
 | |
| 		 * exec, nothing survives from the original leader thread,
 | |
| 		 * whose birth marks the true age of this process now.
 | |
| 		 * When we take on its identity by switching to its PID, we
 | |
| 		 * also take its birthdate (always earlier than our own).
 | |
| 		 */
 | |
| 		tsk->start_time = leader->start_time;
 | |
| 		tsk->start_boottime = leader->start_boottime;
 | |
| 
 | |
| 		BUG_ON(!same_thread_group(leader, tsk));
 | |
| 		/*
 | |
| 		 * An exec() starts a new thread group with the
 | |
| 		 * TGID of the previous thread group. Rehash the
 | |
| 		 * two threads with a switched PID, and release
 | |
| 		 * the former thread group leader:
 | |
| 		 */
 | |
| 
 | |
| 		/* Become a process group leader with the old leader's pid.
 | |
| 		 * The old leader becomes a thread of the this thread group.
 | |
| 		 */
 | |
| 		exchange_tids(tsk, leader);
 | |
| 		transfer_pid(leader, tsk, PIDTYPE_TGID);
 | |
| 		transfer_pid(leader, tsk, PIDTYPE_PGID);
 | |
| 		transfer_pid(leader, tsk, PIDTYPE_SID);
 | |
| 
 | |
| 		list_replace_rcu(&leader->tasks, &tsk->tasks);
 | |
| 		list_replace_init(&leader->sibling, &tsk->sibling);
 | |
| 
 | |
| 		tsk->group_leader = tsk;
 | |
| 		leader->group_leader = tsk;
 | |
| 
 | |
| 		tsk->exit_signal = SIGCHLD;
 | |
| 		leader->exit_signal = -1;
 | |
| 
 | |
| 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
 | |
| 		leader->exit_state = EXIT_DEAD;
 | |
| 		/*
 | |
| 		 * We are going to release_task()->ptrace_unlink() silently,
 | |
| 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
 | |
| 		 * the tracer won't block again waiting for this thread.
 | |
| 		 */
 | |
| 		if (unlikely(leader->ptrace))
 | |
| 			__wake_up_parent(leader, leader->parent);
 | |
| 		write_unlock_irq(&tasklist_lock);
 | |
| 		cgroup_threadgroup_change_end(tsk);
 | |
| 
 | |
| 		release_task(leader);
 | |
| 	}
 | |
| 
 | |
| 	sig->group_exec_task = NULL;
 | |
| 	sig->notify_count = 0;
 | |
| 
 | |
| no_thread_group:
 | |
| 	/* we have changed execution domain */
 | |
| 	tsk->exit_signal = SIGCHLD;
 | |
| 
 | |
| 	BUG_ON(!thread_group_leader(tsk));
 | |
| 	return 0;
 | |
| 
 | |
| killed:
 | |
| 	/* protects against exit_notify() and __exit_signal() */
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	sig->group_exec_task = NULL;
 | |
| 	sig->notify_count = 0;
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	return -EAGAIN;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This function makes sure the current process has its own signal table,
 | |
|  * so that flush_signal_handlers can later reset the handlers without
 | |
|  * disturbing other processes.  (Other processes might share the signal
 | |
|  * table via the CLONE_SIGHAND option to clone().)
 | |
|  */
 | |
| static int unshare_sighand(struct task_struct *me)
 | |
| {
 | |
| 	struct sighand_struct *oldsighand = me->sighand;
 | |
| 
 | |
| 	if (refcount_read(&oldsighand->count) != 1) {
 | |
| 		struct sighand_struct *newsighand;
 | |
| 		/*
 | |
| 		 * This ->sighand is shared with the CLONE_SIGHAND
 | |
| 		 * but not CLONE_THREAD task, switch to the new one.
 | |
| 		 */
 | |
| 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
 | |
| 		if (!newsighand)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		refcount_set(&newsighand->count, 1);
 | |
| 
 | |
| 		write_lock_irq(&tasklist_lock);
 | |
| 		spin_lock(&oldsighand->siglock);
 | |
| 		memcpy(newsighand->action, oldsighand->action,
 | |
| 		       sizeof(newsighand->action));
 | |
| 		rcu_assign_pointer(me->sighand, newsighand);
 | |
| 		spin_unlock(&oldsighand->siglock);
 | |
| 		write_unlock_irq(&tasklist_lock);
 | |
| 
 | |
| 		__cleanup_sighand(oldsighand);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
 | |
| {
 | |
| 	task_lock(tsk);
 | |
| 	/* Always NUL terminated and zero-padded */
 | |
| 	strscpy_pad(buf, tsk->comm, buf_size);
 | |
| 	task_unlock(tsk);
 | |
| 	return buf;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__get_task_comm);
 | |
| 
 | |
| /*
 | |
|  * These functions flushes out all traces of the currently running executable
 | |
|  * so that a new one can be started
 | |
|  */
 | |
| 
 | |
| void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
 | |
| {
 | |
| 	task_lock(tsk);
 | |
| 	trace_task_rename(tsk, buf);
 | |
| 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
 | |
| 	task_unlock(tsk);
 | |
| 	perf_event_comm(tsk, exec);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calling this is the point of no return. None of the failures will be
 | |
|  * seen by userspace since either the process is already taking a fatal
 | |
|  * signal (via de_thread() or coredump), or will have SEGV raised
 | |
|  * (after exec_mmap()) by search_binary_handler (see below).
 | |
|  */
 | |
| int begin_new_exec(struct linux_binprm * bprm)
 | |
| {
 | |
| 	struct task_struct *me = current;
 | |
| 	int retval;
 | |
| 
 | |
| 	/* Once we are committed compute the creds */
 | |
| 	retval = bprm_creds_from_file(bprm);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure all future errors are fatal.
 | |
| 	 */
 | |
| 	bprm->point_of_no_return = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make this the only thread in the thread group.
 | |
| 	 */
 | |
| 	retval = de_thread(me);
 | |
| 	if (retval)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Cancel any io_uring activity across execve
 | |
| 	 */
 | |
| 	io_uring_task_cancel();
 | |
| 
 | |
| 	/* Ensure the files table is not shared. */
 | |
| 	retval = unshare_files();
 | |
| 	if (retval)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Must be called _before_ exec_mmap() as bprm->mm is
 | |
| 	 * not visible until then. Doing it here also ensures
 | |
| 	 * we don't race against replace_mm_exe_file().
 | |
| 	 */
 | |
| 	retval = set_mm_exe_file(bprm->mm, bprm->file);
 | |
| 	if (retval)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* If the binary is not readable then enforce mm->dumpable=0 */
 | |
| 	would_dump(bprm, bprm->file);
 | |
| 	if (bprm->have_execfd)
 | |
| 		would_dump(bprm, bprm->executable);
 | |
| 
 | |
| 	/*
 | |
| 	 * Release all of the old mmap stuff
 | |
| 	 */
 | |
| 	acct_arg_size(bprm, 0);
 | |
| 	retval = exec_mmap(bprm->mm);
 | |
| 	if (retval)
 | |
| 		goto out;
 | |
| 
 | |
| 	bprm->mm = NULL;
 | |
| 
 | |
| 	retval = exec_task_namespaces();
 | |
| 	if (retval)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| #ifdef CONFIG_POSIX_TIMERS
 | |
| 	spin_lock_irq(&me->sighand->siglock);
 | |
| 	posix_cpu_timers_exit(me);
 | |
| 	spin_unlock_irq(&me->sighand->siglock);
 | |
| 	exit_itimers(me);
 | |
| 	flush_itimer_signals();
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Make the signal table private.
 | |
| 	 */
 | |
| 	retval = unshare_sighand(me);
 | |
| 	if (retval)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
 | |
| 					PF_NOFREEZE | PF_NO_SETAFFINITY);
 | |
| 	flush_thread();
 | |
| 	me->personality &= ~bprm->per_clear;
 | |
| 
 | |
| 	clear_syscall_work_syscall_user_dispatch(me);
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to apply CLOEXEC before we change whether the process is
 | |
| 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
 | |
| 	 * trying to access the should-be-closed file descriptors of a process
 | |
| 	 * undergoing exec(2).
 | |
| 	 */
 | |
| 	do_close_on_exec(me->files);
 | |
| 
 | |
| 	if (bprm->secureexec) {
 | |
| 		/* Make sure parent cannot signal privileged process. */
 | |
| 		me->pdeath_signal = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * For secureexec, reset the stack limit to sane default to
 | |
| 		 * avoid bad behavior from the prior rlimits. This has to
 | |
| 		 * happen before arch_pick_mmap_layout(), which examines
 | |
| 		 * RLIMIT_STACK, but after the point of no return to avoid
 | |
| 		 * needing to clean up the change on failure.
 | |
| 		 */
 | |
| 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
 | |
| 			bprm->rlim_stack.rlim_cur = _STK_LIM;
 | |
| 	}
 | |
| 
 | |
| 	me->sas_ss_sp = me->sas_ss_size = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out dumpability. Note that this checking only of current
 | |
| 	 * is wrong, but userspace depends on it. This should be testing
 | |
| 	 * bprm->secureexec instead.
 | |
| 	 */
 | |
| 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
 | |
| 	    !(uid_eq(current_euid(), current_uid()) &&
 | |
| 	      gid_eq(current_egid(), current_gid())))
 | |
| 		set_dumpable(current->mm, suid_dumpable);
 | |
| 	else
 | |
| 		set_dumpable(current->mm, SUID_DUMP_USER);
 | |
| 
 | |
| 	perf_event_exec();
 | |
| 	__set_task_comm(me, kbasename(bprm->filename), true);
 | |
| 
 | |
| 	/* An exec changes our domain. We are no longer part of the thread
 | |
| 	   group */
 | |
| 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
 | |
| 	flush_signal_handlers(me, 0);
 | |
| 
 | |
| 	retval = set_cred_ucounts(bprm->cred);
 | |
| 	if (retval < 0)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * install the new credentials for this executable
 | |
| 	 */
 | |
| 	security_bprm_committing_creds(bprm);
 | |
| 
 | |
| 	commit_creds(bprm->cred);
 | |
| 	bprm->cred = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable monitoring for regular users
 | |
| 	 * when executing setuid binaries. Must
 | |
| 	 * wait until new credentials are committed
 | |
| 	 * by commit_creds() above
 | |
| 	 */
 | |
| 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
 | |
| 		perf_event_exit_task(me);
 | |
| 	/*
 | |
| 	 * cred_guard_mutex must be held at least to this point to prevent
 | |
| 	 * ptrace_attach() from altering our determination of the task's
 | |
| 	 * credentials; any time after this it may be unlocked.
 | |
| 	 */
 | |
| 	security_bprm_committed_creds(bprm);
 | |
| 
 | |
| 	/* Pass the opened binary to the interpreter. */
 | |
| 	if (bprm->have_execfd) {
 | |
| 		retval = get_unused_fd_flags(0);
 | |
| 		if (retval < 0)
 | |
| 			goto out_unlock;
 | |
| 		fd_install(retval, bprm->executable);
 | |
| 		bprm->executable = NULL;
 | |
| 		bprm->execfd = retval;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| out_unlock:
 | |
| 	up_write(&me->signal->exec_update_lock);
 | |
| 	if (!bprm->cred)
 | |
| 		mutex_unlock(&me->signal->cred_guard_mutex);
 | |
| 
 | |
| out:
 | |
| 	return retval;
 | |
| }
 | |
| EXPORT_SYMBOL(begin_new_exec);
 | |
| 
 | |
| void would_dump(struct linux_binprm *bprm, struct file *file)
 | |
| {
 | |
| 	struct inode *inode = file_inode(file);
 | |
| 	struct mnt_idmap *idmap = file_mnt_idmap(file);
 | |
| 	if (inode_permission(idmap, inode, MAY_READ) < 0) {
 | |
| 		struct user_namespace *old, *user_ns;
 | |
| 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
 | |
| 
 | |
| 		/* Ensure mm->user_ns contains the executable */
 | |
| 		user_ns = old = bprm->mm->user_ns;
 | |
| 		while ((user_ns != &init_user_ns) &&
 | |
| 		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
 | |
| 			user_ns = user_ns->parent;
 | |
| 
 | |
| 		if (old != user_ns) {
 | |
| 			bprm->mm->user_ns = get_user_ns(user_ns);
 | |
| 			put_user_ns(old);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(would_dump);
 | |
| 
 | |
| void setup_new_exec(struct linux_binprm * bprm)
 | |
| {
 | |
| 	/* Setup things that can depend upon the personality */
 | |
| 	struct task_struct *me = current;
 | |
| 
 | |
| 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
 | |
| 
 | |
| 	arch_setup_new_exec();
 | |
| 
 | |
| 	/* Set the new mm task size. We have to do that late because it may
 | |
| 	 * depend on TIF_32BIT which is only updated in flush_thread() on
 | |
| 	 * some architectures like powerpc
 | |
| 	 */
 | |
| 	me->mm->task_size = TASK_SIZE;
 | |
| 	up_write(&me->signal->exec_update_lock);
 | |
| 	mutex_unlock(&me->signal->cred_guard_mutex);
 | |
| }
 | |
| EXPORT_SYMBOL(setup_new_exec);
 | |
| 
 | |
| /* Runs immediately before start_thread() takes over. */
 | |
| void finalize_exec(struct linux_binprm *bprm)
 | |
| {
 | |
| 	/* Store any stack rlimit changes before starting thread. */
 | |
| 	task_lock(current->group_leader);
 | |
| 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
 | |
| 	task_unlock(current->group_leader);
 | |
| }
 | |
| EXPORT_SYMBOL(finalize_exec);
 | |
| 
 | |
| /*
 | |
|  * Prepare credentials and lock ->cred_guard_mutex.
 | |
|  * setup_new_exec() commits the new creds and drops the lock.
 | |
|  * Or, if exec fails before, free_bprm() should release ->cred
 | |
|  * and unlock.
 | |
|  */
 | |
| static int prepare_bprm_creds(struct linux_binprm *bprm)
 | |
| {
 | |
| 	if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
 | |
| 		return -ERESTARTNOINTR;
 | |
| 
 | |
| 	bprm->cred = prepare_exec_creds();
 | |
| 	if (likely(bprm->cred))
 | |
| 		return 0;
 | |
| 
 | |
| 	mutex_unlock(¤t->signal->cred_guard_mutex);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /* Matches do_open_execat() */
 | |
| static void do_close_execat(struct file *file)
 | |
| {
 | |
| 	if (!file)
 | |
| 		return;
 | |
| 	allow_write_access(file);
 | |
| 	fput(file);
 | |
| }
 | |
| 
 | |
| static void free_bprm(struct linux_binprm *bprm)
 | |
| {
 | |
| 	if (bprm->mm) {
 | |
| 		acct_arg_size(bprm, 0);
 | |
| 		mmput(bprm->mm);
 | |
| 	}
 | |
| 	free_arg_pages(bprm);
 | |
| 	if (bprm->cred) {
 | |
| 		mutex_unlock(¤t->signal->cred_guard_mutex);
 | |
| 		abort_creds(bprm->cred);
 | |
| 	}
 | |
| 	do_close_execat(bprm->file);
 | |
| 	if (bprm->executable)
 | |
| 		fput(bprm->executable);
 | |
| 	/* If a binfmt changed the interp, free it. */
 | |
| 	if (bprm->interp != bprm->filename)
 | |
| 		kfree(bprm->interp);
 | |
| 	kfree(bprm->fdpath);
 | |
| 	kfree(bprm);
 | |
| }
 | |
| 
 | |
| static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
 | |
| {
 | |
| 	struct linux_binprm *bprm;
 | |
| 	struct file *file;
 | |
| 	int retval = -ENOMEM;
 | |
| 
 | |
| 	file = do_open_execat(fd, filename, flags);
 | |
| 	if (IS_ERR(file))
 | |
| 		return ERR_CAST(file);
 | |
| 
 | |
| 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
 | |
| 	if (!bprm) {
 | |
| 		do_close_execat(file);
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	bprm->file = file;
 | |
| 
 | |
| 	if (fd == AT_FDCWD || filename->name[0] == '/') {
 | |
| 		bprm->filename = filename->name;
 | |
| 	} else {
 | |
| 		if (filename->name[0] == '\0')
 | |
| 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
 | |
| 		else
 | |
| 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
 | |
| 						  fd, filename->name);
 | |
| 		if (!bprm->fdpath)
 | |
| 			goto out_free;
 | |
| 
 | |
| 		/*
 | |
| 		 * Record that a name derived from an O_CLOEXEC fd will be
 | |
| 		 * inaccessible after exec.  This allows the code in exec to
 | |
| 		 * choose to fail when the executable is not mmaped into the
 | |
| 		 * interpreter and an open file descriptor is not passed to
 | |
| 		 * the interpreter.  This makes for a better user experience
 | |
| 		 * than having the interpreter start and then immediately fail
 | |
| 		 * when it finds the executable is inaccessible.
 | |
| 		 */
 | |
| 		if (get_close_on_exec(fd))
 | |
| 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
 | |
| 
 | |
| 		bprm->filename = bprm->fdpath;
 | |
| 	}
 | |
| 	bprm->interp = bprm->filename;
 | |
| 
 | |
| 	retval = bprm_mm_init(bprm);
 | |
| 	if (!retval)
 | |
| 		return bprm;
 | |
| 
 | |
| out_free:
 | |
| 	free_bprm(bprm);
 | |
| 	return ERR_PTR(retval);
 | |
| }
 | |
| 
 | |
| int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
 | |
| {
 | |
| 	/* If a binfmt changed the interp, free it first. */
 | |
| 	if (bprm->interp != bprm->filename)
 | |
| 		kfree(bprm->interp);
 | |
| 	bprm->interp = kstrdup(interp, GFP_KERNEL);
 | |
| 	if (!bprm->interp)
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(bprm_change_interp);
 | |
| 
 | |
| /*
 | |
|  * determine how safe it is to execute the proposed program
 | |
|  * - the caller must hold ->cred_guard_mutex to protect against
 | |
|  *   PTRACE_ATTACH or seccomp thread-sync
 | |
|  */
 | |
| static void check_unsafe_exec(struct linux_binprm *bprm)
 | |
| {
 | |
| 	struct task_struct *p = current, *t;
 | |
| 	unsigned n_fs;
 | |
| 
 | |
| 	if (p->ptrace)
 | |
| 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
 | |
| 
 | |
| 	/*
 | |
| 	 * This isn't strictly necessary, but it makes it harder for LSMs to
 | |
| 	 * mess up.
 | |
| 	 */
 | |
| 	if (task_no_new_privs(current))
 | |
| 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
 | |
| 
 | |
| 	/*
 | |
| 	 * If another task is sharing our fs, we cannot safely
 | |
| 	 * suid exec because the differently privileged task
 | |
| 	 * will be able to manipulate the current directory, etc.
 | |
| 	 * It would be nice to force an unshare instead...
 | |
| 	 */
 | |
| 	n_fs = 1;
 | |
| 	spin_lock(&p->fs->lock);
 | |
| 	rcu_read_lock();
 | |
| 	for_other_threads(p, t) {
 | |
| 		if (t->fs == p->fs)
 | |
| 			n_fs++;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/* "users" and "in_exec" locked for copy_fs() */
 | |
| 	if (p->fs->users > n_fs)
 | |
| 		bprm->unsafe |= LSM_UNSAFE_SHARE;
 | |
| 	else
 | |
| 		p->fs->in_exec = 1;
 | |
| 	spin_unlock(&p->fs->lock);
 | |
| }
 | |
| 
 | |
| static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
 | |
| {
 | |
| 	/* Handle suid and sgid on files */
 | |
| 	struct mnt_idmap *idmap;
 | |
| 	struct inode *inode = file_inode(file);
 | |
| 	unsigned int mode;
 | |
| 	vfsuid_t vfsuid;
 | |
| 	vfsgid_t vfsgid;
 | |
| 
 | |
| 	if (!mnt_may_suid(file->f_path.mnt))
 | |
| 		return;
 | |
| 
 | |
| 	if (task_no_new_privs(current))
 | |
| 		return;
 | |
| 
 | |
| 	mode = READ_ONCE(inode->i_mode);
 | |
| 	if (!(mode & (S_ISUID|S_ISGID)))
 | |
| 		return;
 | |
| 
 | |
| 	idmap = file_mnt_idmap(file);
 | |
| 
 | |
| 	/* Be careful if suid/sgid is set */
 | |
| 	inode_lock(inode);
 | |
| 
 | |
| 	/* reload atomically mode/uid/gid now that lock held */
 | |
| 	mode = inode->i_mode;
 | |
| 	vfsuid = i_uid_into_vfsuid(idmap, inode);
 | |
| 	vfsgid = i_gid_into_vfsgid(idmap, inode);
 | |
| 	inode_unlock(inode);
 | |
| 
 | |
| 	/* We ignore suid/sgid if there are no mappings for them in the ns */
 | |
| 	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
 | |
| 	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
 | |
| 		return;
 | |
| 
 | |
| 	if (mode & S_ISUID) {
 | |
| 		bprm->per_clear |= PER_CLEAR_ON_SETID;
 | |
| 		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
 | |
| 	}
 | |
| 
 | |
| 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
 | |
| 		bprm->per_clear |= PER_CLEAR_ON_SETID;
 | |
| 		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute brpm->cred based upon the final binary.
 | |
|  */
 | |
| static int bprm_creds_from_file(struct linux_binprm *bprm)
 | |
| {
 | |
| 	/* Compute creds based on which file? */
 | |
| 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
 | |
| 
 | |
| 	bprm_fill_uid(bprm, file);
 | |
| 	return security_bprm_creds_from_file(bprm, file);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fill the binprm structure from the inode.
 | |
|  * Read the first BINPRM_BUF_SIZE bytes
 | |
|  *
 | |
|  * This may be called multiple times for binary chains (scripts for example).
 | |
|  */
 | |
| static int prepare_binprm(struct linux_binprm *bprm)
 | |
| {
 | |
| 	loff_t pos = 0;
 | |
| 
 | |
| 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
 | |
| 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Arguments are '\0' separated strings found at the location bprm->p
 | |
|  * points to; chop off the first by relocating brpm->p to right after
 | |
|  * the first '\0' encountered.
 | |
|  */
 | |
| int remove_arg_zero(struct linux_binprm *bprm)
 | |
| {
 | |
| 	unsigned long offset;
 | |
| 	char *kaddr;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (!bprm->argc)
 | |
| 		return 0;
 | |
| 
 | |
| 	do {
 | |
| 		offset = bprm->p & ~PAGE_MASK;
 | |
| 		page = get_arg_page(bprm, bprm->p, 0);
 | |
| 		if (!page)
 | |
| 			return -EFAULT;
 | |
| 		kaddr = kmap_local_page(page);
 | |
| 
 | |
| 		for (; offset < PAGE_SIZE && kaddr[offset];
 | |
| 				offset++, bprm->p++)
 | |
| 			;
 | |
| 
 | |
| 		kunmap_local(kaddr);
 | |
| 		put_arg_page(page);
 | |
| 	} while (offset == PAGE_SIZE);
 | |
| 
 | |
| 	bprm->p++;
 | |
| 	bprm->argc--;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(remove_arg_zero);
 | |
| 
 | |
| #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
 | |
| /*
 | |
|  * cycle the list of binary formats handler, until one recognizes the image
 | |
|  */
 | |
| static int search_binary_handler(struct linux_binprm *bprm)
 | |
| {
 | |
| 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
 | |
| 	struct linux_binfmt *fmt;
 | |
| 	int retval;
 | |
| 
 | |
| 	retval = prepare_binprm(bprm);
 | |
| 	if (retval < 0)
 | |
| 		return retval;
 | |
| 
 | |
| 	retval = security_bprm_check(bprm);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	retval = -ENOENT;
 | |
|  retry:
 | |
| 	read_lock(&binfmt_lock);
 | |
| 	list_for_each_entry(fmt, &formats, lh) {
 | |
| 		if (!try_module_get(fmt->module))
 | |
| 			continue;
 | |
| 		read_unlock(&binfmt_lock);
 | |
| 
 | |
| 		retval = fmt->load_binary(bprm);
 | |
| 
 | |
| 		read_lock(&binfmt_lock);
 | |
| 		put_binfmt(fmt);
 | |
| 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
 | |
| 			read_unlock(&binfmt_lock);
 | |
| 			return retval;
 | |
| 		}
 | |
| 	}
 | |
| 	read_unlock(&binfmt_lock);
 | |
| 
 | |
| 	if (need_retry) {
 | |
| 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
 | |
| 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
 | |
| 			return retval;
 | |
| 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
 | |
| 			return retval;
 | |
| 		need_retry = false;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /* binfmt handlers will call back into begin_new_exec() on success. */
 | |
| static int exec_binprm(struct linux_binprm *bprm)
 | |
| {
 | |
| 	pid_t old_pid, old_vpid;
 | |
| 	int ret, depth;
 | |
| 
 | |
| 	/* Need to fetch pid before load_binary changes it */
 | |
| 	old_pid = current->pid;
 | |
| 	rcu_read_lock();
 | |
| 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/* This allows 4 levels of binfmt rewrites before failing hard. */
 | |
| 	for (depth = 0;; depth++) {
 | |
| 		struct file *exec;
 | |
| 		if (depth > 5)
 | |
| 			return -ELOOP;
 | |
| 
 | |
| 		ret = search_binary_handler(bprm);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		if (!bprm->interpreter)
 | |
| 			break;
 | |
| 
 | |
| 		exec = bprm->file;
 | |
| 		bprm->file = bprm->interpreter;
 | |
| 		bprm->interpreter = NULL;
 | |
| 
 | |
| 		allow_write_access(exec);
 | |
| 		if (unlikely(bprm->have_execfd)) {
 | |
| 			if (bprm->executable) {
 | |
| 				fput(exec);
 | |
| 				return -ENOEXEC;
 | |
| 			}
 | |
| 			bprm->executable = exec;
 | |
| 		} else
 | |
| 			fput(exec);
 | |
| 	}
 | |
| 
 | |
| 	audit_bprm(bprm);
 | |
| 	trace_sched_process_exec(current, old_pid, bprm);
 | |
| 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
 | |
| 	proc_exec_connector(current);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bprm_execve(struct linux_binprm *bprm)
 | |
| {
 | |
| 	int retval;
 | |
| 
 | |
| 	retval = prepare_bprm_creds(bprm);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for unsafe execution states before exec_binprm(), which
 | |
| 	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
 | |
| 	 * where setuid-ness is evaluated.
 | |
| 	 */
 | |
| 	check_unsafe_exec(bprm);
 | |
| 	current->in_execve = 1;
 | |
| 	sched_mm_cid_before_execve(current);
 | |
| 
 | |
| 	sched_exec();
 | |
| 
 | |
| 	/* Set the unchanging part of bprm->cred */
 | |
| 	retval = security_bprm_creds_for_exec(bprm);
 | |
| 	if (retval)
 | |
| 		goto out;
 | |
| 
 | |
| 	retval = exec_binprm(bprm);
 | |
| 	if (retval < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	sched_mm_cid_after_execve(current);
 | |
| 	/* execve succeeded */
 | |
| 	current->fs->in_exec = 0;
 | |
| 	current->in_execve = 0;
 | |
| 	rseq_execve(current);
 | |
| 	user_events_execve(current);
 | |
| 	acct_update_integrals(current);
 | |
| 	task_numa_free(current, false);
 | |
| 	return retval;
 | |
| 
 | |
| out:
 | |
| 	/*
 | |
| 	 * If past the point of no return ensure the code never
 | |
| 	 * returns to the userspace process.  Use an existing fatal
 | |
| 	 * signal if present otherwise terminate the process with
 | |
| 	 * SIGSEGV.
 | |
| 	 */
 | |
| 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
 | |
| 		force_fatal_sig(SIGSEGV);
 | |
| 
 | |
| 	sched_mm_cid_after_execve(current);
 | |
| 	current->fs->in_exec = 0;
 | |
| 	current->in_execve = 0;
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int do_execveat_common(int fd, struct filename *filename,
 | |
| 			      struct user_arg_ptr argv,
 | |
| 			      struct user_arg_ptr envp,
 | |
| 			      int flags)
 | |
| {
 | |
| 	struct linux_binprm *bprm;
 | |
| 	int retval;
 | |
| 
 | |
| 	if (IS_ERR(filename))
 | |
| 		return PTR_ERR(filename);
 | |
| 
 | |
| 	/*
 | |
| 	 * We move the actual failure in case of RLIMIT_NPROC excess from
 | |
| 	 * set*uid() to execve() because too many poorly written programs
 | |
| 	 * don't check setuid() return code.  Here we additionally recheck
 | |
| 	 * whether NPROC limit is still exceeded.
 | |
| 	 */
 | |
| 	if ((current->flags & PF_NPROC_EXCEEDED) &&
 | |
| 	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
 | |
| 		retval = -EAGAIN;
 | |
| 		goto out_ret;
 | |
| 	}
 | |
| 
 | |
| 	/* We're below the limit (still or again), so we don't want to make
 | |
| 	 * further execve() calls fail. */
 | |
| 	current->flags &= ~PF_NPROC_EXCEEDED;
 | |
| 
 | |
| 	bprm = alloc_bprm(fd, filename, flags);
 | |
| 	if (IS_ERR(bprm)) {
 | |
| 		retval = PTR_ERR(bprm);
 | |
| 		goto out_ret;
 | |
| 	}
 | |
| 
 | |
| 	retval = count(argv, MAX_ARG_STRINGS);
 | |
| 	if (retval == 0)
 | |
| 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
 | |
| 			     current->comm, bprm->filename);
 | |
| 	if (retval < 0)
 | |
| 		goto out_free;
 | |
| 	bprm->argc = retval;
 | |
| 
 | |
| 	retval = count(envp, MAX_ARG_STRINGS);
 | |
| 	if (retval < 0)
 | |
| 		goto out_free;
 | |
| 	bprm->envc = retval;
 | |
| 
 | |
| 	retval = bprm_stack_limits(bprm);
 | |
| 	if (retval < 0)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	retval = copy_string_kernel(bprm->filename, bprm);
 | |
| 	if (retval < 0)
 | |
| 		goto out_free;
 | |
| 	bprm->exec = bprm->p;
 | |
| 
 | |
| 	retval = copy_strings(bprm->envc, envp, bprm);
 | |
| 	if (retval < 0)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	retval = copy_strings(bprm->argc, argv, bprm);
 | |
| 	if (retval < 0)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	/*
 | |
| 	 * When argv is empty, add an empty string ("") as argv[0] to
 | |
| 	 * ensure confused userspace programs that start processing
 | |
| 	 * from argv[1] won't end up walking envp. See also
 | |
| 	 * bprm_stack_limits().
 | |
| 	 */
 | |
| 	if (bprm->argc == 0) {
 | |
| 		retval = copy_string_kernel("", bprm);
 | |
| 		if (retval < 0)
 | |
| 			goto out_free;
 | |
| 		bprm->argc = 1;
 | |
| 	}
 | |
| 
 | |
| 	retval = bprm_execve(bprm);
 | |
| out_free:
 | |
| 	free_bprm(bprm);
 | |
| 
 | |
| out_ret:
 | |
| 	putname(filename);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| int kernel_execve(const char *kernel_filename,
 | |
| 		  const char *const *argv, const char *const *envp)
 | |
| {
 | |
| 	struct filename *filename;
 | |
| 	struct linux_binprm *bprm;
 | |
| 	int fd = AT_FDCWD;
 | |
| 	int retval;
 | |
| 
 | |
| 	/* It is non-sense for kernel threads to call execve */
 | |
| 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	filename = getname_kernel(kernel_filename);
 | |
| 	if (IS_ERR(filename))
 | |
| 		return PTR_ERR(filename);
 | |
| 
 | |
| 	bprm = alloc_bprm(fd, filename, 0);
 | |
| 	if (IS_ERR(bprm)) {
 | |
| 		retval = PTR_ERR(bprm);
 | |
| 		goto out_ret;
 | |
| 	}
 | |
| 
 | |
| 	retval = count_strings_kernel(argv);
 | |
| 	if (WARN_ON_ONCE(retval == 0))
 | |
| 		retval = -EINVAL;
 | |
| 	if (retval < 0)
 | |
| 		goto out_free;
 | |
| 	bprm->argc = retval;
 | |
| 
 | |
| 	retval = count_strings_kernel(envp);
 | |
| 	if (retval < 0)
 | |
| 		goto out_free;
 | |
| 	bprm->envc = retval;
 | |
| 
 | |
| 	retval = bprm_stack_limits(bprm);
 | |
| 	if (retval < 0)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	retval = copy_string_kernel(bprm->filename, bprm);
 | |
| 	if (retval < 0)
 | |
| 		goto out_free;
 | |
| 	bprm->exec = bprm->p;
 | |
| 
 | |
| 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
 | |
| 	if (retval < 0)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
 | |
| 	if (retval < 0)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	retval = bprm_execve(bprm);
 | |
| out_free:
 | |
| 	free_bprm(bprm);
 | |
| out_ret:
 | |
| 	putname(filename);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int do_execve(struct filename *filename,
 | |
| 	const char __user *const __user *__argv,
 | |
| 	const char __user *const __user *__envp)
 | |
| {
 | |
| 	struct user_arg_ptr argv = { .ptr.native = __argv };
 | |
| 	struct user_arg_ptr envp = { .ptr.native = __envp };
 | |
| 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
 | |
| }
 | |
| 
 | |
| static int do_execveat(int fd, struct filename *filename,
 | |
| 		const char __user *const __user *__argv,
 | |
| 		const char __user *const __user *__envp,
 | |
| 		int flags)
 | |
| {
 | |
| 	struct user_arg_ptr argv = { .ptr.native = __argv };
 | |
| 	struct user_arg_ptr envp = { .ptr.native = __envp };
 | |
| 
 | |
| 	return do_execveat_common(fd, filename, argv, envp, flags);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| static int compat_do_execve(struct filename *filename,
 | |
| 	const compat_uptr_t __user *__argv,
 | |
| 	const compat_uptr_t __user *__envp)
 | |
| {
 | |
| 	struct user_arg_ptr argv = {
 | |
| 		.is_compat = true,
 | |
| 		.ptr.compat = __argv,
 | |
| 	};
 | |
| 	struct user_arg_ptr envp = {
 | |
| 		.is_compat = true,
 | |
| 		.ptr.compat = __envp,
 | |
| 	};
 | |
| 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
 | |
| }
 | |
| 
 | |
| static int compat_do_execveat(int fd, struct filename *filename,
 | |
| 			      const compat_uptr_t __user *__argv,
 | |
| 			      const compat_uptr_t __user *__envp,
 | |
| 			      int flags)
 | |
| {
 | |
| 	struct user_arg_ptr argv = {
 | |
| 		.is_compat = true,
 | |
| 		.ptr.compat = __argv,
 | |
| 	};
 | |
| 	struct user_arg_ptr envp = {
 | |
| 		.is_compat = true,
 | |
| 		.ptr.compat = __envp,
 | |
| 	};
 | |
| 	return do_execveat_common(fd, filename, argv, envp, flags);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void set_binfmt(struct linux_binfmt *new)
 | |
| {
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 
 | |
| 	if (mm->binfmt)
 | |
| 		module_put(mm->binfmt->module);
 | |
| 
 | |
| 	mm->binfmt = new;
 | |
| 	if (new)
 | |
| 		__module_get(new->module);
 | |
| }
 | |
| EXPORT_SYMBOL(set_binfmt);
 | |
| 
 | |
| /*
 | |
|  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
 | |
|  */
 | |
| void set_dumpable(struct mm_struct *mm, int value)
 | |
| {
 | |
| 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
 | |
| 		return;
 | |
| 
 | |
| 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE3(execve,
 | |
| 		const char __user *, filename,
 | |
| 		const char __user *const __user *, argv,
 | |
| 		const char __user *const __user *, envp)
 | |
| {
 | |
| 	return do_execve(getname(filename), argv, envp);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE5(execveat,
 | |
| 		int, fd, const char __user *, filename,
 | |
| 		const char __user *const __user *, argv,
 | |
| 		const char __user *const __user *, envp,
 | |
| 		int, flags)
 | |
| {
 | |
| 	return do_execveat(fd,
 | |
| 			   getname_uflags(filename, flags),
 | |
| 			   argv, envp, flags);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
 | |
| 	const compat_uptr_t __user *, argv,
 | |
| 	const compat_uptr_t __user *, envp)
 | |
| {
 | |
| 	return compat_do_execve(getname(filename), argv, envp);
 | |
| }
 | |
| 
 | |
| COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
 | |
| 		       const char __user *, filename,
 | |
| 		       const compat_uptr_t __user *, argv,
 | |
| 		       const compat_uptr_t __user *, envp,
 | |
| 		       int,  flags)
 | |
| {
 | |
| 	return compat_do_execveat(fd,
 | |
| 				  getname_uflags(filename, flags),
 | |
| 				  argv, envp, flags);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SYSCTL
 | |
| 
 | |
| static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
 | |
| 		void *buffer, size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 | |
| 
 | |
| 	if (!error)
 | |
| 		validate_coredump_safety();
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static struct ctl_table fs_exec_sysctls[] = {
 | |
| 	{
 | |
| 		.procname	= "suid_dumpable",
 | |
| 		.data		= &suid_dumpable,
 | |
| 		.maxlen		= sizeof(int),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= proc_dointvec_minmax_coredump,
 | |
| 		.extra1		= SYSCTL_ZERO,
 | |
| 		.extra2		= SYSCTL_TWO,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int __init init_fs_exec_sysctls(void)
 | |
| {
 | |
| 	register_sysctl_init("fs", fs_exec_sysctls);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| fs_initcall(init_fs_exec_sysctls);
 | |
| #endif /* CONFIG_SYSCTL */
 |