mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 3000f2e2fc
			
		
	
	
		3000f2e2fc
		
	
	
	
	
		
			
			Instead of using array_size or just a multiply, use a function that takes care of both the multiplication and the overflow checks. Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
		
			
				
	
	
		
			235 lines
		
	
	
	
		
			5.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			235 lines
		
	
	
	
		
			5.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * mm/percpu-debug.c
 | |
|  *
 | |
|  * Copyright (C) 2017		Facebook Inc.
 | |
|  * Copyright (C) 2017		Dennis Zhou <dennis@kernel.org>
 | |
|  *
 | |
|  * Prints statistics about the percpu allocator and backing chunks.
 | |
|  */
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/vmalloc.h>
 | |
| 
 | |
| #include "percpu-internal.h"
 | |
| 
 | |
| #define P(X, Y) \
 | |
| 	seq_printf(m, "  %-20s: %12lld\n", X, (long long int)Y)
 | |
| 
 | |
| struct percpu_stats pcpu_stats;
 | |
| struct pcpu_alloc_info pcpu_stats_ai;
 | |
| 
 | |
| static int cmpint(const void *a, const void *b)
 | |
| {
 | |
| 	return *(int *)a - *(int *)b;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Iterates over all chunks to find the max nr_alloc entries.
 | |
|  */
 | |
| static int find_max_nr_alloc(void)
 | |
| {
 | |
| 	struct pcpu_chunk *chunk;
 | |
| 	int slot, max_nr_alloc;
 | |
| 
 | |
| 	max_nr_alloc = 0;
 | |
| 	for (slot = 0; slot < pcpu_nr_slots; slot++)
 | |
| 		list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list)
 | |
| 			max_nr_alloc = max(max_nr_alloc, chunk->nr_alloc);
 | |
| 
 | |
| 	return max_nr_alloc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prints out chunk state. Fragmentation is considered between
 | |
|  * the beginning of the chunk to the last allocation.
 | |
|  *
 | |
|  * All statistics are in bytes unless stated otherwise.
 | |
|  */
 | |
| static void chunk_map_stats(struct seq_file *m, struct pcpu_chunk *chunk,
 | |
| 			    int *buffer)
 | |
| {
 | |
| 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 | |
| 	int i, last_alloc, as_len, start, end;
 | |
| 	int *alloc_sizes, *p;
 | |
| 	/* statistics */
 | |
| 	int sum_frag = 0, max_frag = 0;
 | |
| 	int cur_min_alloc = 0, cur_med_alloc = 0, cur_max_alloc = 0;
 | |
| 
 | |
| 	alloc_sizes = buffer;
 | |
| 
 | |
| 	/*
 | |
| 	 * find_last_bit returns the start value if nothing found.
 | |
| 	 * Therefore, we must determine if it is a failure of find_last_bit
 | |
| 	 * and set the appropriate value.
 | |
| 	 */
 | |
| 	last_alloc = find_last_bit(chunk->alloc_map,
 | |
| 				   pcpu_chunk_map_bits(chunk) -
 | |
| 				   chunk->end_offset / PCPU_MIN_ALLOC_SIZE - 1);
 | |
| 	last_alloc = test_bit(last_alloc, chunk->alloc_map) ?
 | |
| 		     last_alloc + 1 : 0;
 | |
| 
 | |
| 	as_len = 0;
 | |
| 	start = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
 | |
| 
 | |
| 	/*
 | |
| 	 * If a bit is set in the allocation map, the bound_map identifies
 | |
| 	 * where the allocation ends.  If the allocation is not set, the
 | |
| 	 * bound_map does not identify free areas as it is only kept accurate
 | |
| 	 * on allocation, not free.
 | |
| 	 *
 | |
| 	 * Positive values are allocations and negative values are free
 | |
| 	 * fragments.
 | |
| 	 */
 | |
| 	while (start < last_alloc) {
 | |
| 		if (test_bit(start, chunk->alloc_map)) {
 | |
| 			end = find_next_bit(chunk->bound_map, last_alloc,
 | |
| 					    start + 1);
 | |
| 			alloc_sizes[as_len] = 1;
 | |
| 		} else {
 | |
| 			end = find_next_bit(chunk->alloc_map, last_alloc,
 | |
| 					    start + 1);
 | |
| 			alloc_sizes[as_len] = -1;
 | |
| 		}
 | |
| 
 | |
| 		alloc_sizes[as_len++] *= (end - start) * PCPU_MIN_ALLOC_SIZE;
 | |
| 
 | |
| 		start = end;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The negative values are free fragments and thus sorting gives the
 | |
| 	 * free fragments at the beginning in largest first order.
 | |
| 	 */
 | |
| 	if (as_len > 0) {
 | |
| 		sort(alloc_sizes, as_len, sizeof(int), cmpint, NULL);
 | |
| 
 | |
| 		/* iterate through the unallocated fragments */
 | |
| 		for (i = 0, p = alloc_sizes; *p < 0 && i < as_len; i++, p++) {
 | |
| 			sum_frag -= *p;
 | |
| 			max_frag = max(max_frag, -1 * (*p));
 | |
| 		}
 | |
| 
 | |
| 		cur_min_alloc = alloc_sizes[i];
 | |
| 		cur_med_alloc = alloc_sizes[(i + as_len - 1) / 2];
 | |
| 		cur_max_alloc = alloc_sizes[as_len - 1];
 | |
| 	}
 | |
| 
 | |
| 	P("nr_alloc", chunk->nr_alloc);
 | |
| 	P("max_alloc_size", chunk->max_alloc_size);
 | |
| 	P("empty_pop_pages", chunk->nr_empty_pop_pages);
 | |
| 	P("first_bit", chunk_md->first_free);
 | |
| 	P("free_bytes", chunk->free_bytes);
 | |
| 	P("contig_bytes", chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
 | |
| 	P("sum_frag", sum_frag);
 | |
| 	P("max_frag", max_frag);
 | |
| 	P("cur_min_alloc", cur_min_alloc);
 | |
| 	P("cur_med_alloc", cur_med_alloc);
 | |
| 	P("cur_max_alloc", cur_max_alloc);
 | |
| 	seq_putc(m, '\n');
 | |
| }
 | |
| 
 | |
| static int percpu_stats_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct pcpu_chunk *chunk;
 | |
| 	int slot, max_nr_alloc;
 | |
| 	int *buffer;
 | |
| 
 | |
| alloc_buffer:
 | |
| 	spin_lock_irq(&pcpu_lock);
 | |
| 	max_nr_alloc = find_max_nr_alloc();
 | |
| 	spin_unlock_irq(&pcpu_lock);
 | |
| 
 | |
| 	/* there can be at most this many free and allocated fragments */
 | |
| 	buffer = vmalloc_array(2 * max_nr_alloc + 1, sizeof(int));
 | |
| 	if (!buffer)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spin_lock_irq(&pcpu_lock);
 | |
| 
 | |
| 	/* if the buffer allocated earlier is too small */
 | |
| 	if (max_nr_alloc < find_max_nr_alloc()) {
 | |
| 		spin_unlock_irq(&pcpu_lock);
 | |
| 		vfree(buffer);
 | |
| 		goto alloc_buffer;
 | |
| 	}
 | |
| 
 | |
| #define PL(X)								\
 | |
| 	seq_printf(m, "  %-20s: %12lld\n", #X, (long long int)pcpu_stats_ai.X)
 | |
| 
 | |
| 	seq_printf(m,
 | |
| 			"Percpu Memory Statistics\n"
 | |
| 			"Allocation Info:\n"
 | |
| 			"----------------------------------------\n");
 | |
| 	PL(unit_size);
 | |
| 	PL(static_size);
 | |
| 	PL(reserved_size);
 | |
| 	PL(dyn_size);
 | |
| 	PL(atom_size);
 | |
| 	PL(alloc_size);
 | |
| 	seq_putc(m, '\n');
 | |
| 
 | |
| #undef PL
 | |
| 
 | |
| #define PU(X) \
 | |
| 	seq_printf(m, "  %-20s: %12llu\n", #X, (unsigned long long)pcpu_stats.X)
 | |
| 
 | |
| 	seq_printf(m,
 | |
| 			"Global Stats:\n"
 | |
| 			"----------------------------------------\n");
 | |
| 	PU(nr_alloc);
 | |
| 	PU(nr_dealloc);
 | |
| 	PU(nr_cur_alloc);
 | |
| 	PU(nr_max_alloc);
 | |
| 	PU(nr_chunks);
 | |
| 	PU(nr_max_chunks);
 | |
| 	PU(min_alloc_size);
 | |
| 	PU(max_alloc_size);
 | |
| 	P("empty_pop_pages", pcpu_nr_empty_pop_pages);
 | |
| 	seq_putc(m, '\n');
 | |
| 
 | |
| #undef PU
 | |
| 
 | |
| 	seq_printf(m,
 | |
| 			"Per Chunk Stats:\n"
 | |
| 			"----------------------------------------\n");
 | |
| 
 | |
| 	if (pcpu_reserved_chunk) {
 | |
| 		seq_puts(m, "Chunk: <- Reserved Chunk\n");
 | |
| 		chunk_map_stats(m, pcpu_reserved_chunk, buffer);
 | |
| 	}
 | |
| 
 | |
| 	for (slot = 0; slot < pcpu_nr_slots; slot++) {
 | |
| 		list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) {
 | |
| 			if (chunk == pcpu_first_chunk)
 | |
| 				seq_puts(m, "Chunk: <- First Chunk\n");
 | |
| 			else if (slot == pcpu_to_depopulate_slot)
 | |
| 				seq_puts(m, "Chunk (to_depopulate)\n");
 | |
| 			else if (slot == pcpu_sidelined_slot)
 | |
| 				seq_puts(m, "Chunk (sidelined):\n");
 | |
| 			else
 | |
| 				seq_puts(m, "Chunk:\n");
 | |
| 			chunk_map_stats(m, chunk, buffer);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(&pcpu_lock);
 | |
| 
 | |
| 	vfree(buffer);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DEFINE_SHOW_ATTRIBUTE(percpu_stats);
 | |
| 
 | |
| static int __init init_percpu_stats_debugfs(void)
 | |
| {
 | |
| 	debugfs_create_file("percpu_stats", 0444, NULL, NULL,
 | |
| 			&percpu_stats_fops);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| late_initcall(init_percpu_stats_debugfs);
 |