mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 eb52286634
			
		
	
	
		eb52286634
		
	
	
	
	
		
			
			different nodes Date: Thu, 22 Feb 2024 22:04:17 +0800 When a group of tasks that access different nodes are scheduled on the same node, they may encounter bandwidth bottlenecks and access latency. Thus, numa_aware flag is introduced here, allowing tasks to be distributed across different nodes to fully utilize the advantage of multi-node systems. Link: https://lkml.kernel.org/r/20240222140422.393911-5-gang.li@linux.dev Signed-off-by: Gang Li <ligang.bdlg@bytedance.com> Tested-by: David Rientjes <rientjes@google.com> Reviewed-by: Muchun Song <muchun.song@linux.dev> Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jane Chu <jane.chu@oracle.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Steffen Klassert <steffen.klassert@secunet.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			2796 lines
		
	
	
	
		
			78 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2796 lines
		
	
	
	
		
			78 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * mm_init.c - Memory initialisation verification and debugging
 | |
|  *
 | |
|  * Copyright 2008 IBM Corporation, 2008
 | |
|  * Author Mel Gorman <mel@csn.ul.ie>
 | |
|  *
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/kobject.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/memory.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/page-isolation.h>
 | |
| #include <linux/padata.h>
 | |
| #include <linux/nmi.h>
 | |
| #include <linux/buffer_head.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/kfence.h>
 | |
| #include <linux/page_ext.h>
 | |
| #include <linux/pti.h>
 | |
| #include <linux/pgtable.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/cma.h>
 | |
| #include <linux/crash_dump.h>
 | |
| #include "internal.h"
 | |
| #include "slab.h"
 | |
| #include "shuffle.h"
 | |
| 
 | |
| #include <asm/setup.h>
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_MEMORY_INIT
 | |
| int __meminitdata mminit_loglevel;
 | |
| 
 | |
| /* The zonelists are simply reported, validation is manual. */
 | |
| void __init mminit_verify_zonelist(void)
 | |
| {
 | |
| 	int nid;
 | |
| 
 | |
| 	if (mminit_loglevel < MMINIT_VERIFY)
 | |
| 		return;
 | |
| 
 | |
| 	for_each_online_node(nid) {
 | |
| 		pg_data_t *pgdat = NODE_DATA(nid);
 | |
| 		struct zone *zone;
 | |
| 		struct zoneref *z;
 | |
| 		struct zonelist *zonelist;
 | |
| 		int i, listid, zoneid;
 | |
| 
 | |
| 		BUILD_BUG_ON(MAX_ZONELISTS > 2);
 | |
| 		for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
 | |
| 
 | |
| 			/* Identify the zone and nodelist */
 | |
| 			zoneid = i % MAX_NR_ZONES;
 | |
| 			listid = i / MAX_NR_ZONES;
 | |
| 			zonelist = &pgdat->node_zonelists[listid];
 | |
| 			zone = &pgdat->node_zones[zoneid];
 | |
| 			if (!populated_zone(zone))
 | |
| 				continue;
 | |
| 
 | |
| 			/* Print information about the zonelist */
 | |
| 			printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
 | |
| 				listid > 0 ? "thisnode" : "general", nid,
 | |
| 				zone->name);
 | |
| 
 | |
| 			/* Iterate the zonelist */
 | |
| 			for_each_zone_zonelist(zone, z, zonelist, zoneid)
 | |
| 				pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
 | |
| 			pr_cont("\n");
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init mminit_verify_pageflags_layout(void)
 | |
| {
 | |
| 	int shift, width;
 | |
| 	unsigned long or_mask, add_mask;
 | |
| 
 | |
| 	shift = BITS_PER_LONG;
 | |
| 	width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH
 | |
| 		- LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH;
 | |
| 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
 | |
| 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
 | |
| 		SECTIONS_WIDTH,
 | |
| 		NODES_WIDTH,
 | |
| 		ZONES_WIDTH,
 | |
| 		LAST_CPUPID_WIDTH,
 | |
| 		KASAN_TAG_WIDTH,
 | |
| 		LRU_GEN_WIDTH,
 | |
| 		LRU_REFS_WIDTH,
 | |
| 		NR_PAGEFLAGS);
 | |
| 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
 | |
| 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
 | |
| 		SECTIONS_SHIFT,
 | |
| 		NODES_SHIFT,
 | |
| 		ZONES_SHIFT,
 | |
| 		LAST_CPUPID_SHIFT,
 | |
| 		KASAN_TAG_WIDTH);
 | |
| 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
 | |
| 		"Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
 | |
| 		(unsigned long)SECTIONS_PGSHIFT,
 | |
| 		(unsigned long)NODES_PGSHIFT,
 | |
| 		(unsigned long)ZONES_PGSHIFT,
 | |
| 		(unsigned long)LAST_CPUPID_PGSHIFT,
 | |
| 		(unsigned long)KASAN_TAG_PGSHIFT);
 | |
| 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
 | |
| 		"Node/Zone ID: %lu -> %lu\n",
 | |
| 		(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
 | |
| 		(unsigned long)ZONEID_PGOFF);
 | |
| 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
 | |
| 		"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
 | |
| 		shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
 | |
| #ifdef NODE_NOT_IN_PAGE_FLAGS
 | |
| 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
 | |
| 		"Node not in page flags");
 | |
| #endif
 | |
| #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
 | |
| 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
 | |
| 		"Last cpupid not in page flags");
 | |
| #endif
 | |
| 
 | |
| 	if (SECTIONS_WIDTH) {
 | |
| 		shift -= SECTIONS_WIDTH;
 | |
| 		BUG_ON(shift != SECTIONS_PGSHIFT);
 | |
| 	}
 | |
| 	if (NODES_WIDTH) {
 | |
| 		shift -= NODES_WIDTH;
 | |
| 		BUG_ON(shift != NODES_PGSHIFT);
 | |
| 	}
 | |
| 	if (ZONES_WIDTH) {
 | |
| 		shift -= ZONES_WIDTH;
 | |
| 		BUG_ON(shift != ZONES_PGSHIFT);
 | |
| 	}
 | |
| 
 | |
| 	/* Check for bitmask overlaps */
 | |
| 	or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
 | |
| 			(NODES_MASK << NODES_PGSHIFT) |
 | |
| 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
 | |
| 	add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
 | |
| 			(NODES_MASK << NODES_PGSHIFT) +
 | |
| 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
 | |
| 	BUG_ON(or_mask != add_mask);
 | |
| }
 | |
| 
 | |
| static __init int set_mminit_loglevel(char *str)
 | |
| {
 | |
| 	get_option(&str, &mminit_loglevel);
 | |
| 	return 0;
 | |
| }
 | |
| early_param("mminit_loglevel", set_mminit_loglevel);
 | |
| #endif /* CONFIG_DEBUG_MEMORY_INIT */
 | |
| 
 | |
| struct kobject *mm_kobj;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| s32 vm_committed_as_batch = 32;
 | |
| 
 | |
| void mm_compute_batch(int overcommit_policy)
 | |
| {
 | |
| 	u64 memsized_batch;
 | |
| 	s32 nr = num_present_cpus();
 | |
| 	s32 batch = max_t(s32, nr*2, 32);
 | |
| 	unsigned long ram_pages = totalram_pages();
 | |
| 
 | |
| 	/*
 | |
| 	 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
 | |
| 	 * (total memory/#cpus), and lift it to 25% for other policies
 | |
| 	 * to easy the possible lock contention for percpu_counter
 | |
| 	 * vm_committed_as, while the max limit is INT_MAX
 | |
| 	 */
 | |
| 	if (overcommit_policy == OVERCOMMIT_NEVER)
 | |
| 		memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
 | |
| 	else
 | |
| 		memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
 | |
| 
 | |
| 	vm_committed_as_batch = max_t(s32, memsized_batch, batch);
 | |
| }
 | |
| 
 | |
| static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
 | |
| 					unsigned long action, void *arg)
 | |
| {
 | |
| 	switch (action) {
 | |
| 	case MEM_ONLINE:
 | |
| 	case MEM_OFFLINE:
 | |
| 		mm_compute_batch(sysctl_overcommit_memory);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static int __init mm_compute_batch_init(void)
 | |
| {
 | |
| 	mm_compute_batch(sysctl_overcommit_memory);
 | |
| 	hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| __initcall(mm_compute_batch_init);
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static int __init mm_sysfs_init(void)
 | |
| {
 | |
| 	mm_kobj = kobject_create_and_add("mm", kernel_kobj);
 | |
| 	if (!mm_kobj)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| postcore_initcall(mm_sysfs_init);
 | |
| 
 | |
| static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
 | |
| static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
 | |
| static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
 | |
| 
 | |
| static unsigned long required_kernelcore __initdata;
 | |
| static unsigned long required_kernelcore_percent __initdata;
 | |
| static unsigned long required_movablecore __initdata;
 | |
| static unsigned long required_movablecore_percent __initdata;
 | |
| 
 | |
| static unsigned long nr_kernel_pages __initdata;
 | |
| static unsigned long nr_all_pages __initdata;
 | |
| static unsigned long dma_reserve __initdata;
 | |
| 
 | |
| static bool deferred_struct_pages __meminitdata;
 | |
| 
 | |
| static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
 | |
| 
 | |
| static int __init cmdline_parse_core(char *p, unsigned long *core,
 | |
| 				     unsigned long *percent)
 | |
| {
 | |
| 	unsigned long long coremem;
 | |
| 	char *endptr;
 | |
| 
 | |
| 	if (!p)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Value may be a percentage of total memory, otherwise bytes */
 | |
| 	coremem = simple_strtoull(p, &endptr, 0);
 | |
| 	if (*endptr == '%') {
 | |
| 		/* Paranoid check for percent values greater than 100 */
 | |
| 		WARN_ON(coremem > 100);
 | |
| 
 | |
| 		*percent = coremem;
 | |
| 	} else {
 | |
| 		coremem = memparse(p, &p);
 | |
| 		/* Paranoid check that UL is enough for the coremem value */
 | |
| 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
 | |
| 
 | |
| 		*core = coremem >> PAGE_SHIFT;
 | |
| 		*percent = 0UL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| bool mirrored_kernelcore __initdata_memblock;
 | |
| 
 | |
| /*
 | |
|  * kernelcore=size sets the amount of memory for use for allocations that
 | |
|  * cannot be reclaimed or migrated.
 | |
|  */
 | |
| static int __init cmdline_parse_kernelcore(char *p)
 | |
| {
 | |
| 	/* parse kernelcore=mirror */
 | |
| 	if (parse_option_str(p, "mirror")) {
 | |
| 		mirrored_kernelcore = true;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return cmdline_parse_core(p, &required_kernelcore,
 | |
| 				  &required_kernelcore_percent);
 | |
| }
 | |
| early_param("kernelcore", cmdline_parse_kernelcore);
 | |
| 
 | |
| /*
 | |
|  * movablecore=size sets the amount of memory for use for allocations that
 | |
|  * can be reclaimed or migrated.
 | |
|  */
 | |
| static int __init cmdline_parse_movablecore(char *p)
 | |
| {
 | |
| 	return cmdline_parse_core(p, &required_movablecore,
 | |
| 				  &required_movablecore_percent);
 | |
| }
 | |
| early_param("movablecore", cmdline_parse_movablecore);
 | |
| 
 | |
| /*
 | |
|  * early_calculate_totalpages()
 | |
|  * Sum pages in active regions for movable zone.
 | |
|  * Populate N_MEMORY for calculating usable_nodes.
 | |
|  */
 | |
| static unsigned long __init early_calculate_totalpages(void)
 | |
| {
 | |
| 	unsigned long totalpages = 0;
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	int i, nid;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
 | |
| 		unsigned long pages = end_pfn - start_pfn;
 | |
| 
 | |
| 		totalpages += pages;
 | |
| 		if (pages)
 | |
| 			node_set_state(nid, N_MEMORY);
 | |
| 	}
 | |
| 	return totalpages;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This finds a zone that can be used for ZONE_MOVABLE pages. The
 | |
|  * assumption is made that zones within a node are ordered in monotonic
 | |
|  * increasing memory addresses so that the "highest" populated zone is used
 | |
|  */
 | |
| static void __init find_usable_zone_for_movable(void)
 | |
| {
 | |
| 	int zone_index;
 | |
| 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
 | |
| 		if (zone_index == ZONE_MOVABLE)
 | |
| 			continue;
 | |
| 
 | |
| 		if (arch_zone_highest_possible_pfn[zone_index] >
 | |
| 				arch_zone_lowest_possible_pfn[zone_index])
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	VM_BUG_ON(zone_index == -1);
 | |
| 	movable_zone = zone_index;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the PFN the Movable zone begins in each node. Kernel memory
 | |
|  * is spread evenly between nodes as long as the nodes have enough
 | |
|  * memory. When they don't, some nodes will have more kernelcore than
 | |
|  * others
 | |
|  */
 | |
| static void __init find_zone_movable_pfns_for_nodes(void)
 | |
| {
 | |
| 	int i, nid;
 | |
| 	unsigned long usable_startpfn;
 | |
| 	unsigned long kernelcore_node, kernelcore_remaining;
 | |
| 	/* save the state before borrow the nodemask */
 | |
| 	nodemask_t saved_node_state = node_states[N_MEMORY];
 | |
| 	unsigned long totalpages = early_calculate_totalpages();
 | |
| 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
 | |
| 	struct memblock_region *r;
 | |
| 
 | |
| 	/* Need to find movable_zone earlier when movable_node is specified. */
 | |
| 	find_usable_zone_for_movable();
 | |
| 
 | |
| 	/*
 | |
| 	 * If movable_node is specified, ignore kernelcore and movablecore
 | |
| 	 * options.
 | |
| 	 */
 | |
| 	if (movable_node_is_enabled()) {
 | |
| 		for_each_mem_region(r) {
 | |
| 			if (!memblock_is_hotpluggable(r))
 | |
| 				continue;
 | |
| 
 | |
| 			nid = memblock_get_region_node(r);
 | |
| 
 | |
| 			usable_startpfn = PFN_DOWN(r->base);
 | |
| 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
 | |
| 				min(usable_startpfn, zone_movable_pfn[nid]) :
 | |
| 				usable_startpfn;
 | |
| 		}
 | |
| 
 | |
| 		goto out2;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If kernelcore=mirror is specified, ignore movablecore option
 | |
| 	 */
 | |
| 	if (mirrored_kernelcore) {
 | |
| 		bool mem_below_4gb_not_mirrored = false;
 | |
| 
 | |
| 		if (!memblock_has_mirror()) {
 | |
| 			pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (is_kdump_kernel()) {
 | |
| 			pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		for_each_mem_region(r) {
 | |
| 			if (memblock_is_mirror(r))
 | |
| 				continue;
 | |
| 
 | |
| 			nid = memblock_get_region_node(r);
 | |
| 
 | |
| 			usable_startpfn = memblock_region_memory_base_pfn(r);
 | |
| 
 | |
| 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
 | |
| 				mem_below_4gb_not_mirrored = true;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
 | |
| 				min(usable_startpfn, zone_movable_pfn[nid]) :
 | |
| 				usable_startpfn;
 | |
| 		}
 | |
| 
 | |
| 		if (mem_below_4gb_not_mirrored)
 | |
| 			pr_warn("This configuration results in unmirrored kernel memory.\n");
 | |
| 
 | |
| 		goto out2;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
 | |
| 	 * amount of necessary memory.
 | |
| 	 */
 | |
| 	if (required_kernelcore_percent)
 | |
| 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
 | |
| 				       10000UL;
 | |
| 	if (required_movablecore_percent)
 | |
| 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
 | |
| 					10000UL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If movablecore= was specified, calculate what size of
 | |
| 	 * kernelcore that corresponds so that memory usable for
 | |
| 	 * any allocation type is evenly spread. If both kernelcore
 | |
| 	 * and movablecore are specified, then the value of kernelcore
 | |
| 	 * will be used for required_kernelcore if it's greater than
 | |
| 	 * what movablecore would have allowed.
 | |
| 	 */
 | |
| 	if (required_movablecore) {
 | |
| 		unsigned long corepages;
 | |
| 
 | |
| 		/*
 | |
| 		 * Round-up so that ZONE_MOVABLE is at least as large as what
 | |
| 		 * was requested by the user
 | |
| 		 */
 | |
| 		required_movablecore =
 | |
| 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
 | |
| 		required_movablecore = min(totalpages, required_movablecore);
 | |
| 		corepages = totalpages - required_movablecore;
 | |
| 
 | |
| 		required_kernelcore = max(required_kernelcore, corepages);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If kernelcore was not specified or kernelcore size is larger
 | |
| 	 * than totalpages, there is no ZONE_MOVABLE.
 | |
| 	 */
 | |
| 	if (!required_kernelcore || required_kernelcore >= totalpages)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
 | |
| 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
 | |
| 
 | |
| restart:
 | |
| 	/* Spread kernelcore memory as evenly as possible throughout nodes */
 | |
| 	kernelcore_node = required_kernelcore / usable_nodes;
 | |
| 	for_each_node_state(nid, N_MEMORY) {
 | |
| 		unsigned long start_pfn, end_pfn;
 | |
| 
 | |
| 		/*
 | |
| 		 * Recalculate kernelcore_node if the division per node
 | |
| 		 * now exceeds what is necessary to satisfy the requested
 | |
| 		 * amount of memory for the kernel
 | |
| 		 */
 | |
| 		if (required_kernelcore < kernelcore_node)
 | |
| 			kernelcore_node = required_kernelcore / usable_nodes;
 | |
| 
 | |
| 		/*
 | |
| 		 * As the map is walked, we track how much memory is usable
 | |
| 		 * by the kernel using kernelcore_remaining. When it is
 | |
| 		 * 0, the rest of the node is usable by ZONE_MOVABLE
 | |
| 		 */
 | |
| 		kernelcore_remaining = kernelcore_node;
 | |
| 
 | |
| 		/* Go through each range of PFNs within this node */
 | |
| 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
 | |
| 			unsigned long size_pages;
 | |
| 
 | |
| 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
 | |
| 			if (start_pfn >= end_pfn)
 | |
| 				continue;
 | |
| 
 | |
| 			/* Account for what is only usable for kernelcore */
 | |
| 			if (start_pfn < usable_startpfn) {
 | |
| 				unsigned long kernel_pages;
 | |
| 				kernel_pages = min(end_pfn, usable_startpfn)
 | |
| 								- start_pfn;
 | |
| 
 | |
| 				kernelcore_remaining -= min(kernel_pages,
 | |
| 							kernelcore_remaining);
 | |
| 				required_kernelcore -= min(kernel_pages,
 | |
| 							required_kernelcore);
 | |
| 
 | |
| 				/* Continue if range is now fully accounted */
 | |
| 				if (end_pfn <= usable_startpfn) {
 | |
| 
 | |
| 					/*
 | |
| 					 * Push zone_movable_pfn to the end so
 | |
| 					 * that if we have to rebalance
 | |
| 					 * kernelcore across nodes, we will
 | |
| 					 * not double account here
 | |
| 					 */
 | |
| 					zone_movable_pfn[nid] = end_pfn;
 | |
| 					continue;
 | |
| 				}
 | |
| 				start_pfn = usable_startpfn;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * The usable PFN range for ZONE_MOVABLE is from
 | |
| 			 * start_pfn->end_pfn. Calculate size_pages as the
 | |
| 			 * number of pages used as kernelcore
 | |
| 			 */
 | |
| 			size_pages = end_pfn - start_pfn;
 | |
| 			if (size_pages > kernelcore_remaining)
 | |
| 				size_pages = kernelcore_remaining;
 | |
| 			zone_movable_pfn[nid] = start_pfn + size_pages;
 | |
| 
 | |
| 			/*
 | |
| 			 * Some kernelcore has been met, update counts and
 | |
| 			 * break if the kernelcore for this node has been
 | |
| 			 * satisfied
 | |
| 			 */
 | |
| 			required_kernelcore -= min(required_kernelcore,
 | |
| 								size_pages);
 | |
| 			kernelcore_remaining -= size_pages;
 | |
| 			if (!kernelcore_remaining)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is still required_kernelcore, we do another pass with one
 | |
| 	 * less node in the count. This will push zone_movable_pfn[nid] further
 | |
| 	 * along on the nodes that still have memory until kernelcore is
 | |
| 	 * satisfied
 | |
| 	 */
 | |
| 	usable_nodes--;
 | |
| 	if (usable_nodes && required_kernelcore > usable_nodes)
 | |
| 		goto restart;
 | |
| 
 | |
| out2:
 | |
| 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
 | |
| 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
 | |
| 		unsigned long start_pfn, end_pfn;
 | |
| 
 | |
| 		zone_movable_pfn[nid] =
 | |
| 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
 | |
| 
 | |
| 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 | |
| 		if (zone_movable_pfn[nid] >= end_pfn)
 | |
| 			zone_movable_pfn[nid] = 0;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	/* restore the node_state */
 | |
| 	node_states[N_MEMORY] = saved_node_state;
 | |
| }
 | |
| 
 | |
| void __meminit __init_single_page(struct page *page, unsigned long pfn,
 | |
| 				unsigned long zone, int nid)
 | |
| {
 | |
| 	mm_zero_struct_page(page);
 | |
| 	set_page_links(page, zone, nid, pfn);
 | |
| 	init_page_count(page);
 | |
| 	page_mapcount_reset(page);
 | |
| 	page_cpupid_reset_last(page);
 | |
| 	page_kasan_tag_reset(page);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&page->lru);
 | |
| #ifdef WANT_PAGE_VIRTUAL
 | |
| 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
 | |
| 	if (!is_highmem_idx(zone))
 | |
| 		set_page_address(page, __va(pfn << PAGE_SHIFT));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /*
 | |
|  * During memory init memblocks map pfns to nids. The search is expensive and
 | |
|  * this caches recent lookups. The implementation of __early_pfn_to_nid
 | |
|  * treats start/end as pfns.
 | |
|  */
 | |
| struct mminit_pfnnid_cache {
 | |
| 	unsigned long last_start;
 | |
| 	unsigned long last_end;
 | |
| 	int last_nid;
 | |
| };
 | |
| 
 | |
| static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
 | |
| 
 | |
| /*
 | |
|  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 | |
|  */
 | |
| static int __meminit __early_pfn_to_nid(unsigned long pfn,
 | |
| 					struct mminit_pfnnid_cache *state)
 | |
| {
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	int nid;
 | |
| 
 | |
| 	if (state->last_start <= pfn && pfn < state->last_end)
 | |
| 		return state->last_nid;
 | |
| 
 | |
| 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
 | |
| 	if (nid != NUMA_NO_NODE) {
 | |
| 		state->last_start = start_pfn;
 | |
| 		state->last_end = end_pfn;
 | |
| 		state->last_nid = nid;
 | |
| 	}
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| int __meminit early_pfn_to_nid(unsigned long pfn)
 | |
| {
 | |
| 	static DEFINE_SPINLOCK(early_pfn_lock);
 | |
| 	int nid;
 | |
| 
 | |
| 	spin_lock(&early_pfn_lock);
 | |
| 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
 | |
| 	if (nid < 0)
 | |
| 		nid = first_online_node;
 | |
| 	spin_unlock(&early_pfn_lock);
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| int hashdist = HASHDIST_DEFAULT;
 | |
| 
 | |
| static int __init set_hashdist(char *str)
 | |
| {
 | |
| 	if (!str)
 | |
| 		return 0;
 | |
| 	hashdist = simple_strtoul(str, &str, 0);
 | |
| 	return 1;
 | |
| }
 | |
| __setup("hashdist=", set_hashdist);
 | |
| 
 | |
| static inline void fixup_hashdist(void)
 | |
| {
 | |
| 	if (num_node_state(N_MEMORY) == 1)
 | |
| 		hashdist = 0;
 | |
| }
 | |
| #else
 | |
| static inline void fixup_hashdist(void) {}
 | |
| #endif /* CONFIG_NUMA */
 | |
| 
 | |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 | |
| static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
 | |
| {
 | |
| 	pgdat->first_deferred_pfn = ULONG_MAX;
 | |
| }
 | |
| 
 | |
| /* Returns true if the struct page for the pfn is initialised */
 | |
| static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
 | |
| {
 | |
| 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true when the remaining initialisation should be deferred until
 | |
|  * later in the boot cycle when it can be parallelised.
 | |
|  */
 | |
| static bool __meminit
 | |
| defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 | |
| {
 | |
| 	static unsigned long prev_end_pfn, nr_initialised;
 | |
| 
 | |
| 	if (early_page_ext_enabled())
 | |
| 		return false;
 | |
| 	/*
 | |
| 	 * prev_end_pfn static that contains the end of previous zone
 | |
| 	 * No need to protect because called very early in boot before smp_init.
 | |
| 	 */
 | |
| 	if (prev_end_pfn != end_pfn) {
 | |
| 		prev_end_pfn = end_pfn;
 | |
| 		nr_initialised = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Always populate low zones for address-constrained allocations */
 | |
| 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
 | |
| 		return false;
 | |
| 
 | |
| 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
 | |
| 		return true;
 | |
| 	/*
 | |
| 	 * We start only with one section of pages, more pages are added as
 | |
| 	 * needed until the rest of deferred pages are initialized.
 | |
| 	 */
 | |
| 	nr_initialised++;
 | |
| 	if ((nr_initialised > PAGES_PER_SECTION) &&
 | |
| 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 | |
| 		NODE_DATA(nid)->first_deferred_pfn = pfn;
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void __meminit init_reserved_page(unsigned long pfn, int nid)
 | |
| {
 | |
| 	pg_data_t *pgdat;
 | |
| 	int zid;
 | |
| 
 | |
| 	if (early_page_initialised(pfn, nid))
 | |
| 		return;
 | |
| 
 | |
| 	pgdat = NODE_DATA(nid);
 | |
| 
 | |
| 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | |
| 		struct zone *zone = &pgdat->node_zones[zid];
 | |
| 
 | |
| 		if (zone_spans_pfn(zone, pfn))
 | |
| 			break;
 | |
| 	}
 | |
| 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
 | |
| }
 | |
| #else
 | |
| static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
 | |
| 
 | |
| static inline bool early_page_initialised(unsigned long pfn, int nid)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline void init_reserved_page(unsigned long pfn, int nid)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 | |
| 
 | |
| /*
 | |
|  * Initialised pages do not have PageReserved set. This function is
 | |
|  * called for each range allocated by the bootmem allocator and
 | |
|  * marks the pages PageReserved. The remaining valid pages are later
 | |
|  * sent to the buddy page allocator.
 | |
|  */
 | |
| void __meminit reserve_bootmem_region(phys_addr_t start,
 | |
| 				      phys_addr_t end, int nid)
 | |
| {
 | |
| 	unsigned long start_pfn = PFN_DOWN(start);
 | |
| 	unsigned long end_pfn = PFN_UP(end);
 | |
| 
 | |
| 	for (; start_pfn < end_pfn; start_pfn++) {
 | |
| 		if (pfn_valid(start_pfn)) {
 | |
| 			struct page *page = pfn_to_page(start_pfn);
 | |
| 
 | |
| 			init_reserved_page(start_pfn, nid);
 | |
| 
 | |
| 			/* Avoid false-positive PageTail() */
 | |
| 			INIT_LIST_HEAD(&page->lru);
 | |
| 
 | |
| 			/*
 | |
| 			 * no need for atomic set_bit because the struct
 | |
| 			 * page is not visible yet so nobody should
 | |
| 			 * access it yet.
 | |
| 			 */
 | |
| 			__SetPageReserved(page);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
 | |
| static bool __meminit
 | |
| overlap_memmap_init(unsigned long zone, unsigned long *pfn)
 | |
| {
 | |
| 	static struct memblock_region *r;
 | |
| 
 | |
| 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
 | |
| 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
 | |
| 			for_each_mem_region(r) {
 | |
| 				if (*pfn < memblock_region_memory_end_pfn(r))
 | |
| 					break;
 | |
| 			}
 | |
| 		}
 | |
| 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
 | |
| 		    memblock_is_mirror(r)) {
 | |
| 			*pfn = memblock_region_memory_end_pfn(r);
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Only struct pages that correspond to ranges defined by memblock.memory
 | |
|  * are zeroed and initialized by going through __init_single_page() during
 | |
|  * memmap_init_zone_range().
 | |
|  *
 | |
|  * But, there could be struct pages that correspond to holes in
 | |
|  * memblock.memory. This can happen because of the following reasons:
 | |
|  * - physical memory bank size is not necessarily the exact multiple of the
 | |
|  *   arbitrary section size
 | |
|  * - early reserved memory may not be listed in memblock.memory
 | |
|  * - non-memory regions covered by the contigious flatmem mapping
 | |
|  * - memory layouts defined with memmap= kernel parameter may not align
 | |
|  *   nicely with memmap sections
 | |
|  *
 | |
|  * Explicitly initialize those struct pages so that:
 | |
|  * - PG_Reserved is set
 | |
|  * - zone and node links point to zone and node that span the page if the
 | |
|  *   hole is in the middle of a zone
 | |
|  * - zone and node links point to adjacent zone/node if the hole falls on
 | |
|  *   the zone boundary; the pages in such holes will be prepended to the
 | |
|  *   zone/node above the hole except for the trailing pages in the last
 | |
|  *   section that will be appended to the zone/node below.
 | |
|  */
 | |
| static void __init init_unavailable_range(unsigned long spfn,
 | |
| 					  unsigned long epfn,
 | |
| 					  int zone, int node)
 | |
| {
 | |
| 	unsigned long pfn;
 | |
| 	u64 pgcnt = 0;
 | |
| 
 | |
| 	for (pfn = spfn; pfn < epfn; pfn++) {
 | |
| 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
 | |
| 			pfn = pageblock_end_pfn(pfn) - 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
 | |
| 		__SetPageReserved(pfn_to_page(pfn));
 | |
| 		pgcnt++;
 | |
| 	}
 | |
| 
 | |
| 	if (pgcnt)
 | |
| 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
 | |
| 			node, zone_names[zone], pgcnt);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initially all pages are reserved - free ones are freed
 | |
|  * up by memblock_free_all() once the early boot process is
 | |
|  * done. Non-atomic initialization, single-pass.
 | |
|  *
 | |
|  * All aligned pageblocks are initialized to the specified migratetype
 | |
|  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
 | |
|  * zone stats (e.g., nr_isolate_pageblock) are touched.
 | |
|  */
 | |
| void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
 | |
| 		unsigned long start_pfn, unsigned long zone_end_pfn,
 | |
| 		enum meminit_context context,
 | |
| 		struct vmem_altmap *altmap, int migratetype)
 | |
| {
 | |
| 	unsigned long pfn, end_pfn = start_pfn + size;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (highest_memmap_pfn < end_pfn - 1)
 | |
| 		highest_memmap_pfn = end_pfn - 1;
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DEVICE
 | |
| 	/*
 | |
| 	 * Honor reservation requested by the driver for this ZONE_DEVICE
 | |
| 	 * memory. We limit the total number of pages to initialize to just
 | |
| 	 * those that might contain the memory mapping. We will defer the
 | |
| 	 * ZONE_DEVICE page initialization until after we have released
 | |
| 	 * the hotplug lock.
 | |
| 	 */
 | |
| 	if (zone == ZONE_DEVICE) {
 | |
| 		if (!altmap)
 | |
| 			return;
 | |
| 
 | |
| 		if (start_pfn == altmap->base_pfn)
 | |
| 			start_pfn += altmap->reserve;
 | |
| 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	for (pfn = start_pfn; pfn < end_pfn; ) {
 | |
| 		/*
 | |
| 		 * There can be holes in boot-time mem_map[]s handed to this
 | |
| 		 * function.  They do not exist on hotplugged memory.
 | |
| 		 */
 | |
| 		if (context == MEMINIT_EARLY) {
 | |
| 			if (overlap_memmap_init(zone, &pfn))
 | |
| 				continue;
 | |
| 			if (defer_init(nid, pfn, zone_end_pfn)) {
 | |
| 				deferred_struct_pages = true;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		page = pfn_to_page(pfn);
 | |
| 		__init_single_page(page, pfn, zone, nid);
 | |
| 		if (context == MEMINIT_HOTPLUG)
 | |
| 			__SetPageReserved(page);
 | |
| 
 | |
| 		/*
 | |
| 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
 | |
| 		 * such that unmovable allocations won't be scattered all
 | |
| 		 * over the place during system boot.
 | |
| 		 */
 | |
| 		if (pageblock_aligned(pfn)) {
 | |
| 			set_pageblock_migratetype(page, migratetype);
 | |
| 			cond_resched();
 | |
| 		}
 | |
| 		pfn++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init memmap_init_zone_range(struct zone *zone,
 | |
| 					  unsigned long start_pfn,
 | |
| 					  unsigned long end_pfn,
 | |
| 					  unsigned long *hole_pfn)
 | |
| {
 | |
| 	unsigned long zone_start_pfn = zone->zone_start_pfn;
 | |
| 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
 | |
| 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
 | |
| 
 | |
| 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
 | |
| 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
 | |
| 
 | |
| 	if (start_pfn >= end_pfn)
 | |
| 		return;
 | |
| 
 | |
| 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
 | |
| 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
 | |
| 
 | |
| 	if (*hole_pfn < start_pfn)
 | |
| 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
 | |
| 
 | |
| 	*hole_pfn = end_pfn;
 | |
| }
 | |
| 
 | |
| static void __init memmap_init(void)
 | |
| {
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	unsigned long hole_pfn = 0;
 | |
| 	int i, j, zone_id = 0, nid;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
 | |
| 		struct pglist_data *node = NODE_DATA(nid);
 | |
| 
 | |
| 		for (j = 0; j < MAX_NR_ZONES; j++) {
 | |
| 			struct zone *zone = node->node_zones + j;
 | |
| 
 | |
| 			if (!populated_zone(zone))
 | |
| 				continue;
 | |
| 
 | |
| 			memmap_init_zone_range(zone, start_pfn, end_pfn,
 | |
| 					       &hole_pfn);
 | |
| 			zone_id = j;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM
 | |
| 	/*
 | |
| 	 * Initialize the memory map for hole in the range [memory_end,
 | |
| 	 * section_end].
 | |
| 	 * Append the pages in this hole to the highest zone in the last
 | |
| 	 * node.
 | |
| 	 * The call to init_unavailable_range() is outside the ifdef to
 | |
| 	 * silence the compiler warining about zone_id set but not used;
 | |
| 	 * for FLATMEM it is a nop anyway
 | |
| 	 */
 | |
| 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
 | |
| 	if (hole_pfn < end_pfn)
 | |
| #endif
 | |
| 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DEVICE
 | |
| static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
 | |
| 					  unsigned long zone_idx, int nid,
 | |
| 					  struct dev_pagemap *pgmap)
 | |
| {
 | |
| 
 | |
| 	__init_single_page(page, pfn, zone_idx, nid);
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark page reserved as it will need to wait for onlining
 | |
| 	 * phase for it to be fully associated with a zone.
 | |
| 	 *
 | |
| 	 * We can use the non-atomic __set_bit operation for setting
 | |
| 	 * the flag as we are still initializing the pages.
 | |
| 	 */
 | |
| 	__SetPageReserved(page);
 | |
| 
 | |
| 	/*
 | |
| 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
 | |
| 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
 | |
| 	 * ever freed or placed on a driver-private list.
 | |
| 	 */
 | |
| 	page->pgmap = pgmap;
 | |
| 	page->zone_device_data = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark the block movable so that blocks are reserved for
 | |
| 	 * movable at startup. This will force kernel allocations
 | |
| 	 * to reserve their blocks rather than leaking throughout
 | |
| 	 * the address space during boot when many long-lived
 | |
| 	 * kernel allocations are made.
 | |
| 	 *
 | |
| 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
 | |
| 	 * because this is done early in section_activate()
 | |
| 	 */
 | |
| 	if (pageblock_aligned(pfn)) {
 | |
| 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * ZONE_DEVICE pages are released directly to the driver page allocator
 | |
| 	 * which will set the page count to 1 when allocating the page.
 | |
| 	 */
 | |
| 	if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
 | |
| 	    pgmap->type == MEMORY_DEVICE_COHERENT)
 | |
| 		set_page_count(page, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * With compound page geometry and when struct pages are stored in ram most
 | |
|  * tail pages are reused. Consequently, the amount of unique struct pages to
 | |
|  * initialize is a lot smaller that the total amount of struct pages being
 | |
|  * mapped. This is a paired / mild layering violation with explicit knowledge
 | |
|  * of how the sparse_vmemmap internals handle compound pages in the lack
 | |
|  * of an altmap. See vmemmap_populate_compound_pages().
 | |
|  */
 | |
| static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
 | |
| 					      struct dev_pagemap *pgmap)
 | |
| {
 | |
| 	if (!vmemmap_can_optimize(altmap, pgmap))
 | |
| 		return pgmap_vmemmap_nr(pgmap);
 | |
| 
 | |
| 	return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
 | |
| }
 | |
| 
 | |
| static void __ref memmap_init_compound(struct page *head,
 | |
| 				       unsigned long head_pfn,
 | |
| 				       unsigned long zone_idx, int nid,
 | |
| 				       struct dev_pagemap *pgmap,
 | |
| 				       unsigned long nr_pages)
 | |
| {
 | |
| 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
 | |
| 	unsigned int order = pgmap->vmemmap_shift;
 | |
| 
 | |
| 	__SetPageHead(head);
 | |
| 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
 | |
| 		struct page *page = pfn_to_page(pfn);
 | |
| 
 | |
| 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
 | |
| 		prep_compound_tail(head, pfn - head_pfn);
 | |
| 		set_page_count(page, 0);
 | |
| 
 | |
| 		/*
 | |
| 		 * The first tail page stores important compound page info.
 | |
| 		 * Call prep_compound_head() after the first tail page has
 | |
| 		 * been initialized, to not have the data overwritten.
 | |
| 		 */
 | |
| 		if (pfn == head_pfn + 1)
 | |
| 			prep_compound_head(head, order);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __ref memmap_init_zone_device(struct zone *zone,
 | |
| 				   unsigned long start_pfn,
 | |
| 				   unsigned long nr_pages,
 | |
| 				   struct dev_pagemap *pgmap)
 | |
| {
 | |
| 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
 | |
| 	struct pglist_data *pgdat = zone->zone_pgdat;
 | |
| 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
 | |
| 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
 | |
| 	unsigned long zone_idx = zone_idx(zone);
 | |
| 	unsigned long start = jiffies;
 | |
| 	int nid = pgdat->node_id;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * The call to memmap_init should have already taken care
 | |
| 	 * of the pages reserved for the memmap, so we can just jump to
 | |
| 	 * the end of that region and start processing the device pages.
 | |
| 	 */
 | |
| 	if (altmap) {
 | |
| 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
 | |
| 		nr_pages = end_pfn - start_pfn;
 | |
| 	}
 | |
| 
 | |
| 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
 | |
| 		struct page *page = pfn_to_page(pfn);
 | |
| 
 | |
| 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
 | |
| 
 | |
| 		if (pfns_per_compound == 1)
 | |
| 			continue;
 | |
| 
 | |
| 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
 | |
| 				     compound_nr_pages(altmap, pgmap));
 | |
| 	}
 | |
| 
 | |
| 	pr_debug("%s initialised %lu pages in %ums\n", __func__,
 | |
| 		nr_pages, jiffies_to_msecs(jiffies - start));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
 | |
|  * because it is sized independent of architecture. Unlike the other zones,
 | |
|  * the starting point for ZONE_MOVABLE is not fixed. It may be different
 | |
|  * in each node depending on the size of each node and how evenly kernelcore
 | |
|  * is distributed. This helper function adjusts the zone ranges
 | |
|  * provided by the architecture for a given node by using the end of the
 | |
|  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 | |
|  * zones within a node are in order of monotonic increases memory addresses
 | |
|  */
 | |
| static void __init adjust_zone_range_for_zone_movable(int nid,
 | |
| 					unsigned long zone_type,
 | |
| 					unsigned long node_end_pfn,
 | |
| 					unsigned long *zone_start_pfn,
 | |
| 					unsigned long *zone_end_pfn)
 | |
| {
 | |
| 	/* Only adjust if ZONE_MOVABLE is on this node */
 | |
| 	if (zone_movable_pfn[nid]) {
 | |
| 		/* Size ZONE_MOVABLE */
 | |
| 		if (zone_type == ZONE_MOVABLE) {
 | |
| 			*zone_start_pfn = zone_movable_pfn[nid];
 | |
| 			*zone_end_pfn = min(node_end_pfn,
 | |
| 				arch_zone_highest_possible_pfn[movable_zone]);
 | |
| 
 | |
| 		/* Adjust for ZONE_MOVABLE starting within this range */
 | |
| 		} else if (!mirrored_kernelcore &&
 | |
| 			*zone_start_pfn < zone_movable_pfn[nid] &&
 | |
| 			*zone_end_pfn > zone_movable_pfn[nid]) {
 | |
| 			*zone_end_pfn = zone_movable_pfn[nid];
 | |
| 
 | |
| 		/* Check if this whole range is within ZONE_MOVABLE */
 | |
| 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
 | |
| 			*zone_start_pfn = *zone_end_pfn;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
 | |
|  * then all holes in the requested range will be accounted for.
 | |
|  */
 | |
| unsigned long __init __absent_pages_in_range(int nid,
 | |
| 				unsigned long range_start_pfn,
 | |
| 				unsigned long range_end_pfn)
 | |
| {
 | |
| 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
 | |
| 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
 | |
| 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
 | |
| 		nr_absent -= end_pfn - start_pfn;
 | |
| 	}
 | |
| 	return nr_absent;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * absent_pages_in_range - Return number of page frames in holes within a range
 | |
|  * @start_pfn: The start PFN to start searching for holes
 | |
|  * @end_pfn: The end PFN to stop searching for holes
 | |
|  *
 | |
|  * Return: the number of pages frames in memory holes within a range.
 | |
|  */
 | |
| unsigned long __init absent_pages_in_range(unsigned long start_pfn,
 | |
| 							unsigned long end_pfn)
 | |
| {
 | |
| 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
 | |
| }
 | |
| 
 | |
| /* Return the number of page frames in holes in a zone on a node */
 | |
| static unsigned long __init zone_absent_pages_in_node(int nid,
 | |
| 					unsigned long zone_type,
 | |
| 					unsigned long zone_start_pfn,
 | |
| 					unsigned long zone_end_pfn)
 | |
| {
 | |
| 	unsigned long nr_absent;
 | |
| 
 | |
| 	/* zone is empty, we don't have any absent pages */
 | |
| 	if (zone_start_pfn == zone_end_pfn)
 | |
| 		return 0;
 | |
| 
 | |
| 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
 | |
| 
 | |
| 	/*
 | |
| 	 * ZONE_MOVABLE handling.
 | |
| 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
 | |
| 	 * and vice versa.
 | |
| 	 */
 | |
| 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
 | |
| 		unsigned long start_pfn, end_pfn;
 | |
| 		struct memblock_region *r;
 | |
| 
 | |
| 		for_each_mem_region(r) {
 | |
| 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
 | |
| 					  zone_start_pfn, zone_end_pfn);
 | |
| 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
 | |
| 					zone_start_pfn, zone_end_pfn);
 | |
| 
 | |
| 			if (zone_type == ZONE_MOVABLE &&
 | |
| 			    memblock_is_mirror(r))
 | |
| 				nr_absent += end_pfn - start_pfn;
 | |
| 
 | |
| 			if (zone_type == ZONE_NORMAL &&
 | |
| 			    !memblock_is_mirror(r))
 | |
| 				nr_absent += end_pfn - start_pfn;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return nr_absent;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of pages a zone spans in a node, including holes
 | |
|  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 | |
|  */
 | |
| static unsigned long __init zone_spanned_pages_in_node(int nid,
 | |
| 					unsigned long zone_type,
 | |
| 					unsigned long node_start_pfn,
 | |
| 					unsigned long node_end_pfn,
 | |
| 					unsigned long *zone_start_pfn,
 | |
| 					unsigned long *zone_end_pfn)
 | |
| {
 | |
| 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
 | |
| 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
 | |
| 
 | |
| 	/* Get the start and end of the zone */
 | |
| 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
 | |
| 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
 | |
| 	adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
 | |
| 					   zone_start_pfn, zone_end_pfn);
 | |
| 
 | |
| 	/* Check that this node has pages within the zone's required range */
 | |
| 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Move the zone boundaries inside the node if necessary */
 | |
| 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
 | |
| 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
 | |
| 
 | |
| 	/* Return the spanned pages */
 | |
| 	return *zone_end_pfn - *zone_start_pfn;
 | |
| }
 | |
| 
 | |
| static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
 | |
| {
 | |
| 	struct zone *z;
 | |
| 
 | |
| 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
 | |
| 		z->zone_start_pfn = 0;
 | |
| 		z->spanned_pages = 0;
 | |
| 		z->present_pages = 0;
 | |
| #if defined(CONFIG_MEMORY_HOTPLUG)
 | |
| 		z->present_early_pages = 0;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	pgdat->node_spanned_pages = 0;
 | |
| 	pgdat->node_present_pages = 0;
 | |
| 	pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
 | |
| }
 | |
| 
 | |
| static void __init calculate_node_totalpages(struct pglist_data *pgdat,
 | |
| 						unsigned long node_start_pfn,
 | |
| 						unsigned long node_end_pfn)
 | |
| {
 | |
| 	unsigned long realtotalpages = 0, totalpages = 0;
 | |
| 	enum zone_type i;
 | |
| 
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++) {
 | |
| 		struct zone *zone = pgdat->node_zones + i;
 | |
| 		unsigned long zone_start_pfn, zone_end_pfn;
 | |
| 		unsigned long spanned, absent;
 | |
| 		unsigned long real_size;
 | |
| 
 | |
| 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
 | |
| 						     node_start_pfn,
 | |
| 						     node_end_pfn,
 | |
| 						     &zone_start_pfn,
 | |
| 						     &zone_end_pfn);
 | |
| 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
 | |
| 						   zone_start_pfn,
 | |
| 						   zone_end_pfn);
 | |
| 
 | |
| 		real_size = spanned - absent;
 | |
| 
 | |
| 		if (spanned)
 | |
| 			zone->zone_start_pfn = zone_start_pfn;
 | |
| 		else
 | |
| 			zone->zone_start_pfn = 0;
 | |
| 		zone->spanned_pages = spanned;
 | |
| 		zone->present_pages = real_size;
 | |
| #if defined(CONFIG_MEMORY_HOTPLUG)
 | |
| 		zone->present_early_pages = real_size;
 | |
| #endif
 | |
| 
 | |
| 		totalpages += spanned;
 | |
| 		realtotalpages += real_size;
 | |
| 	}
 | |
| 
 | |
| 	pgdat->node_spanned_pages = totalpages;
 | |
| 	pgdat->node_present_pages = realtotalpages;
 | |
| 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
 | |
| }
 | |
| 
 | |
| static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
 | |
| 						unsigned long present_pages)
 | |
| {
 | |
| 	unsigned long pages = spanned_pages;
 | |
| 
 | |
| 	/*
 | |
| 	 * Provide a more accurate estimation if there are holes within
 | |
| 	 * the zone and SPARSEMEM is in use. If there are holes within the
 | |
| 	 * zone, each populated memory region may cost us one or two extra
 | |
| 	 * memmap pages due to alignment because memmap pages for each
 | |
| 	 * populated regions may not be naturally aligned on page boundary.
 | |
| 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
 | |
| 	 */
 | |
| 	if (spanned_pages > present_pages + (present_pages >> 4) &&
 | |
| 	    IS_ENABLED(CONFIG_SPARSEMEM))
 | |
| 		pages = present_pages;
 | |
| 
 | |
| 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| static void pgdat_init_split_queue(struct pglist_data *pgdat)
 | |
| {
 | |
| 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
 | |
| 
 | |
| 	spin_lock_init(&ds_queue->split_queue_lock);
 | |
| 	INIT_LIST_HEAD(&ds_queue->split_queue);
 | |
| 	ds_queue->split_queue_len = 0;
 | |
| }
 | |
| #else
 | |
| static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_COMPACTION
 | |
| static void pgdat_init_kcompactd(struct pglist_data *pgdat)
 | |
| {
 | |
| 	init_waitqueue_head(&pgdat->kcompactd_wait);
 | |
| }
 | |
| #else
 | |
| static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
 | |
| #endif
 | |
| 
 | |
| static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	pgdat_resize_init(pgdat);
 | |
| 	pgdat_kswapd_lock_init(pgdat);
 | |
| 
 | |
| 	pgdat_init_split_queue(pgdat);
 | |
| 	pgdat_init_kcompactd(pgdat);
 | |
| 
 | |
| 	init_waitqueue_head(&pgdat->kswapd_wait);
 | |
| 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
 | |
| 
 | |
| 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
 | |
| 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
 | |
| 
 | |
| 	pgdat_page_ext_init(pgdat);
 | |
| 	lruvec_init(&pgdat->__lruvec);
 | |
| }
 | |
| 
 | |
| static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
 | |
| 							unsigned long remaining_pages)
 | |
| {
 | |
| 	atomic_long_set(&zone->managed_pages, remaining_pages);
 | |
| 	zone_set_nid(zone, nid);
 | |
| 	zone->name = zone_names[idx];
 | |
| 	zone->zone_pgdat = NODE_DATA(nid);
 | |
| 	spin_lock_init(&zone->lock);
 | |
| 	zone_seqlock_init(zone);
 | |
| 	zone_pcp_init(zone);
 | |
| }
 | |
| 
 | |
| static void __meminit zone_init_free_lists(struct zone *zone)
 | |
| {
 | |
| 	unsigned int order, t;
 | |
| 	for_each_migratetype_order(order, t) {
 | |
| 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
 | |
| 		zone->free_area[order].nr_free = 0;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_UNACCEPTED_MEMORY
 | |
| 	INIT_LIST_HEAD(&zone->unaccepted_pages);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void __meminit init_currently_empty_zone(struct zone *zone,
 | |
| 					unsigned long zone_start_pfn,
 | |
| 					unsigned long size)
 | |
| {
 | |
| 	struct pglist_data *pgdat = zone->zone_pgdat;
 | |
| 	int zone_idx = zone_idx(zone) + 1;
 | |
| 
 | |
| 	if (zone_idx > pgdat->nr_zones)
 | |
| 		pgdat->nr_zones = zone_idx;
 | |
| 
 | |
| 	zone->zone_start_pfn = zone_start_pfn;
 | |
| 
 | |
| 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
 | |
| 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
 | |
| 			pgdat->node_id,
 | |
| 			(unsigned long)zone_idx(zone),
 | |
| 			zone_start_pfn, (zone_start_pfn + size));
 | |
| 
 | |
| 	zone_init_free_lists(zone);
 | |
| 	zone->initialized = 1;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SPARSEMEM
 | |
| /*
 | |
|  * Calculate the size of the zone->blockflags rounded to an unsigned long
 | |
|  * Start by making sure zonesize is a multiple of pageblock_order by rounding
 | |
|  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
 | |
|  * round what is now in bits to nearest long in bits, then return it in
 | |
|  * bytes.
 | |
|  */
 | |
| static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
 | |
| {
 | |
| 	unsigned long usemapsize;
 | |
| 
 | |
| 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
 | |
| 	usemapsize = roundup(zonesize, pageblock_nr_pages);
 | |
| 	usemapsize = usemapsize >> pageblock_order;
 | |
| 	usemapsize *= NR_PAGEBLOCK_BITS;
 | |
| 	usemapsize = roundup(usemapsize, BITS_PER_LONG);
 | |
| 
 | |
| 	return usemapsize / BITS_PER_BYTE;
 | |
| }
 | |
| 
 | |
| static void __ref setup_usemap(struct zone *zone)
 | |
| {
 | |
| 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
 | |
| 					       zone->spanned_pages);
 | |
| 	zone->pageblock_flags = NULL;
 | |
| 	if (usemapsize) {
 | |
| 		zone->pageblock_flags =
 | |
| 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
 | |
| 					    zone_to_nid(zone));
 | |
| 		if (!zone->pageblock_flags)
 | |
| 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
 | |
| 			      usemapsize, zone->name, zone_to_nid(zone));
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static inline void setup_usemap(struct zone *zone) {}
 | |
| #endif /* CONFIG_SPARSEMEM */
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 | |
| 
 | |
| /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
 | |
| void __init set_pageblock_order(void)
 | |
| {
 | |
| 	unsigned int order = MAX_PAGE_ORDER;
 | |
| 
 | |
| 	/* Check that pageblock_nr_pages has not already been setup */
 | |
| 	if (pageblock_order)
 | |
| 		return;
 | |
| 
 | |
| 	/* Don't let pageblocks exceed the maximum allocation granularity. */
 | |
| 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
 | |
| 		order = HUGETLB_PAGE_ORDER;
 | |
| 
 | |
| 	/*
 | |
| 	 * Assume the largest contiguous order of interest is a huge page.
 | |
| 	 * This value may be variable depending on boot parameters on powerpc.
 | |
| 	 */
 | |
| 	pageblock_order = order;
 | |
| }
 | |
| #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
 | |
| 
 | |
| /*
 | |
|  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
 | |
|  * is unused as pageblock_order is set at compile-time. See
 | |
|  * include/linux/pageblock-flags.h for the values of pageblock_order based on
 | |
|  * the kernel config
 | |
|  */
 | |
| void __init set_pageblock_order(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
 | |
| 
 | |
| /*
 | |
|  * Set up the zone data structures
 | |
|  * - init pgdat internals
 | |
|  * - init all zones belonging to this node
 | |
|  *
 | |
|  * NOTE: this function is only called during memory hotplug
 | |
|  */
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
 | |
| {
 | |
| 	int nid = pgdat->node_id;
 | |
| 	enum zone_type z;
 | |
| 	int cpu;
 | |
| 
 | |
| 	pgdat_init_internals(pgdat);
 | |
| 
 | |
| 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
 | |
| 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
 | |
| 	 * Note that kswapd will init kswapd_highest_zoneidx properly
 | |
| 	 * when it starts in the near future.
 | |
| 	 */
 | |
| 	pgdat->nr_zones = 0;
 | |
| 	pgdat->kswapd_order = 0;
 | |
| 	pgdat->kswapd_highest_zoneidx = 0;
 | |
| 	pgdat->node_start_pfn = 0;
 | |
| 	pgdat->node_present_pages = 0;
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		struct per_cpu_nodestat *p;
 | |
| 
 | |
| 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
 | |
| 		memset(p, 0, sizeof(*p));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When memory is hot-added, all the memory is in offline state. So
 | |
| 	 * clear all zones' present_pages and managed_pages because they will
 | |
| 	 * be updated in online_pages() and offline_pages().
 | |
| 	 */
 | |
| 	for (z = 0; z < MAX_NR_ZONES; z++) {
 | |
| 		struct zone *zone = pgdat->node_zones + z;
 | |
| 
 | |
| 		zone->present_pages = 0;
 | |
| 		zone_init_internals(zone, z, nid, 0);
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Set up the zone data structures:
 | |
|  *   - mark all pages reserved
 | |
|  *   - mark all memory queues empty
 | |
|  *   - clear the memory bitmaps
 | |
|  *
 | |
|  * NOTE: pgdat should get zeroed by caller.
 | |
|  * NOTE: this function is only called during early init.
 | |
|  */
 | |
| static void __init free_area_init_core(struct pglist_data *pgdat)
 | |
| {
 | |
| 	enum zone_type j;
 | |
| 	int nid = pgdat->node_id;
 | |
| 
 | |
| 	pgdat_init_internals(pgdat);
 | |
| 	pgdat->per_cpu_nodestats = &boot_nodestats;
 | |
| 
 | |
| 	for (j = 0; j < MAX_NR_ZONES; j++) {
 | |
| 		struct zone *zone = pgdat->node_zones + j;
 | |
| 		unsigned long size, freesize, memmap_pages;
 | |
| 
 | |
| 		size = zone->spanned_pages;
 | |
| 		freesize = zone->present_pages;
 | |
| 
 | |
| 		/*
 | |
| 		 * Adjust freesize so that it accounts for how much memory
 | |
| 		 * is used by this zone for memmap. This affects the watermark
 | |
| 		 * and per-cpu initialisations
 | |
| 		 */
 | |
| 		memmap_pages = calc_memmap_size(size, freesize);
 | |
| 		if (!is_highmem_idx(j)) {
 | |
| 			if (freesize >= memmap_pages) {
 | |
| 				freesize -= memmap_pages;
 | |
| 				if (memmap_pages)
 | |
| 					pr_debug("  %s zone: %lu pages used for memmap\n",
 | |
| 						 zone_names[j], memmap_pages);
 | |
| 			} else
 | |
| 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
 | |
| 					zone_names[j], memmap_pages, freesize);
 | |
| 		}
 | |
| 
 | |
| 		/* Account for reserved pages */
 | |
| 		if (j == 0 && freesize > dma_reserve) {
 | |
| 			freesize -= dma_reserve;
 | |
| 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
 | |
| 		}
 | |
| 
 | |
| 		if (!is_highmem_idx(j))
 | |
| 			nr_kernel_pages += freesize;
 | |
| 		/* Charge for highmem memmap if there are enough kernel pages */
 | |
| 		else if (nr_kernel_pages > memmap_pages * 2)
 | |
| 			nr_kernel_pages -= memmap_pages;
 | |
| 		nr_all_pages += freesize;
 | |
| 
 | |
| 		/*
 | |
| 		 * Set an approximate value for lowmem here, it will be adjusted
 | |
| 		 * when the bootmem allocator frees pages into the buddy system.
 | |
| 		 * And all highmem pages will be managed by the buddy system.
 | |
| 		 */
 | |
| 		zone_init_internals(zone, j, nid, freesize);
 | |
| 
 | |
| 		if (!size)
 | |
| 			continue;
 | |
| 
 | |
| 		setup_usemap(zone);
 | |
| 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
 | |
| 			  phys_addr_t min_addr, int nid, bool exact_nid)
 | |
| {
 | |
| 	void *ptr;
 | |
| 
 | |
| 	if (exact_nid)
 | |
| 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
 | |
| 						   MEMBLOCK_ALLOC_ACCESSIBLE,
 | |
| 						   nid);
 | |
| 	else
 | |
| 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
 | |
| 						 MEMBLOCK_ALLOC_ACCESSIBLE,
 | |
| 						 nid);
 | |
| 
 | |
| 	if (ptr && size > 0)
 | |
| 		page_init_poison(ptr, size);
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FLATMEM
 | |
| static void __init alloc_node_mem_map(struct pglist_data *pgdat)
 | |
| {
 | |
| 	unsigned long start, offset, size, end;
 | |
| 	struct page *map;
 | |
| 
 | |
| 	/* Skip empty nodes */
 | |
| 	if (!pgdat->node_spanned_pages)
 | |
| 		return;
 | |
| 
 | |
| 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
 | |
| 	offset = pgdat->node_start_pfn - start;
 | |
| 	/*
 | |
| 		 * The zone's endpoints aren't required to be MAX_PAGE_ORDER
 | |
| 	 * aligned but the node_mem_map endpoints must be in order
 | |
| 	 * for the buddy allocator to function correctly.
 | |
| 	 */
 | |
| 	end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES);
 | |
| 	size =  (end - start) * sizeof(struct page);
 | |
| 	map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
 | |
| 			   pgdat->node_id, false);
 | |
| 	if (!map)
 | |
| 		panic("Failed to allocate %ld bytes for node %d memory map\n",
 | |
| 		      size, pgdat->node_id);
 | |
| 	pgdat->node_mem_map = map + offset;
 | |
| 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
 | |
| 		 __func__, pgdat->node_id, (unsigned long)pgdat,
 | |
| 		 (unsigned long)pgdat->node_mem_map);
 | |
| #ifndef CONFIG_NUMA
 | |
| 	/* the global mem_map is just set as node 0's */
 | |
| 	if (pgdat == NODE_DATA(0)) {
 | |
| 		mem_map = NODE_DATA(0)->node_mem_map;
 | |
| 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
 | |
| 			mem_map -= offset;
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| #else
 | |
| static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
 | |
| #endif /* CONFIG_FLATMEM */
 | |
| 
 | |
| /**
 | |
|  * get_pfn_range_for_nid - Return the start and end page frames for a node
 | |
|  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 | |
|  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 | |
|  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
 | |
|  *
 | |
|  * It returns the start and end page frame of a node based on information
 | |
|  * provided by memblock_set_node(). If called for a node
 | |
|  * with no available memory, the start and end PFNs will be 0.
 | |
|  */
 | |
| void __init get_pfn_range_for_nid(unsigned int nid,
 | |
| 			unsigned long *start_pfn, unsigned long *end_pfn)
 | |
| {
 | |
| 	unsigned long this_start_pfn, this_end_pfn;
 | |
| 	int i;
 | |
| 
 | |
| 	*start_pfn = -1UL;
 | |
| 	*end_pfn = 0;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
 | |
| 		*start_pfn = min(*start_pfn, this_start_pfn);
 | |
| 		*end_pfn = max(*end_pfn, this_end_pfn);
 | |
| 	}
 | |
| 
 | |
| 	if (*start_pfn == -1UL)
 | |
| 		*start_pfn = 0;
 | |
| }
 | |
| 
 | |
| static void __init free_area_init_node(int nid)
 | |
| {
 | |
| 	pg_data_t *pgdat = NODE_DATA(nid);
 | |
| 	unsigned long start_pfn = 0;
 | |
| 	unsigned long end_pfn = 0;
 | |
| 
 | |
| 	/* pg_data_t should be reset to zero when it's allocated */
 | |
| 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
 | |
| 
 | |
| 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 | |
| 
 | |
| 	pgdat->node_id = nid;
 | |
| 	pgdat->node_start_pfn = start_pfn;
 | |
| 	pgdat->per_cpu_nodestats = NULL;
 | |
| 
 | |
| 	if (start_pfn != end_pfn) {
 | |
| 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
 | |
| 			(u64)start_pfn << PAGE_SHIFT,
 | |
| 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
 | |
| 
 | |
| 		calculate_node_totalpages(pgdat, start_pfn, end_pfn);
 | |
| 	} else {
 | |
| 		pr_info("Initmem setup node %d as memoryless\n", nid);
 | |
| 
 | |
| 		reset_memoryless_node_totalpages(pgdat);
 | |
| 	}
 | |
| 
 | |
| 	alloc_node_mem_map(pgdat);
 | |
| 	pgdat_set_deferred_range(pgdat);
 | |
| 
 | |
| 	free_area_init_core(pgdat);
 | |
| 	lru_gen_init_pgdat(pgdat);
 | |
| }
 | |
| 
 | |
| /* Any regular or high memory on that node ? */
 | |
| static void __init check_for_memory(pg_data_t *pgdat)
 | |
| {
 | |
| 	enum zone_type zone_type;
 | |
| 
 | |
| 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
 | |
| 		struct zone *zone = &pgdat->node_zones[zone_type];
 | |
| 		if (populated_zone(zone)) {
 | |
| 			if (IS_ENABLED(CONFIG_HIGHMEM))
 | |
| 				node_set_state(pgdat->node_id, N_HIGH_MEMORY);
 | |
| 			if (zone_type <= ZONE_NORMAL)
 | |
| 				node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #if MAX_NUMNODES > 1
 | |
| /*
 | |
|  * Figure out the number of possible node ids.
 | |
|  */
 | |
| void __init setup_nr_node_ids(void)
 | |
| {
 | |
| 	unsigned int highest;
 | |
| 
 | |
| 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
 | |
| 	nr_node_ids = highest + 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
 | |
|  * such cases we allow max_zone_pfn sorted in the descending order
 | |
|  */
 | |
| static bool arch_has_descending_max_zone_pfns(void)
 | |
| {
 | |
| 	return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * free_area_init - Initialise all pg_data_t and zone data
 | |
|  * @max_zone_pfn: an array of max PFNs for each zone
 | |
|  *
 | |
|  * This will call free_area_init_node() for each active node in the system.
 | |
|  * Using the page ranges provided by memblock_set_node(), the size of each
 | |
|  * zone in each node and their holes is calculated. If the maximum PFN
 | |
|  * between two adjacent zones match, it is assumed that the zone is empty.
 | |
|  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 | |
|  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 | |
|  * starts where the previous one ended. For example, ZONE_DMA32 starts
 | |
|  * at arch_max_dma_pfn.
 | |
|  */
 | |
| void __init free_area_init(unsigned long *max_zone_pfn)
 | |
| {
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	int i, nid, zone;
 | |
| 	bool descending;
 | |
| 
 | |
| 	/* Record where the zone boundaries are */
 | |
| 	memset(arch_zone_lowest_possible_pfn, 0,
 | |
| 				sizeof(arch_zone_lowest_possible_pfn));
 | |
| 	memset(arch_zone_highest_possible_pfn, 0,
 | |
| 				sizeof(arch_zone_highest_possible_pfn));
 | |
| 
 | |
| 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
 | |
| 	descending = arch_has_descending_max_zone_pfns();
 | |
| 
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++) {
 | |
| 		if (descending)
 | |
| 			zone = MAX_NR_ZONES - i - 1;
 | |
| 		else
 | |
| 			zone = i;
 | |
| 
 | |
| 		if (zone == ZONE_MOVABLE)
 | |
| 			continue;
 | |
| 
 | |
| 		end_pfn = max(max_zone_pfn[zone], start_pfn);
 | |
| 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
 | |
| 		arch_zone_highest_possible_pfn[zone] = end_pfn;
 | |
| 
 | |
| 		start_pfn = end_pfn;
 | |
| 	}
 | |
| 
 | |
| 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
 | |
| 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
 | |
| 	find_zone_movable_pfns_for_nodes();
 | |
| 
 | |
| 	/* Print out the zone ranges */
 | |
| 	pr_info("Zone ranges:\n");
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++) {
 | |
| 		if (i == ZONE_MOVABLE)
 | |
| 			continue;
 | |
| 		pr_info("  %-8s ", zone_names[i]);
 | |
| 		if (arch_zone_lowest_possible_pfn[i] ==
 | |
| 				arch_zone_highest_possible_pfn[i])
 | |
| 			pr_cont("empty\n");
 | |
| 		else
 | |
| 			pr_cont("[mem %#018Lx-%#018Lx]\n",
 | |
| 				(u64)arch_zone_lowest_possible_pfn[i]
 | |
| 					<< PAGE_SHIFT,
 | |
| 				((u64)arch_zone_highest_possible_pfn[i]
 | |
| 					<< PAGE_SHIFT) - 1);
 | |
| 	}
 | |
| 
 | |
| 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
 | |
| 	pr_info("Movable zone start for each node\n");
 | |
| 	for (i = 0; i < MAX_NUMNODES; i++) {
 | |
| 		if (zone_movable_pfn[i])
 | |
| 			pr_info("  Node %d: %#018Lx\n", i,
 | |
| 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Print out the early node map, and initialize the
 | |
| 	 * subsection-map relative to active online memory ranges to
 | |
| 	 * enable future "sub-section" extensions of the memory map.
 | |
| 	 */
 | |
| 	pr_info("Early memory node ranges\n");
 | |
| 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
 | |
| 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
 | |
| 			(u64)start_pfn << PAGE_SHIFT,
 | |
| 			((u64)end_pfn << PAGE_SHIFT) - 1);
 | |
| 		subsection_map_init(start_pfn, end_pfn - start_pfn);
 | |
| 	}
 | |
| 
 | |
| 	/* Initialise every node */
 | |
| 	mminit_verify_pageflags_layout();
 | |
| 	setup_nr_node_ids();
 | |
| 	set_pageblock_order();
 | |
| 
 | |
| 	for_each_node(nid) {
 | |
| 		pg_data_t *pgdat;
 | |
| 
 | |
| 		if (!node_online(nid)) {
 | |
| 			/* Allocator not initialized yet */
 | |
| 			pgdat = arch_alloc_nodedata(nid);
 | |
| 			if (!pgdat)
 | |
| 				panic("Cannot allocate %zuB for node %d.\n",
 | |
| 				       sizeof(*pgdat), nid);
 | |
| 			arch_refresh_nodedata(nid, pgdat);
 | |
| 			free_area_init_node(nid);
 | |
| 
 | |
| 			/*
 | |
| 			 * We do not want to confuse userspace by sysfs
 | |
| 			 * files/directories for node without any memory
 | |
| 			 * attached to it, so this node is not marked as
 | |
| 			 * N_MEMORY and not marked online so that no sysfs
 | |
| 			 * hierarchy will be created via register_one_node for
 | |
| 			 * it. The pgdat will get fully initialized by
 | |
| 			 * hotadd_init_pgdat() when memory is hotplugged into
 | |
| 			 * this node.
 | |
| 			 */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pgdat = NODE_DATA(nid);
 | |
| 		free_area_init_node(nid);
 | |
| 
 | |
| 		/* Any memory on that node */
 | |
| 		if (pgdat->node_present_pages)
 | |
| 			node_set_state(nid, N_MEMORY);
 | |
| 		check_for_memory(pgdat);
 | |
| 	}
 | |
| 
 | |
| 	memmap_init();
 | |
| 
 | |
| 	/* disable hash distribution for systems with a single node */
 | |
| 	fixup_hashdist();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * node_map_pfn_alignment - determine the maximum internode alignment
 | |
|  *
 | |
|  * This function should be called after node map is populated and sorted.
 | |
|  * It calculates the maximum power of two alignment which can distinguish
 | |
|  * all the nodes.
 | |
|  *
 | |
|  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 | |
|  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 | |
|  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 | |
|  * shifted, 1GiB is enough and this function will indicate so.
 | |
|  *
 | |
|  * This is used to test whether pfn -> nid mapping of the chosen memory
 | |
|  * model has fine enough granularity to avoid incorrect mapping for the
 | |
|  * populated node map.
 | |
|  *
 | |
|  * Return: the determined alignment in pfn's.  0 if there is no alignment
 | |
|  * requirement (single node).
 | |
|  */
 | |
| unsigned long __init node_map_pfn_alignment(void)
 | |
| {
 | |
| 	unsigned long accl_mask = 0, last_end = 0;
 | |
| 	unsigned long start, end, mask;
 | |
| 	int last_nid = NUMA_NO_NODE;
 | |
| 	int i, nid;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
 | |
| 		if (!start || last_nid < 0 || last_nid == nid) {
 | |
| 			last_nid = nid;
 | |
| 			last_end = end;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Start with a mask granular enough to pin-point to the
 | |
| 		 * start pfn and tick off bits one-by-one until it becomes
 | |
| 		 * too coarse to separate the current node from the last.
 | |
| 		 */
 | |
| 		mask = ~((1 << __ffs(start)) - 1);
 | |
| 		while (mask && last_end <= (start & (mask << 1)))
 | |
| 			mask <<= 1;
 | |
| 
 | |
| 		/* accumulate all internode masks */
 | |
| 		accl_mask |= mask;
 | |
| 	}
 | |
| 
 | |
| 	/* convert mask to number of pages */
 | |
| 	return ~accl_mask + 1;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 | |
| static void __init deferred_free_range(unsigned long pfn,
 | |
| 				       unsigned long nr_pages)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	if (!nr_pages)
 | |
| 		return;
 | |
| 
 | |
| 	page = pfn_to_page(pfn);
 | |
| 
 | |
| 	/* Free a large naturally-aligned chunk if possible */
 | |
| 	if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
 | |
| 		for (i = 0; i < nr_pages; i += pageblock_nr_pages)
 | |
| 			set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
 | |
| 		__free_pages_core(page, MAX_PAGE_ORDER);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Accept chunks smaller than MAX_PAGE_ORDER upfront */
 | |
| 	accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages));
 | |
| 
 | |
| 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
 | |
| 		if (pageblock_aligned(pfn))
 | |
| 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
 | |
| 		__free_pages_core(page, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Completion tracking for deferred_init_memmap() threads */
 | |
| static atomic_t pgdat_init_n_undone __initdata;
 | |
| static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
 | |
| 
 | |
| static inline void __init pgdat_init_report_one_done(void)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&pgdat_init_n_undone))
 | |
| 		complete(&pgdat_init_all_done_comp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if page needs to be initialized or freed to buddy allocator.
 | |
|  *
 | |
|  * We check if a current MAX_PAGE_ORDER block is valid by only checking the
 | |
|  * validity of the head pfn.
 | |
|  */
 | |
| static inline bool __init deferred_pfn_valid(unsigned long pfn)
 | |
| {
 | |
| 	if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn))
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free pages to buddy allocator. Try to free aligned pages in
 | |
|  * MAX_ORDER_NR_PAGES sizes.
 | |
|  */
 | |
| static void __init deferred_free_pages(unsigned long pfn,
 | |
| 				       unsigned long end_pfn)
 | |
| {
 | |
| 	unsigned long nr_free = 0;
 | |
| 
 | |
| 	for (; pfn < end_pfn; pfn++) {
 | |
| 		if (!deferred_pfn_valid(pfn)) {
 | |
| 			deferred_free_range(pfn - nr_free, nr_free);
 | |
| 			nr_free = 0;
 | |
| 		} else if (IS_MAX_ORDER_ALIGNED(pfn)) {
 | |
| 			deferred_free_range(pfn - nr_free, nr_free);
 | |
| 			nr_free = 1;
 | |
| 		} else {
 | |
| 			nr_free++;
 | |
| 		}
 | |
| 	}
 | |
| 	/* Free the last block of pages to allocator */
 | |
| 	deferred_free_range(pfn - nr_free, nr_free);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 | |
|  * by performing it only once every MAX_ORDER_NR_PAGES.
 | |
|  * Return number of pages initialized.
 | |
|  */
 | |
| static unsigned long  __init deferred_init_pages(struct zone *zone,
 | |
| 						 unsigned long pfn,
 | |
| 						 unsigned long end_pfn)
 | |
| {
 | |
| 	int nid = zone_to_nid(zone);
 | |
| 	unsigned long nr_pages = 0;
 | |
| 	int zid = zone_idx(zone);
 | |
| 	struct page *page = NULL;
 | |
| 
 | |
| 	for (; pfn < end_pfn; pfn++) {
 | |
| 		if (!deferred_pfn_valid(pfn)) {
 | |
| 			page = NULL;
 | |
| 			continue;
 | |
| 		} else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) {
 | |
| 			page = pfn_to_page(pfn);
 | |
| 		} else {
 | |
| 			page++;
 | |
| 		}
 | |
| 		__init_single_page(page, pfn, zid, nid);
 | |
| 		nr_pages++;
 | |
| 	}
 | |
| 	return (nr_pages);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is meant to pre-load the iterator for the zone init.
 | |
|  * Specifically it walks through the ranges until we are caught up to the
 | |
|  * first_init_pfn value and exits there. If we never encounter the value we
 | |
|  * return false indicating there are no valid ranges left.
 | |
|  */
 | |
| static bool __init
 | |
| deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
 | |
| 				    unsigned long *spfn, unsigned long *epfn,
 | |
| 				    unsigned long first_init_pfn)
 | |
| {
 | |
| 	u64 j;
 | |
| 
 | |
| 	/*
 | |
| 	 * Start out by walking through the ranges in this zone that have
 | |
| 	 * already been initialized. We don't need to do anything with them
 | |
| 	 * so we just need to flush them out of the system.
 | |
| 	 */
 | |
| 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
 | |
| 		if (*epfn <= first_init_pfn)
 | |
| 			continue;
 | |
| 		if (*spfn < first_init_pfn)
 | |
| 			*spfn = first_init_pfn;
 | |
| 		*i = j;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize and free pages. We do it in two loops: first we initialize
 | |
|  * struct page, then free to buddy allocator, because while we are
 | |
|  * freeing pages we can access pages that are ahead (computing buddy
 | |
|  * page in __free_one_page()).
 | |
|  *
 | |
|  * In order to try and keep some memory in the cache we have the loop
 | |
|  * broken along max page order boundaries. This way we will not cause
 | |
|  * any issues with the buddy page computation.
 | |
|  */
 | |
| static unsigned long __init
 | |
| deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
 | |
| 		       unsigned long *end_pfn)
 | |
| {
 | |
| 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
 | |
| 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
 | |
| 	unsigned long nr_pages = 0;
 | |
| 	u64 j = *i;
 | |
| 
 | |
| 	/* First we loop through and initialize the page values */
 | |
| 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
 | |
| 		unsigned long t;
 | |
| 
 | |
| 		if (mo_pfn <= *start_pfn)
 | |
| 			break;
 | |
| 
 | |
| 		t = min(mo_pfn, *end_pfn);
 | |
| 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
 | |
| 
 | |
| 		if (mo_pfn < *end_pfn) {
 | |
| 			*start_pfn = mo_pfn;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Reset values and now loop through freeing pages as needed */
 | |
| 	swap(j, *i);
 | |
| 
 | |
| 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
 | |
| 		unsigned long t;
 | |
| 
 | |
| 		if (mo_pfn <= spfn)
 | |
| 			break;
 | |
| 
 | |
| 		t = min(mo_pfn, epfn);
 | |
| 		deferred_free_pages(spfn, t);
 | |
| 
 | |
| 		if (mo_pfn <= epfn)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return nr_pages;
 | |
| }
 | |
| 
 | |
| static void __init
 | |
| deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
 | |
| 			   void *arg)
 | |
| {
 | |
| 	unsigned long spfn, epfn;
 | |
| 	struct zone *zone = arg;
 | |
| 	u64 i;
 | |
| 
 | |
| 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that
 | |
| 	 * we can avoid introducing any issues with the buddy allocator.
 | |
| 	 */
 | |
| 	while (spfn < end_pfn) {
 | |
| 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* An arch may override for more concurrency. */
 | |
| __weak int __init
 | |
| deferred_page_init_max_threads(const struct cpumask *node_cpumask)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Initialise remaining memory on a node */
 | |
| static int __init deferred_init_memmap(void *data)
 | |
| {
 | |
| 	pg_data_t *pgdat = data;
 | |
| 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
 | |
| 	unsigned long spfn = 0, epfn = 0;
 | |
| 	unsigned long first_init_pfn, flags;
 | |
| 	unsigned long start = jiffies;
 | |
| 	struct zone *zone;
 | |
| 	int zid, max_threads;
 | |
| 	u64 i;
 | |
| 
 | |
| 	/* Bind memory initialisation thread to a local node if possible */
 | |
| 	if (!cpumask_empty(cpumask))
 | |
| 		set_cpus_allowed_ptr(current, cpumask);
 | |
| 
 | |
| 	pgdat_resize_lock(pgdat, &flags);
 | |
| 	first_init_pfn = pgdat->first_deferred_pfn;
 | |
| 	if (first_init_pfn == ULONG_MAX) {
 | |
| 		pgdat_resize_unlock(pgdat, &flags);
 | |
| 		pgdat_init_report_one_done();
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Sanity check boundaries */
 | |
| 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
 | |
| 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
 | |
| 	pgdat->first_deferred_pfn = ULONG_MAX;
 | |
| 
 | |
| 	/*
 | |
| 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
 | |
| 	 * interrupt thread must allocate this early in boot, zone must be
 | |
| 	 * pre-grown prior to start of deferred page initialization.
 | |
| 	 */
 | |
| 	pgdat_resize_unlock(pgdat, &flags);
 | |
| 
 | |
| 	/* Only the highest zone is deferred so find it */
 | |
| 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | |
| 		zone = pgdat->node_zones + zid;
 | |
| 		if (first_init_pfn < zone_end_pfn(zone))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* If the zone is empty somebody else may have cleared out the zone */
 | |
| 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
 | |
| 						 first_init_pfn))
 | |
| 		goto zone_empty;
 | |
| 
 | |
| 	max_threads = deferred_page_init_max_threads(cpumask);
 | |
| 
 | |
| 	while (spfn < epfn) {
 | |
| 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
 | |
| 		struct padata_mt_job job = {
 | |
| 			.thread_fn   = deferred_init_memmap_chunk,
 | |
| 			.fn_arg      = zone,
 | |
| 			.start       = spfn,
 | |
| 			.size        = epfn_align - spfn,
 | |
| 			.align       = PAGES_PER_SECTION,
 | |
| 			.min_chunk   = PAGES_PER_SECTION,
 | |
| 			.max_threads = max_threads,
 | |
| 			.numa_aware  = false,
 | |
| 		};
 | |
| 
 | |
| 		padata_do_multithreaded(&job);
 | |
| 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
 | |
| 						    epfn_align);
 | |
| 	}
 | |
| zone_empty:
 | |
| 	/* Sanity check that the next zone really is unpopulated */
 | |
| 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
 | |
| 
 | |
| 	pr_info("node %d deferred pages initialised in %ums\n",
 | |
| 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
 | |
| 
 | |
| 	pgdat_init_report_one_done();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If this zone has deferred pages, try to grow it by initializing enough
 | |
|  * deferred pages to satisfy the allocation specified by order, rounded up to
 | |
|  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 | |
|  * of SECTION_SIZE bytes by initializing struct pages in increments of
 | |
|  * PAGES_PER_SECTION * sizeof(struct page) bytes.
 | |
|  *
 | |
|  * Return true when zone was grown, otherwise return false. We return true even
 | |
|  * when we grow less than requested, to let the caller decide if there are
 | |
|  * enough pages to satisfy the allocation.
 | |
|  *
 | |
|  * Note: We use noinline because this function is needed only during boot, and
 | |
|  * it is called from a __ref function _deferred_grow_zone. This way we are
 | |
|  * making sure that it is not inlined into permanent text section.
 | |
|  */
 | |
| bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
 | |
| {
 | |
| 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
 | |
| 	pg_data_t *pgdat = zone->zone_pgdat;
 | |
| 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
 | |
| 	unsigned long spfn, epfn, flags;
 | |
| 	unsigned long nr_pages = 0;
 | |
| 	u64 i;
 | |
| 
 | |
| 	/* Only the last zone may have deferred pages */
 | |
| 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
 | |
| 		return false;
 | |
| 
 | |
| 	pgdat_resize_lock(pgdat, &flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * If someone grew this zone while we were waiting for spinlock, return
 | |
| 	 * true, as there might be enough pages already.
 | |
| 	 */
 | |
| 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
 | |
| 		pgdat_resize_unlock(pgdat, &flags);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/* If the zone is empty somebody else may have cleared out the zone */
 | |
| 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
 | |
| 						 first_deferred_pfn)) {
 | |
| 		pgdat->first_deferred_pfn = ULONG_MAX;
 | |
| 		pgdat_resize_unlock(pgdat, &flags);
 | |
| 		/* Retry only once. */
 | |
| 		return first_deferred_pfn != ULONG_MAX;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so
 | |
| 	 * that we can avoid introducing any issues with the buddy
 | |
| 	 * allocator.
 | |
| 	 */
 | |
| 	while (spfn < epfn) {
 | |
| 		/* update our first deferred PFN for this section */
 | |
| 		first_deferred_pfn = spfn;
 | |
| 
 | |
| 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
 | |
| 		touch_nmi_watchdog();
 | |
| 
 | |
| 		/* We should only stop along section boundaries */
 | |
| 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
 | |
| 			continue;
 | |
| 
 | |
| 		/* If our quota has been met we can stop here */
 | |
| 		if (nr_pages >= nr_pages_needed)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	pgdat->first_deferred_pfn = spfn;
 | |
| 	pgdat_resize_unlock(pgdat, &flags);
 | |
| 
 | |
| 	return nr_pages > 0;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 | |
| 
 | |
| #ifdef CONFIG_CMA
 | |
| void __init init_cma_reserved_pageblock(struct page *page)
 | |
| {
 | |
| 	unsigned i = pageblock_nr_pages;
 | |
| 	struct page *p = page;
 | |
| 
 | |
| 	do {
 | |
| 		__ClearPageReserved(p);
 | |
| 		set_page_count(p, 0);
 | |
| 	} while (++p, --i);
 | |
| 
 | |
| 	set_pageblock_migratetype(page, MIGRATE_CMA);
 | |
| 	set_page_refcounted(page);
 | |
| 	__free_pages(page, pageblock_order);
 | |
| 
 | |
| 	adjust_managed_page_count(page, pageblock_nr_pages);
 | |
| 	page_zone(page)->cma_pages += pageblock_nr_pages;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void set_zone_contiguous(struct zone *zone)
 | |
| {
 | |
| 	unsigned long block_start_pfn = zone->zone_start_pfn;
 | |
| 	unsigned long block_end_pfn;
 | |
| 
 | |
| 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
 | |
| 	for (; block_start_pfn < zone_end_pfn(zone);
 | |
| 			block_start_pfn = block_end_pfn,
 | |
| 			 block_end_pfn += pageblock_nr_pages) {
 | |
| 
 | |
| 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
 | |
| 
 | |
| 		if (!__pageblock_pfn_to_page(block_start_pfn,
 | |
| 					     block_end_pfn, zone))
 | |
| 			return;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	/* We confirm that there is no hole */
 | |
| 	zone->contiguous = true;
 | |
| }
 | |
| 
 | |
| void __init page_alloc_init_late(void)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	int nid;
 | |
| 
 | |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 | |
| 
 | |
| 	/* There will be num_node_state(N_MEMORY) threads */
 | |
| 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
 | |
| 	for_each_node_state(nid, N_MEMORY) {
 | |
| 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
 | |
| 	}
 | |
| 
 | |
| 	/* Block until all are initialised */
 | |
| 	wait_for_completion(&pgdat_init_all_done_comp);
 | |
| 
 | |
| 	/*
 | |
| 	 * We initialized the rest of the deferred pages.  Permanently disable
 | |
| 	 * on-demand struct page initialization.
 | |
| 	 */
 | |
| 	static_branch_disable(&deferred_pages);
 | |
| 
 | |
| 	/* Reinit limits that are based on free pages after the kernel is up */
 | |
| 	files_maxfiles_init();
 | |
| #endif
 | |
| 
 | |
| 	buffer_init();
 | |
| 
 | |
| 	/* Discard memblock private memory */
 | |
| 	memblock_discard();
 | |
| 
 | |
| 	for_each_node_state(nid, N_MEMORY)
 | |
| 		shuffle_free_memory(NODE_DATA(nid));
 | |
| 
 | |
| 	for_each_populated_zone(zone)
 | |
| 		set_zone_contiguous(zone);
 | |
| 
 | |
| 	/* Initialize page ext after all struct pages are initialized. */
 | |
| 	if (deferred_struct_pages)
 | |
| 		page_ext_init();
 | |
| 
 | |
| 	page_alloc_sysctl_init();
 | |
| }
 | |
| 
 | |
| #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
 | |
| /*
 | |
|  * Returns the number of pages that arch has reserved but
 | |
|  * is not known to alloc_large_system_hash().
 | |
|  */
 | |
| static unsigned long __init arch_reserved_kernel_pages(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Adaptive scale is meant to reduce sizes of hash tables on large memory
 | |
|  * machines. As memory size is increased the scale is also increased but at
 | |
|  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 | |
|  * quadruples the scale is increased by one, which means the size of hash table
 | |
|  * only doubles, instead of quadrupling as well.
 | |
|  * Because 32-bit systems cannot have large physical memory, where this scaling
 | |
|  * makes sense, it is disabled on such platforms.
 | |
|  */
 | |
| #if __BITS_PER_LONG > 32
 | |
| #define ADAPT_SCALE_BASE	(64ul << 30)
 | |
| #define ADAPT_SCALE_SHIFT	2
 | |
| #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * allocate a large system hash table from bootmem
 | |
|  * - it is assumed that the hash table must contain an exact power-of-2
 | |
|  *   quantity of entries
 | |
|  * - limit is the number of hash buckets, not the total allocation size
 | |
|  */
 | |
| void *__init alloc_large_system_hash(const char *tablename,
 | |
| 				     unsigned long bucketsize,
 | |
| 				     unsigned long numentries,
 | |
| 				     int scale,
 | |
| 				     int flags,
 | |
| 				     unsigned int *_hash_shift,
 | |
| 				     unsigned int *_hash_mask,
 | |
| 				     unsigned long low_limit,
 | |
| 				     unsigned long high_limit)
 | |
| {
 | |
| 	unsigned long long max = high_limit;
 | |
| 	unsigned long log2qty, size;
 | |
| 	void *table;
 | |
| 	gfp_t gfp_flags;
 | |
| 	bool virt;
 | |
| 	bool huge;
 | |
| 
 | |
| 	/* allow the kernel cmdline to have a say */
 | |
| 	if (!numentries) {
 | |
| 		/* round applicable memory size up to nearest megabyte */
 | |
| 		numentries = nr_kernel_pages;
 | |
| 		numentries -= arch_reserved_kernel_pages();
 | |
| 
 | |
| 		/* It isn't necessary when PAGE_SIZE >= 1MB */
 | |
| 		if (PAGE_SIZE < SZ_1M)
 | |
| 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
 | |
| 
 | |
| #if __BITS_PER_LONG > 32
 | |
| 		if (!high_limit) {
 | |
| 			unsigned long adapt;
 | |
| 
 | |
| 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
 | |
| 			     adapt <<= ADAPT_SCALE_SHIFT)
 | |
| 				scale++;
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		/* limit to 1 bucket per 2^scale bytes of low memory */
 | |
| 		if (scale > PAGE_SHIFT)
 | |
| 			numentries >>= (scale - PAGE_SHIFT);
 | |
| 		else
 | |
| 			numentries <<= (PAGE_SHIFT - scale);
 | |
| 
 | |
| 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
 | |
| 			numentries = PAGE_SIZE / bucketsize;
 | |
| 	}
 | |
| 	numentries = roundup_pow_of_two(numentries);
 | |
| 
 | |
| 	/* limit allocation size to 1/16 total memory by default */
 | |
| 	if (max == 0) {
 | |
| 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
 | |
| 		do_div(max, bucketsize);
 | |
| 	}
 | |
| 	max = min(max, 0x80000000ULL);
 | |
| 
 | |
| 	if (numentries < low_limit)
 | |
| 		numentries = low_limit;
 | |
| 	if (numentries > max)
 | |
| 		numentries = max;
 | |
| 
 | |
| 	log2qty = ilog2(numentries);
 | |
| 
 | |
| 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
 | |
| 	do {
 | |
| 		virt = false;
 | |
| 		size = bucketsize << log2qty;
 | |
| 		if (flags & HASH_EARLY) {
 | |
| 			if (flags & HASH_ZERO)
 | |
| 				table = memblock_alloc(size, SMP_CACHE_BYTES);
 | |
| 			else
 | |
| 				table = memblock_alloc_raw(size,
 | |
| 							   SMP_CACHE_BYTES);
 | |
| 		} else if (get_order(size) > MAX_PAGE_ORDER || hashdist) {
 | |
| 			table = vmalloc_huge(size, gfp_flags);
 | |
| 			virt = true;
 | |
| 			if (table)
 | |
| 				huge = is_vm_area_hugepages(table);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * If bucketsize is not a power-of-two, we may free
 | |
| 			 * some pages at the end of hash table which
 | |
| 			 * alloc_pages_exact() automatically does
 | |
| 			 */
 | |
| 			table = alloc_pages_exact(size, gfp_flags);
 | |
| 			kmemleak_alloc(table, size, 1, gfp_flags);
 | |
| 		}
 | |
| 	} while (!table && size > PAGE_SIZE && --log2qty);
 | |
| 
 | |
| 	if (!table)
 | |
| 		panic("Failed to allocate %s hash table\n", tablename);
 | |
| 
 | |
| 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
 | |
| 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
 | |
| 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
 | |
| 
 | |
| 	if (_hash_shift)
 | |
| 		*_hash_shift = log2qty;
 | |
| 	if (_hash_mask)
 | |
| 		*_hash_mask = (1 << log2qty) - 1;
 | |
| 
 | |
| 	return table;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * set_dma_reserve - set the specified number of pages reserved in the first zone
 | |
|  * @new_dma_reserve: The number of pages to mark reserved
 | |
|  *
 | |
|  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
 | |
|  * In the DMA zone, a significant percentage may be consumed by kernel image
 | |
|  * and other unfreeable allocations which can skew the watermarks badly. This
 | |
|  * function may optionally be used to account for unfreeable pages in the
 | |
|  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 | |
|  * smaller per-cpu batchsize.
 | |
|  */
 | |
| void __init set_dma_reserve(unsigned long new_dma_reserve)
 | |
| {
 | |
| 	dma_reserve = new_dma_reserve;
 | |
| }
 | |
| 
 | |
| void __init memblock_free_pages(struct page *page, unsigned long pfn,
 | |
| 							unsigned int order)
 | |
| {
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
 | |
| 		int nid = early_pfn_to_nid(pfn);
 | |
| 
 | |
| 		if (!early_page_initialised(pfn, nid))
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	if (!kmsan_memblock_free_pages(page, order)) {
 | |
| 		/* KMSAN will take care of these pages. */
 | |
| 		return;
 | |
| 	}
 | |
| 	__free_pages_core(page, order);
 | |
| }
 | |
| 
 | |
| DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
 | |
| EXPORT_SYMBOL(init_on_alloc);
 | |
| 
 | |
| DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
 | |
| EXPORT_SYMBOL(init_on_free);
 | |
| 
 | |
| static bool _init_on_alloc_enabled_early __read_mostly
 | |
| 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
 | |
| static int __init early_init_on_alloc(char *buf)
 | |
| {
 | |
| 
 | |
| 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
 | |
| }
 | |
| early_param("init_on_alloc", early_init_on_alloc);
 | |
| 
 | |
| static bool _init_on_free_enabled_early __read_mostly
 | |
| 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
 | |
| static int __init early_init_on_free(char *buf)
 | |
| {
 | |
| 	return kstrtobool(buf, &_init_on_free_enabled_early);
 | |
| }
 | |
| early_param("init_on_free", early_init_on_free);
 | |
| 
 | |
| DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
 | |
| 
 | |
| /*
 | |
|  * Enable static keys related to various memory debugging and hardening options.
 | |
|  * Some override others, and depend on early params that are evaluated in the
 | |
|  * order of appearance. So we need to first gather the full picture of what was
 | |
|  * enabled, and then make decisions.
 | |
|  */
 | |
| static void __init mem_debugging_and_hardening_init(void)
 | |
| {
 | |
| 	bool page_poisoning_requested = false;
 | |
| 	bool want_check_pages = false;
 | |
| 
 | |
| #ifdef CONFIG_PAGE_POISONING
 | |
| 	/*
 | |
| 	 * Page poisoning is debug page alloc for some arches. If
 | |
| 	 * either of those options are enabled, enable poisoning.
 | |
| 	 */
 | |
| 	if (page_poisoning_enabled() ||
 | |
| 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
 | |
| 	      debug_pagealloc_enabled())) {
 | |
| 		static_branch_enable(&_page_poisoning_enabled);
 | |
| 		page_poisoning_requested = true;
 | |
| 		want_check_pages = true;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
 | |
| 	    page_poisoning_requested) {
 | |
| 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
 | |
| 			"will take precedence over init_on_alloc and init_on_free\n");
 | |
| 		_init_on_alloc_enabled_early = false;
 | |
| 		_init_on_free_enabled_early = false;
 | |
| 	}
 | |
| 
 | |
| 	if (_init_on_alloc_enabled_early) {
 | |
| 		want_check_pages = true;
 | |
| 		static_branch_enable(&init_on_alloc);
 | |
| 	} else {
 | |
| 		static_branch_disable(&init_on_alloc);
 | |
| 	}
 | |
| 
 | |
| 	if (_init_on_free_enabled_early) {
 | |
| 		want_check_pages = true;
 | |
| 		static_branch_enable(&init_on_free);
 | |
| 	} else {
 | |
| 		static_branch_disable(&init_on_free);
 | |
| 	}
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_KMSAN) &&
 | |
| 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
 | |
| 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 	if (debug_pagealloc_enabled()) {
 | |
| 		want_check_pages = true;
 | |
| 		static_branch_enable(&_debug_pagealloc_enabled);
 | |
| 
 | |
| 		if (debug_guardpage_minorder())
 | |
| 			static_branch_enable(&_debug_guardpage_enabled);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Any page debugging or hardening option also enables sanity checking
 | |
| 	 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
 | |
| 	 * enabled already.
 | |
| 	 */
 | |
| 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
 | |
| 		static_branch_enable(&check_pages_enabled);
 | |
| }
 | |
| 
 | |
| /* Report memory auto-initialization states for this boot. */
 | |
| static void __init report_meminit(void)
 | |
| {
 | |
| 	const char *stack;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
 | |
| 		stack = "all(pattern)";
 | |
| 	else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
 | |
| 		stack = "all(zero)";
 | |
| 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
 | |
| 		stack = "byref_all(zero)";
 | |
| 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
 | |
| 		stack = "byref(zero)";
 | |
| 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
 | |
| 		stack = "__user(zero)";
 | |
| 	else
 | |
| 		stack = "off";
 | |
| 
 | |
| 	pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
 | |
| 		stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off",
 | |
| 		want_init_on_free() ? "on" : "off");
 | |
| 	if (want_init_on_free())
 | |
| 		pr_info("mem auto-init: clearing system memory may take some time...\n");
 | |
| }
 | |
| 
 | |
| static void __init mem_init_print_info(void)
 | |
| {
 | |
| 	unsigned long physpages, codesize, datasize, rosize, bss_size;
 | |
| 	unsigned long init_code_size, init_data_size;
 | |
| 
 | |
| 	physpages = get_num_physpages();
 | |
| 	codesize = _etext - _stext;
 | |
| 	datasize = _edata - _sdata;
 | |
| 	rosize = __end_rodata - __start_rodata;
 | |
| 	bss_size = __bss_stop - __bss_start;
 | |
| 	init_data_size = __init_end - __init_begin;
 | |
| 	init_code_size = _einittext - _sinittext;
 | |
| 
 | |
| 	/*
 | |
| 	 * Detect special cases and adjust section sizes accordingly:
 | |
| 	 * 1) .init.* may be embedded into .data sections
 | |
| 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
 | |
| 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
 | |
| 	 * 3) .rodata.* may be embedded into .text or .data sections.
 | |
| 	 */
 | |
| #define adj_init_size(start, end, size, pos, adj) \
 | |
| 	do { \
 | |
| 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
 | |
| 			size -= adj; \
 | |
| 	} while (0)
 | |
| 
 | |
| 	adj_init_size(__init_begin, __init_end, init_data_size,
 | |
| 		     _sinittext, init_code_size);
 | |
| 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
 | |
| 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
 | |
| 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
 | |
| 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
 | |
| 
 | |
| #undef	adj_init_size
 | |
| 
 | |
| 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
 | |
| #ifdef	CONFIG_HIGHMEM
 | |
| 		", %luK highmem"
 | |
| #endif
 | |
| 		")\n",
 | |
| 		K(nr_free_pages()), K(physpages),
 | |
| 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
 | |
| 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
 | |
| 		K(physpages - totalram_pages() - totalcma_pages),
 | |
| 		K(totalcma_pages)
 | |
| #ifdef	CONFIG_HIGHMEM
 | |
| 		, K(totalhigh_pages())
 | |
| #endif
 | |
| 		);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up kernel memory allocators
 | |
|  */
 | |
| void __init mm_core_init(void)
 | |
| {
 | |
| 	/* Initializations relying on SMP setup */
 | |
| 	build_all_zonelists(NULL);
 | |
| 	page_alloc_init_cpuhp();
 | |
| 
 | |
| 	/*
 | |
| 	 * page_ext requires contiguous pages,
 | |
| 	 * bigger than MAX_PAGE_ORDER unless SPARSEMEM.
 | |
| 	 */
 | |
| 	page_ext_init_flatmem();
 | |
| 	mem_debugging_and_hardening_init();
 | |
| 	kfence_alloc_pool_and_metadata();
 | |
| 	report_meminit();
 | |
| 	kmsan_init_shadow();
 | |
| 	stack_depot_early_init();
 | |
| 	mem_init();
 | |
| 	mem_init_print_info();
 | |
| 	kmem_cache_init();
 | |
| 	/*
 | |
| 	 * page_owner must be initialized after buddy is ready, and also after
 | |
| 	 * slab is ready so that stack_depot_init() works properly
 | |
| 	 */
 | |
| 	page_ext_init_flatmem_late();
 | |
| 	kmemleak_init();
 | |
| 	ptlock_cache_init();
 | |
| 	pgtable_cache_init();
 | |
| 	debug_objects_mem_init();
 | |
| 	vmalloc_init();
 | |
| 	/* If no deferred init page_ext now, as vmap is fully initialized */
 | |
| 	if (!deferred_struct_pages)
 | |
| 		page_ext_init();
 | |
| 	/* Should be run before the first non-init thread is created */
 | |
| 	init_espfix_bsp();
 | |
| 	/* Should be run after espfix64 is set up. */
 | |
| 	pti_init();
 | |
| 	kmsan_init_runtime();
 | |
| 	mm_cache_init();
 | |
| }
 |