mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 63b774993d
			
		
	
	
		63b774993d
		
	
	
	
	
		
			
			All but one caller already has a folio, so convert free_page_and_swap_cache() to have a folio and remove the call to page_folio(). Link: https://lkml.kernel.org/r/20240227174254.710559-19-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			2812 lines
		
	
	
	
		
			72 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2812 lines
		
	
	
	
		
			72 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/sched/coredump.h>
 | |
| #include <linux/mmu_notifier.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/khugepaged.h>
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/hashtable.h>
 | |
| #include <linux/userfaultfd_k.h>
 | |
| #include <linux/page_idle.h>
 | |
| #include <linux/page_table_check.h>
 | |
| #include <linux/rcupdate_wait.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/shmem_fs.h>
 | |
| #include <linux/ksm.h>
 | |
| 
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include "internal.h"
 | |
| #include "mm_slot.h"
 | |
| 
 | |
| enum scan_result {
 | |
| 	SCAN_FAIL,
 | |
| 	SCAN_SUCCEED,
 | |
| 	SCAN_PMD_NULL,
 | |
| 	SCAN_PMD_NONE,
 | |
| 	SCAN_PMD_MAPPED,
 | |
| 	SCAN_EXCEED_NONE_PTE,
 | |
| 	SCAN_EXCEED_SWAP_PTE,
 | |
| 	SCAN_EXCEED_SHARED_PTE,
 | |
| 	SCAN_PTE_NON_PRESENT,
 | |
| 	SCAN_PTE_UFFD_WP,
 | |
| 	SCAN_PTE_MAPPED_HUGEPAGE,
 | |
| 	SCAN_PAGE_RO,
 | |
| 	SCAN_LACK_REFERENCED_PAGE,
 | |
| 	SCAN_PAGE_NULL,
 | |
| 	SCAN_SCAN_ABORT,
 | |
| 	SCAN_PAGE_COUNT,
 | |
| 	SCAN_PAGE_LRU,
 | |
| 	SCAN_PAGE_LOCK,
 | |
| 	SCAN_PAGE_ANON,
 | |
| 	SCAN_PAGE_COMPOUND,
 | |
| 	SCAN_ANY_PROCESS,
 | |
| 	SCAN_VMA_NULL,
 | |
| 	SCAN_VMA_CHECK,
 | |
| 	SCAN_ADDRESS_RANGE,
 | |
| 	SCAN_DEL_PAGE_LRU,
 | |
| 	SCAN_ALLOC_HUGE_PAGE_FAIL,
 | |
| 	SCAN_CGROUP_CHARGE_FAIL,
 | |
| 	SCAN_TRUNCATED,
 | |
| 	SCAN_PAGE_HAS_PRIVATE,
 | |
| 	SCAN_STORE_FAILED,
 | |
| 	SCAN_COPY_MC,
 | |
| 	SCAN_PAGE_FILLED,
 | |
| };
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/huge_memory.h>
 | |
| 
 | |
| static struct task_struct *khugepaged_thread __read_mostly;
 | |
| static DEFINE_MUTEX(khugepaged_mutex);
 | |
| 
 | |
| /* default scan 8*512 pte (or vmas) every 30 second */
 | |
| static unsigned int khugepaged_pages_to_scan __read_mostly;
 | |
| static unsigned int khugepaged_pages_collapsed;
 | |
| static unsigned int khugepaged_full_scans;
 | |
| static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
 | |
| /* during fragmentation poll the hugepage allocator once every minute */
 | |
| static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
 | |
| static unsigned long khugepaged_sleep_expire;
 | |
| static DEFINE_SPINLOCK(khugepaged_mm_lock);
 | |
| static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
 | |
| /*
 | |
|  * default collapse hugepages if there is at least one pte mapped like
 | |
|  * it would have happened if the vma was large enough during page
 | |
|  * fault.
 | |
|  *
 | |
|  * Note that these are only respected if collapse was initiated by khugepaged.
 | |
|  */
 | |
| static unsigned int khugepaged_max_ptes_none __read_mostly;
 | |
| static unsigned int khugepaged_max_ptes_swap __read_mostly;
 | |
| static unsigned int khugepaged_max_ptes_shared __read_mostly;
 | |
| 
 | |
| #define MM_SLOTS_HASH_BITS 10
 | |
| static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 | |
| 
 | |
| static struct kmem_cache *mm_slot_cache __ro_after_init;
 | |
| 
 | |
| struct collapse_control {
 | |
| 	bool is_khugepaged;
 | |
| 
 | |
| 	/* Num pages scanned per node */
 | |
| 	u32 node_load[MAX_NUMNODES];
 | |
| 
 | |
| 	/* nodemask for allocation fallback */
 | |
| 	nodemask_t alloc_nmask;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
 | |
|  * @slot: hash lookup from mm to mm_slot
 | |
|  */
 | |
| struct khugepaged_mm_slot {
 | |
| 	struct mm_slot slot;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct khugepaged_scan - cursor for scanning
 | |
|  * @mm_head: the head of the mm list to scan
 | |
|  * @mm_slot: the current mm_slot we are scanning
 | |
|  * @address: the next address inside that to be scanned
 | |
|  *
 | |
|  * There is only the one khugepaged_scan instance of this cursor structure.
 | |
|  */
 | |
| struct khugepaged_scan {
 | |
| 	struct list_head mm_head;
 | |
| 	struct khugepaged_mm_slot *mm_slot;
 | |
| 	unsigned long address;
 | |
| };
 | |
| 
 | |
| static struct khugepaged_scan khugepaged_scan = {
 | |
| 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SYSFS
 | |
| static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 | |
| 					 struct kobj_attribute *attr,
 | |
| 					 char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 | |
| }
 | |
| 
 | |
| static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 | |
| 					  struct kobj_attribute *attr,
 | |
| 					  const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned int msecs;
 | |
| 	int err;
 | |
| 
 | |
| 	err = kstrtouint(buf, 10, &msecs);
 | |
| 	if (err)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	khugepaged_scan_sleep_millisecs = msecs;
 | |
| 	khugepaged_sleep_expire = 0;
 | |
| 	wake_up_interruptible(&khugepaged_wait);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| static struct kobj_attribute scan_sleep_millisecs_attr =
 | |
| 	__ATTR_RW(scan_sleep_millisecs);
 | |
| 
 | |
| static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 | |
| 					  struct kobj_attribute *attr,
 | |
| 					  char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 | |
| }
 | |
| 
 | |
| static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 | |
| 					   struct kobj_attribute *attr,
 | |
| 					   const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned int msecs;
 | |
| 	int err;
 | |
| 
 | |
| 	err = kstrtouint(buf, 10, &msecs);
 | |
| 	if (err)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	khugepaged_alloc_sleep_millisecs = msecs;
 | |
| 	khugepaged_sleep_expire = 0;
 | |
| 	wake_up_interruptible(&khugepaged_wait);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| static struct kobj_attribute alloc_sleep_millisecs_attr =
 | |
| 	__ATTR_RW(alloc_sleep_millisecs);
 | |
| 
 | |
| static ssize_t pages_to_scan_show(struct kobject *kobj,
 | |
| 				  struct kobj_attribute *attr,
 | |
| 				  char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
 | |
| }
 | |
| static ssize_t pages_to_scan_store(struct kobject *kobj,
 | |
| 				   struct kobj_attribute *attr,
 | |
| 				   const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned int pages;
 | |
| 	int err;
 | |
| 
 | |
| 	err = kstrtouint(buf, 10, &pages);
 | |
| 	if (err || !pages)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	khugepaged_pages_to_scan = pages;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| static struct kobj_attribute pages_to_scan_attr =
 | |
| 	__ATTR_RW(pages_to_scan);
 | |
| 
 | |
| static ssize_t pages_collapsed_show(struct kobject *kobj,
 | |
| 				    struct kobj_attribute *attr,
 | |
| 				    char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
 | |
| }
 | |
| static struct kobj_attribute pages_collapsed_attr =
 | |
| 	__ATTR_RO(pages_collapsed);
 | |
| 
 | |
| static ssize_t full_scans_show(struct kobject *kobj,
 | |
| 			       struct kobj_attribute *attr,
 | |
| 			       char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
 | |
| }
 | |
| static struct kobj_attribute full_scans_attr =
 | |
| 	__ATTR_RO(full_scans);
 | |
| 
 | |
| static ssize_t defrag_show(struct kobject *kobj,
 | |
| 			   struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	return single_hugepage_flag_show(kobj, attr, buf,
 | |
| 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 | |
| }
 | |
| static ssize_t defrag_store(struct kobject *kobj,
 | |
| 			    struct kobj_attribute *attr,
 | |
| 			    const char *buf, size_t count)
 | |
| {
 | |
| 	return single_hugepage_flag_store(kobj, attr, buf, count,
 | |
| 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 | |
| }
 | |
| static struct kobj_attribute khugepaged_defrag_attr =
 | |
| 	__ATTR_RW(defrag);
 | |
| 
 | |
| /*
 | |
|  * max_ptes_none controls if khugepaged should collapse hugepages over
 | |
|  * any unmapped ptes in turn potentially increasing the memory
 | |
|  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 | |
|  * reduce the available free memory in the system as it
 | |
|  * runs. Increasing max_ptes_none will instead potentially reduce the
 | |
|  * free memory in the system during the khugepaged scan.
 | |
|  */
 | |
| static ssize_t max_ptes_none_show(struct kobject *kobj,
 | |
| 				  struct kobj_attribute *attr,
 | |
| 				  char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
 | |
| }
 | |
| static ssize_t max_ptes_none_store(struct kobject *kobj,
 | |
| 				   struct kobj_attribute *attr,
 | |
| 				   const char *buf, size_t count)
 | |
| {
 | |
| 	int err;
 | |
| 	unsigned long max_ptes_none;
 | |
| 
 | |
| 	err = kstrtoul(buf, 10, &max_ptes_none);
 | |
| 	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	khugepaged_max_ptes_none = max_ptes_none;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| static struct kobj_attribute khugepaged_max_ptes_none_attr =
 | |
| 	__ATTR_RW(max_ptes_none);
 | |
| 
 | |
| static ssize_t max_ptes_swap_show(struct kobject *kobj,
 | |
| 				  struct kobj_attribute *attr,
 | |
| 				  char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
 | |
| }
 | |
| 
 | |
| static ssize_t max_ptes_swap_store(struct kobject *kobj,
 | |
| 				   struct kobj_attribute *attr,
 | |
| 				   const char *buf, size_t count)
 | |
| {
 | |
| 	int err;
 | |
| 	unsigned long max_ptes_swap;
 | |
| 
 | |
| 	err  = kstrtoul(buf, 10, &max_ptes_swap);
 | |
| 	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	khugepaged_max_ptes_swap = max_ptes_swap;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static struct kobj_attribute khugepaged_max_ptes_swap_attr =
 | |
| 	__ATTR_RW(max_ptes_swap);
 | |
| 
 | |
| static ssize_t max_ptes_shared_show(struct kobject *kobj,
 | |
| 				    struct kobj_attribute *attr,
 | |
| 				    char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
 | |
| }
 | |
| 
 | |
| static ssize_t max_ptes_shared_store(struct kobject *kobj,
 | |
| 				     struct kobj_attribute *attr,
 | |
| 				     const char *buf, size_t count)
 | |
| {
 | |
| 	int err;
 | |
| 	unsigned long max_ptes_shared;
 | |
| 
 | |
| 	err  = kstrtoul(buf, 10, &max_ptes_shared);
 | |
| 	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	khugepaged_max_ptes_shared = max_ptes_shared;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static struct kobj_attribute khugepaged_max_ptes_shared_attr =
 | |
| 	__ATTR_RW(max_ptes_shared);
 | |
| 
 | |
| static struct attribute *khugepaged_attr[] = {
 | |
| 	&khugepaged_defrag_attr.attr,
 | |
| 	&khugepaged_max_ptes_none_attr.attr,
 | |
| 	&khugepaged_max_ptes_swap_attr.attr,
 | |
| 	&khugepaged_max_ptes_shared_attr.attr,
 | |
| 	&pages_to_scan_attr.attr,
 | |
| 	&pages_collapsed_attr.attr,
 | |
| 	&full_scans_attr.attr,
 | |
| 	&scan_sleep_millisecs_attr.attr,
 | |
| 	&alloc_sleep_millisecs_attr.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| struct attribute_group khugepaged_attr_group = {
 | |
| 	.attrs = khugepaged_attr,
 | |
| 	.name = "khugepaged",
 | |
| };
 | |
| #endif /* CONFIG_SYSFS */
 | |
| 
 | |
| int hugepage_madvise(struct vm_area_struct *vma,
 | |
| 		     unsigned long *vm_flags, int advice)
 | |
| {
 | |
| 	switch (advice) {
 | |
| 	case MADV_HUGEPAGE:
 | |
| #ifdef CONFIG_S390
 | |
| 		/*
 | |
| 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
 | |
| 		 * can't handle this properly after s390_enable_sie, so we simply
 | |
| 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
 | |
| 		 */
 | |
| 		if (mm_has_pgste(vma->vm_mm))
 | |
| 			return 0;
 | |
| #endif
 | |
| 		*vm_flags &= ~VM_NOHUGEPAGE;
 | |
| 		*vm_flags |= VM_HUGEPAGE;
 | |
| 		/*
 | |
| 		 * If the vma become good for khugepaged to scan,
 | |
| 		 * register it here without waiting a page fault that
 | |
| 		 * may not happen any time soon.
 | |
| 		 */
 | |
| 		khugepaged_enter_vma(vma, *vm_flags);
 | |
| 		break;
 | |
| 	case MADV_NOHUGEPAGE:
 | |
| 		*vm_flags &= ~VM_HUGEPAGE;
 | |
| 		*vm_flags |= VM_NOHUGEPAGE;
 | |
| 		/*
 | |
| 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
 | |
| 		 * this vma even if we leave the mm registered in khugepaged if
 | |
| 		 * it got registered before VM_NOHUGEPAGE was set.
 | |
| 		 */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __init khugepaged_init(void)
 | |
| {
 | |
| 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
 | |
| 					  sizeof(struct khugepaged_mm_slot),
 | |
| 					  __alignof__(struct khugepaged_mm_slot),
 | |
| 					  0, NULL);
 | |
| 	if (!mm_slot_cache)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
 | |
| 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
 | |
| 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
 | |
| 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __init khugepaged_destroy(void)
 | |
| {
 | |
| 	kmem_cache_destroy(mm_slot_cache);
 | |
| }
 | |
| 
 | |
| static inline int hpage_collapse_test_exit(struct mm_struct *mm)
 | |
| {
 | |
| 	return atomic_read(&mm->mm_users) == 0;
 | |
| }
 | |
| 
 | |
| static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm)
 | |
| {
 | |
| 	return hpage_collapse_test_exit(mm) ||
 | |
| 	       test_bit(MMF_DISABLE_THP, &mm->flags);
 | |
| }
 | |
| 
 | |
| void __khugepaged_enter(struct mm_struct *mm)
 | |
| {
 | |
| 	struct khugepaged_mm_slot *mm_slot;
 | |
| 	struct mm_slot *slot;
 | |
| 	int wakeup;
 | |
| 
 | |
| 	/* __khugepaged_exit() must not run from under us */
 | |
| 	VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
 | |
| 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags)))
 | |
| 		return;
 | |
| 
 | |
| 	mm_slot = mm_slot_alloc(mm_slot_cache);
 | |
| 	if (!mm_slot)
 | |
| 		return;
 | |
| 
 | |
| 	slot = &mm_slot->slot;
 | |
| 
 | |
| 	spin_lock(&khugepaged_mm_lock);
 | |
| 	mm_slot_insert(mm_slots_hash, mm, slot);
 | |
| 	/*
 | |
| 	 * Insert just behind the scanning cursor, to let the area settle
 | |
| 	 * down a little.
 | |
| 	 */
 | |
| 	wakeup = list_empty(&khugepaged_scan.mm_head);
 | |
| 	list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
 | |
| 	spin_unlock(&khugepaged_mm_lock);
 | |
| 
 | |
| 	mmgrab(mm);
 | |
| 	if (wakeup)
 | |
| 		wake_up_interruptible(&khugepaged_wait);
 | |
| }
 | |
| 
 | |
| void khugepaged_enter_vma(struct vm_area_struct *vma,
 | |
| 			  unsigned long vm_flags)
 | |
| {
 | |
| 	if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
 | |
| 	    hugepage_flags_enabled()) {
 | |
| 		if (thp_vma_allowable_order(vma, vm_flags, false, false, true,
 | |
| 					    PMD_ORDER))
 | |
| 			__khugepaged_enter(vma->vm_mm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __khugepaged_exit(struct mm_struct *mm)
 | |
| {
 | |
| 	struct khugepaged_mm_slot *mm_slot;
 | |
| 	struct mm_slot *slot;
 | |
| 	int free = 0;
 | |
| 
 | |
| 	spin_lock(&khugepaged_mm_lock);
 | |
| 	slot = mm_slot_lookup(mm_slots_hash, mm);
 | |
| 	mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
 | |
| 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
 | |
| 		hash_del(&slot->hash);
 | |
| 		list_del(&slot->mm_node);
 | |
| 		free = 1;
 | |
| 	}
 | |
| 	spin_unlock(&khugepaged_mm_lock);
 | |
| 
 | |
| 	if (free) {
 | |
| 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
 | |
| 		mm_slot_free(mm_slot_cache, mm_slot);
 | |
| 		mmdrop(mm);
 | |
| 	} else if (mm_slot) {
 | |
| 		/*
 | |
| 		 * This is required to serialize against
 | |
| 		 * hpage_collapse_test_exit() (which is guaranteed to run
 | |
| 		 * under mmap sem read mode). Stop here (after we return all
 | |
| 		 * pagetables will be destroyed) until khugepaged has finished
 | |
| 		 * working on the pagetables under the mmap_lock.
 | |
| 		 */
 | |
| 		mmap_write_lock(mm);
 | |
| 		mmap_write_unlock(mm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void release_pte_folio(struct folio *folio)
 | |
| {
 | |
| 	node_stat_mod_folio(folio,
 | |
| 			NR_ISOLATED_ANON + folio_is_file_lru(folio),
 | |
| 			-folio_nr_pages(folio));
 | |
| 	folio_unlock(folio);
 | |
| 	folio_putback_lru(folio);
 | |
| }
 | |
| 
 | |
| static void release_pte_pages(pte_t *pte, pte_t *_pte,
 | |
| 		struct list_head *compound_pagelist)
 | |
| {
 | |
| 	struct folio *folio, *tmp;
 | |
| 
 | |
| 	while (--_pte >= pte) {
 | |
| 		pte_t pteval = ptep_get(_pte);
 | |
| 		unsigned long pfn;
 | |
| 
 | |
| 		if (pte_none(pteval))
 | |
| 			continue;
 | |
| 		pfn = pte_pfn(pteval);
 | |
| 		if (is_zero_pfn(pfn))
 | |
| 			continue;
 | |
| 		folio = pfn_folio(pfn);
 | |
| 		if (folio_test_large(folio))
 | |
| 			continue;
 | |
| 		release_pte_folio(folio);
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
 | |
| 		list_del(&folio->lru);
 | |
| 		release_pte_folio(folio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool is_refcount_suitable(struct folio *folio)
 | |
| {
 | |
| 	int expected_refcount;
 | |
| 
 | |
| 	expected_refcount = folio_mapcount(folio);
 | |
| 	if (folio_test_swapcache(folio))
 | |
| 		expected_refcount += folio_nr_pages(folio);
 | |
| 
 | |
| 	return folio_ref_count(folio) == expected_refcount;
 | |
| }
 | |
| 
 | |
| static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
 | |
| 					unsigned long address,
 | |
| 					pte_t *pte,
 | |
| 					struct collapse_control *cc,
 | |
| 					struct list_head *compound_pagelist)
 | |
| {
 | |
| 	struct page *page = NULL;
 | |
| 	struct folio *folio = NULL;
 | |
| 	pte_t *_pte;
 | |
| 	int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
 | |
| 	bool writable = false;
 | |
| 
 | |
| 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
 | |
| 	     _pte++, address += PAGE_SIZE) {
 | |
| 		pte_t pteval = ptep_get(_pte);
 | |
| 		if (pte_none(pteval) || (pte_present(pteval) &&
 | |
| 				is_zero_pfn(pte_pfn(pteval)))) {
 | |
| 			++none_or_zero;
 | |
| 			if (!userfaultfd_armed(vma) &&
 | |
| 			    (!cc->is_khugepaged ||
 | |
| 			     none_or_zero <= khugepaged_max_ptes_none)) {
 | |
| 				continue;
 | |
| 			} else {
 | |
| 				result = SCAN_EXCEED_NONE_PTE;
 | |
| 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!pte_present(pteval)) {
 | |
| 			result = SCAN_PTE_NON_PRESENT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (pte_uffd_wp(pteval)) {
 | |
| 			result = SCAN_PTE_UFFD_WP;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		page = vm_normal_page(vma, address, pteval);
 | |
| 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
 | |
| 			result = SCAN_PAGE_NULL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		folio = page_folio(page);
 | |
| 		VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio);
 | |
| 
 | |
| 		if (page_mapcount(page) > 1) {
 | |
| 			++shared;
 | |
| 			if (cc->is_khugepaged &&
 | |
| 			    shared > khugepaged_max_ptes_shared) {
 | |
| 				result = SCAN_EXCEED_SHARED_PTE;
 | |
| 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (folio_test_large(folio)) {
 | |
| 			struct folio *f;
 | |
| 
 | |
| 			/*
 | |
| 			 * Check if we have dealt with the compound page
 | |
| 			 * already
 | |
| 			 */
 | |
| 			list_for_each_entry(f, compound_pagelist, lru) {
 | |
| 				if (folio == f)
 | |
| 					goto next;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We can do it before isolate_lru_page because the
 | |
| 		 * page can't be freed from under us. NOTE: PG_lock
 | |
| 		 * is needed to serialize against split_huge_page
 | |
| 		 * when invoked from the VM.
 | |
| 		 */
 | |
| 		if (!folio_trylock(folio)) {
 | |
| 			result = SCAN_PAGE_LOCK;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Check if the page has any GUP (or other external) pins.
 | |
| 		 *
 | |
| 		 * The page table that maps the page has been already unlinked
 | |
| 		 * from the page table tree and this process cannot get
 | |
| 		 * an additional pin on the page.
 | |
| 		 *
 | |
| 		 * New pins can come later if the page is shared across fork,
 | |
| 		 * but not from this process. The other process cannot write to
 | |
| 		 * the page, only trigger CoW.
 | |
| 		 */
 | |
| 		if (!is_refcount_suitable(folio)) {
 | |
| 			folio_unlock(folio);
 | |
| 			result = SCAN_PAGE_COUNT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Isolate the page to avoid collapsing an hugepage
 | |
| 		 * currently in use by the VM.
 | |
| 		 */
 | |
| 		if (!folio_isolate_lru(folio)) {
 | |
| 			folio_unlock(folio);
 | |
| 			result = SCAN_DEL_PAGE_LRU;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		node_stat_mod_folio(folio,
 | |
| 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
 | |
| 				folio_nr_pages(folio));
 | |
| 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 | |
| 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 | |
| 
 | |
| 		if (folio_test_large(folio))
 | |
| 			list_add_tail(&folio->lru, compound_pagelist);
 | |
| next:
 | |
| 		/*
 | |
| 		 * If collapse was initiated by khugepaged, check that there is
 | |
| 		 * enough young pte to justify collapsing the page
 | |
| 		 */
 | |
| 		if (cc->is_khugepaged &&
 | |
| 		    (pte_young(pteval) || folio_test_young(folio) ||
 | |
| 		     folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
 | |
| 								     address)))
 | |
| 			referenced++;
 | |
| 
 | |
| 		if (pte_write(pteval))
 | |
| 			writable = true;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!writable)) {
 | |
| 		result = SCAN_PAGE_RO;
 | |
| 	} else if (unlikely(cc->is_khugepaged && !referenced)) {
 | |
| 		result = SCAN_LACK_REFERENCED_PAGE;
 | |
| 	} else {
 | |
| 		result = SCAN_SUCCEED;
 | |
| 		trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
 | |
| 						    referenced, writable, result);
 | |
| 		return result;
 | |
| 	}
 | |
| out:
 | |
| 	release_pte_pages(pte, _pte, compound_pagelist);
 | |
| 	trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
 | |
| 					    referenced, writable, result);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static void __collapse_huge_page_copy_succeeded(pte_t *pte,
 | |
| 						struct vm_area_struct *vma,
 | |
| 						unsigned long address,
 | |
| 						spinlock_t *ptl,
 | |
| 						struct list_head *compound_pagelist)
 | |
| {
 | |
| 	struct folio *src, *tmp;
 | |
| 	pte_t *_pte;
 | |
| 	pte_t pteval;
 | |
| 
 | |
| 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
 | |
| 	     _pte++, address += PAGE_SIZE) {
 | |
| 		pteval = ptep_get(_pte);
 | |
| 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
 | |
| 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
 | |
| 			if (is_zero_pfn(pte_pfn(pteval))) {
 | |
| 				/*
 | |
| 				 * ptl mostly unnecessary.
 | |
| 				 */
 | |
| 				spin_lock(ptl);
 | |
| 				ptep_clear(vma->vm_mm, address, _pte);
 | |
| 				spin_unlock(ptl);
 | |
| 				ksm_might_unmap_zero_page(vma->vm_mm, pteval);
 | |
| 			}
 | |
| 		} else {
 | |
| 			struct page *src_page = pte_page(pteval);
 | |
| 
 | |
| 			src = page_folio(src_page);
 | |
| 			if (!folio_test_large(src))
 | |
| 				release_pte_folio(src);
 | |
| 			/*
 | |
| 			 * ptl mostly unnecessary, but preempt has to
 | |
| 			 * be disabled to update the per-cpu stats
 | |
| 			 * inside folio_remove_rmap_pte().
 | |
| 			 */
 | |
| 			spin_lock(ptl);
 | |
| 			ptep_clear(vma->vm_mm, address, _pte);
 | |
| 			folio_remove_rmap_pte(src, src_page, vma);
 | |
| 			spin_unlock(ptl);
 | |
| 			free_page_and_swap_cache(src_page);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_safe(src, tmp, compound_pagelist, lru) {
 | |
| 		list_del(&src->lru);
 | |
| 		node_stat_sub_folio(src, NR_ISOLATED_ANON +
 | |
| 				folio_is_file_lru(src));
 | |
| 		folio_unlock(src);
 | |
| 		free_swap_cache(src);
 | |
| 		folio_putback_lru(src);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __collapse_huge_page_copy_failed(pte_t *pte,
 | |
| 					     pmd_t *pmd,
 | |
| 					     pmd_t orig_pmd,
 | |
| 					     struct vm_area_struct *vma,
 | |
| 					     struct list_head *compound_pagelist)
 | |
| {
 | |
| 	spinlock_t *pmd_ptl;
 | |
| 
 | |
| 	/*
 | |
| 	 * Re-establish the PMD to point to the original page table
 | |
| 	 * entry. Restoring PMD needs to be done prior to releasing
 | |
| 	 * pages. Since pages are still isolated and locked here,
 | |
| 	 * acquiring anon_vma_lock_write is unnecessary.
 | |
| 	 */
 | |
| 	pmd_ptl = pmd_lock(vma->vm_mm, pmd);
 | |
| 	pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
 | |
| 	spin_unlock(pmd_ptl);
 | |
| 	/*
 | |
| 	 * Release both raw and compound pages isolated
 | |
| 	 * in __collapse_huge_page_isolate.
 | |
| 	 */
 | |
| 	release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __collapse_huge_page_copy - attempts to copy memory contents from raw
 | |
|  * pages to a hugepage. Cleans up the raw pages if copying succeeds;
 | |
|  * otherwise restores the original page table and releases isolated raw pages.
 | |
|  * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
 | |
|  *
 | |
|  * @pte: starting of the PTEs to copy from
 | |
|  * @page: the new hugepage to copy contents to
 | |
|  * @pmd: pointer to the new hugepage's PMD
 | |
|  * @orig_pmd: the original raw pages' PMD
 | |
|  * @vma: the original raw pages' virtual memory area
 | |
|  * @address: starting address to copy
 | |
|  * @ptl: lock on raw pages' PTEs
 | |
|  * @compound_pagelist: list that stores compound pages
 | |
|  */
 | |
| static int __collapse_huge_page_copy(pte_t *pte,
 | |
| 				     struct page *page,
 | |
| 				     pmd_t *pmd,
 | |
| 				     pmd_t orig_pmd,
 | |
| 				     struct vm_area_struct *vma,
 | |
| 				     unsigned long address,
 | |
| 				     spinlock_t *ptl,
 | |
| 				     struct list_head *compound_pagelist)
 | |
| {
 | |
| 	struct page *src_page;
 | |
| 	pte_t *_pte;
 | |
| 	pte_t pteval;
 | |
| 	unsigned long _address;
 | |
| 	int result = SCAN_SUCCEED;
 | |
| 
 | |
| 	/*
 | |
| 	 * Copying pages' contents is subject to memory poison at any iteration.
 | |
| 	 */
 | |
| 	for (_pte = pte, _address = address; _pte < pte + HPAGE_PMD_NR;
 | |
| 	     _pte++, page++, _address += PAGE_SIZE) {
 | |
| 		pteval = ptep_get(_pte);
 | |
| 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
 | |
| 			clear_user_highpage(page, _address);
 | |
| 			continue;
 | |
| 		}
 | |
| 		src_page = pte_page(pteval);
 | |
| 		if (copy_mc_user_highpage(page, src_page, _address, vma) > 0) {
 | |
| 			result = SCAN_COPY_MC;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (likely(result == SCAN_SUCCEED))
 | |
| 		__collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
 | |
| 						    compound_pagelist);
 | |
| 	else
 | |
| 		__collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
 | |
| 						 compound_pagelist);
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static void khugepaged_alloc_sleep(void)
 | |
| {
 | |
| 	DEFINE_WAIT(wait);
 | |
| 
 | |
| 	add_wait_queue(&khugepaged_wait, &wait);
 | |
| 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
 | |
| 	schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
 | |
| 	remove_wait_queue(&khugepaged_wait, &wait);
 | |
| }
 | |
| 
 | |
| struct collapse_control khugepaged_collapse_control = {
 | |
| 	.is_khugepaged = true,
 | |
| };
 | |
| 
 | |
| static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * If node_reclaim_mode is disabled, then no extra effort is made to
 | |
| 	 * allocate memory locally.
 | |
| 	 */
 | |
| 	if (!node_reclaim_enabled())
 | |
| 		return false;
 | |
| 
 | |
| 	/* If there is a count for this node already, it must be acceptable */
 | |
| 	if (cc->node_load[nid])
 | |
| 		return false;
 | |
| 
 | |
| 	for (i = 0; i < MAX_NUMNODES; i++) {
 | |
| 		if (!cc->node_load[i])
 | |
| 			continue;
 | |
| 		if (node_distance(nid, i) > node_reclaim_distance)
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #define khugepaged_defrag()					\
 | |
| 	(transparent_hugepage_flags &				\
 | |
| 	 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
 | |
| 
 | |
| /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
 | |
| static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
 | |
| {
 | |
| 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| static int hpage_collapse_find_target_node(struct collapse_control *cc)
 | |
| {
 | |
| 	int nid, target_node = 0, max_value = 0;
 | |
| 
 | |
| 	/* find first node with max normal pages hit */
 | |
| 	for (nid = 0; nid < MAX_NUMNODES; nid++)
 | |
| 		if (cc->node_load[nid] > max_value) {
 | |
| 			max_value = cc->node_load[nid];
 | |
| 			target_node = nid;
 | |
| 		}
 | |
| 
 | |
| 	for_each_online_node(nid) {
 | |
| 		if (max_value == cc->node_load[nid])
 | |
| 			node_set(nid, cc->alloc_nmask);
 | |
| 	}
 | |
| 
 | |
| 	return target_node;
 | |
| }
 | |
| #else
 | |
| static int hpage_collapse_find_target_node(struct collapse_control *cc)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static bool hpage_collapse_alloc_folio(struct folio **folio, gfp_t gfp, int node,
 | |
| 				      nodemask_t *nmask)
 | |
| {
 | |
| 	*folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, nmask);
 | |
| 
 | |
| 	if (unlikely(!*folio)) {
 | |
| 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	count_vm_event(THP_COLLAPSE_ALLOC);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If mmap_lock temporarily dropped, revalidate vma
 | |
|  * before taking mmap_lock.
 | |
|  * Returns enum scan_result value.
 | |
|  */
 | |
| 
 | |
| static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
 | |
| 				   bool expect_anon,
 | |
| 				   struct vm_area_struct **vmap,
 | |
| 				   struct collapse_control *cc)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
 | |
| 		return SCAN_ANY_PROCESS;
 | |
| 
 | |
| 	*vmap = vma = find_vma(mm, address);
 | |
| 	if (!vma)
 | |
| 		return SCAN_VMA_NULL;
 | |
| 
 | |
| 	if (!thp_vma_suitable_order(vma, address, PMD_ORDER))
 | |
| 		return SCAN_ADDRESS_RANGE;
 | |
| 	if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false,
 | |
| 				     cc->is_khugepaged, PMD_ORDER))
 | |
| 		return SCAN_VMA_CHECK;
 | |
| 	/*
 | |
| 	 * Anon VMA expected, the address may be unmapped then
 | |
| 	 * remapped to file after khugepaged reaquired the mmap_lock.
 | |
| 	 *
 | |
| 	 * thp_vma_allowable_order may return true for qualified file
 | |
| 	 * vmas.
 | |
| 	 */
 | |
| 	if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
 | |
| 		return SCAN_PAGE_ANON;
 | |
| 	return SCAN_SUCCEED;
 | |
| }
 | |
| 
 | |
| static int find_pmd_or_thp_or_none(struct mm_struct *mm,
 | |
| 				   unsigned long address,
 | |
| 				   pmd_t **pmd)
 | |
| {
 | |
| 	pmd_t pmde;
 | |
| 
 | |
| 	*pmd = mm_find_pmd(mm, address);
 | |
| 	if (!*pmd)
 | |
| 		return SCAN_PMD_NULL;
 | |
| 
 | |
| 	pmde = pmdp_get_lockless(*pmd);
 | |
| 	if (pmd_none(pmde))
 | |
| 		return SCAN_PMD_NONE;
 | |
| 	if (!pmd_present(pmde))
 | |
| 		return SCAN_PMD_NULL;
 | |
| 	if (pmd_trans_huge(pmde))
 | |
| 		return SCAN_PMD_MAPPED;
 | |
| 	if (pmd_devmap(pmde))
 | |
| 		return SCAN_PMD_NULL;
 | |
| 	if (pmd_bad(pmde))
 | |
| 		return SCAN_PMD_NULL;
 | |
| 	return SCAN_SUCCEED;
 | |
| }
 | |
| 
 | |
| static int check_pmd_still_valid(struct mm_struct *mm,
 | |
| 				 unsigned long address,
 | |
| 				 pmd_t *pmd)
 | |
| {
 | |
| 	pmd_t *new_pmd;
 | |
| 	int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
 | |
| 
 | |
| 	if (result != SCAN_SUCCEED)
 | |
| 		return result;
 | |
| 	if (new_pmd != pmd)
 | |
| 		return SCAN_FAIL;
 | |
| 	return SCAN_SUCCEED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Bring missing pages in from swap, to complete THP collapse.
 | |
|  * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
 | |
|  *
 | |
|  * Called and returns without pte mapped or spinlocks held.
 | |
|  * Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
 | |
|  */
 | |
| static int __collapse_huge_page_swapin(struct mm_struct *mm,
 | |
| 				       struct vm_area_struct *vma,
 | |
| 				       unsigned long haddr, pmd_t *pmd,
 | |
| 				       int referenced)
 | |
| {
 | |
| 	int swapped_in = 0;
 | |
| 	vm_fault_t ret = 0;
 | |
| 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
 | |
| 	int result;
 | |
| 	pte_t *pte = NULL;
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| 	for (address = haddr; address < end; address += PAGE_SIZE) {
 | |
| 		struct vm_fault vmf = {
 | |
| 			.vma = vma,
 | |
| 			.address = address,
 | |
| 			.pgoff = linear_page_index(vma, address),
 | |
| 			.flags = FAULT_FLAG_ALLOW_RETRY,
 | |
| 			.pmd = pmd,
 | |
| 		};
 | |
| 
 | |
| 		if (!pte++) {
 | |
| 			pte = pte_offset_map_nolock(mm, pmd, address, &ptl);
 | |
| 			if (!pte) {
 | |
| 				mmap_read_unlock(mm);
 | |
| 				result = SCAN_PMD_NULL;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		vmf.orig_pte = ptep_get_lockless(pte);
 | |
| 		if (!is_swap_pte(vmf.orig_pte))
 | |
| 			continue;
 | |
| 
 | |
| 		vmf.pte = pte;
 | |
| 		vmf.ptl = ptl;
 | |
| 		ret = do_swap_page(&vmf);
 | |
| 		/* Which unmaps pte (after perhaps re-checking the entry) */
 | |
| 		pte = NULL;
 | |
| 
 | |
| 		/*
 | |
| 		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
 | |
| 		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
 | |
| 		 * we do not retry here and swap entry will remain in pagetable
 | |
| 		 * resulting in later failure.
 | |
| 		 */
 | |
| 		if (ret & VM_FAULT_RETRY) {
 | |
| 			/* Likely, but not guaranteed, that page lock failed */
 | |
| 			result = SCAN_PAGE_LOCK;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (ret & VM_FAULT_ERROR) {
 | |
| 			mmap_read_unlock(mm);
 | |
| 			result = SCAN_FAIL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		swapped_in++;
 | |
| 	}
 | |
| 
 | |
| 	if (pte)
 | |
| 		pte_unmap(pte);
 | |
| 
 | |
| 	/* Drain LRU cache to remove extra pin on the swapped in pages */
 | |
| 	if (swapped_in)
 | |
| 		lru_add_drain();
 | |
| 
 | |
| 	result = SCAN_SUCCEED;
 | |
| out:
 | |
| 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm,
 | |
| 			      struct collapse_control *cc)
 | |
| {
 | |
| 	gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
 | |
| 		     GFP_TRANSHUGE);
 | |
| 	int node = hpage_collapse_find_target_node(cc);
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	if (!hpage_collapse_alloc_folio(&folio, gfp, node, &cc->alloc_nmask)) {
 | |
| 		*hpage = NULL;
 | |
| 		return SCAN_ALLOC_HUGE_PAGE_FAIL;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
 | |
| 		folio_put(folio);
 | |
| 		*hpage = NULL;
 | |
| 		return SCAN_CGROUP_CHARGE_FAIL;
 | |
| 	}
 | |
| 
 | |
| 	count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1);
 | |
| 
 | |
| 	*hpage = folio_page(folio, 0);
 | |
| 	return SCAN_SUCCEED;
 | |
| }
 | |
| 
 | |
| static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
 | |
| 			      int referenced, int unmapped,
 | |
| 			      struct collapse_control *cc)
 | |
| {
 | |
| 	LIST_HEAD(compound_pagelist);
 | |
| 	pmd_t *pmd, _pmd;
 | |
| 	pte_t *pte;
 | |
| 	pgtable_t pgtable;
 | |
| 	struct folio *folio;
 | |
| 	struct page *hpage;
 | |
| 	spinlock_t *pmd_ptl, *pte_ptl;
 | |
| 	int result = SCAN_FAIL;
 | |
| 	struct vm_area_struct *vma;
 | |
| 	struct mmu_notifier_range range;
 | |
| 
 | |
| 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 | |
| 
 | |
| 	/*
 | |
| 	 * Before allocating the hugepage, release the mmap_lock read lock.
 | |
| 	 * The allocation can take potentially a long time if it involves
 | |
| 	 * sync compaction, and we do not need to hold the mmap_lock during
 | |
| 	 * that. We will recheck the vma after taking it again in write mode.
 | |
| 	 */
 | |
| 	mmap_read_unlock(mm);
 | |
| 
 | |
| 	result = alloc_charge_hpage(&hpage, mm, cc);
 | |
| 	if (result != SCAN_SUCCEED)
 | |
| 		goto out_nolock;
 | |
| 
 | |
| 	mmap_read_lock(mm);
 | |
| 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
 | |
| 	if (result != SCAN_SUCCEED) {
 | |
| 		mmap_read_unlock(mm);
 | |
| 		goto out_nolock;
 | |
| 	}
 | |
| 
 | |
| 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
 | |
| 	if (result != SCAN_SUCCEED) {
 | |
| 		mmap_read_unlock(mm);
 | |
| 		goto out_nolock;
 | |
| 	}
 | |
| 
 | |
| 	if (unmapped) {
 | |
| 		/*
 | |
| 		 * __collapse_huge_page_swapin will return with mmap_lock
 | |
| 		 * released when it fails. So we jump out_nolock directly in
 | |
| 		 * that case.  Continuing to collapse causes inconsistency.
 | |
| 		 */
 | |
| 		result = __collapse_huge_page_swapin(mm, vma, address, pmd,
 | |
| 						     referenced);
 | |
| 		if (result != SCAN_SUCCEED)
 | |
| 			goto out_nolock;
 | |
| 	}
 | |
| 
 | |
| 	mmap_read_unlock(mm);
 | |
| 	/*
 | |
| 	 * Prevent all access to pagetables with the exception of
 | |
| 	 * gup_fast later handled by the ptep_clear_flush and the VM
 | |
| 	 * handled by the anon_vma lock + PG_lock.
 | |
| 	 *
 | |
| 	 * UFFDIO_MOVE is prevented to race as well thanks to the
 | |
| 	 * mmap_lock.
 | |
| 	 */
 | |
| 	mmap_write_lock(mm);
 | |
| 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
 | |
| 	if (result != SCAN_SUCCEED)
 | |
| 		goto out_up_write;
 | |
| 	/* check if the pmd is still valid */
 | |
| 	result = check_pmd_still_valid(mm, address, pmd);
 | |
| 	if (result != SCAN_SUCCEED)
 | |
| 		goto out_up_write;
 | |
| 
 | |
| 	vma_start_write(vma);
 | |
| 	anon_vma_lock_write(vma->anon_vma);
 | |
| 
 | |
| 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
 | |
| 				address + HPAGE_PMD_SIZE);
 | |
| 	mmu_notifier_invalidate_range_start(&range);
 | |
| 
 | |
| 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
 | |
| 	/*
 | |
| 	 * This removes any huge TLB entry from the CPU so we won't allow
 | |
| 	 * huge and small TLB entries for the same virtual address to
 | |
| 	 * avoid the risk of CPU bugs in that area.
 | |
| 	 *
 | |
| 	 * Parallel fast GUP is fine since fast GUP will back off when
 | |
| 	 * it detects PMD is changed.
 | |
| 	 */
 | |
| 	_pmd = pmdp_collapse_flush(vma, address, pmd);
 | |
| 	spin_unlock(pmd_ptl);
 | |
| 	mmu_notifier_invalidate_range_end(&range);
 | |
| 	tlb_remove_table_sync_one();
 | |
| 
 | |
| 	pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
 | |
| 	if (pte) {
 | |
| 		result = __collapse_huge_page_isolate(vma, address, pte, cc,
 | |
| 						      &compound_pagelist);
 | |
| 		spin_unlock(pte_ptl);
 | |
| 	} else {
 | |
| 		result = SCAN_PMD_NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(result != SCAN_SUCCEED)) {
 | |
| 		if (pte)
 | |
| 			pte_unmap(pte);
 | |
| 		spin_lock(pmd_ptl);
 | |
| 		BUG_ON(!pmd_none(*pmd));
 | |
| 		/*
 | |
| 		 * We can only use set_pmd_at when establishing
 | |
| 		 * hugepmds and never for establishing regular pmds that
 | |
| 		 * points to regular pagetables. Use pmd_populate for that
 | |
| 		 */
 | |
| 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
 | |
| 		spin_unlock(pmd_ptl);
 | |
| 		anon_vma_unlock_write(vma->anon_vma);
 | |
| 		goto out_up_write;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * All pages are isolated and locked so anon_vma rmap
 | |
| 	 * can't run anymore.
 | |
| 	 */
 | |
| 	anon_vma_unlock_write(vma->anon_vma);
 | |
| 
 | |
| 	result = __collapse_huge_page_copy(pte, hpage, pmd, _pmd,
 | |
| 					   vma, address, pte_ptl,
 | |
| 					   &compound_pagelist);
 | |
| 	pte_unmap(pte);
 | |
| 	if (unlikely(result != SCAN_SUCCEED))
 | |
| 		goto out_up_write;
 | |
| 
 | |
| 	folio = page_folio(hpage);
 | |
| 	/*
 | |
| 	 * The smp_wmb() inside __folio_mark_uptodate() ensures the
 | |
| 	 * copy_huge_page writes become visible before the set_pmd_at()
 | |
| 	 * write.
 | |
| 	 */
 | |
| 	__folio_mark_uptodate(folio);
 | |
| 	pgtable = pmd_pgtable(_pmd);
 | |
| 
 | |
| 	_pmd = mk_huge_pmd(hpage, vma->vm_page_prot);
 | |
| 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
 | |
| 
 | |
| 	spin_lock(pmd_ptl);
 | |
| 	BUG_ON(!pmd_none(*pmd));
 | |
| 	folio_add_new_anon_rmap(folio, vma, address);
 | |
| 	folio_add_lru_vma(folio, vma);
 | |
| 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
 | |
| 	set_pmd_at(mm, address, pmd, _pmd);
 | |
| 	update_mmu_cache_pmd(vma, address, pmd);
 | |
| 	spin_unlock(pmd_ptl);
 | |
| 
 | |
| 	hpage = NULL;
 | |
| 
 | |
| 	result = SCAN_SUCCEED;
 | |
| out_up_write:
 | |
| 	mmap_write_unlock(mm);
 | |
| out_nolock:
 | |
| 	if (hpage)
 | |
| 		put_page(hpage);
 | |
| 	trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static int hpage_collapse_scan_pmd(struct mm_struct *mm,
 | |
| 				   struct vm_area_struct *vma,
 | |
| 				   unsigned long address, bool *mmap_locked,
 | |
| 				   struct collapse_control *cc)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte, *_pte;
 | |
| 	int result = SCAN_FAIL, referenced = 0;
 | |
| 	int none_or_zero = 0, shared = 0;
 | |
| 	struct page *page = NULL;
 | |
| 	struct folio *folio = NULL;
 | |
| 	unsigned long _address;
 | |
| 	spinlock_t *ptl;
 | |
| 	int node = NUMA_NO_NODE, unmapped = 0;
 | |
| 	bool writable = false;
 | |
| 
 | |
| 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 | |
| 
 | |
| 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
 | |
| 	if (result != SCAN_SUCCEED)
 | |
| 		goto out;
 | |
| 
 | |
| 	memset(cc->node_load, 0, sizeof(cc->node_load));
 | |
| 	nodes_clear(cc->alloc_nmask);
 | |
| 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
 | |
| 	if (!pte) {
 | |
| 		result = SCAN_PMD_NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
 | |
| 	     _pte++, _address += PAGE_SIZE) {
 | |
| 		pte_t pteval = ptep_get(_pte);
 | |
| 		if (is_swap_pte(pteval)) {
 | |
| 			++unmapped;
 | |
| 			if (!cc->is_khugepaged ||
 | |
| 			    unmapped <= khugepaged_max_ptes_swap) {
 | |
| 				/*
 | |
| 				 * Always be strict with uffd-wp
 | |
| 				 * enabled swap entries.  Please see
 | |
| 				 * comment below for pte_uffd_wp().
 | |
| 				 */
 | |
| 				if (pte_swp_uffd_wp_any(pteval)) {
 | |
| 					result = SCAN_PTE_UFFD_WP;
 | |
| 					goto out_unmap;
 | |
| 				}
 | |
| 				continue;
 | |
| 			} else {
 | |
| 				result = SCAN_EXCEED_SWAP_PTE;
 | |
| 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
 | |
| 				goto out_unmap;
 | |
| 			}
 | |
| 		}
 | |
| 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
 | |
| 			++none_or_zero;
 | |
| 			if (!userfaultfd_armed(vma) &&
 | |
| 			    (!cc->is_khugepaged ||
 | |
| 			     none_or_zero <= khugepaged_max_ptes_none)) {
 | |
| 				continue;
 | |
| 			} else {
 | |
| 				result = SCAN_EXCEED_NONE_PTE;
 | |
| 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
 | |
| 				goto out_unmap;
 | |
| 			}
 | |
| 		}
 | |
| 		if (pte_uffd_wp(pteval)) {
 | |
| 			/*
 | |
| 			 * Don't collapse the page if any of the small
 | |
| 			 * PTEs are armed with uffd write protection.
 | |
| 			 * Here we can also mark the new huge pmd as
 | |
| 			 * write protected if any of the small ones is
 | |
| 			 * marked but that could bring unknown
 | |
| 			 * userfault messages that falls outside of
 | |
| 			 * the registered range.  So, just be simple.
 | |
| 			 */
 | |
| 			result = SCAN_PTE_UFFD_WP;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 		if (pte_write(pteval))
 | |
| 			writable = true;
 | |
| 
 | |
| 		page = vm_normal_page(vma, _address, pteval);
 | |
| 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
 | |
| 			result = SCAN_PAGE_NULL;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 
 | |
| 		if (page_mapcount(page) > 1) {
 | |
| 			++shared;
 | |
| 			if (cc->is_khugepaged &&
 | |
| 			    shared > khugepaged_max_ptes_shared) {
 | |
| 				result = SCAN_EXCEED_SHARED_PTE;
 | |
| 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
 | |
| 				goto out_unmap;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		folio = page_folio(page);
 | |
| 		/*
 | |
| 		 * Record which node the original page is from and save this
 | |
| 		 * information to cc->node_load[].
 | |
| 		 * Khugepaged will allocate hugepage from the node has the max
 | |
| 		 * hit record.
 | |
| 		 */
 | |
| 		node = folio_nid(folio);
 | |
| 		if (hpage_collapse_scan_abort(node, cc)) {
 | |
| 			result = SCAN_SCAN_ABORT;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 		cc->node_load[node]++;
 | |
| 		if (!folio_test_lru(folio)) {
 | |
| 			result = SCAN_PAGE_LRU;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 		if (folio_test_locked(folio)) {
 | |
| 			result = SCAN_PAGE_LOCK;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 		if (!folio_test_anon(folio)) {
 | |
| 			result = SCAN_PAGE_ANON;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Check if the page has any GUP (or other external) pins.
 | |
| 		 *
 | |
| 		 * Here the check may be racy:
 | |
| 		 * it may see total_mapcount > refcount in some cases?
 | |
| 		 * But such case is ephemeral we could always retry collapse
 | |
| 		 * later.  However it may report false positive if the page
 | |
| 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
 | |
| 		 * will be done again later the risk seems low.
 | |
| 		 */
 | |
| 		if (!is_refcount_suitable(folio)) {
 | |
| 			result = SCAN_PAGE_COUNT;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If collapse was initiated by khugepaged, check that there is
 | |
| 		 * enough young pte to justify collapsing the page
 | |
| 		 */
 | |
| 		if (cc->is_khugepaged &&
 | |
| 		    (pte_young(pteval) || folio_test_young(folio) ||
 | |
| 		     folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
 | |
| 								     address)))
 | |
| 			referenced++;
 | |
| 	}
 | |
| 	if (!writable) {
 | |
| 		result = SCAN_PAGE_RO;
 | |
| 	} else if (cc->is_khugepaged &&
 | |
| 		   (!referenced ||
 | |
| 		    (unmapped && referenced < HPAGE_PMD_NR / 2))) {
 | |
| 		result = SCAN_LACK_REFERENCED_PAGE;
 | |
| 	} else {
 | |
| 		result = SCAN_SUCCEED;
 | |
| 	}
 | |
| out_unmap:
 | |
| 	pte_unmap_unlock(pte, ptl);
 | |
| 	if (result == SCAN_SUCCEED) {
 | |
| 		result = collapse_huge_page(mm, address, referenced,
 | |
| 					    unmapped, cc);
 | |
| 		/* collapse_huge_page will return with the mmap_lock released */
 | |
| 		*mmap_locked = false;
 | |
| 	}
 | |
| out:
 | |
| 	trace_mm_khugepaged_scan_pmd(mm, &folio->page, writable, referenced,
 | |
| 				     none_or_zero, result, unmapped);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
 | |
| {
 | |
| 	struct mm_slot *slot = &mm_slot->slot;
 | |
| 	struct mm_struct *mm = slot->mm;
 | |
| 
 | |
| 	lockdep_assert_held(&khugepaged_mm_lock);
 | |
| 
 | |
| 	if (hpage_collapse_test_exit(mm)) {
 | |
| 		/* free mm_slot */
 | |
| 		hash_del(&slot->hash);
 | |
| 		list_del(&slot->mm_node);
 | |
| 
 | |
| 		/*
 | |
| 		 * Not strictly needed because the mm exited already.
 | |
| 		 *
 | |
| 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
 | |
| 		 */
 | |
| 
 | |
| 		/* khugepaged_mm_lock actually not necessary for the below */
 | |
| 		mm_slot_free(mm_slot_cache, mm_slot);
 | |
| 		mmdrop(mm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SHMEM
 | |
| /* hpage must be locked, and mmap_lock must be held */
 | |
| static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			pmd_t *pmdp, struct page *hpage)
 | |
| {
 | |
| 	struct vm_fault vmf = {
 | |
| 		.vma = vma,
 | |
| 		.address = addr,
 | |
| 		.flags = 0,
 | |
| 		.pmd = pmdp,
 | |
| 	};
 | |
| 
 | |
| 	VM_BUG_ON(!PageTransHuge(hpage));
 | |
| 	mmap_assert_locked(vma->vm_mm);
 | |
| 
 | |
| 	if (do_set_pmd(&vmf, hpage))
 | |
| 		return SCAN_FAIL;
 | |
| 
 | |
| 	get_page(hpage);
 | |
| 	return SCAN_SUCCEED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
 | |
|  * address haddr.
 | |
|  *
 | |
|  * @mm: process address space where collapse happens
 | |
|  * @addr: THP collapse address
 | |
|  * @install_pmd: If a huge PMD should be installed
 | |
|  *
 | |
|  * This function checks whether all the PTEs in the PMD are pointing to the
 | |
|  * right THP. If so, retract the page table so the THP can refault in with
 | |
|  * as pmd-mapped. Possibly install a huge PMD mapping the THP.
 | |
|  */
 | |
| int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
 | |
| 			    bool install_pmd)
 | |
| {
 | |
| 	struct mmu_notifier_range range;
 | |
| 	bool notified = false;
 | |
| 	unsigned long haddr = addr & HPAGE_PMD_MASK;
 | |
| 	struct vm_area_struct *vma = vma_lookup(mm, haddr);
 | |
| 	struct folio *folio;
 | |
| 	pte_t *start_pte, *pte;
 | |
| 	pmd_t *pmd, pgt_pmd;
 | |
| 	spinlock_t *pml = NULL, *ptl;
 | |
| 	int nr_ptes = 0, result = SCAN_FAIL;
 | |
| 	int i;
 | |
| 
 | |
| 	mmap_assert_locked(mm);
 | |
| 
 | |
| 	/* First check VMA found, in case page tables are being torn down */
 | |
| 	if (!vma || !vma->vm_file ||
 | |
| 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
 | |
| 		return SCAN_VMA_CHECK;
 | |
| 
 | |
| 	/* Fast check before locking page if already PMD-mapped */
 | |
| 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
 | |
| 	if (result == SCAN_PMD_MAPPED)
 | |
| 		return result;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are here, we've succeeded in replacing all the native pages
 | |
| 	 * in the page cache with a single hugepage. If a mm were to fault-in
 | |
| 	 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
 | |
| 	 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
 | |
| 	 * analogously elide sysfs THP settings here.
 | |
| 	 */
 | |
| 	if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false, false,
 | |
| 				     PMD_ORDER))
 | |
| 		return SCAN_VMA_CHECK;
 | |
| 
 | |
| 	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
 | |
| 	if (userfaultfd_wp(vma))
 | |
| 		return SCAN_PTE_UFFD_WP;
 | |
| 
 | |
| 	folio = filemap_lock_folio(vma->vm_file->f_mapping,
 | |
| 			       linear_page_index(vma, haddr));
 | |
| 	if (IS_ERR(folio))
 | |
| 		return SCAN_PAGE_NULL;
 | |
| 
 | |
| 	if (folio_order(folio) != HPAGE_PMD_ORDER) {
 | |
| 		result = SCAN_PAGE_COMPOUND;
 | |
| 		goto drop_folio;
 | |
| 	}
 | |
| 
 | |
| 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
 | |
| 	switch (result) {
 | |
| 	case SCAN_SUCCEED:
 | |
| 		break;
 | |
| 	case SCAN_PMD_NONE:
 | |
| 		/*
 | |
| 		 * All pte entries have been removed and pmd cleared.
 | |
| 		 * Skip all the pte checks and just update the pmd mapping.
 | |
| 		 */
 | |
| 		goto maybe_install_pmd;
 | |
| 	default:
 | |
| 		goto drop_folio;
 | |
| 	}
 | |
| 
 | |
| 	result = SCAN_FAIL;
 | |
| 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
 | |
| 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
 | |
| 		goto drop_folio;
 | |
| 
 | |
| 	/* step 1: check all mapped PTEs are to the right huge page */
 | |
| 	for (i = 0, addr = haddr, pte = start_pte;
 | |
| 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
 | |
| 		struct page *page;
 | |
| 		pte_t ptent = ptep_get(pte);
 | |
| 
 | |
| 		/* empty pte, skip */
 | |
| 		if (pte_none(ptent))
 | |
| 			continue;
 | |
| 
 | |
| 		/* page swapped out, abort */
 | |
| 		if (!pte_present(ptent)) {
 | |
| 			result = SCAN_PTE_NON_PRESENT;
 | |
| 			goto abort;
 | |
| 		}
 | |
| 
 | |
| 		page = vm_normal_page(vma, addr, ptent);
 | |
| 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
 | |
| 			page = NULL;
 | |
| 		/*
 | |
| 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
 | |
| 		 * page table, but the new page will not be a subpage of hpage.
 | |
| 		 */
 | |
| 		if (folio_page(folio, i) != page)
 | |
| 			goto abort;
 | |
| 	}
 | |
| 
 | |
| 	pte_unmap_unlock(start_pte, ptl);
 | |
| 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
 | |
| 				haddr, haddr + HPAGE_PMD_SIZE);
 | |
| 	mmu_notifier_invalidate_range_start(&range);
 | |
| 	notified = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * pmd_lock covers a wider range than ptl, and (if split from mm's
 | |
| 	 * page_table_lock) ptl nests inside pml. The less time we hold pml,
 | |
| 	 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA
 | |
| 	 * inserts a valid as-if-COWed PTE without even looking up page cache.
 | |
| 	 * So page lock of folio does not protect from it, so we must not drop
 | |
| 	 * ptl before pgt_pmd is removed, so uffd private needs pml taken now.
 | |
| 	 */
 | |
| 	if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
 | |
| 		pml = pmd_lock(mm, pmd);
 | |
| 
 | |
| 	start_pte = pte_offset_map_nolock(mm, pmd, haddr, &ptl);
 | |
| 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
 | |
| 		goto abort;
 | |
| 	if (!pml)
 | |
| 		spin_lock(ptl);
 | |
| 	else if (ptl != pml)
 | |
| 		spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
 | |
| 
 | |
| 	/* step 2: clear page table and adjust rmap */
 | |
| 	for (i = 0, addr = haddr, pte = start_pte;
 | |
| 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
 | |
| 		struct page *page;
 | |
| 		pte_t ptent = ptep_get(pte);
 | |
| 
 | |
| 		if (pte_none(ptent))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * We dropped ptl after the first scan, to do the mmu_notifier:
 | |
| 		 * page lock stops more PTEs of the folio being faulted in, but
 | |
| 		 * does not stop write faults COWing anon copies from existing
 | |
| 		 * PTEs; and does not stop those being swapped out or migrated.
 | |
| 		 */
 | |
| 		if (!pte_present(ptent)) {
 | |
| 			result = SCAN_PTE_NON_PRESENT;
 | |
| 			goto abort;
 | |
| 		}
 | |
| 		page = vm_normal_page(vma, addr, ptent);
 | |
| 		if (folio_page(folio, i) != page)
 | |
| 			goto abort;
 | |
| 
 | |
| 		/*
 | |
| 		 * Must clear entry, or a racing truncate may re-remove it.
 | |
| 		 * TLB flush can be left until pmdp_collapse_flush() does it.
 | |
| 		 * PTE dirty? Shmem page is already dirty; file is read-only.
 | |
| 		 */
 | |
| 		ptep_clear(mm, addr, pte);
 | |
| 		folio_remove_rmap_pte(folio, page, vma);
 | |
| 		nr_ptes++;
 | |
| 	}
 | |
| 
 | |
| 	pte_unmap(start_pte);
 | |
| 	if (!pml)
 | |
| 		spin_unlock(ptl);
 | |
| 
 | |
| 	/* step 3: set proper refcount and mm_counters. */
 | |
| 	if (nr_ptes) {
 | |
| 		folio_ref_sub(folio, nr_ptes);
 | |
| 		add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
 | |
| 	}
 | |
| 
 | |
| 	/* step 4: remove empty page table */
 | |
| 	if (!pml) {
 | |
| 		pml = pmd_lock(mm, pmd);
 | |
| 		if (ptl != pml)
 | |
| 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
 | |
| 	}
 | |
| 	pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
 | |
| 	pmdp_get_lockless_sync();
 | |
| 	if (ptl != pml)
 | |
| 		spin_unlock(ptl);
 | |
| 	spin_unlock(pml);
 | |
| 
 | |
| 	mmu_notifier_invalidate_range_end(&range);
 | |
| 
 | |
| 	mm_dec_nr_ptes(mm);
 | |
| 	page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
 | |
| 	pte_free_defer(mm, pmd_pgtable(pgt_pmd));
 | |
| 
 | |
| maybe_install_pmd:
 | |
| 	/* step 5: install pmd entry */
 | |
| 	result = install_pmd
 | |
| 			? set_huge_pmd(vma, haddr, pmd, &folio->page)
 | |
| 			: SCAN_SUCCEED;
 | |
| 	goto drop_folio;
 | |
| abort:
 | |
| 	if (nr_ptes) {
 | |
| 		flush_tlb_mm(mm);
 | |
| 		folio_ref_sub(folio, nr_ptes);
 | |
| 		add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
 | |
| 	}
 | |
| 	if (start_pte)
 | |
| 		pte_unmap_unlock(start_pte, ptl);
 | |
| 	if (pml && pml != ptl)
 | |
| 		spin_unlock(pml);
 | |
| 	if (notified)
 | |
| 		mmu_notifier_invalidate_range_end(&range);
 | |
| drop_folio:
 | |
| 	folio_unlock(folio);
 | |
| 	folio_put(folio);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	i_mmap_lock_read(mapping);
 | |
| 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 | |
| 		struct mmu_notifier_range range;
 | |
| 		struct mm_struct *mm;
 | |
| 		unsigned long addr;
 | |
| 		pmd_t *pmd, pgt_pmd;
 | |
| 		spinlock_t *pml;
 | |
| 		spinlock_t *ptl;
 | |
| 		bool skipped_uffd = false;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
 | |
| 		 * got written to. These VMAs are likely not worth removing
 | |
| 		 * page tables from, as PMD-mapping is likely to be split later.
 | |
| 		 */
 | |
| 		if (READ_ONCE(vma->anon_vma))
 | |
| 			continue;
 | |
| 
 | |
| 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 | |
| 		if (addr & ~HPAGE_PMD_MASK ||
 | |
| 		    vma->vm_end < addr + HPAGE_PMD_SIZE)
 | |
| 			continue;
 | |
| 
 | |
| 		mm = vma->vm_mm;
 | |
| 		if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
 | |
| 			continue;
 | |
| 
 | |
| 		if (hpage_collapse_test_exit(mm))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * When a vma is registered with uffd-wp, we cannot recycle
 | |
| 		 * the page table because there may be pte markers installed.
 | |
| 		 * Other vmas can still have the same file mapped hugely, but
 | |
| 		 * skip this one: it will always be mapped in small page size
 | |
| 		 * for uffd-wp registered ranges.
 | |
| 		 */
 | |
| 		if (userfaultfd_wp(vma))
 | |
| 			continue;
 | |
| 
 | |
| 		/* PTEs were notified when unmapped; but now for the PMD? */
 | |
| 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
 | |
| 					addr, addr + HPAGE_PMD_SIZE);
 | |
| 		mmu_notifier_invalidate_range_start(&range);
 | |
| 
 | |
| 		pml = pmd_lock(mm, pmd);
 | |
| 		ptl = pte_lockptr(mm, pmd);
 | |
| 		if (ptl != pml)
 | |
| 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
 | |
| 
 | |
| 		/*
 | |
| 		 * Huge page lock is still held, so normally the page table
 | |
| 		 * must remain empty; and we have already skipped anon_vma
 | |
| 		 * and userfaultfd_wp() vmas.  But since the mmap_lock is not
 | |
| 		 * held, it is still possible for a racing userfaultfd_ioctl()
 | |
| 		 * to have inserted ptes or markers.  Now that we hold ptlock,
 | |
| 		 * repeating the anon_vma check protects from one category,
 | |
| 		 * and repeating the userfaultfd_wp() check from another.
 | |
| 		 */
 | |
| 		if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) {
 | |
| 			skipped_uffd = true;
 | |
| 		} else {
 | |
| 			pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
 | |
| 			pmdp_get_lockless_sync();
 | |
| 		}
 | |
| 
 | |
| 		if (ptl != pml)
 | |
| 			spin_unlock(ptl);
 | |
| 		spin_unlock(pml);
 | |
| 
 | |
| 		mmu_notifier_invalidate_range_end(&range);
 | |
| 
 | |
| 		if (!skipped_uffd) {
 | |
| 			mm_dec_nr_ptes(mm);
 | |
| 			page_table_check_pte_clear_range(mm, addr, pgt_pmd);
 | |
| 			pte_free_defer(mm, pmd_pgtable(pgt_pmd));
 | |
| 		}
 | |
| 	}
 | |
| 	i_mmap_unlock_read(mapping);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
 | |
|  *
 | |
|  * @mm: process address space where collapse happens
 | |
|  * @addr: virtual collapse start address
 | |
|  * @file: file that collapse on
 | |
|  * @start: collapse start address
 | |
|  * @cc: collapse context and scratchpad
 | |
|  *
 | |
|  * Basic scheme is simple, details are more complex:
 | |
|  *  - allocate and lock a new huge page;
 | |
|  *  - scan page cache, locking old pages
 | |
|  *    + swap/gup in pages if necessary;
 | |
|  *  - copy data to new page
 | |
|  *  - handle shmem holes
 | |
|  *    + re-validate that holes weren't filled by someone else
 | |
|  *    + check for userfaultfd
 | |
|  *  - finalize updates to the page cache;
 | |
|  *  - if replacing succeeds:
 | |
|  *    + unlock huge page;
 | |
|  *    + free old pages;
 | |
|  *  - if replacing failed;
 | |
|  *    + unlock old pages
 | |
|  *    + unlock and free huge page;
 | |
|  */
 | |
| static int collapse_file(struct mm_struct *mm, unsigned long addr,
 | |
| 			 struct file *file, pgoff_t start,
 | |
| 			 struct collapse_control *cc)
 | |
| {
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct page *hpage;
 | |
| 	struct page *page;
 | |
| 	struct page *tmp;
 | |
| 	struct folio *folio;
 | |
| 	pgoff_t index = 0, end = start + HPAGE_PMD_NR;
 | |
| 	LIST_HEAD(pagelist);
 | |
| 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
 | |
| 	int nr_none = 0, result = SCAN_SUCCEED;
 | |
| 	bool is_shmem = shmem_file(file);
 | |
| 	int nr = 0;
 | |
| 
 | |
| 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
 | |
| 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
 | |
| 
 | |
| 	result = alloc_charge_hpage(&hpage, mm, cc);
 | |
| 	if (result != SCAN_SUCCEED)
 | |
| 		goto out;
 | |
| 
 | |
| 	__SetPageLocked(hpage);
 | |
| 	if (is_shmem)
 | |
| 		__SetPageSwapBacked(hpage);
 | |
| 	hpage->index = start;
 | |
| 	hpage->mapping = mapping;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure we have slots for all the pages in the range.  This is
 | |
| 	 * almost certainly a no-op because most of the pages must be present
 | |
| 	 */
 | |
| 	do {
 | |
| 		xas_lock_irq(&xas);
 | |
| 		xas_create_range(&xas);
 | |
| 		if (!xas_error(&xas))
 | |
| 			break;
 | |
| 		xas_unlock_irq(&xas);
 | |
| 		if (!xas_nomem(&xas, GFP_KERNEL)) {
 | |
| 			result = SCAN_FAIL;
 | |
| 			goto rollback;
 | |
| 		}
 | |
| 	} while (1);
 | |
| 
 | |
| 	for (index = start; index < end; index++) {
 | |
| 		xas_set(&xas, index);
 | |
| 		page = xas_load(&xas);
 | |
| 
 | |
| 		VM_BUG_ON(index != xas.xa_index);
 | |
| 		if (is_shmem) {
 | |
| 			if (!page) {
 | |
| 				/*
 | |
| 				 * Stop if extent has been truncated or
 | |
| 				 * hole-punched, and is now completely
 | |
| 				 * empty.
 | |
| 				 */
 | |
| 				if (index == start) {
 | |
| 					if (!xas_next_entry(&xas, end - 1)) {
 | |
| 						result = SCAN_TRUNCATED;
 | |
| 						goto xa_locked;
 | |
| 					}
 | |
| 				}
 | |
| 				nr_none++;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (xa_is_value(page) || !PageUptodate(page)) {
 | |
| 				xas_unlock_irq(&xas);
 | |
| 				/* swap in or instantiate fallocated page */
 | |
| 				if (shmem_get_folio(mapping->host, index,
 | |
| 						&folio, SGP_NOALLOC)) {
 | |
| 					result = SCAN_FAIL;
 | |
| 					goto xa_unlocked;
 | |
| 				}
 | |
| 				/* drain lru cache to help isolate_lru_page() */
 | |
| 				lru_add_drain();
 | |
| 				page = folio_file_page(folio, index);
 | |
| 			} else if (trylock_page(page)) {
 | |
| 				get_page(page);
 | |
| 				xas_unlock_irq(&xas);
 | |
| 			} else {
 | |
| 				result = SCAN_PAGE_LOCK;
 | |
| 				goto xa_locked;
 | |
| 			}
 | |
| 		} else {	/* !is_shmem */
 | |
| 			if (!page || xa_is_value(page)) {
 | |
| 				xas_unlock_irq(&xas);
 | |
| 				page_cache_sync_readahead(mapping, &file->f_ra,
 | |
| 							  file, index,
 | |
| 							  end - index);
 | |
| 				/* drain lru cache to help isolate_lru_page() */
 | |
| 				lru_add_drain();
 | |
| 				page = find_lock_page(mapping, index);
 | |
| 				if (unlikely(page == NULL)) {
 | |
| 					result = SCAN_FAIL;
 | |
| 					goto xa_unlocked;
 | |
| 				}
 | |
| 			} else if (PageDirty(page)) {
 | |
| 				/*
 | |
| 				 * khugepaged only works on read-only fd,
 | |
| 				 * so this page is dirty because it hasn't
 | |
| 				 * been flushed since first write. There
 | |
| 				 * won't be new dirty pages.
 | |
| 				 *
 | |
| 				 * Trigger async flush here and hope the
 | |
| 				 * writeback is done when khugepaged
 | |
| 				 * revisits this page.
 | |
| 				 *
 | |
| 				 * This is a one-off situation. We are not
 | |
| 				 * forcing writeback in loop.
 | |
| 				 */
 | |
| 				xas_unlock_irq(&xas);
 | |
| 				filemap_flush(mapping);
 | |
| 				result = SCAN_FAIL;
 | |
| 				goto xa_unlocked;
 | |
| 			} else if (PageWriteback(page)) {
 | |
| 				xas_unlock_irq(&xas);
 | |
| 				result = SCAN_FAIL;
 | |
| 				goto xa_unlocked;
 | |
| 			} else if (trylock_page(page)) {
 | |
| 				get_page(page);
 | |
| 				xas_unlock_irq(&xas);
 | |
| 			} else {
 | |
| 				result = SCAN_PAGE_LOCK;
 | |
| 				goto xa_locked;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The page must be locked, so we can drop the i_pages lock
 | |
| 		 * without racing with truncate.
 | |
| 		 */
 | |
| 		VM_BUG_ON_PAGE(!PageLocked(page), page);
 | |
| 
 | |
| 		/* make sure the page is up to date */
 | |
| 		if (unlikely(!PageUptodate(page))) {
 | |
| 			result = SCAN_FAIL;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If file was truncated then extended, or hole-punched, before
 | |
| 		 * we locked the first page, then a THP might be there already.
 | |
| 		 * This will be discovered on the first iteration.
 | |
| 		 */
 | |
| 		if (PageTransCompound(page)) {
 | |
| 			struct page *head = compound_head(page);
 | |
| 
 | |
| 			result = compound_order(head) == HPAGE_PMD_ORDER &&
 | |
| 					head->index == start
 | |
| 					/* Maybe PMD-mapped */
 | |
| 					? SCAN_PTE_MAPPED_HUGEPAGE
 | |
| 					: SCAN_PAGE_COMPOUND;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		folio = page_folio(page);
 | |
| 
 | |
| 		if (folio_mapping(folio) != mapping) {
 | |
| 			result = SCAN_TRUNCATED;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		if (!is_shmem && (folio_test_dirty(folio) ||
 | |
| 				  folio_test_writeback(folio))) {
 | |
| 			/*
 | |
| 			 * khugepaged only works on read-only fd, so this
 | |
| 			 * page is dirty because it hasn't been flushed
 | |
| 			 * since first write.
 | |
| 			 */
 | |
| 			result = SCAN_FAIL;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		if (!folio_isolate_lru(folio)) {
 | |
| 			result = SCAN_DEL_PAGE_LRU;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		if (!filemap_release_folio(folio, GFP_KERNEL)) {
 | |
| 			result = SCAN_PAGE_HAS_PRIVATE;
 | |
| 			folio_putback_lru(folio);
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		if (folio_mapped(folio))
 | |
| 			try_to_unmap(folio,
 | |
| 					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
 | |
| 
 | |
| 		xas_lock_irq(&xas);
 | |
| 
 | |
| 		VM_BUG_ON_PAGE(page != xa_load(xas.xa, index), page);
 | |
| 
 | |
| 		/*
 | |
| 		 * We control three references to the page:
 | |
| 		 *  - we hold a pin on it;
 | |
| 		 *  - one reference from page cache;
 | |
| 		 *  - one from isolate_lru_page;
 | |
| 		 * If those are the only references, then any new usage of the
 | |
| 		 * page will have to fetch it from the page cache. That requires
 | |
| 		 * locking the page to handle truncate, so any new usage will be
 | |
| 		 * blocked until we unlock page after collapse/during rollback.
 | |
| 		 */
 | |
| 		if (page_count(page) != 3) {
 | |
| 			result = SCAN_PAGE_COUNT;
 | |
| 			xas_unlock_irq(&xas);
 | |
| 			putback_lru_page(page);
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Accumulate the pages that are being collapsed.
 | |
| 		 */
 | |
| 		list_add_tail(&page->lru, &pagelist);
 | |
| 		continue;
 | |
| out_unlock:
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 		goto xa_unlocked;
 | |
| 	}
 | |
| 
 | |
| 	if (!is_shmem) {
 | |
| 		filemap_nr_thps_inc(mapping);
 | |
| 		/*
 | |
| 		 * Paired with smp_mb() in do_dentry_open() to ensure
 | |
| 		 * i_writecount is up to date and the update to nr_thps is
 | |
| 		 * visible. Ensures the page cache will be truncated if the
 | |
| 		 * file is opened writable.
 | |
| 		 */
 | |
| 		smp_mb();
 | |
| 		if (inode_is_open_for_write(mapping->host)) {
 | |
| 			result = SCAN_FAIL;
 | |
| 			filemap_nr_thps_dec(mapping);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| xa_locked:
 | |
| 	xas_unlock_irq(&xas);
 | |
| xa_unlocked:
 | |
| 
 | |
| 	/*
 | |
| 	 * If collapse is successful, flush must be done now before copying.
 | |
| 	 * If collapse is unsuccessful, does flush actually need to be done?
 | |
| 	 * Do it anyway, to clear the state.
 | |
| 	 */
 | |
| 	try_to_unmap_flush();
 | |
| 
 | |
| 	if (result == SCAN_SUCCEED && nr_none &&
 | |
| 	    !shmem_charge(mapping->host, nr_none))
 | |
| 		result = SCAN_FAIL;
 | |
| 	if (result != SCAN_SUCCEED) {
 | |
| 		nr_none = 0;
 | |
| 		goto rollback;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The old pages are locked, so they won't change anymore.
 | |
| 	 */
 | |
| 	index = start;
 | |
| 	list_for_each_entry(page, &pagelist, lru) {
 | |
| 		while (index < page->index) {
 | |
| 			clear_highpage(hpage + (index % HPAGE_PMD_NR));
 | |
| 			index++;
 | |
| 		}
 | |
| 		if (copy_mc_highpage(hpage + (page->index % HPAGE_PMD_NR), page) > 0) {
 | |
| 			result = SCAN_COPY_MC;
 | |
| 			goto rollback;
 | |
| 		}
 | |
| 		index++;
 | |
| 	}
 | |
| 	while (index < end) {
 | |
| 		clear_highpage(hpage + (index % HPAGE_PMD_NR));
 | |
| 		index++;
 | |
| 	}
 | |
| 
 | |
| 	if (nr_none) {
 | |
| 		struct vm_area_struct *vma;
 | |
| 		int nr_none_check = 0;
 | |
| 
 | |
| 		i_mmap_lock_read(mapping);
 | |
| 		xas_lock_irq(&xas);
 | |
| 
 | |
| 		xas_set(&xas, start);
 | |
| 		for (index = start; index < end; index++) {
 | |
| 			if (!xas_next(&xas)) {
 | |
| 				xas_store(&xas, XA_RETRY_ENTRY);
 | |
| 				if (xas_error(&xas)) {
 | |
| 					result = SCAN_STORE_FAILED;
 | |
| 					goto immap_locked;
 | |
| 				}
 | |
| 				nr_none_check++;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (nr_none != nr_none_check) {
 | |
| 			result = SCAN_PAGE_FILLED;
 | |
| 			goto immap_locked;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If userspace observed a missing page in a VMA with a MODE_MISSING
 | |
| 		 * userfaultfd, then it might expect a UFFD_EVENT_PAGEFAULT for that
 | |
| 		 * page. If so, we need to roll back to avoid suppressing such an
 | |
| 		 * event. Since wp/minor userfaultfds don't give userspace any
 | |
| 		 * guarantees that the kernel doesn't fill a missing page with a zero
 | |
| 		 * page, so they don't matter here.
 | |
| 		 *
 | |
| 		 * Any userfaultfds registered after this point will not be able to
 | |
| 		 * observe any missing pages due to the previously inserted retry
 | |
| 		 * entries.
 | |
| 		 */
 | |
| 		vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
 | |
| 			if (userfaultfd_missing(vma)) {
 | |
| 				result = SCAN_EXCEED_NONE_PTE;
 | |
| 				goto immap_locked;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| immap_locked:
 | |
| 		i_mmap_unlock_read(mapping);
 | |
| 		if (result != SCAN_SUCCEED) {
 | |
| 			xas_set(&xas, start);
 | |
| 			for (index = start; index < end; index++) {
 | |
| 				if (xas_next(&xas) == XA_RETRY_ENTRY)
 | |
| 					xas_store(&xas, NULL);
 | |
| 			}
 | |
| 
 | |
| 			xas_unlock_irq(&xas);
 | |
| 			goto rollback;
 | |
| 		}
 | |
| 	} else {
 | |
| 		xas_lock_irq(&xas);
 | |
| 	}
 | |
| 
 | |
| 	folio = page_folio(hpage);
 | |
| 	nr = folio_nr_pages(folio);
 | |
| 	if (is_shmem)
 | |
| 		__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
 | |
| 	else
 | |
| 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, nr);
 | |
| 
 | |
| 	if (nr_none) {
 | |
| 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_none);
 | |
| 		/* nr_none is always 0 for non-shmem. */
 | |
| 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr_none);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark hpage as uptodate before inserting it into the page cache so
 | |
| 	 * that it isn't mistaken for an fallocated but unwritten page.
 | |
| 	 */
 | |
| 	folio_mark_uptodate(folio);
 | |
| 	folio_ref_add(folio, HPAGE_PMD_NR - 1);
 | |
| 
 | |
| 	if (is_shmem)
 | |
| 		folio_mark_dirty(folio);
 | |
| 	folio_add_lru(folio);
 | |
| 
 | |
| 	/* Join all the small entries into a single multi-index entry. */
 | |
| 	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
 | |
| 	xas_store(&xas, folio);
 | |
| 	WARN_ON_ONCE(xas_error(&xas));
 | |
| 	xas_unlock_irq(&xas);
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove pte page tables, so we can re-fault the page as huge.
 | |
| 	 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
 | |
| 	 */
 | |
| 	retract_page_tables(mapping, start);
 | |
| 	if (cc && !cc->is_khugepaged)
 | |
| 		result = SCAN_PTE_MAPPED_HUGEPAGE;
 | |
| 	folio_unlock(folio);
 | |
| 
 | |
| 	/*
 | |
| 	 * The collapse has succeeded, so free the old pages.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(page, tmp, &pagelist, lru) {
 | |
| 		list_del(&page->lru);
 | |
| 		page->mapping = NULL;
 | |
| 		ClearPageActive(page);
 | |
| 		ClearPageUnevictable(page);
 | |
| 		unlock_page(page);
 | |
| 		folio_put_refs(page_folio(page), 3);
 | |
| 	}
 | |
| 
 | |
| 	goto out;
 | |
| 
 | |
| rollback:
 | |
| 	/* Something went wrong: roll back page cache changes */
 | |
| 	if (nr_none) {
 | |
| 		xas_lock_irq(&xas);
 | |
| 		mapping->nrpages -= nr_none;
 | |
| 		xas_unlock_irq(&xas);
 | |
| 		shmem_uncharge(mapping->host, nr_none);
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_safe(page, tmp, &pagelist, lru) {
 | |
| 		list_del(&page->lru);
 | |
| 		unlock_page(page);
 | |
| 		putback_lru_page(page);
 | |
| 		put_page(page);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Undo the updates of filemap_nr_thps_inc for non-SHMEM
 | |
| 	 * file only. This undo is not needed unless failure is
 | |
| 	 * due to SCAN_COPY_MC.
 | |
| 	 */
 | |
| 	if (!is_shmem && result == SCAN_COPY_MC) {
 | |
| 		filemap_nr_thps_dec(mapping);
 | |
| 		/*
 | |
| 		 * Paired with smp_mb() in do_dentry_open() to
 | |
| 		 * ensure the update to nr_thps is visible.
 | |
| 		 */
 | |
| 		smp_mb();
 | |
| 	}
 | |
| 
 | |
| 	hpage->mapping = NULL;
 | |
| 
 | |
| 	unlock_page(hpage);
 | |
| 	put_page(hpage);
 | |
| out:
 | |
| 	VM_BUG_ON(!list_empty(&pagelist));
 | |
| 	trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
 | |
| 				    struct file *file, pgoff_t start,
 | |
| 				    struct collapse_control *cc)
 | |
| {
 | |
| 	struct page *page = NULL;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	XA_STATE(xas, &mapping->i_pages, start);
 | |
| 	int present, swap;
 | |
| 	int node = NUMA_NO_NODE;
 | |
| 	int result = SCAN_SUCCEED;
 | |
| 
 | |
| 	present = 0;
 | |
| 	swap = 0;
 | |
| 	memset(cc->node_load, 0, sizeof(cc->node_load));
 | |
| 	nodes_clear(cc->alloc_nmask);
 | |
| 	rcu_read_lock();
 | |
| 	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
 | |
| 		if (xas_retry(&xas, page))
 | |
| 			continue;
 | |
| 
 | |
| 		if (xa_is_value(page)) {
 | |
| 			++swap;
 | |
| 			if (cc->is_khugepaged &&
 | |
| 			    swap > khugepaged_max_ptes_swap) {
 | |
| 				result = SCAN_EXCEED_SWAP_PTE;
 | |
| 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
 | |
| 				break;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * TODO: khugepaged should compact smaller compound pages
 | |
| 		 * into a PMD sized page
 | |
| 		 */
 | |
| 		if (PageTransCompound(page)) {
 | |
| 			struct page *head = compound_head(page);
 | |
| 
 | |
| 			result = compound_order(head) == HPAGE_PMD_ORDER &&
 | |
| 					head->index == start
 | |
| 					/* Maybe PMD-mapped */
 | |
| 					? SCAN_PTE_MAPPED_HUGEPAGE
 | |
| 					: SCAN_PAGE_COMPOUND;
 | |
| 			/*
 | |
| 			 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
 | |
| 			 * by the caller won't touch the page cache, and so
 | |
| 			 * it's safe to skip LRU and refcount checks before
 | |
| 			 * returning.
 | |
| 			 */
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		node = page_to_nid(page);
 | |
| 		if (hpage_collapse_scan_abort(node, cc)) {
 | |
| 			result = SCAN_SCAN_ABORT;
 | |
| 			break;
 | |
| 		}
 | |
| 		cc->node_load[node]++;
 | |
| 
 | |
| 		if (!PageLRU(page)) {
 | |
| 			result = SCAN_PAGE_LRU;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (page_count(page) !=
 | |
| 		    1 + page_mapcount(page) + page_has_private(page)) {
 | |
| 			result = SCAN_PAGE_COUNT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We probably should check if the page is referenced here, but
 | |
| 		 * nobody would transfer pte_young() to PageReferenced() for us.
 | |
| 		 * And rmap walk here is just too costly...
 | |
| 		 */
 | |
| 
 | |
| 		present++;
 | |
| 
 | |
| 		if (need_resched()) {
 | |
| 			xas_pause(&xas);
 | |
| 			cond_resched_rcu();
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (result == SCAN_SUCCEED) {
 | |
| 		if (cc->is_khugepaged &&
 | |
| 		    present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
 | |
| 			result = SCAN_EXCEED_NONE_PTE;
 | |
| 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
 | |
| 		} else {
 | |
| 			result = collapse_file(mm, addr, file, start, cc);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result);
 | |
| 	return result;
 | |
| }
 | |
| #else
 | |
| static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
 | |
| 				    struct file *file, pgoff_t start,
 | |
| 				    struct collapse_control *cc)
 | |
| {
 | |
| 	BUILD_BUG();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
 | |
| 					    struct collapse_control *cc)
 | |
| 	__releases(&khugepaged_mm_lock)
 | |
| 	__acquires(&khugepaged_mm_lock)
 | |
| {
 | |
| 	struct vma_iterator vmi;
 | |
| 	struct khugepaged_mm_slot *mm_slot;
 | |
| 	struct mm_slot *slot;
 | |
| 	struct mm_struct *mm;
 | |
| 	struct vm_area_struct *vma;
 | |
| 	int progress = 0;
 | |
| 
 | |
| 	VM_BUG_ON(!pages);
 | |
| 	lockdep_assert_held(&khugepaged_mm_lock);
 | |
| 	*result = SCAN_FAIL;
 | |
| 
 | |
| 	if (khugepaged_scan.mm_slot) {
 | |
| 		mm_slot = khugepaged_scan.mm_slot;
 | |
| 		slot = &mm_slot->slot;
 | |
| 	} else {
 | |
| 		slot = list_entry(khugepaged_scan.mm_head.next,
 | |
| 				     struct mm_slot, mm_node);
 | |
| 		mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
 | |
| 		khugepaged_scan.address = 0;
 | |
| 		khugepaged_scan.mm_slot = mm_slot;
 | |
| 	}
 | |
| 	spin_unlock(&khugepaged_mm_lock);
 | |
| 
 | |
| 	mm = slot->mm;
 | |
| 	/*
 | |
| 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
 | |
| 	 * the next mm on the list.
 | |
| 	 */
 | |
| 	vma = NULL;
 | |
| 	if (unlikely(!mmap_read_trylock(mm)))
 | |
| 		goto breakouterloop_mmap_lock;
 | |
| 
 | |
| 	progress++;
 | |
| 	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
 | |
| 		goto breakouterloop;
 | |
| 
 | |
| 	vma_iter_init(&vmi, mm, khugepaged_scan.address);
 | |
| 	for_each_vma(vmi, vma) {
 | |
| 		unsigned long hstart, hend;
 | |
| 
 | |
| 		cond_resched();
 | |
| 		if (unlikely(hpage_collapse_test_exit_or_disable(mm))) {
 | |
| 			progress++;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false,
 | |
| 					     true, PMD_ORDER)) {
 | |
| skip:
 | |
| 			progress++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
 | |
| 		hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
 | |
| 		if (khugepaged_scan.address > hend)
 | |
| 			goto skip;
 | |
| 		if (khugepaged_scan.address < hstart)
 | |
| 			khugepaged_scan.address = hstart;
 | |
| 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
 | |
| 
 | |
| 		while (khugepaged_scan.address < hend) {
 | |
| 			bool mmap_locked = true;
 | |
| 
 | |
| 			cond_resched();
 | |
| 			if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
 | |
| 				goto breakouterloop;
 | |
| 
 | |
| 			VM_BUG_ON(khugepaged_scan.address < hstart ||
 | |
| 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
 | |
| 				  hend);
 | |
| 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
 | |
| 				struct file *file = get_file(vma->vm_file);
 | |
| 				pgoff_t pgoff = linear_page_index(vma,
 | |
| 						khugepaged_scan.address);
 | |
| 
 | |
| 				mmap_read_unlock(mm);
 | |
| 				mmap_locked = false;
 | |
| 				*result = hpage_collapse_scan_file(mm,
 | |
| 					khugepaged_scan.address, file, pgoff, cc);
 | |
| 				fput(file);
 | |
| 				if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
 | |
| 					mmap_read_lock(mm);
 | |
| 					if (hpage_collapse_test_exit_or_disable(mm))
 | |
| 						goto breakouterloop;
 | |
| 					*result = collapse_pte_mapped_thp(mm,
 | |
| 						khugepaged_scan.address, false);
 | |
| 					if (*result == SCAN_PMD_MAPPED)
 | |
| 						*result = SCAN_SUCCEED;
 | |
| 					mmap_read_unlock(mm);
 | |
| 				}
 | |
| 			} else {
 | |
| 				*result = hpage_collapse_scan_pmd(mm, vma,
 | |
| 					khugepaged_scan.address, &mmap_locked, cc);
 | |
| 			}
 | |
| 
 | |
| 			if (*result == SCAN_SUCCEED)
 | |
| 				++khugepaged_pages_collapsed;
 | |
| 
 | |
| 			/* move to next address */
 | |
| 			khugepaged_scan.address += HPAGE_PMD_SIZE;
 | |
| 			progress += HPAGE_PMD_NR;
 | |
| 			if (!mmap_locked)
 | |
| 				/*
 | |
| 				 * We released mmap_lock so break loop.  Note
 | |
| 				 * that we drop mmap_lock before all hugepage
 | |
| 				 * allocations, so if allocation fails, we are
 | |
| 				 * guaranteed to break here and report the
 | |
| 				 * correct result back to caller.
 | |
| 				 */
 | |
| 				goto breakouterloop_mmap_lock;
 | |
| 			if (progress >= pages)
 | |
| 				goto breakouterloop;
 | |
| 		}
 | |
| 	}
 | |
| breakouterloop:
 | |
| 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
 | |
| breakouterloop_mmap_lock:
 | |
| 
 | |
| 	spin_lock(&khugepaged_mm_lock);
 | |
| 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
 | |
| 	/*
 | |
| 	 * Release the current mm_slot if this mm is about to die, or
 | |
| 	 * if we scanned all vmas of this mm.
 | |
| 	 */
 | |
| 	if (hpage_collapse_test_exit(mm) || !vma) {
 | |
| 		/*
 | |
| 		 * Make sure that if mm_users is reaching zero while
 | |
| 		 * khugepaged runs here, khugepaged_exit will find
 | |
| 		 * mm_slot not pointing to the exiting mm.
 | |
| 		 */
 | |
| 		if (slot->mm_node.next != &khugepaged_scan.mm_head) {
 | |
| 			slot = list_entry(slot->mm_node.next,
 | |
| 					  struct mm_slot, mm_node);
 | |
| 			khugepaged_scan.mm_slot =
 | |
| 				mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
 | |
| 			khugepaged_scan.address = 0;
 | |
| 		} else {
 | |
| 			khugepaged_scan.mm_slot = NULL;
 | |
| 			khugepaged_full_scans++;
 | |
| 		}
 | |
| 
 | |
| 		collect_mm_slot(mm_slot);
 | |
| 	}
 | |
| 
 | |
| 	return progress;
 | |
| }
 | |
| 
 | |
| static int khugepaged_has_work(void)
 | |
| {
 | |
| 	return !list_empty(&khugepaged_scan.mm_head) &&
 | |
| 		hugepage_flags_enabled();
 | |
| }
 | |
| 
 | |
| static int khugepaged_wait_event(void)
 | |
| {
 | |
| 	return !list_empty(&khugepaged_scan.mm_head) ||
 | |
| 		kthread_should_stop();
 | |
| }
 | |
| 
 | |
| static void khugepaged_do_scan(struct collapse_control *cc)
 | |
| {
 | |
| 	unsigned int progress = 0, pass_through_head = 0;
 | |
| 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
 | |
| 	bool wait = true;
 | |
| 	int result = SCAN_SUCCEED;
 | |
| 
 | |
| 	lru_add_drain_all();
 | |
| 
 | |
| 	while (true) {
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (unlikely(kthread_should_stop()))
 | |
| 			break;
 | |
| 
 | |
| 		spin_lock(&khugepaged_mm_lock);
 | |
| 		if (!khugepaged_scan.mm_slot)
 | |
| 			pass_through_head++;
 | |
| 		if (khugepaged_has_work() &&
 | |
| 		    pass_through_head < 2)
 | |
| 			progress += khugepaged_scan_mm_slot(pages - progress,
 | |
| 							    &result, cc);
 | |
| 		else
 | |
| 			progress = pages;
 | |
| 		spin_unlock(&khugepaged_mm_lock);
 | |
| 
 | |
| 		if (progress >= pages)
 | |
| 			break;
 | |
| 
 | |
| 		if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
 | |
| 			/*
 | |
| 			 * If fail to allocate the first time, try to sleep for
 | |
| 			 * a while.  When hit again, cancel the scan.
 | |
| 			 */
 | |
| 			if (!wait)
 | |
| 				break;
 | |
| 			wait = false;
 | |
| 			khugepaged_alloc_sleep();
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool khugepaged_should_wakeup(void)
 | |
| {
 | |
| 	return kthread_should_stop() ||
 | |
| 	       time_after_eq(jiffies, khugepaged_sleep_expire);
 | |
| }
 | |
| 
 | |
| static void khugepaged_wait_work(void)
 | |
| {
 | |
| 	if (khugepaged_has_work()) {
 | |
| 		const unsigned long scan_sleep_jiffies =
 | |
| 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
 | |
| 
 | |
| 		if (!scan_sleep_jiffies)
 | |
| 			return;
 | |
| 
 | |
| 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
 | |
| 		wait_event_freezable_timeout(khugepaged_wait,
 | |
| 					     khugepaged_should_wakeup(),
 | |
| 					     scan_sleep_jiffies);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (hugepage_flags_enabled())
 | |
| 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
 | |
| }
 | |
| 
 | |
| static int khugepaged(void *none)
 | |
| {
 | |
| 	struct khugepaged_mm_slot *mm_slot;
 | |
| 
 | |
| 	set_freezable();
 | |
| 	set_user_nice(current, MAX_NICE);
 | |
| 
 | |
| 	while (!kthread_should_stop()) {
 | |
| 		khugepaged_do_scan(&khugepaged_collapse_control);
 | |
| 		khugepaged_wait_work();
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&khugepaged_mm_lock);
 | |
| 	mm_slot = khugepaged_scan.mm_slot;
 | |
| 	khugepaged_scan.mm_slot = NULL;
 | |
| 	if (mm_slot)
 | |
| 		collect_mm_slot(mm_slot);
 | |
| 	spin_unlock(&khugepaged_mm_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void set_recommended_min_free_kbytes(void)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	int nr_zones = 0;
 | |
| 	unsigned long recommended_min;
 | |
| 
 | |
| 	if (!hugepage_flags_enabled()) {
 | |
| 		calculate_min_free_kbytes();
 | |
| 		goto update_wmarks;
 | |
| 	}
 | |
| 
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		/*
 | |
| 		 * We don't need to worry about fragmentation of
 | |
| 		 * ZONE_MOVABLE since it only has movable pages.
 | |
| 		 */
 | |
| 		if (zone_idx(zone) > gfp_zone(GFP_USER))
 | |
| 			continue;
 | |
| 
 | |
| 		nr_zones++;
 | |
| 	}
 | |
| 
 | |
| 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
 | |
| 	recommended_min = pageblock_nr_pages * nr_zones * 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that on average at least two pageblocks are almost free
 | |
| 	 * of another type, one for a migratetype to fall back to and a
 | |
| 	 * second to avoid subsequent fallbacks of other types There are 3
 | |
| 	 * MIGRATE_TYPES we care about.
 | |
| 	 */
 | |
| 	recommended_min += pageblock_nr_pages * nr_zones *
 | |
| 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 | |
| 
 | |
| 	/* don't ever allow to reserve more than 5% of the lowmem */
 | |
| 	recommended_min = min(recommended_min,
 | |
| 			      (unsigned long) nr_free_buffer_pages() / 20);
 | |
| 	recommended_min <<= (PAGE_SHIFT-10);
 | |
| 
 | |
| 	if (recommended_min > min_free_kbytes) {
 | |
| 		if (user_min_free_kbytes >= 0)
 | |
| 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
 | |
| 				min_free_kbytes, recommended_min);
 | |
| 
 | |
| 		min_free_kbytes = recommended_min;
 | |
| 	}
 | |
| 
 | |
| update_wmarks:
 | |
| 	setup_per_zone_wmarks();
 | |
| }
 | |
| 
 | |
| int start_stop_khugepaged(void)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	mutex_lock(&khugepaged_mutex);
 | |
| 	if (hugepage_flags_enabled()) {
 | |
| 		if (!khugepaged_thread)
 | |
| 			khugepaged_thread = kthread_run(khugepaged, NULL,
 | |
| 							"khugepaged");
 | |
| 		if (IS_ERR(khugepaged_thread)) {
 | |
| 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
 | |
| 			err = PTR_ERR(khugepaged_thread);
 | |
| 			khugepaged_thread = NULL;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 
 | |
| 		if (!list_empty(&khugepaged_scan.mm_head))
 | |
| 			wake_up_interruptible(&khugepaged_wait);
 | |
| 	} else if (khugepaged_thread) {
 | |
| 		kthread_stop(khugepaged_thread);
 | |
| 		khugepaged_thread = NULL;
 | |
| 	}
 | |
| 	set_recommended_min_free_kbytes();
 | |
| fail:
 | |
| 	mutex_unlock(&khugepaged_mutex);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| void khugepaged_min_free_kbytes_update(void)
 | |
| {
 | |
| 	mutex_lock(&khugepaged_mutex);
 | |
| 	if (hugepage_flags_enabled() && khugepaged_thread)
 | |
| 		set_recommended_min_free_kbytes();
 | |
| 	mutex_unlock(&khugepaged_mutex);
 | |
| }
 | |
| 
 | |
| bool current_is_khugepaged(void)
 | |
| {
 | |
| 	return kthread_func(current) == khugepaged;
 | |
| }
 | |
| 
 | |
| static int madvise_collapse_errno(enum scan_result r)
 | |
| {
 | |
| 	/*
 | |
| 	 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
 | |
| 	 * actionable feedback to caller, so they may take an appropriate
 | |
| 	 * fallback measure depending on the nature of the failure.
 | |
| 	 */
 | |
| 	switch (r) {
 | |
| 	case SCAN_ALLOC_HUGE_PAGE_FAIL:
 | |
| 		return -ENOMEM;
 | |
| 	case SCAN_CGROUP_CHARGE_FAIL:
 | |
| 	case SCAN_EXCEED_NONE_PTE:
 | |
| 		return -EBUSY;
 | |
| 	/* Resource temporary unavailable - trying again might succeed */
 | |
| 	case SCAN_PAGE_COUNT:
 | |
| 	case SCAN_PAGE_LOCK:
 | |
| 	case SCAN_PAGE_LRU:
 | |
| 	case SCAN_DEL_PAGE_LRU:
 | |
| 	case SCAN_PAGE_FILLED:
 | |
| 		return -EAGAIN;
 | |
| 	/*
 | |
| 	 * Other: Trying again likely not to succeed / error intrinsic to
 | |
| 	 * specified memory range. khugepaged likely won't be able to collapse
 | |
| 	 * either.
 | |
| 	 */
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
 | |
| 		     unsigned long start, unsigned long end)
 | |
| {
 | |
| 	struct collapse_control *cc;
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	unsigned long hstart, hend, addr;
 | |
| 	int thps = 0, last_fail = SCAN_FAIL;
 | |
| 	bool mmap_locked = true;
 | |
| 
 | |
| 	BUG_ON(vma->vm_start > start);
 | |
| 	BUG_ON(vma->vm_end < end);
 | |
| 
 | |
| 	*prev = vma;
 | |
| 
 | |
| 	if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false, false,
 | |
| 				     PMD_ORDER))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cc = kmalloc(sizeof(*cc), GFP_KERNEL);
 | |
| 	if (!cc)
 | |
| 		return -ENOMEM;
 | |
| 	cc->is_khugepaged = false;
 | |
| 
 | |
| 	mmgrab(mm);
 | |
| 	lru_add_drain_all();
 | |
| 
 | |
| 	hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
 | |
| 	hend = end & HPAGE_PMD_MASK;
 | |
| 
 | |
| 	for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
 | |
| 		int result = SCAN_FAIL;
 | |
| 
 | |
| 		if (!mmap_locked) {
 | |
| 			cond_resched();
 | |
| 			mmap_read_lock(mm);
 | |
| 			mmap_locked = true;
 | |
| 			result = hugepage_vma_revalidate(mm, addr, false, &vma,
 | |
| 							 cc);
 | |
| 			if (result  != SCAN_SUCCEED) {
 | |
| 				last_fail = result;
 | |
| 				goto out_nolock;
 | |
| 			}
 | |
| 
 | |
| 			hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
 | |
| 		}
 | |
| 		mmap_assert_locked(mm);
 | |
| 		memset(cc->node_load, 0, sizeof(cc->node_load));
 | |
| 		nodes_clear(cc->alloc_nmask);
 | |
| 		if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
 | |
| 			struct file *file = get_file(vma->vm_file);
 | |
| 			pgoff_t pgoff = linear_page_index(vma, addr);
 | |
| 
 | |
| 			mmap_read_unlock(mm);
 | |
| 			mmap_locked = false;
 | |
| 			result = hpage_collapse_scan_file(mm, addr, file, pgoff,
 | |
| 							  cc);
 | |
| 			fput(file);
 | |
| 		} else {
 | |
| 			result = hpage_collapse_scan_pmd(mm, vma, addr,
 | |
| 							 &mmap_locked, cc);
 | |
| 		}
 | |
| 		if (!mmap_locked)
 | |
| 			*prev = NULL;  /* Tell caller we dropped mmap_lock */
 | |
| 
 | |
| handle_result:
 | |
| 		switch (result) {
 | |
| 		case SCAN_SUCCEED:
 | |
| 		case SCAN_PMD_MAPPED:
 | |
| 			++thps;
 | |
| 			break;
 | |
| 		case SCAN_PTE_MAPPED_HUGEPAGE:
 | |
| 			BUG_ON(mmap_locked);
 | |
| 			BUG_ON(*prev);
 | |
| 			mmap_read_lock(mm);
 | |
| 			result = collapse_pte_mapped_thp(mm, addr, true);
 | |
| 			mmap_read_unlock(mm);
 | |
| 			goto handle_result;
 | |
| 		/* Whitelisted set of results where continuing OK */
 | |
| 		case SCAN_PMD_NULL:
 | |
| 		case SCAN_PTE_NON_PRESENT:
 | |
| 		case SCAN_PTE_UFFD_WP:
 | |
| 		case SCAN_PAGE_RO:
 | |
| 		case SCAN_LACK_REFERENCED_PAGE:
 | |
| 		case SCAN_PAGE_NULL:
 | |
| 		case SCAN_PAGE_COUNT:
 | |
| 		case SCAN_PAGE_LOCK:
 | |
| 		case SCAN_PAGE_COMPOUND:
 | |
| 		case SCAN_PAGE_LRU:
 | |
| 		case SCAN_DEL_PAGE_LRU:
 | |
| 			last_fail = result;
 | |
| 			break;
 | |
| 		default:
 | |
| 			last_fail = result;
 | |
| 			/* Other error, exit */
 | |
| 			goto out_maybelock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out_maybelock:
 | |
| 	/* Caller expects us to hold mmap_lock on return */
 | |
| 	if (!mmap_locked)
 | |
| 		mmap_read_lock(mm);
 | |
| out_nolock:
 | |
| 	mmap_assert_locked(mm);
 | |
| 	mmdrop(mm);
 | |
| 	kfree(cc);
 | |
| 
 | |
| 	return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
 | |
| 			: madvise_collapse_errno(last_fail);
 | |
| }
 |