mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 2394aef616
			
		
	
	
		2394aef616
		
	
	
	
	
		
			
			User can put arbitrary new_order via debugfs for folio split test. Although new_order check is added to split_huge_page_to_list_order() in the prior commit, these two additional checks can avoid unnecessary folio locking and split_folio_to_order() calls. Link: https://lkml.kernel.org/r/20240307181854.138928-2-zi.yan@sent.com Signed-off-by: Zi Yan <ziy@nvidia.com> Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Closes: https://lore.kernel.org/linux-mm/7dda9283-b437-4cf8-ab0d-83c330deb9c0@moroto.mountain/ Cc: David Hildenbrand <david@redhat.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			3768 lines
		
	
	
	
		
			101 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3768 lines
		
	
	
	
		
			101 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *  Copyright (C) 2009  Red Hat, Inc.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/sched/coredump.h>
 | |
| #include <linux/sched/numa_balancing.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/mmu_notifier.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/shrinker.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/dax.h>
 | |
| #include <linux/khugepaged.h>
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/pfn_t.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/memremap.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/hashtable.h>
 | |
| #include <linux/userfaultfd_k.h>
 | |
| #include <linux/page_idle.h>
 | |
| #include <linux/shmem_fs.h>
 | |
| #include <linux/oom.h>
 | |
| #include <linux/numa.h>
 | |
| #include <linux/page_owner.h>
 | |
| #include <linux/sched/sysctl.h>
 | |
| #include <linux/memory-tiers.h>
 | |
| #include <linux/compat.h>
 | |
| 
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include "internal.h"
 | |
| #include "swap.h"
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/thp.h>
 | |
| 
 | |
| /*
 | |
|  * By default, transparent hugepage support is disabled in order to avoid
 | |
|  * risking an increased memory footprint for applications that are not
 | |
|  * guaranteed to benefit from it. When transparent hugepage support is
 | |
|  * enabled, it is for all mappings, and khugepaged scans all mappings.
 | |
|  * Defrag is invoked by khugepaged hugepage allocations and by page faults
 | |
|  * for all hugepage allocations.
 | |
|  */
 | |
| unsigned long transparent_hugepage_flags __read_mostly =
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
 | |
| 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
 | |
| #endif
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
 | |
| 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
 | |
| #endif
 | |
| 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
 | |
| 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
 | |
| 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 | |
| 
 | |
| static struct shrinker *deferred_split_shrinker;
 | |
| static unsigned long deferred_split_count(struct shrinker *shrink,
 | |
| 					  struct shrink_control *sc);
 | |
| static unsigned long deferred_split_scan(struct shrinker *shrink,
 | |
| 					 struct shrink_control *sc);
 | |
| 
 | |
| static atomic_t huge_zero_refcount;
 | |
| struct page *huge_zero_page __read_mostly;
 | |
| unsigned long huge_zero_pfn __read_mostly = ~0UL;
 | |
| unsigned long huge_anon_orders_always __read_mostly;
 | |
| unsigned long huge_anon_orders_madvise __read_mostly;
 | |
| unsigned long huge_anon_orders_inherit __read_mostly;
 | |
| 
 | |
| unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
 | |
| 					 unsigned long vm_flags, bool smaps,
 | |
| 					 bool in_pf, bool enforce_sysfs,
 | |
| 					 unsigned long orders)
 | |
| {
 | |
| 	/* Check the intersection of requested and supported orders. */
 | |
| 	orders &= vma_is_anonymous(vma) ?
 | |
| 			THP_ORDERS_ALL_ANON : THP_ORDERS_ALL_FILE;
 | |
| 	if (!orders)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!vma->vm_mm)		/* vdso */
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Explicitly disabled through madvise or prctl, or some
 | |
| 	 * architectures may disable THP for some mappings, for
 | |
| 	 * example, s390 kvm.
 | |
| 	 * */
 | |
| 	if ((vm_flags & VM_NOHUGEPAGE) ||
 | |
| 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * If the hardware/firmware marked hugepage support disabled.
 | |
| 	 */
 | |
| 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
 | |
| 	if (vma_is_dax(vma))
 | |
| 		return in_pf ? orders : 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * khugepaged special VMA and hugetlb VMA.
 | |
| 	 * Must be checked after dax since some dax mappings may have
 | |
| 	 * VM_MIXEDMAP set.
 | |
| 	 */
 | |
| 	if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check alignment for file vma and size for both file and anon vma by
 | |
| 	 * filtering out the unsuitable orders.
 | |
| 	 *
 | |
| 	 * Skip the check for page fault. Huge fault does the check in fault
 | |
| 	 * handlers.
 | |
| 	 */
 | |
| 	if (!in_pf) {
 | |
| 		int order = highest_order(orders);
 | |
| 		unsigned long addr;
 | |
| 
 | |
| 		while (orders) {
 | |
| 			addr = vma->vm_end - (PAGE_SIZE << order);
 | |
| 			if (thp_vma_suitable_order(vma, addr, order))
 | |
| 				break;
 | |
| 			order = next_order(&orders, order);
 | |
| 		}
 | |
| 
 | |
| 		if (!orders)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Enabled via shmem mount options or sysfs settings.
 | |
| 	 * Must be done before hugepage flags check since shmem has its
 | |
| 	 * own flags.
 | |
| 	 */
 | |
| 	if (!in_pf && shmem_file(vma->vm_file))
 | |
| 		return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
 | |
| 				     !enforce_sysfs, vma->vm_mm, vm_flags)
 | |
| 			? orders : 0;
 | |
| 
 | |
| 	if (!vma_is_anonymous(vma)) {
 | |
| 		/*
 | |
| 		 * Enforce sysfs THP requirements as necessary. Anonymous vmas
 | |
| 		 * were already handled in thp_vma_allowable_orders().
 | |
| 		 */
 | |
| 		if (enforce_sysfs &&
 | |
| 		    (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
 | |
| 						    !hugepage_global_always())))
 | |
| 			return 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * Trust that ->huge_fault() handlers know what they are doing
 | |
| 		 * in fault path.
 | |
| 		 */
 | |
| 		if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
 | |
| 			return orders;
 | |
| 		/* Only regular file is valid in collapse path */
 | |
| 		if (((!in_pf || smaps)) && file_thp_enabled(vma))
 | |
| 			return orders;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (vma_is_temporary_stack(vma))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * THPeligible bit of smaps should show 1 for proper VMAs even
 | |
| 	 * though anon_vma is not initialized yet.
 | |
| 	 *
 | |
| 	 * Allow page fault since anon_vma may be not initialized until
 | |
| 	 * the first page fault.
 | |
| 	 */
 | |
| 	if (!vma->anon_vma)
 | |
| 		return (smaps || in_pf) ? orders : 0;
 | |
| 
 | |
| 	return orders;
 | |
| }
 | |
| 
 | |
| static bool get_huge_zero_page(void)
 | |
| {
 | |
| 	struct page *zero_page;
 | |
| retry:
 | |
| 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 | |
| 		return true;
 | |
| 
 | |
| 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 | |
| 			HPAGE_PMD_ORDER);
 | |
| 	if (!zero_page) {
 | |
| 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 | |
| 		return false;
 | |
| 	}
 | |
| 	preempt_disable();
 | |
| 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 | |
| 		preempt_enable();
 | |
| 		__free_pages(zero_page, compound_order(zero_page));
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
 | |
| 
 | |
| 	/* We take additional reference here. It will be put back by shrinker */
 | |
| 	atomic_set(&huge_zero_refcount, 2);
 | |
| 	preempt_enable();
 | |
| 	count_vm_event(THP_ZERO_PAGE_ALLOC);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void put_huge_zero_page(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Counter should never go to zero here. Only shrinker can put
 | |
| 	 * last reference.
 | |
| 	 */
 | |
| 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 | |
| }
 | |
| 
 | |
| struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 | |
| {
 | |
| 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 | |
| 		return READ_ONCE(huge_zero_page);
 | |
| 
 | |
| 	if (!get_huge_zero_page())
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 | |
| 		put_huge_zero_page();
 | |
| 
 | |
| 	return READ_ONCE(huge_zero_page);
 | |
| }
 | |
| 
 | |
| void mm_put_huge_zero_page(struct mm_struct *mm)
 | |
| {
 | |
| 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 | |
| 		put_huge_zero_page();
 | |
| }
 | |
| 
 | |
| static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 | |
| 					struct shrink_control *sc)
 | |
| {
 | |
| 	/* we can free zero page only if last reference remains */
 | |
| 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 | |
| }
 | |
| 
 | |
| static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 | |
| 				       struct shrink_control *sc)
 | |
| {
 | |
| 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 | |
| 		struct page *zero_page = xchg(&huge_zero_page, NULL);
 | |
| 		BUG_ON(zero_page == NULL);
 | |
| 		WRITE_ONCE(huge_zero_pfn, ~0UL);
 | |
| 		__free_pages(zero_page, compound_order(zero_page));
 | |
| 		return HPAGE_PMD_NR;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct shrinker *huge_zero_page_shrinker;
 | |
| 
 | |
| #ifdef CONFIG_SYSFS
 | |
| static ssize_t enabled_show(struct kobject *kobj,
 | |
| 			    struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	const char *output;
 | |
| 
 | |
| 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 | |
| 		output = "[always] madvise never";
 | |
| 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 | |
| 			  &transparent_hugepage_flags))
 | |
| 		output = "always [madvise] never";
 | |
| 	else
 | |
| 		output = "always madvise [never]";
 | |
| 
 | |
| 	return sysfs_emit(buf, "%s\n", output);
 | |
| }
 | |
| 
 | |
| static ssize_t enabled_store(struct kobject *kobj,
 | |
| 			     struct kobj_attribute *attr,
 | |
| 			     const char *buf, size_t count)
 | |
| {
 | |
| 	ssize_t ret = count;
 | |
| 
 | |
| 	if (sysfs_streq(buf, "always")) {
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 | |
| 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 | |
| 	} else if (sysfs_streq(buf, "madvise")) {
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 | |
| 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 | |
| 	} else if (sysfs_streq(buf, "never")) {
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 | |
| 	} else
 | |
| 		ret = -EINVAL;
 | |
| 
 | |
| 	if (ret > 0) {
 | |
| 		int err = start_stop_khugepaged();
 | |
| 		if (err)
 | |
| 			ret = err;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
 | |
| 
 | |
| ssize_t single_hugepage_flag_show(struct kobject *kobj,
 | |
| 				  struct kobj_attribute *attr, char *buf,
 | |
| 				  enum transparent_hugepage_flag flag)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%d\n",
 | |
| 			  !!test_bit(flag, &transparent_hugepage_flags));
 | |
| }
 | |
| 
 | |
| ssize_t single_hugepage_flag_store(struct kobject *kobj,
 | |
| 				 struct kobj_attribute *attr,
 | |
| 				 const char *buf, size_t count,
 | |
| 				 enum transparent_hugepage_flag flag)
 | |
| {
 | |
| 	unsigned long value;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = kstrtoul(buf, 10, &value);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	if (value > 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (value)
 | |
| 		set_bit(flag, &transparent_hugepage_flags);
 | |
| 	else
 | |
| 		clear_bit(flag, &transparent_hugepage_flags);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t defrag_show(struct kobject *kobj,
 | |
| 			   struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	const char *output;
 | |
| 
 | |
| 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 | |
| 		     &transparent_hugepage_flags))
 | |
| 		output = "[always] defer defer+madvise madvise never";
 | |
| 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 | |
| 			  &transparent_hugepage_flags))
 | |
| 		output = "always [defer] defer+madvise madvise never";
 | |
| 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
 | |
| 			  &transparent_hugepage_flags))
 | |
| 		output = "always defer [defer+madvise] madvise never";
 | |
| 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
 | |
| 			  &transparent_hugepage_flags))
 | |
| 		output = "always defer defer+madvise [madvise] never";
 | |
| 	else
 | |
| 		output = "always defer defer+madvise madvise [never]";
 | |
| 
 | |
| 	return sysfs_emit(buf, "%s\n", output);
 | |
| }
 | |
| 
 | |
| static ssize_t defrag_store(struct kobject *kobj,
 | |
| 			    struct kobj_attribute *attr,
 | |
| 			    const char *buf, size_t count)
 | |
| {
 | |
| 	if (sysfs_streq(buf, "always")) {
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 | |
| 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 | |
| 	} else if (sysfs_streq(buf, "defer+madvise")) {
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 | |
| 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 | |
| 	} else if (sysfs_streq(buf, "defer")) {
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 | |
| 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 | |
| 	} else if (sysfs_streq(buf, "madvise")) {
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 | |
| 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 | |
| 	} else if (sysfs_streq(buf, "never")) {
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 | |
| 	} else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
 | |
| 
 | |
| static ssize_t use_zero_page_show(struct kobject *kobj,
 | |
| 				  struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	return single_hugepage_flag_show(kobj, attr, buf,
 | |
| 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 | |
| }
 | |
| static ssize_t use_zero_page_store(struct kobject *kobj,
 | |
| 		struct kobj_attribute *attr, const char *buf, size_t count)
 | |
| {
 | |
| 	return single_hugepage_flag_store(kobj, attr, buf, count,
 | |
| 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 | |
| }
 | |
| static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
 | |
| 
 | |
| static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 | |
| 				   struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
 | |
| }
 | |
| static struct kobj_attribute hpage_pmd_size_attr =
 | |
| 	__ATTR_RO(hpage_pmd_size);
 | |
| 
 | |
| static struct attribute *hugepage_attr[] = {
 | |
| 	&enabled_attr.attr,
 | |
| 	&defrag_attr.attr,
 | |
| 	&use_zero_page_attr.attr,
 | |
| 	&hpage_pmd_size_attr.attr,
 | |
| #ifdef CONFIG_SHMEM
 | |
| 	&shmem_enabled_attr.attr,
 | |
| #endif
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static const struct attribute_group hugepage_attr_group = {
 | |
| 	.attrs = hugepage_attr,
 | |
| };
 | |
| 
 | |
| static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
 | |
| static void thpsize_release(struct kobject *kobj);
 | |
| static DEFINE_SPINLOCK(huge_anon_orders_lock);
 | |
| static LIST_HEAD(thpsize_list);
 | |
| 
 | |
| struct thpsize {
 | |
| 	struct kobject kobj;
 | |
| 	struct list_head node;
 | |
| 	int order;
 | |
| };
 | |
| 
 | |
| #define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj)
 | |
| 
 | |
| static ssize_t thpsize_enabled_show(struct kobject *kobj,
 | |
| 				    struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	int order = to_thpsize(kobj)->order;
 | |
| 	const char *output;
 | |
| 
 | |
| 	if (test_bit(order, &huge_anon_orders_always))
 | |
| 		output = "[always] inherit madvise never";
 | |
| 	else if (test_bit(order, &huge_anon_orders_inherit))
 | |
| 		output = "always [inherit] madvise never";
 | |
| 	else if (test_bit(order, &huge_anon_orders_madvise))
 | |
| 		output = "always inherit [madvise] never";
 | |
| 	else
 | |
| 		output = "always inherit madvise [never]";
 | |
| 
 | |
| 	return sysfs_emit(buf, "%s\n", output);
 | |
| }
 | |
| 
 | |
| static ssize_t thpsize_enabled_store(struct kobject *kobj,
 | |
| 				     struct kobj_attribute *attr,
 | |
| 				     const char *buf, size_t count)
 | |
| {
 | |
| 	int order = to_thpsize(kobj)->order;
 | |
| 	ssize_t ret = count;
 | |
| 
 | |
| 	if (sysfs_streq(buf, "always")) {
 | |
| 		spin_lock(&huge_anon_orders_lock);
 | |
| 		clear_bit(order, &huge_anon_orders_inherit);
 | |
| 		clear_bit(order, &huge_anon_orders_madvise);
 | |
| 		set_bit(order, &huge_anon_orders_always);
 | |
| 		spin_unlock(&huge_anon_orders_lock);
 | |
| 	} else if (sysfs_streq(buf, "inherit")) {
 | |
| 		spin_lock(&huge_anon_orders_lock);
 | |
| 		clear_bit(order, &huge_anon_orders_always);
 | |
| 		clear_bit(order, &huge_anon_orders_madvise);
 | |
| 		set_bit(order, &huge_anon_orders_inherit);
 | |
| 		spin_unlock(&huge_anon_orders_lock);
 | |
| 	} else if (sysfs_streq(buf, "madvise")) {
 | |
| 		spin_lock(&huge_anon_orders_lock);
 | |
| 		clear_bit(order, &huge_anon_orders_always);
 | |
| 		clear_bit(order, &huge_anon_orders_inherit);
 | |
| 		set_bit(order, &huge_anon_orders_madvise);
 | |
| 		spin_unlock(&huge_anon_orders_lock);
 | |
| 	} else if (sysfs_streq(buf, "never")) {
 | |
| 		spin_lock(&huge_anon_orders_lock);
 | |
| 		clear_bit(order, &huge_anon_orders_always);
 | |
| 		clear_bit(order, &huge_anon_orders_inherit);
 | |
| 		clear_bit(order, &huge_anon_orders_madvise);
 | |
| 		spin_unlock(&huge_anon_orders_lock);
 | |
| 	} else
 | |
| 		ret = -EINVAL;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct kobj_attribute thpsize_enabled_attr =
 | |
| 	__ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store);
 | |
| 
 | |
| static struct attribute *thpsize_attrs[] = {
 | |
| 	&thpsize_enabled_attr.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static const struct attribute_group thpsize_attr_group = {
 | |
| 	.attrs = thpsize_attrs,
 | |
| };
 | |
| 
 | |
| static const struct kobj_type thpsize_ktype = {
 | |
| 	.release = &thpsize_release,
 | |
| 	.sysfs_ops = &kobj_sysfs_ops,
 | |
| };
 | |
| 
 | |
| static struct thpsize *thpsize_create(int order, struct kobject *parent)
 | |
| {
 | |
| 	unsigned long size = (PAGE_SIZE << order) / SZ_1K;
 | |
| 	struct thpsize *thpsize;
 | |
| 	int ret;
 | |
| 
 | |
| 	thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
 | |
| 	if (!thpsize)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
 | |
| 				   "hugepages-%lukB", size);
 | |
| 	if (ret) {
 | |
| 		kfree(thpsize);
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 
 | |
| 	ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group);
 | |
| 	if (ret) {
 | |
| 		kobject_put(&thpsize->kobj);
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 
 | |
| 	thpsize->order = order;
 | |
| 	return thpsize;
 | |
| }
 | |
| 
 | |
| static void thpsize_release(struct kobject *kobj)
 | |
| {
 | |
| 	kfree(to_thpsize(kobj));
 | |
| }
 | |
| 
 | |
| static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 | |
| {
 | |
| 	int err;
 | |
| 	struct thpsize *thpsize;
 | |
| 	unsigned long orders;
 | |
| 	int order;
 | |
| 
 | |
| 	/*
 | |
| 	 * Default to setting PMD-sized THP to inherit the global setting and
 | |
| 	 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
 | |
| 	 * constant so we have to do this here.
 | |
| 	 */
 | |
| 	huge_anon_orders_inherit = BIT(PMD_ORDER);
 | |
| 
 | |
| 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 | |
| 	if (unlikely(!*hugepage_kobj)) {
 | |
| 		pr_err("failed to create transparent hugepage kobject\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 | |
| 	if (err) {
 | |
| 		pr_err("failed to register transparent hugepage group\n");
 | |
| 		goto delete_obj;
 | |
| 	}
 | |
| 
 | |
| 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 | |
| 	if (err) {
 | |
| 		pr_err("failed to register transparent hugepage group\n");
 | |
| 		goto remove_hp_group;
 | |
| 	}
 | |
| 
 | |
| 	orders = THP_ORDERS_ALL_ANON;
 | |
| 	order = highest_order(orders);
 | |
| 	while (orders) {
 | |
| 		thpsize = thpsize_create(order, *hugepage_kobj);
 | |
| 		if (IS_ERR(thpsize)) {
 | |
| 			pr_err("failed to create thpsize for order %d\n", order);
 | |
| 			err = PTR_ERR(thpsize);
 | |
| 			goto remove_all;
 | |
| 		}
 | |
| 		list_add(&thpsize->node, &thpsize_list);
 | |
| 		order = next_order(&orders, order);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| remove_all:
 | |
| 	hugepage_exit_sysfs(*hugepage_kobj);
 | |
| 	return err;
 | |
| remove_hp_group:
 | |
| 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 | |
| delete_obj:
 | |
| 	kobject_put(*hugepage_kobj);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 | |
| {
 | |
| 	struct thpsize *thpsize, *tmp;
 | |
| 
 | |
| 	list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
 | |
| 		list_del(&thpsize->node);
 | |
| 		kobject_put(&thpsize->kobj);
 | |
| 	}
 | |
| 
 | |
| 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 | |
| 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 | |
| 	kobject_put(hugepage_kobj);
 | |
| }
 | |
| #else
 | |
| static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_SYSFS */
 | |
| 
 | |
| static int __init thp_shrinker_init(void)
 | |
| {
 | |
| 	huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
 | |
| 	if (!huge_zero_page_shrinker)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
 | |
| 						 SHRINKER_MEMCG_AWARE |
 | |
| 						 SHRINKER_NONSLAB,
 | |
| 						 "thp-deferred_split");
 | |
| 	if (!deferred_split_shrinker) {
 | |
| 		shrinker_free(huge_zero_page_shrinker);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
 | |
| 	huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
 | |
| 	shrinker_register(huge_zero_page_shrinker);
 | |
| 
 | |
| 	deferred_split_shrinker->count_objects = deferred_split_count;
 | |
| 	deferred_split_shrinker->scan_objects = deferred_split_scan;
 | |
| 	shrinker_register(deferred_split_shrinker);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init thp_shrinker_exit(void)
 | |
| {
 | |
| 	shrinker_free(huge_zero_page_shrinker);
 | |
| 	shrinker_free(deferred_split_shrinker);
 | |
| }
 | |
| 
 | |
| static int __init hugepage_init(void)
 | |
| {
 | |
| 	int err;
 | |
| 	struct kobject *hugepage_kobj;
 | |
| 
 | |
| 	if (!has_transparent_hugepage()) {
 | |
| 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * hugepages can't be allocated by the buddy allocator
 | |
| 	 */
 | |
| 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
 | |
| 	/*
 | |
| 	 * we use page->mapping and page->index in second tail page
 | |
| 	 * as list_head: assuming THP order >= 2
 | |
| 	 */
 | |
| 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 | |
| 
 | |
| 	err = hugepage_init_sysfs(&hugepage_kobj);
 | |
| 	if (err)
 | |
| 		goto err_sysfs;
 | |
| 
 | |
| 	err = khugepaged_init();
 | |
| 	if (err)
 | |
| 		goto err_slab;
 | |
| 
 | |
| 	err = thp_shrinker_init();
 | |
| 	if (err)
 | |
| 		goto err_shrinker;
 | |
| 
 | |
| 	/*
 | |
| 	 * By default disable transparent hugepages on smaller systems,
 | |
| 	 * where the extra memory used could hurt more than TLB overhead
 | |
| 	 * is likely to save.  The admin can still enable it through /sys.
 | |
| 	 */
 | |
| 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
 | |
| 		transparent_hugepage_flags = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	err = start_stop_khugepaged();
 | |
| 	if (err)
 | |
| 		goto err_khugepaged;
 | |
| 
 | |
| 	return 0;
 | |
| err_khugepaged:
 | |
| 	thp_shrinker_exit();
 | |
| err_shrinker:
 | |
| 	khugepaged_destroy();
 | |
| err_slab:
 | |
| 	hugepage_exit_sysfs(hugepage_kobj);
 | |
| err_sysfs:
 | |
| 	return err;
 | |
| }
 | |
| subsys_initcall(hugepage_init);
 | |
| 
 | |
| static int __init setup_transparent_hugepage(char *str)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	if (!str)
 | |
| 		goto out;
 | |
| 	if (!strcmp(str, "always")) {
 | |
| 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 | |
| 			&transparent_hugepage_flags);
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 | |
| 			  &transparent_hugepage_flags);
 | |
| 		ret = 1;
 | |
| 	} else if (!strcmp(str, "madvise")) {
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 | |
| 			  &transparent_hugepage_flags);
 | |
| 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 | |
| 			&transparent_hugepage_flags);
 | |
| 		ret = 1;
 | |
| 	} else if (!strcmp(str, "never")) {
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 | |
| 			  &transparent_hugepage_flags);
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 | |
| 			  &transparent_hugepage_flags);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| out:
 | |
| 	if (!ret)
 | |
| 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 | |
| 	return ret;
 | |
| }
 | |
| __setup("transparent_hugepage=", setup_transparent_hugepage);
 | |
| 
 | |
| pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (likely(vma->vm_flags & VM_WRITE))
 | |
| 		pmd = pmd_mkwrite(pmd, vma);
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG
 | |
| static inline
 | |
| struct deferred_split *get_deferred_split_queue(struct folio *folio)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = folio_memcg(folio);
 | |
| 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
 | |
| 
 | |
| 	if (memcg)
 | |
| 		return &memcg->deferred_split_queue;
 | |
| 	else
 | |
| 		return &pgdat->deferred_split_queue;
 | |
| }
 | |
| #else
 | |
| static inline
 | |
| struct deferred_split *get_deferred_split_queue(struct folio *folio)
 | |
| {
 | |
| 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
 | |
| 
 | |
| 	return &pgdat->deferred_split_queue;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void folio_prep_large_rmappable(struct folio *folio)
 | |
| {
 | |
| 	if (!folio || !folio_test_large(folio))
 | |
| 		return;
 | |
| 	if (folio_order(folio) > 1)
 | |
| 		INIT_LIST_HEAD(&folio->_deferred_list);
 | |
| 	folio_set_large_rmappable(folio);
 | |
| }
 | |
| 
 | |
| static inline bool is_transparent_hugepage(struct folio *folio)
 | |
| {
 | |
| 	if (!folio_test_large(folio))
 | |
| 		return false;
 | |
| 
 | |
| 	return is_huge_zero_page(&folio->page) ||
 | |
| 		folio_test_large_rmappable(folio);
 | |
| }
 | |
| 
 | |
| static unsigned long __thp_get_unmapped_area(struct file *filp,
 | |
| 		unsigned long addr, unsigned long len,
 | |
| 		loff_t off, unsigned long flags, unsigned long size)
 | |
| {
 | |
| 	loff_t off_end = off + len;
 | |
| 	loff_t off_align = round_up(off, size);
 | |
| 	unsigned long len_pad, ret, off_sub;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_32BIT) || in_compat_syscall())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (off_end <= off_align || (off_end - off_align) < size)
 | |
| 		return 0;
 | |
| 
 | |
| 	len_pad = len + size;
 | |
| 	if (len_pad < len || (off + len_pad) < off)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
 | |
| 					      off >> PAGE_SHIFT, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * The failure might be due to length padding. The caller will retry
 | |
| 	 * without the padding.
 | |
| 	 */
 | |
| 	if (IS_ERR_VALUE(ret))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not try to align to THP boundary if allocation at the address
 | |
| 	 * hint succeeds.
 | |
| 	 */
 | |
| 	if (ret == addr)
 | |
| 		return addr;
 | |
| 
 | |
| 	off_sub = (off - ret) & (size - 1);
 | |
| 
 | |
| 	if (current->mm->get_unmapped_area == arch_get_unmapped_area_topdown &&
 | |
| 	    !off_sub)
 | |
| 		return ret + size;
 | |
| 
 | |
| 	ret += off_sub;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 | |
| 		unsigned long len, unsigned long pgoff, unsigned long flags)
 | |
| {
 | |
| 	unsigned long ret;
 | |
| 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 | |
| 
 | |
| 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 | |
| 
 | |
| static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
 | |
| 			struct page *page, gfp_t gfp)
 | |
| {
 | |
| 	struct vm_area_struct *vma = vmf->vma;
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	pgtable_t pgtable;
 | |
| 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 | |
| 	vm_fault_t ret = 0;
 | |
| 
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
 | |
| 
 | |
| 	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
 | |
| 		folio_put(folio);
 | |
| 		count_vm_event(THP_FAULT_FALLBACK);
 | |
| 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
 | |
| 		return VM_FAULT_FALLBACK;
 | |
| 	}
 | |
| 	folio_throttle_swaprate(folio, gfp);
 | |
| 
 | |
| 	pgtable = pte_alloc_one(vma->vm_mm);
 | |
| 	if (unlikely(!pgtable)) {
 | |
| 		ret = VM_FAULT_OOM;
 | |
| 		goto release;
 | |
| 	}
 | |
| 
 | |
| 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 | |
| 	/*
 | |
| 	 * The memory barrier inside __folio_mark_uptodate makes sure that
 | |
| 	 * clear_huge_page writes become visible before the set_pmd_at()
 | |
| 	 * write.
 | |
| 	 */
 | |
| 	__folio_mark_uptodate(folio);
 | |
| 
 | |
| 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 | |
| 	if (unlikely(!pmd_none(*vmf->pmd))) {
 | |
| 		goto unlock_release;
 | |
| 	} else {
 | |
| 		pmd_t entry;
 | |
| 
 | |
| 		ret = check_stable_address_space(vma->vm_mm);
 | |
| 		if (ret)
 | |
| 			goto unlock_release;
 | |
| 
 | |
| 		/* Deliver the page fault to userland */
 | |
| 		if (userfaultfd_missing(vma)) {
 | |
| 			spin_unlock(vmf->ptl);
 | |
| 			folio_put(folio);
 | |
| 			pte_free(vma->vm_mm, pgtable);
 | |
| 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
 | |
| 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		entry = mk_huge_pmd(page, vma->vm_page_prot);
 | |
| 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 | |
| 		folio_add_new_anon_rmap(folio, vma, haddr);
 | |
| 		folio_add_lru_vma(folio, vma);
 | |
| 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 | |
| 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 | |
| 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 | |
| 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 | |
| 		mm_inc_nr_ptes(vma->vm_mm);
 | |
| 		spin_unlock(vmf->ptl);
 | |
| 		count_vm_event(THP_FAULT_ALLOC);
 | |
| 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| unlock_release:
 | |
| 	spin_unlock(vmf->ptl);
 | |
| release:
 | |
| 	if (pgtable)
 | |
| 		pte_free(vma->vm_mm, pgtable);
 | |
| 	folio_put(folio);
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * always: directly stall for all thp allocations
 | |
|  * defer: wake kswapd and fail if not immediately available
 | |
|  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 | |
|  *		  fail if not immediately available
 | |
|  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 | |
|  *	    available
 | |
|  * never: never stall for any thp allocation
 | |
|  */
 | |
| gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
 | |
| {
 | |
| 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
 | |
| 
 | |
| 	/* Always do synchronous compaction */
 | |
| 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 | |
| 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 | |
| 
 | |
| 	/* Kick kcompactd and fail quickly */
 | |
| 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 | |
| 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 | |
| 
 | |
| 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
 | |
| 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 | |
| 		return GFP_TRANSHUGE_LIGHT |
 | |
| 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
 | |
| 					__GFP_KSWAPD_RECLAIM);
 | |
| 
 | |
| 	/* Only do synchronous compaction if madvised */
 | |
| 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 | |
| 		return GFP_TRANSHUGE_LIGHT |
 | |
| 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
 | |
| 
 | |
| 	return GFP_TRANSHUGE_LIGHT;
 | |
| }
 | |
| 
 | |
| /* Caller must hold page table lock. */
 | |
| static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 | |
| 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 | |
| 		struct page *zero_page)
 | |
| {
 | |
| 	pmd_t entry;
 | |
| 	if (!pmd_none(*pmd))
 | |
| 		return;
 | |
| 	entry = mk_pmd(zero_page, vma->vm_page_prot);
 | |
| 	entry = pmd_mkhuge(entry);
 | |
| 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
 | |
| 	set_pmd_at(mm, haddr, pmd, entry);
 | |
| 	mm_inc_nr_ptes(mm);
 | |
| }
 | |
| 
 | |
| vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 | |
| {
 | |
| 	struct vm_area_struct *vma = vmf->vma;
 | |
| 	gfp_t gfp;
 | |
| 	struct folio *folio;
 | |
| 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 | |
| 
 | |
| 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
 | |
| 		return VM_FAULT_FALLBACK;
 | |
| 	if (unlikely(anon_vma_prepare(vma)))
 | |
| 		return VM_FAULT_OOM;
 | |
| 	khugepaged_enter_vma(vma, vma->vm_flags);
 | |
| 
 | |
| 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 | |
| 			!mm_forbids_zeropage(vma->vm_mm) &&
 | |
| 			transparent_hugepage_use_zero_page()) {
 | |
| 		pgtable_t pgtable;
 | |
| 		struct page *zero_page;
 | |
| 		vm_fault_t ret;
 | |
| 		pgtable = pte_alloc_one(vma->vm_mm);
 | |
| 		if (unlikely(!pgtable))
 | |
| 			return VM_FAULT_OOM;
 | |
| 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
 | |
| 		if (unlikely(!zero_page)) {
 | |
| 			pte_free(vma->vm_mm, pgtable);
 | |
| 			count_vm_event(THP_FAULT_FALLBACK);
 | |
| 			return VM_FAULT_FALLBACK;
 | |
| 		}
 | |
| 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 | |
| 		ret = 0;
 | |
| 		if (pmd_none(*vmf->pmd)) {
 | |
| 			ret = check_stable_address_space(vma->vm_mm);
 | |
| 			if (ret) {
 | |
| 				spin_unlock(vmf->ptl);
 | |
| 				pte_free(vma->vm_mm, pgtable);
 | |
| 			} else if (userfaultfd_missing(vma)) {
 | |
| 				spin_unlock(vmf->ptl);
 | |
| 				pte_free(vma->vm_mm, pgtable);
 | |
| 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
 | |
| 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 | |
| 			} else {
 | |
| 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 | |
| 						   haddr, vmf->pmd, zero_page);
 | |
| 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 | |
| 				spin_unlock(vmf->ptl);
 | |
| 			}
 | |
| 		} else {
 | |
| 			spin_unlock(vmf->ptl);
 | |
| 			pte_free(vma->vm_mm, pgtable);
 | |
| 		}
 | |
| 		return ret;
 | |
| 	}
 | |
| 	gfp = vma_thp_gfp_mask(vma);
 | |
| 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
 | |
| 	if (unlikely(!folio)) {
 | |
| 		count_vm_event(THP_FAULT_FALLBACK);
 | |
| 		return VM_FAULT_FALLBACK;
 | |
| 	}
 | |
| 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
 | |
| }
 | |
| 
 | |
| static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 | |
| 		pgtable_t pgtable)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	pmd_t entry;
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| 	ptl = pmd_lock(mm, pmd);
 | |
| 	if (!pmd_none(*pmd)) {
 | |
| 		if (write) {
 | |
| 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
 | |
| 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
 | |
| 				goto out_unlock;
 | |
| 			}
 | |
| 			entry = pmd_mkyoung(*pmd);
 | |
| 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 | |
| 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
 | |
| 				update_mmu_cache_pmd(vma, addr, pmd);
 | |
| 		}
 | |
| 
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 | |
| 	if (pfn_t_devmap(pfn))
 | |
| 		entry = pmd_mkdevmap(entry);
 | |
| 	if (write) {
 | |
| 		entry = pmd_mkyoung(pmd_mkdirty(entry));
 | |
| 		entry = maybe_pmd_mkwrite(entry, vma);
 | |
| 	}
 | |
| 
 | |
| 	if (pgtable) {
 | |
| 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 | |
| 		mm_inc_nr_ptes(mm);
 | |
| 		pgtable = NULL;
 | |
| 	}
 | |
| 
 | |
| 	set_pmd_at(mm, addr, pmd, entry);
 | |
| 	update_mmu_cache_pmd(vma, addr, pmd);
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock(ptl);
 | |
| 	if (pgtable)
 | |
| 		pte_free(mm, pgtable);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vmf_insert_pfn_pmd - insert a pmd size pfn
 | |
|  * @vmf: Structure describing the fault
 | |
|  * @pfn: pfn to insert
 | |
|  * @write: whether it's a write fault
 | |
|  *
 | |
|  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
 | |
|  *
 | |
|  * Return: vm_fault_t value.
 | |
|  */
 | |
| vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
 | |
| {
 | |
| 	unsigned long addr = vmf->address & PMD_MASK;
 | |
| 	struct vm_area_struct *vma = vmf->vma;
 | |
| 	pgprot_t pgprot = vma->vm_page_prot;
 | |
| 	pgtable_t pgtable = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we had pmd_special, we could avoid all these restrictions,
 | |
| 	 * but we need to be consistent with PTEs and architectures that
 | |
| 	 * can't support a 'special' bit.
 | |
| 	 */
 | |
| 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
 | |
| 			!pfn_t_devmap(pfn));
 | |
| 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 | |
| 						(VM_PFNMAP|VM_MIXEDMAP));
 | |
| 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 | |
| 
 | |
| 	if (addr < vma->vm_start || addr >= vma->vm_end)
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 
 | |
| 	if (arch_needs_pgtable_deposit()) {
 | |
| 		pgtable = pte_alloc_one(vma->vm_mm);
 | |
| 		if (!pgtable)
 | |
| 			return VM_FAULT_OOM;
 | |
| 	}
 | |
| 
 | |
| 	track_pfn_insert(vma, &pgprot, pfn);
 | |
| 
 | |
| 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
 | |
| 	return VM_FAULT_NOPAGE;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
 | |
| 
 | |
| #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 | |
| static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (likely(vma->vm_flags & VM_WRITE))
 | |
| 		pud = pud_mkwrite(pud);
 | |
| 	return pud;
 | |
| }
 | |
| 
 | |
| static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 | |
| 		pud_t *pud, pfn_t pfn, bool write)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	pgprot_t prot = vma->vm_page_prot;
 | |
| 	pud_t entry;
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| 	ptl = pud_lock(mm, pud);
 | |
| 	if (!pud_none(*pud)) {
 | |
| 		if (write) {
 | |
| 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
 | |
| 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
 | |
| 				goto out_unlock;
 | |
| 			}
 | |
| 			entry = pud_mkyoung(*pud);
 | |
| 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
 | |
| 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
 | |
| 				update_mmu_cache_pud(vma, addr, pud);
 | |
| 		}
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 | |
| 	if (pfn_t_devmap(pfn))
 | |
| 		entry = pud_mkdevmap(entry);
 | |
| 	if (write) {
 | |
| 		entry = pud_mkyoung(pud_mkdirty(entry));
 | |
| 		entry = maybe_pud_mkwrite(entry, vma);
 | |
| 	}
 | |
| 	set_pud_at(mm, addr, pud, entry);
 | |
| 	update_mmu_cache_pud(vma, addr, pud);
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock(ptl);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vmf_insert_pfn_pud - insert a pud size pfn
 | |
|  * @vmf: Structure describing the fault
 | |
|  * @pfn: pfn to insert
 | |
|  * @write: whether it's a write fault
 | |
|  *
 | |
|  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
 | |
|  *
 | |
|  * Return: vm_fault_t value.
 | |
|  */
 | |
| vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
 | |
| {
 | |
| 	unsigned long addr = vmf->address & PUD_MASK;
 | |
| 	struct vm_area_struct *vma = vmf->vma;
 | |
| 	pgprot_t pgprot = vma->vm_page_prot;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we had pud_special, we could avoid all these restrictions,
 | |
| 	 * but we need to be consistent with PTEs and architectures that
 | |
| 	 * can't support a 'special' bit.
 | |
| 	 */
 | |
| 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
 | |
| 			!pfn_t_devmap(pfn));
 | |
| 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 | |
| 						(VM_PFNMAP|VM_MIXEDMAP));
 | |
| 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 | |
| 
 | |
| 	if (addr < vma->vm_start || addr >= vma->vm_end)
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 
 | |
| 	track_pfn_insert(vma, &pgprot, pfn);
 | |
| 
 | |
| 	insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
 | |
| 	return VM_FAULT_NOPAGE;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
 | |
| #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 | |
| 
 | |
| static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 		      pmd_t *pmd, bool write)
 | |
| {
 | |
| 	pmd_t _pmd;
 | |
| 
 | |
| 	_pmd = pmd_mkyoung(*pmd);
 | |
| 	if (write)
 | |
| 		_pmd = pmd_mkdirty(_pmd);
 | |
| 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 | |
| 				  pmd, _pmd, write))
 | |
| 		update_mmu_cache_pmd(vma, addr, pmd);
 | |
| }
 | |
| 
 | |
| struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
 | |
| {
 | |
| 	unsigned long pfn = pmd_pfn(*pmd);
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct page *page;
 | |
| 	int ret;
 | |
| 
 | |
| 	assert_spin_locked(pmd_lockptr(mm, pmd));
 | |
| 
 | |
| 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
 | |
| 		/* pass */;
 | |
| 	else
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (flags & FOLL_TOUCH)
 | |
| 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
 | |
| 
 | |
| 	/*
 | |
| 	 * device mapped pages can only be returned if the
 | |
| 	 * caller will manage the page reference count.
 | |
| 	 */
 | |
| 	if (!(flags & (FOLL_GET | FOLL_PIN)))
 | |
| 		return ERR_PTR(-EEXIST);
 | |
| 
 | |
| 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 | |
| 	*pgmap = get_dev_pagemap(pfn, *pgmap);
 | |
| 	if (!*pgmap)
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 	page = pfn_to_page(pfn);
 | |
| 	ret = try_grab_page(page, flags);
 | |
| 	if (ret)
 | |
| 		page = ERR_PTR(ret);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 | |
| 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 | |
| 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
 | |
| {
 | |
| 	spinlock_t *dst_ptl, *src_ptl;
 | |
| 	struct page *src_page;
 | |
| 	struct folio *src_folio;
 | |
| 	pmd_t pmd;
 | |
| 	pgtable_t pgtable = NULL;
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	/* Skip if can be re-fill on fault */
 | |
| 	if (!vma_is_anonymous(dst_vma))
 | |
| 		return 0;
 | |
| 
 | |
| 	pgtable = pte_alloc_one(dst_mm);
 | |
| 	if (unlikely(!pgtable))
 | |
| 		goto out;
 | |
| 
 | |
| 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
 | |
| 	src_ptl = pmd_lockptr(src_mm, src_pmd);
 | |
| 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 | |
| 
 | |
| 	ret = -EAGAIN;
 | |
| 	pmd = *src_pmd;
 | |
| 
 | |
| #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 | |
| 	if (unlikely(is_swap_pmd(pmd))) {
 | |
| 		swp_entry_t entry = pmd_to_swp_entry(pmd);
 | |
| 
 | |
| 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
 | |
| 		if (!is_readable_migration_entry(entry)) {
 | |
| 			entry = make_readable_migration_entry(
 | |
| 							swp_offset(entry));
 | |
| 			pmd = swp_entry_to_pmd(entry);
 | |
| 			if (pmd_swp_soft_dirty(*src_pmd))
 | |
| 				pmd = pmd_swp_mksoft_dirty(pmd);
 | |
| 			if (pmd_swp_uffd_wp(*src_pmd))
 | |
| 				pmd = pmd_swp_mkuffd_wp(pmd);
 | |
| 			set_pmd_at(src_mm, addr, src_pmd, pmd);
 | |
| 		}
 | |
| 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 | |
| 		mm_inc_nr_ptes(dst_mm);
 | |
| 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 | |
| 		if (!userfaultfd_wp(dst_vma))
 | |
| 			pmd = pmd_swp_clear_uffd_wp(pmd);
 | |
| 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 | |
| 		ret = 0;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (unlikely(!pmd_trans_huge(pmd))) {
 | |
| 		pte_free(dst_mm, pgtable);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * When page table lock is held, the huge zero pmd should not be
 | |
| 	 * under splitting since we don't split the page itself, only pmd to
 | |
| 	 * a page table.
 | |
| 	 */
 | |
| 	if (is_huge_zero_pmd(pmd)) {
 | |
| 		/*
 | |
| 		 * get_huge_zero_page() will never allocate a new page here,
 | |
| 		 * since we already have a zero page to copy. It just takes a
 | |
| 		 * reference.
 | |
| 		 */
 | |
| 		mm_get_huge_zero_page(dst_mm);
 | |
| 		goto out_zero_page;
 | |
| 	}
 | |
| 
 | |
| 	src_page = pmd_page(pmd);
 | |
| 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 | |
| 	src_folio = page_folio(src_page);
 | |
| 
 | |
| 	folio_get(src_folio);
 | |
| 	if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) {
 | |
| 		/* Page maybe pinned: split and retry the fault on PTEs. */
 | |
| 		folio_put(src_folio);
 | |
| 		pte_free(dst_mm, pgtable);
 | |
| 		spin_unlock(src_ptl);
 | |
| 		spin_unlock(dst_ptl);
 | |
| 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 | |
| out_zero_page:
 | |
| 	mm_inc_nr_ptes(dst_mm);
 | |
| 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 | |
| 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 | |
| 	if (!userfaultfd_wp(dst_vma))
 | |
| 		pmd = pmd_clear_uffd_wp(pmd);
 | |
| 	pmd = pmd_mkold(pmd_wrprotect(pmd));
 | |
| 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 | |
| 
 | |
| 	ret = 0;
 | |
| out_unlock:
 | |
| 	spin_unlock(src_ptl);
 | |
| 	spin_unlock(dst_ptl);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 | |
| static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
 | |
| 		      pud_t *pud, bool write)
 | |
| {
 | |
| 	pud_t _pud;
 | |
| 
 | |
| 	_pud = pud_mkyoung(*pud);
 | |
| 	if (write)
 | |
| 		_pud = pud_mkdirty(_pud);
 | |
| 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
 | |
| 				  pud, _pud, write))
 | |
| 		update_mmu_cache_pud(vma, addr, pud);
 | |
| }
 | |
| 
 | |
| struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
 | |
| 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
 | |
| {
 | |
| 	unsigned long pfn = pud_pfn(*pud);
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct page *page;
 | |
| 	int ret;
 | |
| 
 | |
| 	assert_spin_locked(pud_lockptr(mm, pud));
 | |
| 
 | |
| 	if (flags & FOLL_WRITE && !pud_write(*pud))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (pud_present(*pud) && pud_devmap(*pud))
 | |
| 		/* pass */;
 | |
| 	else
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (flags & FOLL_TOUCH)
 | |
| 		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
 | |
| 
 | |
| 	/*
 | |
| 	 * device mapped pages can only be returned if the
 | |
| 	 * caller will manage the page reference count.
 | |
| 	 *
 | |
| 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
 | |
| 	 */
 | |
| 	if (!(flags & (FOLL_GET | FOLL_PIN)))
 | |
| 		return ERR_PTR(-EEXIST);
 | |
| 
 | |
| 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
 | |
| 	*pgmap = get_dev_pagemap(pfn, *pgmap);
 | |
| 	if (!*pgmap)
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 	page = pfn_to_page(pfn);
 | |
| 
 | |
| 	ret = try_grab_page(page, flags);
 | |
| 	if (ret)
 | |
| 		page = ERR_PTR(ret);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 | |
| 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
 | |
| 		  struct vm_area_struct *vma)
 | |
| {
 | |
| 	spinlock_t *dst_ptl, *src_ptl;
 | |
| 	pud_t pud;
 | |
| 	int ret;
 | |
| 
 | |
| 	dst_ptl = pud_lock(dst_mm, dst_pud);
 | |
| 	src_ptl = pud_lockptr(src_mm, src_pud);
 | |
| 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 | |
| 
 | |
| 	ret = -EAGAIN;
 | |
| 	pud = *src_pud;
 | |
| 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * When page table lock is held, the huge zero pud should not be
 | |
| 	 * under splitting since we don't split the page itself, only pud to
 | |
| 	 * a page table.
 | |
| 	 */
 | |
| 	if (is_huge_zero_pud(pud)) {
 | |
| 		/* No huge zero pud yet */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * TODO: once we support anonymous pages, use
 | |
| 	 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
 | |
| 	 */
 | |
| 	pudp_set_wrprotect(src_mm, addr, src_pud);
 | |
| 	pud = pud_mkold(pud_wrprotect(pud));
 | |
| 	set_pud_at(dst_mm, addr, dst_pud, pud);
 | |
| 
 | |
| 	ret = 0;
 | |
| out_unlock:
 | |
| 	spin_unlock(src_ptl);
 | |
| 	spin_unlock(dst_ptl);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
 | |
| {
 | |
| 	bool write = vmf->flags & FAULT_FLAG_WRITE;
 | |
| 
 | |
| 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
 | |
| 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
 | |
| unlock:
 | |
| 	spin_unlock(vmf->ptl);
 | |
| }
 | |
| #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 | |
| 
 | |
| void huge_pmd_set_accessed(struct vm_fault *vmf)
 | |
| {
 | |
| 	bool write = vmf->flags & FAULT_FLAG_WRITE;
 | |
| 
 | |
| 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
 | |
| 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
 | |
| 
 | |
| unlock:
 | |
| 	spin_unlock(vmf->ptl);
 | |
| }
 | |
| 
 | |
| vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
 | |
| {
 | |
| 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
 | |
| 	struct vm_area_struct *vma = vmf->vma;
 | |
| 	struct folio *folio;
 | |
| 	struct page *page;
 | |
| 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 | |
| 	pmd_t orig_pmd = vmf->orig_pmd;
 | |
| 
 | |
| 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
 | |
| 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
 | |
| 
 | |
| 	if (is_huge_zero_pmd(orig_pmd))
 | |
| 		goto fallback;
 | |
| 
 | |
| 	spin_lock(vmf->ptl);
 | |
| 
 | |
| 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
 | |
| 		spin_unlock(vmf->ptl);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	page = pmd_page(orig_pmd);
 | |
| 	folio = page_folio(page);
 | |
| 	VM_BUG_ON_PAGE(!PageHead(page), page);
 | |
| 
 | |
| 	/* Early check when only holding the PT lock. */
 | |
| 	if (PageAnonExclusive(page))
 | |
| 		goto reuse;
 | |
| 
 | |
| 	if (!folio_trylock(folio)) {
 | |
| 		folio_get(folio);
 | |
| 		spin_unlock(vmf->ptl);
 | |
| 		folio_lock(folio);
 | |
| 		spin_lock(vmf->ptl);
 | |
| 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
 | |
| 			spin_unlock(vmf->ptl);
 | |
| 			folio_unlock(folio);
 | |
| 			folio_put(folio);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		folio_put(folio);
 | |
| 	}
 | |
| 
 | |
| 	/* Recheck after temporarily dropping the PT lock. */
 | |
| 	if (PageAnonExclusive(page)) {
 | |
| 		folio_unlock(folio);
 | |
| 		goto reuse;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * See do_wp_page(): we can only reuse the folio exclusively if
 | |
| 	 * there are no additional references. Note that we always drain
 | |
| 	 * the LRU cache immediately after adding a THP.
 | |
| 	 */
 | |
| 	if (folio_ref_count(folio) >
 | |
| 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
 | |
| 		goto unlock_fallback;
 | |
| 	if (folio_test_swapcache(folio))
 | |
| 		folio_free_swap(folio);
 | |
| 	if (folio_ref_count(folio) == 1) {
 | |
| 		pmd_t entry;
 | |
| 
 | |
| 		folio_move_anon_rmap(folio, vma);
 | |
| 		SetPageAnonExclusive(page);
 | |
| 		folio_unlock(folio);
 | |
| reuse:
 | |
| 		if (unlikely(unshare)) {
 | |
| 			spin_unlock(vmf->ptl);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		entry = pmd_mkyoung(orig_pmd);
 | |
| 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 | |
| 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
 | |
| 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 | |
| 		spin_unlock(vmf->ptl);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| unlock_fallback:
 | |
| 	folio_unlock(folio);
 | |
| 	spin_unlock(vmf->ptl);
 | |
| fallback:
 | |
| 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
 | |
| 	return VM_FAULT_FALLBACK;
 | |
| }
 | |
| 
 | |
| static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
 | |
| 					   unsigned long addr, pmd_t pmd)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Don't touch entries that are not even readable (NUMA hinting). */
 | |
| 	if (pmd_protnone(pmd))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Do we need write faults for softdirty tracking? */
 | |
| 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Do we need write faults for uffd-wp tracking? */
 | |
| 	if (userfaultfd_huge_pmd_wp(vma, pmd))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!(vma->vm_flags & VM_SHARED)) {
 | |
| 		/* See can_change_pte_writable(). */
 | |
| 		page = vm_normal_page_pmd(vma, addr, pmd);
 | |
| 		return page && PageAnon(page) && PageAnonExclusive(page);
 | |
| 	}
 | |
| 
 | |
| 	/* See can_change_pte_writable(). */
 | |
| 	return pmd_dirty(pmd);
 | |
| }
 | |
| 
 | |
| /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
 | |
| static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
 | |
| 					struct vm_area_struct *vma,
 | |
| 					unsigned int flags)
 | |
| {
 | |
| 	/* If the pmd is writable, we can write to the page. */
 | |
| 	if (pmd_write(pmd))
 | |
| 		return true;
 | |
| 
 | |
| 	/* Maybe FOLL_FORCE is set to override it? */
 | |
| 	if (!(flags & FOLL_FORCE))
 | |
| 		return false;
 | |
| 
 | |
| 	/* But FOLL_FORCE has no effect on shared mappings */
 | |
| 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
 | |
| 		return false;
 | |
| 
 | |
| 	/* ... or read-only private ones */
 | |
| 	if (!(vma->vm_flags & VM_MAYWRITE))
 | |
| 		return false;
 | |
| 
 | |
| 	/* ... or already writable ones that just need to take a write fault */
 | |
| 	if (vma->vm_flags & VM_WRITE)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * See can_change_pte_writable(): we broke COW and could map the page
 | |
| 	 * writable if we have an exclusive anonymous page ...
 | |
| 	 */
 | |
| 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
 | |
| 		return false;
 | |
| 
 | |
| 	/* ... and a write-fault isn't required for other reasons. */
 | |
| 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
 | |
| 		return false;
 | |
| 	return !userfaultfd_huge_pmd_wp(vma, pmd);
 | |
| }
 | |
| 
 | |
| struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
 | |
| 				   unsigned long addr,
 | |
| 				   pmd_t *pmd,
 | |
| 				   unsigned int flags)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct page *page;
 | |
| 	int ret;
 | |
| 
 | |
| 	assert_spin_locked(pmd_lockptr(mm, pmd));
 | |
| 
 | |
| 	page = pmd_page(*pmd);
 | |
| 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
 | |
| 
 | |
| 	if ((flags & FOLL_WRITE) &&
 | |
| 	    !can_follow_write_pmd(*pmd, page, vma, flags))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Avoid dumping huge zero page */
 | |
| 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 
 | |
| 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
 | |
| 		return ERR_PTR(-EMLINK);
 | |
| 
 | |
| 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
 | |
| 			!PageAnonExclusive(page), page);
 | |
| 
 | |
| 	ret = try_grab_page(page, flags);
 | |
| 	if (ret)
 | |
| 		return ERR_PTR(ret);
 | |
| 
 | |
| 	if (flags & FOLL_TOUCH)
 | |
| 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
 | |
| 
 | |
| 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
 | |
| 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /* NUMA hinting page fault entry point for trans huge pmds */
 | |
| vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
 | |
| {
 | |
| 	struct vm_area_struct *vma = vmf->vma;
 | |
| 	pmd_t oldpmd = vmf->orig_pmd;
 | |
| 	pmd_t pmd;
 | |
| 	struct folio *folio;
 | |
| 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 | |
| 	int nid = NUMA_NO_NODE;
 | |
| 	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
 | |
| 	bool migrated = false, writable = false;
 | |
| 	int flags = 0;
 | |
| 
 | |
| 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 | |
| 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
 | |
| 		spin_unlock(vmf->ptl);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
 | |
| 
 | |
| 	/*
 | |
| 	 * Detect now whether the PMD could be writable; this information
 | |
| 	 * is only valid while holding the PT lock.
 | |
| 	 */
 | |
| 	writable = pmd_write(pmd);
 | |
| 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
 | |
| 	    can_change_pmd_writable(vma, vmf->address, pmd))
 | |
| 		writable = true;
 | |
| 
 | |
| 	folio = vm_normal_folio_pmd(vma, haddr, pmd);
 | |
| 	if (!folio)
 | |
| 		goto out_map;
 | |
| 
 | |
| 	/* See similar comment in do_numa_page for explanation */
 | |
| 	if (!writable)
 | |
| 		flags |= TNF_NO_GROUP;
 | |
| 
 | |
| 	nid = folio_nid(folio);
 | |
| 	/*
 | |
| 	 * For memory tiering mode, cpupid of slow memory page is used
 | |
| 	 * to record page access time.  So use default value.
 | |
| 	 */
 | |
| 	if (node_is_toptier(nid))
 | |
| 		last_cpupid = folio_last_cpupid(folio);
 | |
| 	target_nid = numa_migrate_prep(folio, vma, haddr, nid, &flags);
 | |
| 	if (target_nid == NUMA_NO_NODE) {
 | |
| 		folio_put(folio);
 | |
| 		goto out_map;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(vmf->ptl);
 | |
| 	writable = false;
 | |
| 
 | |
| 	migrated = migrate_misplaced_folio(folio, vma, target_nid);
 | |
| 	if (migrated) {
 | |
| 		flags |= TNF_MIGRATED;
 | |
| 		nid = target_nid;
 | |
| 	} else {
 | |
| 		flags |= TNF_MIGRATE_FAIL;
 | |
| 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 | |
| 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
 | |
| 			spin_unlock(vmf->ptl);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		goto out_map;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	if (nid != NUMA_NO_NODE)
 | |
| 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_map:
 | |
| 	/* Restore the PMD */
 | |
| 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
 | |
| 	pmd = pmd_mkyoung(pmd);
 | |
| 	if (writable)
 | |
| 		pmd = pmd_mkwrite(pmd, vma);
 | |
| 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
 | |
| 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 | |
| 	spin_unlock(vmf->ptl);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if we do MADV_FREE successfully on entire pmd page.
 | |
|  * Otherwise, return false.
 | |
|  */
 | |
| bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
 | |
| 		pmd_t *pmd, unsigned long addr, unsigned long next)
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 	pmd_t orig_pmd;
 | |
| 	struct folio *folio;
 | |
| 	struct mm_struct *mm = tlb->mm;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
 | |
| 
 | |
| 	ptl = pmd_trans_huge_lock(pmd, vma);
 | |
| 	if (!ptl)
 | |
| 		goto out_unlocked;
 | |
| 
 | |
| 	orig_pmd = *pmd;
 | |
| 	if (is_huge_zero_pmd(orig_pmd))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (unlikely(!pmd_present(orig_pmd))) {
 | |
| 		VM_BUG_ON(thp_migration_supported() &&
 | |
| 				  !is_pmd_migration_entry(orig_pmd));
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	folio = pfn_folio(pmd_pfn(orig_pmd));
 | |
| 	/*
 | |
| 	 * If other processes are mapping this folio, we couldn't discard
 | |
| 	 * the folio unless they all do MADV_FREE so let's skip the folio.
 | |
| 	 */
 | |
| 	if (folio_estimated_sharers(folio) != 1)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!folio_trylock(folio))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If user want to discard part-pages of THP, split it so MADV_FREE
 | |
| 	 * will deactivate only them.
 | |
| 	 */
 | |
| 	if (next - addr != HPAGE_PMD_SIZE) {
 | |
| 		folio_get(folio);
 | |
| 		spin_unlock(ptl);
 | |
| 		split_folio(folio);
 | |
| 		folio_unlock(folio);
 | |
| 		folio_put(folio);
 | |
| 		goto out_unlocked;
 | |
| 	}
 | |
| 
 | |
| 	if (folio_test_dirty(folio))
 | |
| 		folio_clear_dirty(folio);
 | |
| 	folio_unlock(folio);
 | |
| 
 | |
| 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
 | |
| 		pmdp_invalidate(vma, addr, pmd);
 | |
| 		orig_pmd = pmd_mkold(orig_pmd);
 | |
| 		orig_pmd = pmd_mkclean(orig_pmd);
 | |
| 
 | |
| 		set_pmd_at(mm, addr, pmd, orig_pmd);
 | |
| 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
 | |
| 	}
 | |
| 
 | |
| 	folio_mark_lazyfree(folio);
 | |
| 	ret = true;
 | |
| out:
 | |
| 	spin_unlock(ptl);
 | |
| out_unlocked:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
 | |
| {
 | |
| 	pgtable_t pgtable;
 | |
| 
 | |
| 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
 | |
| 	pte_free(mm, pgtable);
 | |
| 	mm_dec_nr_ptes(mm);
 | |
| }
 | |
| 
 | |
| int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
 | |
| 		 pmd_t *pmd, unsigned long addr)
 | |
| {
 | |
| 	pmd_t orig_pmd;
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
 | |
| 
 | |
| 	ptl = __pmd_trans_huge_lock(pmd, vma);
 | |
| 	if (!ptl)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * For architectures like ppc64 we look at deposited pgtable
 | |
| 	 * when calling pmdp_huge_get_and_clear. So do the
 | |
| 	 * pgtable_trans_huge_withdraw after finishing pmdp related
 | |
| 	 * operations.
 | |
| 	 */
 | |
| 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
 | |
| 						tlb->fullmm);
 | |
| 	arch_check_zapped_pmd(vma, orig_pmd);
 | |
| 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
 | |
| 	if (vma_is_special_huge(vma)) {
 | |
| 		if (arch_needs_pgtable_deposit())
 | |
| 			zap_deposited_table(tlb->mm, pmd);
 | |
| 		spin_unlock(ptl);
 | |
| 	} else if (is_huge_zero_pmd(orig_pmd)) {
 | |
| 		zap_deposited_table(tlb->mm, pmd);
 | |
| 		spin_unlock(ptl);
 | |
| 	} else {
 | |
| 		struct folio *folio = NULL;
 | |
| 		int flush_needed = 1;
 | |
| 
 | |
| 		if (pmd_present(orig_pmd)) {
 | |
| 			struct page *page = pmd_page(orig_pmd);
 | |
| 
 | |
| 			folio = page_folio(page);
 | |
| 			folio_remove_rmap_pmd(folio, page, vma);
 | |
| 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
 | |
| 			VM_BUG_ON_PAGE(!PageHead(page), page);
 | |
| 		} else if (thp_migration_supported()) {
 | |
| 			swp_entry_t entry;
 | |
| 
 | |
| 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
 | |
| 			entry = pmd_to_swp_entry(orig_pmd);
 | |
| 			folio = pfn_swap_entry_folio(entry);
 | |
| 			flush_needed = 0;
 | |
| 		} else
 | |
| 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
 | |
| 
 | |
| 		if (folio_test_anon(folio)) {
 | |
| 			zap_deposited_table(tlb->mm, pmd);
 | |
| 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
 | |
| 		} else {
 | |
| 			if (arch_needs_pgtable_deposit())
 | |
| 				zap_deposited_table(tlb->mm, pmd);
 | |
| 			add_mm_counter(tlb->mm, mm_counter_file(folio),
 | |
| 				       -HPAGE_PMD_NR);
 | |
| 		}
 | |
| 
 | |
| 		spin_unlock(ptl);
 | |
| 		if (flush_needed)
 | |
| 			tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #ifndef pmd_move_must_withdraw
 | |
| static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
 | |
| 					 spinlock_t *old_pmd_ptl,
 | |
| 					 struct vm_area_struct *vma)
 | |
| {
 | |
| 	/*
 | |
| 	 * With split pmd lock we also need to move preallocated
 | |
| 	 * PTE page table if new_pmd is on different PMD page table.
 | |
| 	 *
 | |
| 	 * We also don't deposit and withdraw tables for file pages.
 | |
| 	 */
 | |
| 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static pmd_t move_soft_dirty_pmd(pmd_t pmd)
 | |
| {
 | |
| #ifdef CONFIG_MEM_SOFT_DIRTY
 | |
| 	if (unlikely(is_pmd_migration_entry(pmd)))
 | |
| 		pmd = pmd_swp_mksoft_dirty(pmd);
 | |
| 	else if (pmd_present(pmd))
 | |
| 		pmd = pmd_mksoft_dirty(pmd);
 | |
| #endif
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
 | |
| 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
 | |
| {
 | |
| 	spinlock_t *old_ptl, *new_ptl;
 | |
| 	pmd_t pmd;
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	bool force_flush = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * The destination pmd shouldn't be established, free_pgtables()
 | |
| 	 * should have released it; but move_page_tables() might have already
 | |
| 	 * inserted a page table, if racing against shmem/file collapse.
 | |
| 	 */
 | |
| 	if (!pmd_none(*new_pmd)) {
 | |
| 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't have to worry about the ordering of src and dst
 | |
| 	 * ptlocks because exclusive mmap_lock prevents deadlock.
 | |
| 	 */
 | |
| 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
 | |
| 	if (old_ptl) {
 | |
| 		new_ptl = pmd_lockptr(mm, new_pmd);
 | |
| 		if (new_ptl != old_ptl)
 | |
| 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 | |
| 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
 | |
| 		if (pmd_present(pmd))
 | |
| 			force_flush = true;
 | |
| 		VM_BUG_ON(!pmd_none(*new_pmd));
 | |
| 
 | |
| 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
 | |
| 			pgtable_t pgtable;
 | |
| 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
 | |
| 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
 | |
| 		}
 | |
| 		pmd = move_soft_dirty_pmd(pmd);
 | |
| 		set_pmd_at(mm, new_addr, new_pmd, pmd);
 | |
| 		if (force_flush)
 | |
| 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
 | |
| 		if (new_ptl != old_ptl)
 | |
| 			spin_unlock(new_ptl);
 | |
| 		spin_unlock(old_ptl);
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns
 | |
|  *  - 0 if PMD could not be locked
 | |
|  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
 | |
|  *      or if prot_numa but THP migration is not supported
 | |
|  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
 | |
|  */
 | |
| int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
 | |
| 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
 | |
| 		    unsigned long cp_flags)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	spinlock_t *ptl;
 | |
| 	pmd_t oldpmd, entry;
 | |
| 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
 | |
| 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
 | |
| 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
 | |
| 
 | |
| 	if (prot_numa && !thp_migration_supported())
 | |
| 		return 1;
 | |
| 
 | |
| 	ptl = __pmd_trans_huge_lock(pmd, vma);
 | |
| 	if (!ptl)
 | |
| 		return 0;
 | |
| 
 | |
| #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 | |
| 	if (is_swap_pmd(*pmd)) {
 | |
| 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
 | |
| 		struct folio *folio = pfn_swap_entry_folio(entry);
 | |
| 		pmd_t newpmd;
 | |
| 
 | |
| 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
 | |
| 		if (is_writable_migration_entry(entry)) {
 | |
| 			/*
 | |
| 			 * A protection check is difficult so
 | |
| 			 * just be safe and disable write
 | |
| 			 */
 | |
| 			if (folio_test_anon(folio))
 | |
| 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
 | |
| 			else
 | |
| 				entry = make_readable_migration_entry(swp_offset(entry));
 | |
| 			newpmd = swp_entry_to_pmd(entry);
 | |
| 			if (pmd_swp_soft_dirty(*pmd))
 | |
| 				newpmd = pmd_swp_mksoft_dirty(newpmd);
 | |
| 		} else {
 | |
| 			newpmd = *pmd;
 | |
| 		}
 | |
| 
 | |
| 		if (uffd_wp)
 | |
| 			newpmd = pmd_swp_mkuffd_wp(newpmd);
 | |
| 		else if (uffd_wp_resolve)
 | |
| 			newpmd = pmd_swp_clear_uffd_wp(newpmd);
 | |
| 		if (!pmd_same(*pmd, newpmd))
 | |
| 			set_pmd_at(mm, addr, pmd, newpmd);
 | |
| 		goto unlock;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (prot_numa) {
 | |
| 		struct folio *folio;
 | |
| 		bool toptier;
 | |
| 		/*
 | |
| 		 * Avoid trapping faults against the zero page. The read-only
 | |
| 		 * data is likely to be read-cached on the local CPU and
 | |
| 		 * local/remote hits to the zero page are not interesting.
 | |
| 		 */
 | |
| 		if (is_huge_zero_pmd(*pmd))
 | |
| 			goto unlock;
 | |
| 
 | |
| 		if (pmd_protnone(*pmd))
 | |
| 			goto unlock;
 | |
| 
 | |
| 		folio = page_folio(pmd_page(*pmd));
 | |
| 		toptier = node_is_toptier(folio_nid(folio));
 | |
| 		/*
 | |
| 		 * Skip scanning top tier node if normal numa
 | |
| 		 * balancing is disabled
 | |
| 		 */
 | |
| 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
 | |
| 		    toptier)
 | |
| 			goto unlock;
 | |
| 
 | |
| 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
 | |
| 		    !toptier)
 | |
| 			folio_xchg_access_time(folio,
 | |
| 					       jiffies_to_msecs(jiffies));
 | |
| 	}
 | |
| 	/*
 | |
| 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
 | |
| 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
 | |
| 	 * which is also under mmap_read_lock(mm):
 | |
| 	 *
 | |
| 	 *	CPU0:				CPU1:
 | |
| 	 *				change_huge_pmd(prot_numa=1)
 | |
| 	 *				 pmdp_huge_get_and_clear_notify()
 | |
| 	 * madvise_dontneed()
 | |
| 	 *  zap_pmd_range()
 | |
| 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
 | |
| 	 *   // skip the pmd
 | |
| 	 *				 set_pmd_at();
 | |
| 	 *				 // pmd is re-established
 | |
| 	 *
 | |
| 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
 | |
| 	 * which may break userspace.
 | |
| 	 *
 | |
| 	 * pmdp_invalidate_ad() is required to make sure we don't miss
 | |
| 	 * dirty/young flags set by hardware.
 | |
| 	 */
 | |
| 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
 | |
| 
 | |
| 	entry = pmd_modify(oldpmd, newprot);
 | |
| 	if (uffd_wp)
 | |
| 		entry = pmd_mkuffd_wp(entry);
 | |
| 	else if (uffd_wp_resolve)
 | |
| 		/*
 | |
| 		 * Leave the write bit to be handled by PF interrupt
 | |
| 		 * handler, then things like COW could be properly
 | |
| 		 * handled.
 | |
| 		 */
 | |
| 		entry = pmd_clear_uffd_wp(entry);
 | |
| 
 | |
| 	/* See change_pte_range(). */
 | |
| 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
 | |
| 	    can_change_pmd_writable(vma, addr, entry))
 | |
| 		entry = pmd_mkwrite(entry, vma);
 | |
| 
 | |
| 	ret = HPAGE_PMD_NR;
 | |
| 	set_pmd_at(mm, addr, pmd, entry);
 | |
| 
 | |
| 	if (huge_pmd_needs_flush(oldpmd, entry))
 | |
| 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
 | |
| unlock:
 | |
| 	spin_unlock(ptl);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_USERFAULTFD
 | |
| /*
 | |
|  * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
 | |
|  * the caller, but it must return after releasing the page_table_lock.
 | |
|  * Just move the page from src_pmd to dst_pmd if possible.
 | |
|  * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
 | |
|  * repeated by the caller, or other errors in case of failure.
 | |
|  */
 | |
| int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
 | |
| 			struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
 | |
| 			unsigned long dst_addr, unsigned long src_addr)
 | |
| {
 | |
| 	pmd_t _dst_pmd, src_pmdval;
 | |
| 	struct page *src_page;
 | |
| 	struct folio *src_folio;
 | |
| 	struct anon_vma *src_anon_vma;
 | |
| 	spinlock_t *src_ptl, *dst_ptl;
 | |
| 	pgtable_t src_pgtable;
 | |
| 	struct mmu_notifier_range range;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	src_pmdval = *src_pmd;
 | |
| 	src_ptl = pmd_lockptr(mm, src_pmd);
 | |
| 
 | |
| 	lockdep_assert_held(src_ptl);
 | |
| 	vma_assert_locked(src_vma);
 | |
| 	vma_assert_locked(dst_vma);
 | |
| 
 | |
| 	/* Sanity checks before the operation */
 | |
| 	if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
 | |
| 	    WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
 | |
| 		spin_unlock(src_ptl);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!pmd_trans_huge(src_pmdval)) {
 | |
| 		spin_unlock(src_ptl);
 | |
| 		if (is_pmd_migration_entry(src_pmdval)) {
 | |
| 			pmd_migration_entry_wait(mm, &src_pmdval);
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	src_page = pmd_page(src_pmdval);
 | |
| 
 | |
| 	if (!is_huge_zero_pmd(src_pmdval)) {
 | |
| 		if (unlikely(!PageAnonExclusive(src_page))) {
 | |
| 			spin_unlock(src_ptl);
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 
 | |
| 		src_folio = page_folio(src_page);
 | |
| 		folio_get(src_folio);
 | |
| 	} else
 | |
| 		src_folio = NULL;
 | |
| 
 | |
| 	spin_unlock(src_ptl);
 | |
| 
 | |
| 	flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
 | |
| 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
 | |
| 				src_addr + HPAGE_PMD_SIZE);
 | |
| 	mmu_notifier_invalidate_range_start(&range);
 | |
| 
 | |
| 	if (src_folio) {
 | |
| 		folio_lock(src_folio);
 | |
| 
 | |
| 		/*
 | |
| 		 * split_huge_page walks the anon_vma chain without the page
 | |
| 		 * lock. Serialize against it with the anon_vma lock, the page
 | |
| 		 * lock is not enough.
 | |
| 		 */
 | |
| 		src_anon_vma = folio_get_anon_vma(src_folio);
 | |
| 		if (!src_anon_vma) {
 | |
| 			err = -EAGAIN;
 | |
| 			goto unlock_folio;
 | |
| 		}
 | |
| 		anon_vma_lock_write(src_anon_vma);
 | |
| 	} else
 | |
| 		src_anon_vma = NULL;
 | |
| 
 | |
| 	dst_ptl = pmd_lockptr(mm, dst_pmd);
 | |
| 	double_pt_lock(src_ptl, dst_ptl);
 | |
| 	if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
 | |
| 		     !pmd_same(*dst_pmd, dst_pmdval))) {
 | |
| 		err = -EAGAIN;
 | |
| 		goto unlock_ptls;
 | |
| 	}
 | |
| 	if (src_folio) {
 | |
| 		if (folio_maybe_dma_pinned(src_folio) ||
 | |
| 		    !PageAnonExclusive(&src_folio->page)) {
 | |
| 			err = -EBUSY;
 | |
| 			goto unlock_ptls;
 | |
| 		}
 | |
| 
 | |
| 		if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
 | |
| 		    WARN_ON_ONCE(!folio_test_anon(src_folio))) {
 | |
| 			err = -EBUSY;
 | |
| 			goto unlock_ptls;
 | |
| 		}
 | |
| 
 | |
| 		folio_move_anon_rmap(src_folio, dst_vma);
 | |
| 		WRITE_ONCE(src_folio->index, linear_page_index(dst_vma, dst_addr));
 | |
| 
 | |
| 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
 | |
| 		/* Folio got pinned from under us. Put it back and fail the move. */
 | |
| 		if (folio_maybe_dma_pinned(src_folio)) {
 | |
| 			set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
 | |
| 			err = -EBUSY;
 | |
| 			goto unlock_ptls;
 | |
| 		}
 | |
| 
 | |
| 		_dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
 | |
| 		/* Follow mremap() behavior and treat the entry dirty after the move */
 | |
| 		_dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
 | |
| 	} else {
 | |
| 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
 | |
| 		_dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot);
 | |
| 	}
 | |
| 	set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
 | |
| 
 | |
| 	src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
 | |
| 	pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
 | |
| unlock_ptls:
 | |
| 	double_pt_unlock(src_ptl, dst_ptl);
 | |
| 	if (src_anon_vma) {
 | |
| 		anon_vma_unlock_write(src_anon_vma);
 | |
| 		put_anon_vma(src_anon_vma);
 | |
| 	}
 | |
| unlock_folio:
 | |
| 	/* unblock rmap walks */
 | |
| 	if (src_folio)
 | |
| 		folio_unlock(src_folio);
 | |
| 	mmu_notifier_invalidate_range_end(&range);
 | |
| 	if (src_folio)
 | |
| 		folio_put(src_folio);
 | |
| 	return err;
 | |
| }
 | |
| #endif /* CONFIG_USERFAULTFD */
 | |
| 
 | |
| /*
 | |
|  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
 | |
|  *
 | |
|  * Note that if it returns page table lock pointer, this routine returns without
 | |
|  * unlocking page table lock. So callers must unlock it.
 | |
|  */
 | |
| spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 	ptl = pmd_lock(vma->vm_mm, pmd);
 | |
| 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
 | |
| 			pmd_devmap(*pmd)))
 | |
| 		return ptl;
 | |
| 	spin_unlock(ptl);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
 | |
|  *
 | |
|  * Note that if it returns page table lock pointer, this routine returns without
 | |
|  * unlocking page table lock. So callers must unlock it.
 | |
|  */
 | |
| spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| 	ptl = pud_lock(vma->vm_mm, pud);
 | |
| 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
 | |
| 		return ptl;
 | |
| 	spin_unlock(ptl);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 | |
| int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
 | |
| 		 pud_t *pud, unsigned long addr)
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| 	ptl = __pud_trans_huge_lock(pud, vma);
 | |
| 	if (!ptl)
 | |
| 		return 0;
 | |
| 
 | |
| 	pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
 | |
| 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
 | |
| 	if (vma_is_special_huge(vma)) {
 | |
| 		spin_unlock(ptl);
 | |
| 		/* No zero page support yet */
 | |
| 	} else {
 | |
| 		/* No support for anonymous PUD pages yet */
 | |
| 		BUG();
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
 | |
| 		unsigned long haddr)
 | |
| {
 | |
| 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
 | |
| 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
 | |
| 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
 | |
| 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
 | |
| 
 | |
| 	count_vm_event(THP_SPLIT_PUD);
 | |
| 
 | |
| 	pudp_huge_clear_flush(vma, haddr, pud);
 | |
| }
 | |
| 
 | |
| void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
 | |
| 		unsigned long address)
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 	struct mmu_notifier_range range;
 | |
| 
 | |
| 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
 | |
| 				address & HPAGE_PUD_MASK,
 | |
| 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
 | |
| 	mmu_notifier_invalidate_range_start(&range);
 | |
| 	ptl = pud_lock(vma->vm_mm, pud);
 | |
| 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
 | |
| 		goto out;
 | |
| 	__split_huge_pud_locked(vma, pud, range.start);
 | |
| 
 | |
| out:
 | |
| 	spin_unlock(ptl);
 | |
| 	mmu_notifier_invalidate_range_end(&range);
 | |
| }
 | |
| #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 | |
| 
 | |
| static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
 | |
| 		unsigned long haddr, pmd_t *pmd)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	pgtable_t pgtable;
 | |
| 	pmd_t _pmd, old_pmd;
 | |
| 	unsigned long addr;
 | |
| 	pte_t *pte;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Leave pmd empty until pte is filled note that it is fine to delay
 | |
| 	 * notification until mmu_notifier_invalidate_range_end() as we are
 | |
| 	 * replacing a zero pmd write protected page with a zero pte write
 | |
| 	 * protected page.
 | |
| 	 *
 | |
| 	 * See Documentation/mm/mmu_notifier.rst
 | |
| 	 */
 | |
| 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
 | |
| 
 | |
| 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
 | |
| 	pmd_populate(mm, &_pmd, pgtable);
 | |
| 
 | |
| 	pte = pte_offset_map(&_pmd, haddr);
 | |
| 	VM_BUG_ON(!pte);
 | |
| 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
 | |
| 		pte_t entry;
 | |
| 
 | |
| 		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
 | |
| 		entry = pte_mkspecial(entry);
 | |
| 		if (pmd_uffd_wp(old_pmd))
 | |
| 			entry = pte_mkuffd_wp(entry);
 | |
| 		VM_BUG_ON(!pte_none(ptep_get(pte)));
 | |
| 		set_pte_at(mm, addr, pte, entry);
 | |
| 		pte++;
 | |
| 	}
 | |
| 	pte_unmap(pte - 1);
 | |
| 	smp_wmb(); /* make pte visible before pmd */
 | |
| 	pmd_populate(mm, pmd, pgtable);
 | |
| }
 | |
| 
 | |
| static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
 | |
| 		unsigned long haddr, bool freeze)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct folio *folio;
 | |
| 	struct page *page;
 | |
| 	pgtable_t pgtable;
 | |
| 	pmd_t old_pmd, _pmd;
 | |
| 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
 | |
| 	bool anon_exclusive = false, dirty = false;
 | |
| 	unsigned long addr;
 | |
| 	pte_t *pte;
 | |
| 	int i;
 | |
| 
 | |
| 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
 | |
| 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
 | |
| 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
 | |
| 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
 | |
| 				&& !pmd_devmap(*pmd));
 | |
| 
 | |
| 	count_vm_event(THP_SPLIT_PMD);
 | |
| 
 | |
| 	if (!vma_is_anonymous(vma)) {
 | |
| 		old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
 | |
| 		/*
 | |
| 		 * We are going to unmap this huge page. So
 | |
| 		 * just go ahead and zap it
 | |
| 		 */
 | |
| 		if (arch_needs_pgtable_deposit())
 | |
| 			zap_deposited_table(mm, pmd);
 | |
| 		if (vma_is_special_huge(vma))
 | |
| 			return;
 | |
| 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
 | |
| 			swp_entry_t entry;
 | |
| 
 | |
| 			entry = pmd_to_swp_entry(old_pmd);
 | |
| 			folio = pfn_swap_entry_folio(entry);
 | |
| 		} else {
 | |
| 			page = pmd_page(old_pmd);
 | |
| 			folio = page_folio(page);
 | |
| 			if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
 | |
| 				folio_mark_dirty(folio);
 | |
| 			if (!folio_test_referenced(folio) && pmd_young(old_pmd))
 | |
| 				folio_set_referenced(folio);
 | |
| 			folio_remove_rmap_pmd(folio, page, vma);
 | |
| 			folio_put(folio);
 | |
| 		}
 | |
| 		add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (is_huge_zero_pmd(*pmd)) {
 | |
| 		/*
 | |
| 		 * FIXME: Do we want to invalidate secondary mmu by calling
 | |
| 		 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
 | |
| 		 * inside __split_huge_pmd() ?
 | |
| 		 *
 | |
| 		 * We are going from a zero huge page write protected to zero
 | |
| 		 * small page also write protected so it does not seems useful
 | |
| 		 * to invalidate secondary mmu at this time.
 | |
| 		 */
 | |
| 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Up to this point the pmd is present and huge and userland has the
 | |
| 	 * whole access to the hugepage during the split (which happens in
 | |
| 	 * place). If we overwrite the pmd with the not-huge version pointing
 | |
| 	 * to the pte here (which of course we could if all CPUs were bug
 | |
| 	 * free), userland could trigger a small page size TLB miss on the
 | |
| 	 * small sized TLB while the hugepage TLB entry is still established in
 | |
| 	 * the huge TLB. Some CPU doesn't like that.
 | |
| 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
 | |
| 	 * 383 on page 105. Intel should be safe but is also warns that it's
 | |
| 	 * only safe if the permission and cache attributes of the two entries
 | |
| 	 * loaded in the two TLB is identical (which should be the case here).
 | |
| 	 * But it is generally safer to never allow small and huge TLB entries
 | |
| 	 * for the same virtual address to be loaded simultaneously. So instead
 | |
| 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
 | |
| 	 * current pmd notpresent (atomically because here the pmd_trans_huge
 | |
| 	 * must remain set at all times on the pmd until the split is complete
 | |
| 	 * for this pmd), then we flush the SMP TLB and finally we write the
 | |
| 	 * non-huge version of the pmd entry with pmd_populate.
 | |
| 	 */
 | |
| 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
 | |
| 
 | |
| 	pmd_migration = is_pmd_migration_entry(old_pmd);
 | |
| 	if (unlikely(pmd_migration)) {
 | |
| 		swp_entry_t entry;
 | |
| 
 | |
| 		entry = pmd_to_swp_entry(old_pmd);
 | |
| 		page = pfn_swap_entry_to_page(entry);
 | |
| 		write = is_writable_migration_entry(entry);
 | |
| 		if (PageAnon(page))
 | |
| 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
 | |
| 		young = is_migration_entry_young(entry);
 | |
| 		dirty = is_migration_entry_dirty(entry);
 | |
| 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
 | |
| 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
 | |
| 	} else {
 | |
| 		page = pmd_page(old_pmd);
 | |
| 		folio = page_folio(page);
 | |
| 		if (pmd_dirty(old_pmd)) {
 | |
| 			dirty = true;
 | |
| 			folio_set_dirty(folio);
 | |
| 		}
 | |
| 		write = pmd_write(old_pmd);
 | |
| 		young = pmd_young(old_pmd);
 | |
| 		soft_dirty = pmd_soft_dirty(old_pmd);
 | |
| 		uffd_wp = pmd_uffd_wp(old_pmd);
 | |
| 
 | |
| 		VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
 | |
| 		VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
 | |
| 
 | |
| 		/*
 | |
| 		 * Without "freeze", we'll simply split the PMD, propagating the
 | |
| 		 * PageAnonExclusive() flag for each PTE by setting it for
 | |
| 		 * each subpage -- no need to (temporarily) clear.
 | |
| 		 *
 | |
| 		 * With "freeze" we want to replace mapped pages by
 | |
| 		 * migration entries right away. This is only possible if we
 | |
| 		 * managed to clear PageAnonExclusive() -- see
 | |
| 		 * set_pmd_migration_entry().
 | |
| 		 *
 | |
| 		 * In case we cannot clear PageAnonExclusive(), split the PMD
 | |
| 		 * only and let try_to_migrate_one() fail later.
 | |
| 		 *
 | |
| 		 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
 | |
| 		 */
 | |
| 		anon_exclusive = PageAnonExclusive(page);
 | |
| 		if (freeze && anon_exclusive &&
 | |
| 		    folio_try_share_anon_rmap_pmd(folio, page))
 | |
| 			freeze = false;
 | |
| 		if (!freeze) {
 | |
| 			rmap_t rmap_flags = RMAP_NONE;
 | |
| 
 | |
| 			folio_ref_add(folio, HPAGE_PMD_NR - 1);
 | |
| 			if (anon_exclusive)
 | |
| 				rmap_flags |= RMAP_EXCLUSIVE;
 | |
| 			folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
 | |
| 						 vma, haddr, rmap_flags);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Withdraw the table only after we mark the pmd entry invalid.
 | |
| 	 * This's critical for some architectures (Power).
 | |
| 	 */
 | |
| 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
 | |
| 	pmd_populate(mm, &_pmd, pgtable);
 | |
| 
 | |
| 	pte = pte_offset_map(&_pmd, haddr);
 | |
| 	VM_BUG_ON(!pte);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that NUMA hinting access restrictions are not transferred to
 | |
| 	 * avoid any possibility of altering permissions across VMAs.
 | |
| 	 */
 | |
| 	if (freeze || pmd_migration) {
 | |
| 		for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
 | |
| 			pte_t entry;
 | |
| 			swp_entry_t swp_entry;
 | |
| 
 | |
| 			if (write)
 | |
| 				swp_entry = make_writable_migration_entry(
 | |
| 							page_to_pfn(page + i));
 | |
| 			else if (anon_exclusive)
 | |
| 				swp_entry = make_readable_exclusive_migration_entry(
 | |
| 							page_to_pfn(page + i));
 | |
| 			else
 | |
| 				swp_entry = make_readable_migration_entry(
 | |
| 							page_to_pfn(page + i));
 | |
| 			if (young)
 | |
| 				swp_entry = make_migration_entry_young(swp_entry);
 | |
| 			if (dirty)
 | |
| 				swp_entry = make_migration_entry_dirty(swp_entry);
 | |
| 			entry = swp_entry_to_pte(swp_entry);
 | |
| 			if (soft_dirty)
 | |
| 				entry = pte_swp_mksoft_dirty(entry);
 | |
| 			if (uffd_wp)
 | |
| 				entry = pte_swp_mkuffd_wp(entry);
 | |
| 
 | |
| 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
 | |
| 			set_pte_at(mm, addr, pte + i, entry);
 | |
| 		}
 | |
| 	} else {
 | |
| 		pte_t entry;
 | |
| 
 | |
| 		entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
 | |
| 		if (write)
 | |
| 			entry = pte_mkwrite(entry, vma);
 | |
| 		if (!young)
 | |
| 			entry = pte_mkold(entry);
 | |
| 		/* NOTE: this may set soft-dirty too on some archs */
 | |
| 		if (dirty)
 | |
| 			entry = pte_mkdirty(entry);
 | |
| 		if (soft_dirty)
 | |
| 			entry = pte_mksoft_dirty(entry);
 | |
| 		if (uffd_wp)
 | |
| 			entry = pte_mkuffd_wp(entry);
 | |
| 
 | |
| 		for (i = 0; i < HPAGE_PMD_NR; i++)
 | |
| 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
 | |
| 
 | |
| 		set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
 | |
| 	}
 | |
| 	pte_unmap(pte);
 | |
| 
 | |
| 	if (!pmd_migration)
 | |
| 		folio_remove_rmap_pmd(folio, page, vma);
 | |
| 	if (freeze)
 | |
| 		put_page(page);
 | |
| 
 | |
| 	smp_wmb(); /* make pte visible before pmd */
 | |
| 	pmd_populate(mm, pmd, pgtable);
 | |
| }
 | |
| 
 | |
| void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
 | |
| 		unsigned long address, bool freeze, struct folio *folio)
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 	struct mmu_notifier_range range;
 | |
| 
 | |
| 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
 | |
| 				address & HPAGE_PMD_MASK,
 | |
| 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
 | |
| 	mmu_notifier_invalidate_range_start(&range);
 | |
| 	ptl = pmd_lock(vma->vm_mm, pmd);
 | |
| 
 | |
| 	/*
 | |
| 	 * If caller asks to setup a migration entry, we need a folio to check
 | |
| 	 * pmd against. Otherwise we can end up replacing wrong folio.
 | |
| 	 */
 | |
| 	VM_BUG_ON(freeze && !folio);
 | |
| 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
 | |
| 
 | |
| 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
 | |
| 	    is_pmd_migration_entry(*pmd)) {
 | |
| 		/*
 | |
| 		 * It's safe to call pmd_page when folio is set because it's
 | |
| 		 * guaranteed that pmd is present.
 | |
| 		 */
 | |
| 		if (folio && folio != page_folio(pmd_page(*pmd)))
 | |
| 			goto out;
 | |
| 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	spin_unlock(ptl);
 | |
| 	mmu_notifier_invalidate_range_end(&range);
 | |
| }
 | |
| 
 | |
| void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
 | |
| 		bool freeze, struct folio *folio)
 | |
| {
 | |
| 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
 | |
| 
 | |
| 	if (!pmd)
 | |
| 		return;
 | |
| 
 | |
| 	__split_huge_pmd(vma, pmd, address, freeze, folio);
 | |
| }
 | |
| 
 | |
| static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
 | |
| {
 | |
| 	/*
 | |
| 	 * If the new address isn't hpage aligned and it could previously
 | |
| 	 * contain an hugepage: check if we need to split an huge pmd.
 | |
| 	 */
 | |
| 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
 | |
| 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
 | |
| 			 ALIGN(address, HPAGE_PMD_SIZE)))
 | |
| 		split_huge_pmd_address(vma, address, false, NULL);
 | |
| }
 | |
| 
 | |
| void vma_adjust_trans_huge(struct vm_area_struct *vma,
 | |
| 			     unsigned long start,
 | |
| 			     unsigned long end,
 | |
| 			     long adjust_next)
 | |
| {
 | |
| 	/* Check if we need to split start first. */
 | |
| 	split_huge_pmd_if_needed(vma, start);
 | |
| 
 | |
| 	/* Check if we need to split end next. */
 | |
| 	split_huge_pmd_if_needed(vma, end);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're also updating the next vma vm_start,
 | |
| 	 * check if we need to split it.
 | |
| 	 */
 | |
| 	if (adjust_next > 0) {
 | |
| 		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
 | |
| 		unsigned long nstart = next->vm_start;
 | |
| 		nstart += adjust_next;
 | |
| 		split_huge_pmd_if_needed(next, nstart);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void unmap_folio(struct folio *folio)
 | |
| {
 | |
| 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
 | |
| 		TTU_BATCH_FLUSH;
 | |
| 
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
 | |
| 
 | |
| 	if (folio_test_pmd_mappable(folio))
 | |
| 		ttu_flags |= TTU_SPLIT_HUGE_PMD;
 | |
| 
 | |
| 	/*
 | |
| 	 * Anon pages need migration entries to preserve them, but file
 | |
| 	 * pages can simply be left unmapped, then faulted back on demand.
 | |
| 	 * If that is ever changed (perhaps for mlock), update remap_page().
 | |
| 	 */
 | |
| 	if (folio_test_anon(folio))
 | |
| 		try_to_migrate(folio, ttu_flags);
 | |
| 	else
 | |
| 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
 | |
| 
 | |
| 	try_to_unmap_flush();
 | |
| }
 | |
| 
 | |
| static void remap_page(struct folio *folio, unsigned long nr)
 | |
| {
 | |
| 	int i = 0;
 | |
| 
 | |
| 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
 | |
| 	if (!folio_test_anon(folio))
 | |
| 		return;
 | |
| 	for (;;) {
 | |
| 		remove_migration_ptes(folio, folio, true);
 | |
| 		i += folio_nr_pages(folio);
 | |
| 		if (i >= nr)
 | |
| 			break;
 | |
| 		folio = folio_next(folio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void lru_add_page_tail(struct page *head, struct page *tail,
 | |
| 		struct lruvec *lruvec, struct list_head *list)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(!PageHead(head), head);
 | |
| 	VM_BUG_ON_PAGE(PageLRU(tail), head);
 | |
| 	lockdep_assert_held(&lruvec->lru_lock);
 | |
| 
 | |
| 	if (list) {
 | |
| 		/* page reclaim is reclaiming a huge page */
 | |
| 		VM_WARN_ON(PageLRU(head));
 | |
| 		get_page(tail);
 | |
| 		list_add_tail(&tail->lru, list);
 | |
| 	} else {
 | |
| 		/* head is still on lru (and we have it frozen) */
 | |
| 		VM_WARN_ON(!PageLRU(head));
 | |
| 		if (PageUnevictable(tail))
 | |
| 			tail->mlock_count = 0;
 | |
| 		else
 | |
| 			list_add_tail(&tail->lru, &head->lru);
 | |
| 		SetPageLRU(tail);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __split_huge_page_tail(struct folio *folio, int tail,
 | |
| 		struct lruvec *lruvec, struct list_head *list,
 | |
| 		unsigned int new_order)
 | |
| {
 | |
| 	struct page *head = &folio->page;
 | |
| 	struct page *page_tail = head + tail;
 | |
| 	/*
 | |
| 	 * Careful: new_folio is not a "real" folio before we cleared PageTail.
 | |
| 	 * Don't pass it around before clear_compound_head().
 | |
| 	 */
 | |
| 	struct folio *new_folio = (struct folio *)page_tail;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clone page flags before unfreezing refcount.
 | |
| 	 *
 | |
| 	 * After successful get_page_unless_zero() might follow flags change,
 | |
| 	 * for example lock_page() which set PG_waiters.
 | |
| 	 *
 | |
| 	 * Note that for mapped sub-pages of an anonymous THP,
 | |
| 	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
 | |
| 	 * the migration entry instead from where remap_page() will restore it.
 | |
| 	 * We can still have PG_anon_exclusive set on effectively unmapped and
 | |
| 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
 | |
| 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
 | |
| 	 */
 | |
| 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
 | |
| 	page_tail->flags |= (head->flags &
 | |
| 			((1L << PG_referenced) |
 | |
| 			 (1L << PG_swapbacked) |
 | |
| 			 (1L << PG_swapcache) |
 | |
| 			 (1L << PG_mlocked) |
 | |
| 			 (1L << PG_uptodate) |
 | |
| 			 (1L << PG_active) |
 | |
| 			 (1L << PG_workingset) |
 | |
| 			 (1L << PG_locked) |
 | |
| 			 (1L << PG_unevictable) |
 | |
| #ifdef CONFIG_ARCH_USES_PG_ARCH_X
 | |
| 			 (1L << PG_arch_2) |
 | |
| 			 (1L << PG_arch_3) |
 | |
| #endif
 | |
| 			 (1L << PG_dirty) |
 | |
| 			 LRU_GEN_MASK | LRU_REFS_MASK));
 | |
| 
 | |
| 	/* ->mapping in first and second tail page is replaced by other uses */
 | |
| 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
 | |
| 			page_tail);
 | |
| 	page_tail->mapping = head->mapping;
 | |
| 	page_tail->index = head->index + tail;
 | |
| 
 | |
| 	/*
 | |
| 	 * page->private should not be set in tail pages. Fix up and warn once
 | |
| 	 * if private is unexpectedly set.
 | |
| 	 */
 | |
| 	if (unlikely(page_tail->private)) {
 | |
| 		VM_WARN_ON_ONCE_PAGE(true, page_tail);
 | |
| 		page_tail->private = 0;
 | |
| 	}
 | |
| 	if (folio_test_swapcache(folio))
 | |
| 		new_folio->swap.val = folio->swap.val + tail;
 | |
| 
 | |
| 	/* Page flags must be visible before we make the page non-compound. */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear PageTail before unfreezing page refcount.
 | |
| 	 *
 | |
| 	 * After successful get_page_unless_zero() might follow put_page()
 | |
| 	 * which needs correct compound_head().
 | |
| 	 */
 | |
| 	clear_compound_head(page_tail);
 | |
| 	if (new_order) {
 | |
| 		prep_compound_page(page_tail, new_order);
 | |
| 		folio_prep_large_rmappable(new_folio);
 | |
| 	}
 | |
| 
 | |
| 	/* Finally unfreeze refcount. Additional reference from page cache. */
 | |
| 	page_ref_unfreeze(page_tail,
 | |
| 		1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ?
 | |
| 			     folio_nr_pages(new_folio) : 0));
 | |
| 
 | |
| 	if (folio_test_young(folio))
 | |
| 		folio_set_young(new_folio);
 | |
| 	if (folio_test_idle(folio))
 | |
| 		folio_set_idle(new_folio);
 | |
| 
 | |
| 	folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
 | |
| 
 | |
| 	/*
 | |
| 	 * always add to the tail because some iterators expect new
 | |
| 	 * pages to show after the currently processed elements - e.g.
 | |
| 	 * migrate_pages
 | |
| 	 */
 | |
| 	lru_add_page_tail(head, page_tail, lruvec, list);
 | |
| }
 | |
| 
 | |
| static void __split_huge_page(struct page *page, struct list_head *list,
 | |
| 		pgoff_t end, unsigned int new_order)
 | |
| {
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	struct page *head = &folio->page;
 | |
| 	struct lruvec *lruvec;
 | |
| 	struct address_space *swap_cache = NULL;
 | |
| 	unsigned long offset = 0;
 | |
| 	int i, nr_dropped = 0;
 | |
| 	unsigned int new_nr = 1 << new_order;
 | |
| 	int order = folio_order(folio);
 | |
| 	unsigned int nr = 1 << order;
 | |
| 
 | |
| 	/* complete memcg works before add pages to LRU */
 | |
| 	split_page_memcg(head, order, new_order);
 | |
| 
 | |
| 	if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
 | |
| 		offset = swp_offset(folio->swap);
 | |
| 		swap_cache = swap_address_space(folio->swap);
 | |
| 		xa_lock(&swap_cache->i_pages);
 | |
| 	}
 | |
| 
 | |
| 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
 | |
| 	lruvec = folio_lruvec_lock(folio);
 | |
| 
 | |
| 	ClearPageHasHWPoisoned(head);
 | |
| 
 | |
| 	for (i = nr - new_nr; i >= new_nr; i -= new_nr) {
 | |
| 		__split_huge_page_tail(folio, i, lruvec, list, new_order);
 | |
| 		/* Some pages can be beyond EOF: drop them from page cache */
 | |
| 		if (head[i].index >= end) {
 | |
| 			struct folio *tail = page_folio(head + i);
 | |
| 
 | |
| 			if (shmem_mapping(folio->mapping))
 | |
| 				nr_dropped++;
 | |
| 			else if (folio_test_clear_dirty(tail))
 | |
| 				folio_account_cleaned(tail,
 | |
| 					inode_to_wb(folio->mapping->host));
 | |
| 			__filemap_remove_folio(tail, NULL);
 | |
| 			folio_put(tail);
 | |
| 		} else if (!PageAnon(page)) {
 | |
| 			__xa_store(&folio->mapping->i_pages, head[i].index,
 | |
| 					head + i, 0);
 | |
| 		} else if (swap_cache) {
 | |
| 			__xa_store(&swap_cache->i_pages, offset + i,
 | |
| 					head + i, 0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!new_order)
 | |
| 		ClearPageCompound(head);
 | |
| 	else {
 | |
| 		struct folio *new_folio = (struct folio *)head;
 | |
| 
 | |
| 		folio_set_order(new_folio, new_order);
 | |
| 	}
 | |
| 	unlock_page_lruvec(lruvec);
 | |
| 	/* Caller disabled irqs, so they are still disabled here */
 | |
| 
 | |
| 	split_page_owner(head, order, new_order);
 | |
| 
 | |
| 	/* See comment in __split_huge_page_tail() */
 | |
| 	if (folio_test_anon(folio)) {
 | |
| 		/* Additional pin to swap cache */
 | |
| 		if (folio_test_swapcache(folio)) {
 | |
| 			folio_ref_add(folio, 1 + new_nr);
 | |
| 			xa_unlock(&swap_cache->i_pages);
 | |
| 		} else {
 | |
| 			folio_ref_inc(folio);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Additional pin to page cache */
 | |
| 		folio_ref_add(folio, 1 + new_nr);
 | |
| 		xa_unlock(&folio->mapping->i_pages);
 | |
| 	}
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	if (nr_dropped)
 | |
| 		shmem_uncharge(folio->mapping->host, nr_dropped);
 | |
| 	remap_page(folio, nr);
 | |
| 
 | |
| 	if (folio_test_swapcache(folio))
 | |
| 		split_swap_cluster(folio->swap);
 | |
| 
 | |
| 	/*
 | |
| 	 * set page to its compound_head when split to non order-0 pages, so
 | |
| 	 * we can skip unlocking it below, since PG_locked is transferred to
 | |
| 	 * the compound_head of the page and the caller will unlock it.
 | |
| 	 */
 | |
| 	if (new_order)
 | |
| 		page = compound_head(page);
 | |
| 
 | |
| 	for (i = 0; i < nr; i += new_nr) {
 | |
| 		struct page *subpage = head + i;
 | |
| 		struct folio *new_folio = page_folio(subpage);
 | |
| 		if (subpage == page)
 | |
| 			continue;
 | |
| 		folio_unlock(new_folio);
 | |
| 
 | |
| 		/*
 | |
| 		 * Subpages may be freed if there wasn't any mapping
 | |
| 		 * like if add_to_swap() is running on a lru page that
 | |
| 		 * had its mapping zapped. And freeing these pages
 | |
| 		 * requires taking the lru_lock so we do the put_page
 | |
| 		 * of the tail pages after the split is complete.
 | |
| 		 */
 | |
| 		free_page_and_swap_cache(subpage);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Racy check whether the huge page can be split */
 | |
| bool can_split_folio(struct folio *folio, int *pextra_pins)
 | |
| {
 | |
| 	int extra_pins;
 | |
| 
 | |
| 	/* Additional pins from page cache */
 | |
| 	if (folio_test_anon(folio))
 | |
| 		extra_pins = folio_test_swapcache(folio) ?
 | |
| 				folio_nr_pages(folio) : 0;
 | |
| 	else
 | |
| 		extra_pins = folio_nr_pages(folio);
 | |
| 	if (pextra_pins)
 | |
| 		*pextra_pins = extra_pins;
 | |
| 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function splits huge page into pages in @new_order. @page can point to
 | |
|  * any subpage of huge page to split. Split doesn't change the position of
 | |
|  * @page.
 | |
|  *
 | |
|  * NOTE: order-1 anonymous folio is not supported because _deferred_list,
 | |
|  * which is used by partially mapped folios, is stored in subpage 2 and an
 | |
|  * order-1 folio only has subpage 0 and 1. File-backed order-1 folios are OK,
 | |
|  * since they do not use _deferred_list.
 | |
|  *
 | |
|  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 | |
|  * The huge page must be locked.
 | |
|  *
 | |
|  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 | |
|  *
 | |
|  * Pages in new_order will inherit mapping, flags, and so on from the hugepage.
 | |
|  *
 | |
|  * GUP pin and PG_locked transferred to @page or the compound page @page belongs
 | |
|  * to. Rest subpages can be freed if they are not mapped.
 | |
|  *
 | |
|  * Returns 0 if the hugepage is split successfully.
 | |
|  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 | |
|  * us.
 | |
|  */
 | |
| int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
 | |
| 				     unsigned int new_order)
 | |
| {
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
 | |
| 	/* reset xarray order to new order after split */
 | |
| 	XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order);
 | |
| 	struct anon_vma *anon_vma = NULL;
 | |
| 	struct address_space *mapping = NULL;
 | |
| 	int extra_pins, ret;
 | |
| 	pgoff_t end;
 | |
| 	bool is_hzp;
 | |
| 
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
 | |
| 
 | |
| 	if (new_order >= folio_order(folio))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Cannot split anonymous THP to order-1 */
 | |
| 	if (new_order == 1 && folio_test_anon(folio)) {
 | |
| 		VM_WARN_ONCE(1, "Cannot split to order-1 folio");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (new_order) {
 | |
| 		/* Only swapping a whole PMD-mapped folio is supported */
 | |
| 		if (folio_test_swapcache(folio))
 | |
| 			return -EINVAL;
 | |
| 		/* Split shmem folio to non-zero order not supported */
 | |
| 		if (shmem_mapping(folio->mapping)) {
 | |
| 			VM_WARN_ONCE(1,
 | |
| 				"Cannot split shmem folio to non-0 order");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		/* No split if the file system does not support large folio */
 | |
| 		if (!mapping_large_folio_support(folio->mapping)) {
 | |
| 			VM_WARN_ONCE(1,
 | |
| 				"Cannot split file folio to non-0 order");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	is_hzp = is_huge_zero_page(&folio->page);
 | |
| 	if (is_hzp) {
 | |
| 		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	if (folio_test_writeback(folio))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (folio_test_anon(folio)) {
 | |
| 		/*
 | |
| 		 * The caller does not necessarily hold an mmap_lock that would
 | |
| 		 * prevent the anon_vma disappearing so we first we take a
 | |
| 		 * reference to it and then lock the anon_vma for write. This
 | |
| 		 * is similar to folio_lock_anon_vma_read except the write lock
 | |
| 		 * is taken to serialise against parallel split or collapse
 | |
| 		 * operations.
 | |
| 		 */
 | |
| 		anon_vma = folio_get_anon_vma(folio);
 | |
| 		if (!anon_vma) {
 | |
| 			ret = -EBUSY;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		end = -1;
 | |
| 		mapping = NULL;
 | |
| 		anon_vma_lock_write(anon_vma);
 | |
| 	} else {
 | |
| 		gfp_t gfp;
 | |
| 
 | |
| 		mapping = folio->mapping;
 | |
| 
 | |
| 		/* Truncated ? */
 | |
| 		if (!mapping) {
 | |
| 			ret = -EBUSY;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
 | |
| 							GFP_RECLAIM_MASK);
 | |
| 
 | |
| 		if (!filemap_release_folio(folio, gfp)) {
 | |
| 			ret = -EBUSY;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
 | |
| 		if (xas_error(&xas)) {
 | |
| 			ret = xas_error(&xas);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		anon_vma = NULL;
 | |
| 		i_mmap_lock_read(mapping);
 | |
| 
 | |
| 		/*
 | |
| 		 *__split_huge_page() may need to trim off pages beyond EOF:
 | |
| 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
 | |
| 		 * which cannot be nested inside the page tree lock. So note
 | |
| 		 * end now: i_size itself may be changed at any moment, but
 | |
| 		 * folio lock is good enough to serialize the trimming.
 | |
| 		 */
 | |
| 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
 | |
| 		if (shmem_mapping(mapping))
 | |
| 			end = shmem_fallocend(mapping->host, end);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Racy check if we can split the page, before unmap_folio() will
 | |
| 	 * split PMDs
 | |
| 	 */
 | |
| 	if (!can_split_folio(folio, &extra_pins)) {
 | |
| 		ret = -EAGAIN;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	unmap_folio(folio);
 | |
| 
 | |
| 	/* block interrupt reentry in xa_lock and spinlock */
 | |
| 	local_irq_disable();
 | |
| 	if (mapping) {
 | |
| 		/*
 | |
| 		 * Check if the folio is present in page cache.
 | |
| 		 * We assume all tail are present too, if folio is there.
 | |
| 		 */
 | |
| 		xas_lock(&xas);
 | |
| 		xas_reset(&xas);
 | |
| 		if (xas_load(&xas) != folio)
 | |
| 			goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/* Prevent deferred_split_scan() touching ->_refcount */
 | |
| 	spin_lock(&ds_queue->split_queue_lock);
 | |
| 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
 | |
| 		if (folio_order(folio) > 1 &&
 | |
| 		    !list_empty(&folio->_deferred_list)) {
 | |
| 			ds_queue->split_queue_len--;
 | |
| 			/*
 | |
| 			 * Reinitialize page_deferred_list after removing the
 | |
| 			 * page from the split_queue, otherwise a subsequent
 | |
| 			 * split will see list corruption when checking the
 | |
| 			 * page_deferred_list.
 | |
| 			 */
 | |
| 			list_del_init(&folio->_deferred_list);
 | |
| 		}
 | |
| 		spin_unlock(&ds_queue->split_queue_lock);
 | |
| 		if (mapping) {
 | |
| 			int nr = folio_nr_pages(folio);
 | |
| 
 | |
| 			xas_split(&xas, folio, folio_order(folio));
 | |
| 			if (folio_test_pmd_mappable(folio) &&
 | |
| 			    new_order < HPAGE_PMD_ORDER) {
 | |
| 				if (folio_test_swapbacked(folio)) {
 | |
| 					__lruvec_stat_mod_folio(folio,
 | |
| 							NR_SHMEM_THPS, -nr);
 | |
| 				} else {
 | |
| 					__lruvec_stat_mod_folio(folio,
 | |
| 							NR_FILE_THPS, -nr);
 | |
| 					filemap_nr_thps_dec(mapping);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		__split_huge_page(page, list, end, new_order);
 | |
| 		ret = 0;
 | |
| 	} else {
 | |
| 		spin_unlock(&ds_queue->split_queue_lock);
 | |
| fail:
 | |
| 		if (mapping)
 | |
| 			xas_unlock(&xas);
 | |
| 		local_irq_enable();
 | |
| 		remap_page(folio, folio_nr_pages(folio));
 | |
| 		ret = -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	if (anon_vma) {
 | |
| 		anon_vma_unlock_write(anon_vma);
 | |
| 		put_anon_vma(anon_vma);
 | |
| 	}
 | |
| 	if (mapping)
 | |
| 		i_mmap_unlock_read(mapping);
 | |
| out:
 | |
| 	xas_destroy(&xas);
 | |
| 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void folio_undo_large_rmappable(struct folio *folio)
 | |
| {
 | |
| 	struct deferred_split *ds_queue;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (folio_order(folio) <= 1)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, there is no one trying to add the folio to
 | |
| 	 * deferred_list. If folio is not in deferred_list, it's safe
 | |
| 	 * to check without acquiring the split_queue_lock.
 | |
| 	 */
 | |
| 	if (data_race(list_empty(&folio->_deferred_list)))
 | |
| 		return;
 | |
| 
 | |
| 	ds_queue = get_deferred_split_queue(folio);
 | |
| 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
 | |
| 	if (!list_empty(&folio->_deferred_list)) {
 | |
| 		ds_queue->split_queue_len--;
 | |
| 		list_del_init(&folio->_deferred_list);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
 | |
| }
 | |
| 
 | |
| void deferred_split_folio(struct folio *folio)
 | |
| {
 | |
| 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	struct mem_cgroup *memcg = folio_memcg(folio);
 | |
| #endif
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Order 1 folios have no space for a deferred list, but we also
 | |
| 	 * won't waste much memory by not adding them to the deferred list.
 | |
| 	 */
 | |
| 	if (folio_order(folio) <= 1)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * The try_to_unmap() in page reclaim path might reach here too,
 | |
| 	 * this may cause a race condition to corrupt deferred split queue.
 | |
| 	 * And, if page reclaim is already handling the same folio, it is
 | |
| 	 * unnecessary to handle it again in shrinker.
 | |
| 	 *
 | |
| 	 * Check the swapcache flag to determine if the folio is being
 | |
| 	 * handled by page reclaim since THP swap would add the folio into
 | |
| 	 * swap cache before calling try_to_unmap().
 | |
| 	 */
 | |
| 	if (folio_test_swapcache(folio))
 | |
| 		return;
 | |
| 
 | |
| 	if (!list_empty(&folio->_deferred_list))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
 | |
| 	if (list_empty(&folio->_deferred_list)) {
 | |
| 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
 | |
| 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
 | |
| 		ds_queue->split_queue_len++;
 | |
| #ifdef CONFIG_MEMCG
 | |
| 		if (memcg)
 | |
| 			set_shrinker_bit(memcg, folio_nid(folio),
 | |
| 					 deferred_split_shrinker->id);
 | |
| #endif
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
 | |
| }
 | |
| 
 | |
| static unsigned long deferred_split_count(struct shrinker *shrink,
 | |
| 		struct shrink_control *sc)
 | |
| {
 | |
| 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
 | |
| 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
 | |
| 
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	if (sc->memcg)
 | |
| 		ds_queue = &sc->memcg->deferred_split_queue;
 | |
| #endif
 | |
| 	return READ_ONCE(ds_queue->split_queue_len);
 | |
| }
 | |
| 
 | |
| static unsigned long deferred_split_scan(struct shrinker *shrink,
 | |
| 		struct shrink_control *sc)
 | |
| {
 | |
| 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
 | |
| 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(list);
 | |
| 	struct folio *folio, *next;
 | |
| 	int split = 0;
 | |
| 
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	if (sc->memcg)
 | |
| 		ds_queue = &sc->memcg->deferred_split_queue;
 | |
| #endif
 | |
| 
 | |
| 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
 | |
| 	/* Take pin on all head pages to avoid freeing them under us */
 | |
| 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
 | |
| 							_deferred_list) {
 | |
| 		if (folio_try_get(folio)) {
 | |
| 			list_move(&folio->_deferred_list, &list);
 | |
| 		} else {
 | |
| 			/* We lost race with folio_put() */
 | |
| 			list_del_init(&folio->_deferred_list);
 | |
| 			ds_queue->split_queue_len--;
 | |
| 		}
 | |
| 		if (!--sc->nr_to_scan)
 | |
| 			break;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
 | |
| 
 | |
| 	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
 | |
| 		if (!folio_trylock(folio))
 | |
| 			goto next;
 | |
| 		/* split_huge_page() removes page from list on success */
 | |
| 		if (!split_folio(folio))
 | |
| 			split++;
 | |
| 		folio_unlock(folio);
 | |
| next:
 | |
| 		folio_put(folio);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
 | |
| 	list_splice_tail(&list, &ds_queue->split_queue);
 | |
| 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Stop shrinker if we didn't split any page, but the queue is empty.
 | |
| 	 * This can happen if pages were freed under us.
 | |
| 	 */
 | |
| 	if (!split && list_empty(&ds_queue->split_queue))
 | |
| 		return SHRINK_STOP;
 | |
| 	return split;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_FS
 | |
| static void split_huge_pages_all(void)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	struct page *page;
 | |
| 	struct folio *folio;
 | |
| 	unsigned long pfn, max_zone_pfn;
 | |
| 	unsigned long total = 0, split = 0;
 | |
| 
 | |
| 	pr_debug("Split all THPs\n");
 | |
| 	for_each_zone(zone) {
 | |
| 		if (!managed_zone(zone))
 | |
| 			continue;
 | |
| 		max_zone_pfn = zone_end_pfn(zone);
 | |
| 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
 | |
| 			int nr_pages;
 | |
| 
 | |
| 			page = pfn_to_online_page(pfn);
 | |
| 			if (!page || PageTail(page))
 | |
| 				continue;
 | |
| 			folio = page_folio(page);
 | |
| 			if (!folio_try_get(folio))
 | |
| 				continue;
 | |
| 
 | |
| 			if (unlikely(page_folio(page) != folio))
 | |
| 				goto next;
 | |
| 
 | |
| 			if (zone != folio_zone(folio))
 | |
| 				goto next;
 | |
| 
 | |
| 			if (!folio_test_large(folio)
 | |
| 				|| folio_test_hugetlb(folio)
 | |
| 				|| !folio_test_lru(folio))
 | |
| 				goto next;
 | |
| 
 | |
| 			total++;
 | |
| 			folio_lock(folio);
 | |
| 			nr_pages = folio_nr_pages(folio);
 | |
| 			if (!split_folio(folio))
 | |
| 				split++;
 | |
| 			pfn += nr_pages - 1;
 | |
| 			folio_unlock(folio);
 | |
| next:
 | |
| 			folio_put(folio);
 | |
| 			cond_resched();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	pr_debug("%lu of %lu THP split\n", split, total);
 | |
| }
 | |
| 
 | |
| static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
 | |
| {
 | |
| 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
 | |
| 		    is_vm_hugetlb_page(vma);
 | |
| }
 | |
| 
 | |
| static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
 | |
| 				unsigned long vaddr_end, unsigned int new_order)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct task_struct *task;
 | |
| 	struct mm_struct *mm;
 | |
| 	unsigned long total = 0, split = 0;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	vaddr_start &= PAGE_MASK;
 | |
| 	vaddr_end &= PAGE_MASK;
 | |
| 
 | |
| 	/* Find the task_struct from pid */
 | |
| 	rcu_read_lock();
 | |
| 	task = find_task_by_vpid(pid);
 | |
| 	if (!task) {
 | |
| 		rcu_read_unlock();
 | |
| 		ret = -ESRCH;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	get_task_struct(task);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/* Find the mm_struct */
 | |
| 	mm = get_task_mm(task);
 | |
| 	put_task_struct(task);
 | |
| 
 | |
| 	if (!mm) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
 | |
| 		 pid, vaddr_start, vaddr_end);
 | |
| 
 | |
| 	mmap_read_lock(mm);
 | |
| 	/*
 | |
| 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
 | |
| 	 * table filled with PTE-mapped THPs, each of which is distinct.
 | |
| 	 */
 | |
| 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
 | |
| 		struct vm_area_struct *vma = vma_lookup(mm, addr);
 | |
| 		struct page *page;
 | |
| 		struct folio *folio;
 | |
| 
 | |
| 		if (!vma)
 | |
| 			break;
 | |
| 
 | |
| 		/* skip special VMA and hugetlb VMA */
 | |
| 		if (vma_not_suitable_for_thp_split(vma)) {
 | |
| 			addr = vma->vm_end;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* FOLL_DUMP to ignore special (like zero) pages */
 | |
| 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
 | |
| 
 | |
| 		if (IS_ERR_OR_NULL(page))
 | |
| 			continue;
 | |
| 
 | |
| 		folio = page_folio(page);
 | |
| 		if (!is_transparent_hugepage(folio))
 | |
| 			goto next;
 | |
| 
 | |
| 		if (new_order >= folio_order(folio))
 | |
| 			goto next;
 | |
| 
 | |
| 		total++;
 | |
| 		/*
 | |
| 		 * For folios with private, split_huge_page_to_list_to_order()
 | |
| 		 * will try to drop it before split and then check if the folio
 | |
| 		 * can be split or not. So skip the check here.
 | |
| 		 */
 | |
| 		if (!folio_test_private(folio) &&
 | |
| 		    !can_split_folio(folio, NULL))
 | |
| 			goto next;
 | |
| 
 | |
| 		if (!folio_trylock(folio))
 | |
| 			goto next;
 | |
| 
 | |
| 		if (!split_folio_to_order(folio, new_order))
 | |
| 			split++;
 | |
| 
 | |
| 		folio_unlock(folio);
 | |
| next:
 | |
| 		folio_put(folio);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	mmap_read_unlock(mm);
 | |
| 	mmput(mm);
 | |
| 
 | |
| 	pr_debug("%lu of %lu THP split\n", split, total);
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
 | |
| 				pgoff_t off_end, unsigned int new_order)
 | |
| {
 | |
| 	struct filename *file;
 | |
| 	struct file *candidate;
 | |
| 	struct address_space *mapping;
 | |
| 	int ret = -EINVAL;
 | |
| 	pgoff_t index;
 | |
| 	int nr_pages = 1;
 | |
| 	unsigned long total = 0, split = 0;
 | |
| 
 | |
| 	file = getname_kernel(file_path);
 | |
| 	if (IS_ERR(file))
 | |
| 		return ret;
 | |
| 
 | |
| 	candidate = file_open_name(file, O_RDONLY, 0);
 | |
| 	if (IS_ERR(candidate))
 | |
| 		goto out;
 | |
| 
 | |
| 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
 | |
| 		 file_path, off_start, off_end);
 | |
| 
 | |
| 	mapping = candidate->f_mapping;
 | |
| 
 | |
| 	for (index = off_start; index < off_end; index += nr_pages) {
 | |
| 		struct folio *folio = filemap_get_folio(mapping, index);
 | |
| 
 | |
| 		nr_pages = 1;
 | |
| 		if (IS_ERR(folio))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!folio_test_large(folio))
 | |
| 			goto next;
 | |
| 
 | |
| 		total++;
 | |
| 		nr_pages = folio_nr_pages(folio);
 | |
| 
 | |
| 		if (new_order >= folio_order(folio))
 | |
| 			goto next;
 | |
| 
 | |
| 		if (!folio_trylock(folio))
 | |
| 			goto next;
 | |
| 
 | |
| 		if (!split_folio_to_order(folio, new_order))
 | |
| 			split++;
 | |
| 
 | |
| 		folio_unlock(folio);
 | |
| next:
 | |
| 		folio_put(folio);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	filp_close(candidate, NULL);
 | |
| 	ret = 0;
 | |
| 
 | |
| 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
 | |
| out:
 | |
| 	putname(file);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define MAX_INPUT_BUF_SZ 255
 | |
| 
 | |
| static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
 | |
| 				size_t count, loff_t *ppops)
 | |
| {
 | |
| 	static DEFINE_MUTEX(split_debug_mutex);
 | |
| 	ssize_t ret;
 | |
| 	/*
 | |
| 	 * hold pid, start_vaddr, end_vaddr, new_order or
 | |
| 	 * file_path, off_start, off_end, new_order
 | |
| 	 */
 | |
| 	char input_buf[MAX_INPUT_BUF_SZ];
 | |
| 	int pid;
 | |
| 	unsigned long vaddr_start, vaddr_end;
 | |
| 	unsigned int new_order = 0;
 | |
| 
 | |
| 	ret = mutex_lock_interruptible(&split_debug_mutex);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = -EFAULT;
 | |
| 
 | |
| 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
 | |
| 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
 | |
| 		goto out;
 | |
| 
 | |
| 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
 | |
| 
 | |
| 	if (input_buf[0] == '/') {
 | |
| 		char *tok;
 | |
| 		char *buf = input_buf;
 | |
| 		char file_path[MAX_INPUT_BUF_SZ];
 | |
| 		pgoff_t off_start = 0, off_end = 0;
 | |
| 		size_t input_len = strlen(input_buf);
 | |
| 
 | |
| 		tok = strsep(&buf, ",");
 | |
| 		if (tok) {
 | |
| 			strcpy(file_path, tok);
 | |
| 		} else {
 | |
| 			ret = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		ret = sscanf(buf, "0x%lx,0x%lx,%d", &off_start, &off_end, &new_order);
 | |
| 		if (ret != 2 && ret != 3) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ret = split_huge_pages_in_file(file_path, off_start, off_end, new_order);
 | |
| 		if (!ret)
 | |
| 			ret = input_len;
 | |
| 
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d", &pid, &vaddr_start, &vaddr_end, &new_order);
 | |
| 	if (ret == 1 && pid == 1) {
 | |
| 		split_huge_pages_all();
 | |
| 		ret = strlen(input_buf);
 | |
| 		goto out;
 | |
| 	} else if (ret != 3 && ret != 4) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order);
 | |
| 	if (!ret)
 | |
| 		ret = strlen(input_buf);
 | |
| out:
 | |
| 	mutex_unlock(&split_debug_mutex);
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| 
 | |
| static const struct file_operations split_huge_pages_fops = {
 | |
| 	.owner	 = THIS_MODULE,
 | |
| 	.write	 = split_huge_pages_write,
 | |
| 	.llseek  = no_llseek,
 | |
| };
 | |
| 
 | |
| static int __init split_huge_pages_debugfs(void)
 | |
| {
 | |
| 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
 | |
| 			    &split_huge_pages_fops);
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(split_huge_pages_debugfs);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 | |
| int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
 | |
| 		struct page *page)
 | |
| {
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	struct vm_area_struct *vma = pvmw->vma;
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	unsigned long address = pvmw->address;
 | |
| 	bool anon_exclusive;
 | |
| 	pmd_t pmdval;
 | |
| 	swp_entry_t entry;
 | |
| 	pmd_t pmdswp;
 | |
| 
 | |
| 	if (!(pvmw->pmd && !pvmw->pte))
 | |
| 		return 0;
 | |
| 
 | |
| 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
 | |
| 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
 | |
| 
 | |
| 	/* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
 | |
| 	anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
 | |
| 	if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
 | |
| 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	if (pmd_dirty(pmdval))
 | |
| 		folio_mark_dirty(folio);
 | |
| 	if (pmd_write(pmdval))
 | |
| 		entry = make_writable_migration_entry(page_to_pfn(page));
 | |
| 	else if (anon_exclusive)
 | |
| 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
 | |
| 	else
 | |
| 		entry = make_readable_migration_entry(page_to_pfn(page));
 | |
| 	if (pmd_young(pmdval))
 | |
| 		entry = make_migration_entry_young(entry);
 | |
| 	if (pmd_dirty(pmdval))
 | |
| 		entry = make_migration_entry_dirty(entry);
 | |
| 	pmdswp = swp_entry_to_pmd(entry);
 | |
| 	if (pmd_soft_dirty(pmdval))
 | |
| 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
 | |
| 	if (pmd_uffd_wp(pmdval))
 | |
| 		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
 | |
| 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
 | |
| 	folio_remove_rmap_pmd(folio, page, vma);
 | |
| 	folio_put(folio);
 | |
| 	trace_set_migration_pmd(address, pmd_val(pmdswp));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
 | |
| {
 | |
| 	struct folio *folio = page_folio(new);
 | |
| 	struct vm_area_struct *vma = pvmw->vma;
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	unsigned long address = pvmw->address;
 | |
| 	unsigned long haddr = address & HPAGE_PMD_MASK;
 | |
| 	pmd_t pmde;
 | |
| 	swp_entry_t entry;
 | |
| 
 | |
| 	if (!(pvmw->pmd && !pvmw->pte))
 | |
| 		return;
 | |
| 
 | |
| 	entry = pmd_to_swp_entry(*pvmw->pmd);
 | |
| 	folio_get(folio);
 | |
| 	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
 | |
| 	if (pmd_swp_soft_dirty(*pvmw->pmd))
 | |
| 		pmde = pmd_mksoft_dirty(pmde);
 | |
| 	if (is_writable_migration_entry(entry))
 | |
| 		pmde = pmd_mkwrite(pmde, vma);
 | |
| 	if (pmd_swp_uffd_wp(*pvmw->pmd))
 | |
| 		pmde = pmd_mkuffd_wp(pmde);
 | |
| 	if (!is_migration_entry_young(entry))
 | |
| 		pmde = pmd_mkold(pmde);
 | |
| 	/* NOTE: this may contain setting soft-dirty on some archs */
 | |
| 	if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
 | |
| 		pmde = pmd_mkdirty(pmde);
 | |
| 
 | |
| 	if (folio_test_anon(folio)) {
 | |
| 		rmap_t rmap_flags = RMAP_NONE;
 | |
| 
 | |
| 		if (!is_readable_migration_entry(entry))
 | |
| 			rmap_flags |= RMAP_EXCLUSIVE;
 | |
| 
 | |
| 		folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
 | |
| 	} else {
 | |
| 		folio_add_file_rmap_pmd(folio, new, vma);
 | |
| 	}
 | |
| 	VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
 | |
| 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
 | |
| 
 | |
| 	/* No need to invalidate - it was non-present before */
 | |
| 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
 | |
| 	trace_remove_migration_pmd(address, pmd_val(pmde));
 | |
| }
 | |
| #endif
 |