mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 e3b4b1374f
			
		
	
	
		e3b4b1374f
		
	
	
	
	
		
			
			Let's convert it like we converted all the other rmap functions. Don't introduce folio_try_share_anon_rmap_ptes() for now, as we don't have a user that wants rmap batching in sight. Pretty easy to add later. All users are easy to convert -- only ksm.c doesn't use folios yet but that is left for future work -- so let's just do it in a single shot. While at it, turn the BUG_ON into a WARN_ON_ONCE. Note that page_try_share_anon_rmap() so far didn't care about pte/pmd mappings (no compound parameter). We're changing that so we can perform better sanity checks and make the code actually more readable/consistent. For example, __folio_rmap_sanity_checks() will make sure that a PMD range actually falls completely into the folio. Link: https://lkml.kernel.org/r/20231220224504.646757-39-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Peter Xu <peterx@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Yin Fengwei <fengwei.yin@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			964 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			964 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Device Memory Migration functionality.
 | |
|  *
 | |
|  * Originally written by Jérôme Glisse.
 | |
|  */
 | |
| #include <linux/export.h>
 | |
| #include <linux/memremap.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/mmu_notifier.h>
 | |
| #include <linux/oom.h>
 | |
| #include <linux/pagewalk.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| static int migrate_vma_collect_skip(unsigned long start,
 | |
| 				    unsigned long end,
 | |
| 				    struct mm_walk *walk)
 | |
| {
 | |
| 	struct migrate_vma *migrate = walk->private;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	for (addr = start; addr < end; addr += PAGE_SIZE) {
 | |
| 		migrate->dst[migrate->npages] = 0;
 | |
| 		migrate->src[migrate->npages++] = 0;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int migrate_vma_collect_hole(unsigned long start,
 | |
| 				    unsigned long end,
 | |
| 				    __always_unused int depth,
 | |
| 				    struct mm_walk *walk)
 | |
| {
 | |
| 	struct migrate_vma *migrate = walk->private;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	/* Only allow populating anonymous memory. */
 | |
| 	if (!vma_is_anonymous(walk->vma))
 | |
| 		return migrate_vma_collect_skip(start, end, walk);
 | |
| 
 | |
| 	for (addr = start; addr < end; addr += PAGE_SIZE) {
 | |
| 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
 | |
| 		migrate->dst[migrate->npages] = 0;
 | |
| 		migrate->npages++;
 | |
| 		migrate->cpages++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int migrate_vma_collect_pmd(pmd_t *pmdp,
 | |
| 				   unsigned long start,
 | |
| 				   unsigned long end,
 | |
| 				   struct mm_walk *walk)
 | |
| {
 | |
| 	struct migrate_vma *migrate = walk->private;
 | |
| 	struct vm_area_struct *vma = walk->vma;
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	unsigned long addr = start, unmapped = 0;
 | |
| 	spinlock_t *ptl;
 | |
| 	pte_t *ptep;
 | |
| 
 | |
| again:
 | |
| 	if (pmd_none(*pmdp))
 | |
| 		return migrate_vma_collect_hole(start, end, -1, walk);
 | |
| 
 | |
| 	if (pmd_trans_huge(*pmdp)) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		ptl = pmd_lock(mm, pmdp);
 | |
| 		if (unlikely(!pmd_trans_huge(*pmdp))) {
 | |
| 			spin_unlock(ptl);
 | |
| 			goto again;
 | |
| 		}
 | |
| 
 | |
| 		page = pmd_page(*pmdp);
 | |
| 		if (is_huge_zero_page(page)) {
 | |
| 			spin_unlock(ptl);
 | |
| 			split_huge_pmd(vma, pmdp, addr);
 | |
| 		} else {
 | |
| 			int ret;
 | |
| 
 | |
| 			get_page(page);
 | |
| 			spin_unlock(ptl);
 | |
| 			if (unlikely(!trylock_page(page)))
 | |
| 				return migrate_vma_collect_skip(start, end,
 | |
| 								walk);
 | |
| 			ret = split_huge_page(page);
 | |
| 			unlock_page(page);
 | |
| 			put_page(page);
 | |
| 			if (ret)
 | |
| 				return migrate_vma_collect_skip(start, end,
 | |
| 								walk);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
 | |
| 	if (!ptep)
 | |
| 		goto again;
 | |
| 	arch_enter_lazy_mmu_mode();
 | |
| 
 | |
| 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
 | |
| 		unsigned long mpfn = 0, pfn;
 | |
| 		struct folio *folio;
 | |
| 		struct page *page;
 | |
| 		swp_entry_t entry;
 | |
| 		pte_t pte;
 | |
| 
 | |
| 		pte = ptep_get(ptep);
 | |
| 
 | |
| 		if (pte_none(pte)) {
 | |
| 			if (vma_is_anonymous(vma)) {
 | |
| 				mpfn = MIGRATE_PFN_MIGRATE;
 | |
| 				migrate->cpages++;
 | |
| 			}
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		if (!pte_present(pte)) {
 | |
| 			/*
 | |
| 			 * Only care about unaddressable device page special
 | |
| 			 * page table entry. Other special swap entries are not
 | |
| 			 * migratable, and we ignore regular swapped page.
 | |
| 			 */
 | |
| 			entry = pte_to_swp_entry(pte);
 | |
| 			if (!is_device_private_entry(entry))
 | |
| 				goto next;
 | |
| 
 | |
| 			page = pfn_swap_entry_to_page(entry);
 | |
| 			if (!(migrate->flags &
 | |
| 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
 | |
| 			    page->pgmap->owner != migrate->pgmap_owner)
 | |
| 				goto next;
 | |
| 
 | |
| 			mpfn = migrate_pfn(page_to_pfn(page)) |
 | |
| 					MIGRATE_PFN_MIGRATE;
 | |
| 			if (is_writable_device_private_entry(entry))
 | |
| 				mpfn |= MIGRATE_PFN_WRITE;
 | |
| 		} else {
 | |
| 			pfn = pte_pfn(pte);
 | |
| 			if (is_zero_pfn(pfn) &&
 | |
| 			    (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
 | |
| 				mpfn = MIGRATE_PFN_MIGRATE;
 | |
| 				migrate->cpages++;
 | |
| 				goto next;
 | |
| 			}
 | |
| 			page = vm_normal_page(migrate->vma, addr, pte);
 | |
| 			if (page && !is_zone_device_page(page) &&
 | |
| 			    !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
 | |
| 				goto next;
 | |
| 			else if (page && is_device_coherent_page(page) &&
 | |
| 			    (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) ||
 | |
| 			     page->pgmap->owner != migrate->pgmap_owner))
 | |
| 				goto next;
 | |
| 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
 | |
| 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
 | |
| 		}
 | |
| 
 | |
| 		/* FIXME support THP */
 | |
| 		if (!page || !page->mapping || PageTransCompound(page)) {
 | |
| 			mpfn = 0;
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * By getting a reference on the folio we pin it and that blocks
 | |
| 		 * any kind of migration. Side effect is that it "freezes" the
 | |
| 		 * pte.
 | |
| 		 *
 | |
| 		 * We drop this reference after isolating the folio from the lru
 | |
| 		 * for non device folio (device folio are not on the lru and thus
 | |
| 		 * can't be dropped from it).
 | |
| 		 */
 | |
| 		folio = page_folio(page);
 | |
| 		folio_get(folio);
 | |
| 
 | |
| 		/*
 | |
| 		 * We rely on folio_trylock() to avoid deadlock between
 | |
| 		 * concurrent migrations where each is waiting on the others
 | |
| 		 * folio lock. If we can't immediately lock the folio we fail this
 | |
| 		 * migration as it is only best effort anyway.
 | |
| 		 *
 | |
| 		 * If we can lock the folio it's safe to set up a migration entry
 | |
| 		 * now. In the common case where the folio is mapped once in a
 | |
| 		 * single process setting up the migration entry now is an
 | |
| 		 * optimisation to avoid walking the rmap later with
 | |
| 		 * try_to_migrate().
 | |
| 		 */
 | |
| 		if (folio_trylock(folio)) {
 | |
| 			bool anon_exclusive;
 | |
| 			pte_t swp_pte;
 | |
| 
 | |
| 			flush_cache_page(vma, addr, pte_pfn(pte));
 | |
| 			anon_exclusive = folio_test_anon(folio) &&
 | |
| 					  PageAnonExclusive(page);
 | |
| 			if (anon_exclusive) {
 | |
| 				pte = ptep_clear_flush(vma, addr, ptep);
 | |
| 
 | |
| 				if (folio_try_share_anon_rmap_pte(folio, page)) {
 | |
| 					set_pte_at(mm, addr, ptep, pte);
 | |
| 					folio_unlock(folio);
 | |
| 					folio_put(folio);
 | |
| 					mpfn = 0;
 | |
| 					goto next;
 | |
| 				}
 | |
| 			} else {
 | |
| 				pte = ptep_get_and_clear(mm, addr, ptep);
 | |
| 			}
 | |
| 
 | |
| 			migrate->cpages++;
 | |
| 
 | |
| 			/* Set the dirty flag on the folio now the pte is gone. */
 | |
| 			if (pte_dirty(pte))
 | |
| 				folio_mark_dirty(folio);
 | |
| 
 | |
| 			/* Setup special migration page table entry */
 | |
| 			if (mpfn & MIGRATE_PFN_WRITE)
 | |
| 				entry = make_writable_migration_entry(
 | |
| 							page_to_pfn(page));
 | |
| 			else if (anon_exclusive)
 | |
| 				entry = make_readable_exclusive_migration_entry(
 | |
| 							page_to_pfn(page));
 | |
| 			else
 | |
| 				entry = make_readable_migration_entry(
 | |
| 							page_to_pfn(page));
 | |
| 			if (pte_present(pte)) {
 | |
| 				if (pte_young(pte))
 | |
| 					entry = make_migration_entry_young(entry);
 | |
| 				if (pte_dirty(pte))
 | |
| 					entry = make_migration_entry_dirty(entry);
 | |
| 			}
 | |
| 			swp_pte = swp_entry_to_pte(entry);
 | |
| 			if (pte_present(pte)) {
 | |
| 				if (pte_soft_dirty(pte))
 | |
| 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
 | |
| 				if (pte_uffd_wp(pte))
 | |
| 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
 | |
| 			} else {
 | |
| 				if (pte_swp_soft_dirty(pte))
 | |
| 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
 | |
| 				if (pte_swp_uffd_wp(pte))
 | |
| 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
 | |
| 			}
 | |
| 			set_pte_at(mm, addr, ptep, swp_pte);
 | |
| 
 | |
| 			/*
 | |
| 			 * This is like regular unmap: we remove the rmap and
 | |
| 			 * drop the folio refcount. The folio won't be freed, as
 | |
| 			 * we took a reference just above.
 | |
| 			 */
 | |
| 			folio_remove_rmap_pte(folio, page, vma);
 | |
| 			folio_put(folio);
 | |
| 
 | |
| 			if (pte_present(pte))
 | |
| 				unmapped++;
 | |
| 		} else {
 | |
| 			folio_put(folio);
 | |
| 			mpfn = 0;
 | |
| 		}
 | |
| 
 | |
| next:
 | |
| 		migrate->dst[migrate->npages] = 0;
 | |
| 		migrate->src[migrate->npages++] = mpfn;
 | |
| 	}
 | |
| 
 | |
| 	/* Only flush the TLB if we actually modified any entries */
 | |
| 	if (unmapped)
 | |
| 		flush_tlb_range(walk->vma, start, end);
 | |
| 
 | |
| 	arch_leave_lazy_mmu_mode();
 | |
| 	pte_unmap_unlock(ptep - 1, ptl);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct mm_walk_ops migrate_vma_walk_ops = {
 | |
| 	.pmd_entry		= migrate_vma_collect_pmd,
 | |
| 	.pte_hole		= migrate_vma_collect_hole,
 | |
| 	.walk_lock		= PGWALK_RDLOCK,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * migrate_vma_collect() - collect pages over a range of virtual addresses
 | |
|  * @migrate: migrate struct containing all migration information
 | |
|  *
 | |
|  * This will walk the CPU page table. For each virtual address backed by a
 | |
|  * valid page, it updates the src array and takes a reference on the page, in
 | |
|  * order to pin the page until we lock it and unmap it.
 | |
|  */
 | |
| static void migrate_vma_collect(struct migrate_vma *migrate)
 | |
| {
 | |
| 	struct mmu_notifier_range range;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
 | |
| 	 * that the registered device driver can skip invalidating device
 | |
| 	 * private page mappings that won't be migrated.
 | |
| 	 */
 | |
| 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
 | |
| 		migrate->vma->vm_mm, migrate->start, migrate->end,
 | |
| 		migrate->pgmap_owner);
 | |
| 	mmu_notifier_invalidate_range_start(&range);
 | |
| 
 | |
| 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
 | |
| 			&migrate_vma_walk_ops, migrate);
 | |
| 
 | |
| 	mmu_notifier_invalidate_range_end(&range);
 | |
| 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * migrate_vma_check_page() - check if page is pinned or not
 | |
|  * @page: struct page to check
 | |
|  *
 | |
|  * Pinned pages cannot be migrated. This is the same test as in
 | |
|  * folio_migrate_mapping(), except that here we allow migration of a
 | |
|  * ZONE_DEVICE page.
 | |
|  */
 | |
| static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
 | |
| {
 | |
| 	/*
 | |
| 	 * One extra ref because caller holds an extra reference, either from
 | |
| 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
 | |
| 	 * a device page.
 | |
| 	 */
 | |
| 	int extra = 1 + (page == fault_page);
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME support THP (transparent huge page), it is bit more complex to
 | |
| 	 * check them than regular pages, because they can be mapped with a pmd
 | |
| 	 * or with a pte (split pte mapping).
 | |
| 	 */
 | |
| 	if (PageCompound(page))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Page from ZONE_DEVICE have one extra reference */
 | |
| 	if (is_zone_device_page(page))
 | |
| 		extra++;
 | |
| 
 | |
| 	/* For file back page */
 | |
| 	if (page_mapping(page))
 | |
| 		extra += 1 + page_has_private(page);
 | |
| 
 | |
| 	if ((page_count(page) - extra) > page_mapcount(page))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unmaps pages for migration. Returns number of source pfns marked as
 | |
|  * migrating.
 | |
|  */
 | |
| static unsigned long migrate_device_unmap(unsigned long *src_pfns,
 | |
| 					  unsigned long npages,
 | |
| 					  struct page *fault_page)
 | |
| {
 | |
| 	unsigned long i, restore = 0;
 | |
| 	bool allow_drain = true;
 | |
| 	unsigned long unmapped = 0;
 | |
| 
 | |
| 	lru_add_drain();
 | |
| 
 | |
| 	for (i = 0; i < npages; i++) {
 | |
| 		struct page *page = migrate_pfn_to_page(src_pfns[i]);
 | |
| 		struct folio *folio;
 | |
| 
 | |
| 		if (!page) {
 | |
| 			if (src_pfns[i] & MIGRATE_PFN_MIGRATE)
 | |
| 				unmapped++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* ZONE_DEVICE pages are not on LRU */
 | |
| 		if (!is_zone_device_page(page)) {
 | |
| 			if (!PageLRU(page) && allow_drain) {
 | |
| 				/* Drain CPU's lru cache */
 | |
| 				lru_add_drain_all();
 | |
| 				allow_drain = false;
 | |
| 			}
 | |
| 
 | |
| 			if (!isolate_lru_page(page)) {
 | |
| 				src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
 | |
| 				restore++;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/* Drop the reference we took in collect */
 | |
| 			put_page(page);
 | |
| 		}
 | |
| 
 | |
| 		folio = page_folio(page);
 | |
| 		if (folio_mapped(folio))
 | |
| 			try_to_migrate(folio, 0);
 | |
| 
 | |
| 		if (page_mapped(page) ||
 | |
| 		    !migrate_vma_check_page(page, fault_page)) {
 | |
| 			if (!is_zone_device_page(page)) {
 | |
| 				get_page(page);
 | |
| 				putback_lru_page(page);
 | |
| 			}
 | |
| 
 | |
| 			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
 | |
| 			restore++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		unmapped++;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < npages && restore; i++) {
 | |
| 		struct page *page = migrate_pfn_to_page(src_pfns[i]);
 | |
| 		struct folio *folio;
 | |
| 
 | |
| 		if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE))
 | |
| 			continue;
 | |
| 
 | |
| 		folio = page_folio(page);
 | |
| 		remove_migration_ptes(folio, folio, false);
 | |
| 
 | |
| 		src_pfns[i] = 0;
 | |
| 		folio_unlock(folio);
 | |
| 		folio_put(folio);
 | |
| 		restore--;
 | |
| 	}
 | |
| 
 | |
| 	return unmapped;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * migrate_vma_unmap() - replace page mapping with special migration pte entry
 | |
|  * @migrate: migrate struct containing all migration information
 | |
|  *
 | |
|  * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
 | |
|  * special migration pte entry and check if it has been pinned. Pinned pages are
 | |
|  * restored because we cannot migrate them.
 | |
|  *
 | |
|  * This is the last step before we call the device driver callback to allocate
 | |
|  * destination memory and copy contents of original page over to new page.
 | |
|  */
 | |
| static void migrate_vma_unmap(struct migrate_vma *migrate)
 | |
| {
 | |
| 	migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages,
 | |
| 					migrate->fault_page);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * migrate_vma_setup() - prepare to migrate a range of memory
 | |
|  * @args: contains the vma, start, and pfns arrays for the migration
 | |
|  *
 | |
|  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
 | |
|  * without an error.
 | |
|  *
 | |
|  * Prepare to migrate a range of memory virtual address range by collecting all
 | |
|  * the pages backing each virtual address in the range, saving them inside the
 | |
|  * src array.  Then lock those pages and unmap them. Once the pages are locked
 | |
|  * and unmapped, check whether each page is pinned or not.  Pages that aren't
 | |
|  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
 | |
|  * corresponding src array entry.  Then restores any pages that are pinned, by
 | |
|  * remapping and unlocking those pages.
 | |
|  *
 | |
|  * The caller should then allocate destination memory and copy source memory to
 | |
|  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
 | |
|  * flag set).  Once these are allocated and copied, the caller must update each
 | |
|  * corresponding entry in the dst array with the pfn value of the destination
 | |
|  * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
 | |
|  * lock_page().
 | |
|  *
 | |
|  * Note that the caller does not have to migrate all the pages that are marked
 | |
|  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
 | |
|  * device memory to system memory.  If the caller cannot migrate a device page
 | |
|  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
 | |
|  * consequences for the userspace process, so it must be avoided if at all
 | |
|  * possible.
 | |
|  *
 | |
|  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
 | |
|  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
 | |
|  * allowing the caller to allocate device memory for those unbacked virtual
 | |
|  * addresses.  For this the caller simply has to allocate device memory and
 | |
|  * properly set the destination entry like for regular migration.  Note that
 | |
|  * this can still fail, and thus inside the device driver you must check if the
 | |
|  * migration was successful for those entries after calling migrate_vma_pages(),
 | |
|  * just like for regular migration.
 | |
|  *
 | |
|  * After that, the callers must call migrate_vma_pages() to go over each entry
 | |
|  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
 | |
|  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
 | |
|  * then migrate_vma_pages() to migrate struct page information from the source
 | |
|  * struct page to the destination struct page.  If it fails to migrate the
 | |
|  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
 | |
|  * src array.
 | |
|  *
 | |
|  * At this point all successfully migrated pages have an entry in the src
 | |
|  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
 | |
|  * array entry with MIGRATE_PFN_VALID flag set.
 | |
|  *
 | |
|  * Once migrate_vma_pages() returns the caller may inspect which pages were
 | |
|  * successfully migrated, and which were not.  Successfully migrated pages will
 | |
|  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
 | |
|  *
 | |
|  * It is safe to update device page table after migrate_vma_pages() because
 | |
|  * both destination and source page are still locked, and the mmap_lock is held
 | |
|  * in read mode (hence no one can unmap the range being migrated).
 | |
|  *
 | |
|  * Once the caller is done cleaning up things and updating its page table (if it
 | |
|  * chose to do so, this is not an obligation) it finally calls
 | |
|  * migrate_vma_finalize() to update the CPU page table to point to new pages
 | |
|  * for successfully migrated pages or otherwise restore the CPU page table to
 | |
|  * point to the original source pages.
 | |
|  */
 | |
| int migrate_vma_setup(struct migrate_vma *args)
 | |
| {
 | |
| 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
 | |
| 
 | |
| 	args->start &= PAGE_MASK;
 | |
| 	args->end &= PAGE_MASK;
 | |
| 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
 | |
| 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
 | |
| 		return -EINVAL;
 | |
| 	if (nr_pages <= 0)
 | |
| 		return -EINVAL;
 | |
| 	if (args->start < args->vma->vm_start ||
 | |
| 	    args->start >= args->vma->vm_end)
 | |
| 		return -EINVAL;
 | |
| 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
 | |
| 		return -EINVAL;
 | |
| 	if (!args->src || !args->dst)
 | |
| 		return -EINVAL;
 | |
| 	if (args->fault_page && !is_device_private_page(args->fault_page))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
 | |
| 	args->cpages = 0;
 | |
| 	args->npages = 0;
 | |
| 
 | |
| 	migrate_vma_collect(args);
 | |
| 
 | |
| 	if (args->cpages)
 | |
| 		migrate_vma_unmap(args);
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point pages are locked and unmapped, and thus they have
 | |
| 	 * stable content and can safely be copied to destination memory that
 | |
| 	 * is allocated by the drivers.
 | |
| 	 */
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL(migrate_vma_setup);
 | |
| 
 | |
| /*
 | |
|  * This code closely matches the code in:
 | |
|  *   __handle_mm_fault()
 | |
|  *     handle_pte_fault()
 | |
|  *       do_anonymous_page()
 | |
|  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
 | |
|  * private or coherent page.
 | |
|  */
 | |
| static void migrate_vma_insert_page(struct migrate_vma *migrate,
 | |
| 				    unsigned long addr,
 | |
| 				    struct page *page,
 | |
| 				    unsigned long *src)
 | |
| {
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	struct vm_area_struct *vma = migrate->vma;
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	bool flush = false;
 | |
| 	spinlock_t *ptl;
 | |
| 	pte_t entry;
 | |
| 	pgd_t *pgdp;
 | |
| 	p4d_t *p4dp;
 | |
| 	pud_t *pudp;
 | |
| 	pmd_t *pmdp;
 | |
| 	pte_t *ptep;
 | |
| 	pte_t orig_pte;
 | |
| 
 | |
| 	/* Only allow populating anonymous memory */
 | |
| 	if (!vma_is_anonymous(vma))
 | |
| 		goto abort;
 | |
| 
 | |
| 	pgdp = pgd_offset(mm, addr);
 | |
| 	p4dp = p4d_alloc(mm, pgdp, addr);
 | |
| 	if (!p4dp)
 | |
| 		goto abort;
 | |
| 	pudp = pud_alloc(mm, p4dp, addr);
 | |
| 	if (!pudp)
 | |
| 		goto abort;
 | |
| 	pmdp = pmd_alloc(mm, pudp, addr);
 | |
| 	if (!pmdp)
 | |
| 		goto abort;
 | |
| 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
 | |
| 		goto abort;
 | |
| 	if (pte_alloc(mm, pmdp))
 | |
| 		goto abort;
 | |
| 	if (unlikely(anon_vma_prepare(vma)))
 | |
| 		goto abort;
 | |
| 	if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
 | |
| 		goto abort;
 | |
| 
 | |
| 	/*
 | |
| 	 * The memory barrier inside __folio_mark_uptodate makes sure that
 | |
| 	 * preceding stores to the folio contents become visible before
 | |
| 	 * the set_pte_at() write.
 | |
| 	 */
 | |
| 	__folio_mark_uptodate(folio);
 | |
| 
 | |
| 	if (folio_is_device_private(folio)) {
 | |
| 		swp_entry_t swp_entry;
 | |
| 
 | |
| 		if (vma->vm_flags & VM_WRITE)
 | |
| 			swp_entry = make_writable_device_private_entry(
 | |
| 						page_to_pfn(page));
 | |
| 		else
 | |
| 			swp_entry = make_readable_device_private_entry(
 | |
| 						page_to_pfn(page));
 | |
| 		entry = swp_entry_to_pte(swp_entry);
 | |
| 	} else {
 | |
| 		if (folio_is_zone_device(folio) &&
 | |
| 		    !folio_is_device_coherent(folio)) {
 | |
| 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
 | |
| 			goto abort;
 | |
| 		}
 | |
| 		entry = mk_pte(page, vma->vm_page_prot);
 | |
| 		if (vma->vm_flags & VM_WRITE)
 | |
| 			entry = pte_mkwrite(pte_mkdirty(entry), vma);
 | |
| 	}
 | |
| 
 | |
| 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
 | |
| 	if (!ptep)
 | |
| 		goto abort;
 | |
| 	orig_pte = ptep_get(ptep);
 | |
| 
 | |
| 	if (check_stable_address_space(mm))
 | |
| 		goto unlock_abort;
 | |
| 
 | |
| 	if (pte_present(orig_pte)) {
 | |
| 		unsigned long pfn = pte_pfn(orig_pte);
 | |
| 
 | |
| 		if (!is_zero_pfn(pfn))
 | |
| 			goto unlock_abort;
 | |
| 		flush = true;
 | |
| 	} else if (!pte_none(orig_pte))
 | |
| 		goto unlock_abort;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for userfaultfd but do not deliver the fault. Instead,
 | |
| 	 * just back off.
 | |
| 	 */
 | |
| 	if (userfaultfd_missing(vma))
 | |
| 		goto unlock_abort;
 | |
| 
 | |
| 	inc_mm_counter(mm, MM_ANONPAGES);
 | |
| 	folio_add_new_anon_rmap(folio, vma, addr);
 | |
| 	if (!folio_is_zone_device(folio))
 | |
| 		folio_add_lru_vma(folio, vma);
 | |
| 	folio_get(folio);
 | |
| 
 | |
| 	if (flush) {
 | |
| 		flush_cache_page(vma, addr, pte_pfn(orig_pte));
 | |
| 		ptep_clear_flush(vma, addr, ptep);
 | |
| 		set_pte_at_notify(mm, addr, ptep, entry);
 | |
| 		update_mmu_cache(vma, addr, ptep);
 | |
| 	} else {
 | |
| 		/* No need to invalidate - it was non-present before */
 | |
| 		set_pte_at(mm, addr, ptep, entry);
 | |
| 		update_mmu_cache(vma, addr, ptep);
 | |
| 	}
 | |
| 
 | |
| 	pte_unmap_unlock(ptep, ptl);
 | |
| 	*src = MIGRATE_PFN_MIGRATE;
 | |
| 	return;
 | |
| 
 | |
| unlock_abort:
 | |
| 	pte_unmap_unlock(ptep, ptl);
 | |
| abort:
 | |
| 	*src &= ~MIGRATE_PFN_MIGRATE;
 | |
| }
 | |
| 
 | |
| static void __migrate_device_pages(unsigned long *src_pfns,
 | |
| 				unsigned long *dst_pfns, unsigned long npages,
 | |
| 				struct migrate_vma *migrate)
 | |
| {
 | |
| 	struct mmu_notifier_range range;
 | |
| 	unsigned long i;
 | |
| 	bool notified = false;
 | |
| 
 | |
| 	for (i = 0; i < npages; i++) {
 | |
| 		struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
 | |
| 		struct page *page = migrate_pfn_to_page(src_pfns[i]);
 | |
| 		struct address_space *mapping;
 | |
| 		int r;
 | |
| 
 | |
| 		if (!newpage) {
 | |
| 			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!page) {
 | |
| 			unsigned long addr;
 | |
| 
 | |
| 			if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE))
 | |
| 				continue;
 | |
| 
 | |
| 			/*
 | |
| 			 * The only time there is no vma is when called from
 | |
| 			 * migrate_device_coherent_page(). However this isn't
 | |
| 			 * called if the page could not be unmapped.
 | |
| 			 */
 | |
| 			VM_BUG_ON(!migrate);
 | |
| 			addr = migrate->start + i*PAGE_SIZE;
 | |
| 			if (!notified) {
 | |
| 				notified = true;
 | |
| 
 | |
| 				mmu_notifier_range_init_owner(&range,
 | |
| 					MMU_NOTIFY_MIGRATE, 0,
 | |
| 					migrate->vma->vm_mm, addr, migrate->end,
 | |
| 					migrate->pgmap_owner);
 | |
| 				mmu_notifier_invalidate_range_start(&range);
 | |
| 			}
 | |
| 			migrate_vma_insert_page(migrate, addr, newpage,
 | |
| 						&src_pfns[i]);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		mapping = page_mapping(page);
 | |
| 
 | |
| 		if (is_device_private_page(newpage) ||
 | |
| 		    is_device_coherent_page(newpage)) {
 | |
| 			if (mapping) {
 | |
| 				struct folio *folio;
 | |
| 
 | |
| 				folio = page_folio(page);
 | |
| 
 | |
| 				/*
 | |
| 				 * For now only support anonymous memory migrating to
 | |
| 				 * device private or coherent memory.
 | |
| 				 *
 | |
| 				 * Try to get rid of swap cache if possible.
 | |
| 				 */
 | |
| 				if (!folio_test_anon(folio) ||
 | |
| 				    !folio_free_swap(folio)) {
 | |
| 					src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
 | |
| 					continue;
 | |
| 				}
 | |
| 			}
 | |
| 		} else if (is_zone_device_page(newpage)) {
 | |
| 			/*
 | |
| 			 * Other types of ZONE_DEVICE page are not supported.
 | |
| 			 */
 | |
| 			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (migrate && migrate->fault_page == page)
 | |
| 			r = migrate_folio_extra(mapping, page_folio(newpage),
 | |
| 						page_folio(page),
 | |
| 						MIGRATE_SYNC_NO_COPY, 1);
 | |
| 		else
 | |
| 			r = migrate_folio(mapping, page_folio(newpage),
 | |
| 					page_folio(page), MIGRATE_SYNC_NO_COPY);
 | |
| 		if (r != MIGRATEPAGE_SUCCESS)
 | |
| 			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
 | |
| 	}
 | |
| 
 | |
| 	if (notified)
 | |
| 		mmu_notifier_invalidate_range_end(&range);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * migrate_device_pages() - migrate meta-data from src page to dst page
 | |
|  * @src_pfns: src_pfns returned from migrate_device_range()
 | |
|  * @dst_pfns: array of pfns allocated by the driver to migrate memory to
 | |
|  * @npages: number of pages in the range
 | |
|  *
 | |
|  * Equivalent to migrate_vma_pages(). This is called to migrate struct page
 | |
|  * meta-data from source struct page to destination.
 | |
|  */
 | |
| void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns,
 | |
| 			unsigned long npages)
 | |
| {
 | |
| 	__migrate_device_pages(src_pfns, dst_pfns, npages, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL(migrate_device_pages);
 | |
| 
 | |
| /**
 | |
|  * migrate_vma_pages() - migrate meta-data from src page to dst page
 | |
|  * @migrate: migrate struct containing all migration information
 | |
|  *
 | |
|  * This migrates struct page meta-data from source struct page to destination
 | |
|  * struct page. This effectively finishes the migration from source page to the
 | |
|  * destination page.
 | |
|  */
 | |
| void migrate_vma_pages(struct migrate_vma *migrate)
 | |
| {
 | |
| 	__migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate);
 | |
| }
 | |
| EXPORT_SYMBOL(migrate_vma_pages);
 | |
| 
 | |
| /*
 | |
|  * migrate_device_finalize() - complete page migration
 | |
|  * @src_pfns: src_pfns returned from migrate_device_range()
 | |
|  * @dst_pfns: array of pfns allocated by the driver to migrate memory to
 | |
|  * @npages: number of pages in the range
 | |
|  *
 | |
|  * Completes migration of the page by removing special migration entries.
 | |
|  * Drivers must ensure copying of page data is complete and visible to the CPU
 | |
|  * before calling this.
 | |
|  */
 | |
| void migrate_device_finalize(unsigned long *src_pfns,
 | |
| 			unsigned long *dst_pfns, unsigned long npages)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	for (i = 0; i < npages; i++) {
 | |
| 		struct folio *dst, *src;
 | |
| 		struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
 | |
| 		struct page *page = migrate_pfn_to_page(src_pfns[i]);
 | |
| 
 | |
| 		if (!page) {
 | |
| 			if (newpage) {
 | |
| 				unlock_page(newpage);
 | |
| 				put_page(newpage);
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
 | |
| 			if (newpage) {
 | |
| 				unlock_page(newpage);
 | |
| 				put_page(newpage);
 | |
| 			}
 | |
| 			newpage = page;
 | |
| 		}
 | |
| 
 | |
| 		src = page_folio(page);
 | |
| 		dst = page_folio(newpage);
 | |
| 		remove_migration_ptes(src, dst, false);
 | |
| 		folio_unlock(src);
 | |
| 
 | |
| 		if (is_zone_device_page(page))
 | |
| 			put_page(page);
 | |
| 		else
 | |
| 			putback_lru_page(page);
 | |
| 
 | |
| 		if (newpage != page) {
 | |
| 			unlock_page(newpage);
 | |
| 			if (is_zone_device_page(newpage))
 | |
| 				put_page(newpage);
 | |
| 			else
 | |
| 				putback_lru_page(newpage);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(migrate_device_finalize);
 | |
| 
 | |
| /**
 | |
|  * migrate_vma_finalize() - restore CPU page table entry
 | |
|  * @migrate: migrate struct containing all migration information
 | |
|  *
 | |
|  * This replaces the special migration pte entry with either a mapping to the
 | |
|  * new page if migration was successful for that page, or to the original page
 | |
|  * otherwise.
 | |
|  *
 | |
|  * This also unlocks the pages and puts them back on the lru, or drops the extra
 | |
|  * refcount, for device pages.
 | |
|  */
 | |
| void migrate_vma_finalize(struct migrate_vma *migrate)
 | |
| {
 | |
| 	migrate_device_finalize(migrate->src, migrate->dst, migrate->npages);
 | |
| }
 | |
| EXPORT_SYMBOL(migrate_vma_finalize);
 | |
| 
 | |
| /**
 | |
|  * migrate_device_range() - migrate device private pfns to normal memory.
 | |
|  * @src_pfns: array large enough to hold migrating source device private pfns.
 | |
|  * @start: starting pfn in the range to migrate.
 | |
|  * @npages: number of pages to migrate.
 | |
|  *
 | |
|  * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that
 | |
|  * instead of looking up pages based on virtual address mappings a range of
 | |
|  * device pfns that should be migrated to system memory is used instead.
 | |
|  *
 | |
|  * This is useful when a driver needs to free device memory but doesn't know the
 | |
|  * virtual mappings of every page that may be in device memory. For example this
 | |
|  * is often the case when a driver is being unloaded or unbound from a device.
 | |
|  *
 | |
|  * Like migrate_vma_setup() this function will take a reference and lock any
 | |
|  * migrating pages that aren't free before unmapping them. Drivers may then
 | |
|  * allocate destination pages and start copying data from the device to CPU
 | |
|  * memory before calling migrate_device_pages().
 | |
|  */
 | |
| int migrate_device_range(unsigned long *src_pfns, unsigned long start,
 | |
| 			unsigned long npages)
 | |
| {
 | |
| 	unsigned long i, pfn;
 | |
| 
 | |
| 	for (pfn = start, i = 0; i < npages; pfn++, i++) {
 | |
| 		struct page *page = pfn_to_page(pfn);
 | |
| 
 | |
| 		if (!get_page_unless_zero(page)) {
 | |
| 			src_pfns[i] = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!trylock_page(page)) {
 | |
| 			src_pfns[i] = 0;
 | |
| 			put_page(page);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
 | |
| 	}
 | |
| 
 | |
| 	migrate_device_unmap(src_pfns, npages, NULL);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(migrate_device_range);
 | |
| 
 | |
| /*
 | |
|  * Migrate a device coherent page back to normal memory. The caller should have
 | |
|  * a reference on page which will be copied to the new page if migration is
 | |
|  * successful or dropped on failure.
 | |
|  */
 | |
| int migrate_device_coherent_page(struct page *page)
 | |
| {
 | |
| 	unsigned long src_pfn, dst_pfn = 0;
 | |
| 	struct page *dpage;
 | |
| 
 | |
| 	WARN_ON_ONCE(PageCompound(page));
 | |
| 
 | |
| 	lock_page(page);
 | |
| 	src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't have a VMA and don't need to walk the page tables to find
 | |
| 	 * the source page. So call migrate_vma_unmap() directly to unmap the
 | |
| 	 * page as migrate_vma_setup() will fail if args.vma == NULL.
 | |
| 	 */
 | |
| 	migrate_device_unmap(&src_pfn, 1, NULL);
 | |
| 	if (!(src_pfn & MIGRATE_PFN_MIGRATE))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	dpage = alloc_page(GFP_USER | __GFP_NOWARN);
 | |
| 	if (dpage) {
 | |
| 		lock_page(dpage);
 | |
| 		dst_pfn = migrate_pfn(page_to_pfn(dpage));
 | |
| 	}
 | |
| 
 | |
| 	migrate_device_pages(&src_pfn, &dst_pfn, 1);
 | |
| 	if (src_pfn & MIGRATE_PFN_MIGRATE)
 | |
| 		copy_highpage(dpage, page);
 | |
| 	migrate_device_finalize(&src_pfn, &dst_pfn, 1);
 | |
| 
 | |
| 	if (src_pfn & MIGRATE_PFN_MIGRATE)
 | |
| 		return 0;
 | |
| 	return -EBUSY;
 | |
| }
 |