mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 e5eb28f6d1
			
		
	
	
		e5eb28f6d1
		
	
	
	
	
		
			
			heap optimizations". - Kuan-Wei Chiu has also sped up the library sorting code in the series "lib/sort: Optimize the number of swaps and comparisons". - Alexey Gladkov has added the ability for code running within an IPC namespace to alter its IPC and MQ limits. The series is "Allow to change ipc/mq sysctls inside ipc namespace". - Geert Uytterhoeven has contributed some dhrystone maintenance work in the series "lib: dhry: miscellaneous cleanups". - Ryusuke Konishi continues nilfs2 maintenance work in the series "nilfs2: eliminate kmap and kmap_atomic calls" "nilfs2: fix kernel bug at submit_bh_wbc()" - Nathan Chancellor has updated our build tools requirements in the series "Bump the minimum supported version of LLVM to 13.0.1". - Muhammad Usama Anjum continues with the selftests maintenance work in the series "selftests/mm: Improve run_vmtests.sh". - Oleg Nesterov has done some maintenance work against the signal code in the series "get_signal: minor cleanups and fix". Plus the usual shower of singleton patches in various parts of the tree. Please see the individual changelogs for details. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZfMnvgAKCRDdBJ7gKXxA jjKMAP4/Upq07D4wjkMVPb+QrkipbbLpdcgJ++q3z6rba4zhPQD+M3SFriIJk/Xh tKVmvihFxfAhdDthseXcIf1nBjMALwY= =8rVc -----END PGP SIGNATURE----- Merge tag 'mm-nonmm-stable-2024-03-14-09-36' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull non-MM updates from Andrew Morton: - Kuan-Wei Chiu has developed the well-named series "lib min_heap: Min heap optimizations". - Kuan-Wei Chiu has also sped up the library sorting code in the series "lib/sort: Optimize the number of swaps and comparisons". - Alexey Gladkov has added the ability for code running within an IPC namespace to alter its IPC and MQ limits. The series is "Allow to change ipc/mq sysctls inside ipc namespace". - Geert Uytterhoeven has contributed some dhrystone maintenance work in the series "lib: dhry: miscellaneous cleanups". - Ryusuke Konishi continues nilfs2 maintenance work in the series "nilfs2: eliminate kmap and kmap_atomic calls" "nilfs2: fix kernel bug at submit_bh_wbc()" - Nathan Chancellor has updated our build tools requirements in the series "Bump the minimum supported version of LLVM to 13.0.1". - Muhammad Usama Anjum continues with the selftests maintenance work in the series "selftests/mm: Improve run_vmtests.sh". - Oleg Nesterov has done some maintenance work against the signal code in the series "get_signal: minor cleanups and fix". Plus the usual shower of singleton patches in various parts of the tree. Please see the individual changelogs for details. * tag 'mm-nonmm-stable-2024-03-14-09-36' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (77 commits) nilfs2: prevent kernel bug at submit_bh_wbc() nilfs2: fix failure to detect DAT corruption in btree and direct mappings ocfs2: enable ocfs2_listxattr for special files ocfs2: remove SLAB_MEM_SPREAD flag usage assoc_array: fix the return value in assoc_array_insert_mid_shortcut() buildid: use kmap_local_page() watchdog/core: remove sysctl handlers from public header nilfs2: use div64_ul() instead of do_div() mul_u64_u64_div_u64: increase precision by conditionally swapping a and b kexec: copy only happens before uchunk goes to zero get_signal: don't initialize ksig->info if SIGNAL_GROUP_EXIT/group_exec_task get_signal: hide_si_addr_tag_bits: fix the usage of uninitialized ksig get_signal: don't abuse ksig->info.si_signo and ksig->sig const_structs.checkpatch: add device_type Normalise "name (ad@dr)" MODULE_AUTHORs to "name <ad@dr>" dyndbg: replace kstrdup() + strchr() with kstrdup_and_replace() list: leverage list_is_head() for list_entry_is_head() nilfs2: MAINTAINERS: drop unreachable project mirror site smp: make __smp_processor_id() 0-argument macro fat: fix uninitialized field in nostale filehandles ...
		
			
				
	
	
		
			1287 lines
		
	
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1287 lines
		
	
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Slab allocator functions that are independent of the allocator strategy
 | |
|  *
 | |
|  * (C) 2012 Christoph Lameter <cl@linux.com>
 | |
|  */
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/poison.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/memory.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/kfence.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/swiotlb.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/kasan.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/page.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/stackdepot.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| #include "slab.h"
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/kmem.h>
 | |
| 
 | |
| enum slab_state slab_state;
 | |
| LIST_HEAD(slab_caches);
 | |
| DEFINE_MUTEX(slab_mutex);
 | |
| struct kmem_cache *kmem_cache;
 | |
| 
 | |
| static LIST_HEAD(slab_caches_to_rcu_destroy);
 | |
| static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
 | |
| static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
 | |
| 		    slab_caches_to_rcu_destroy_workfn);
 | |
| 
 | |
| /*
 | |
|  * Set of flags that will prevent slab merging
 | |
|  */
 | |
| #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 | |
| 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
 | |
| 		SLAB_FAILSLAB | SLAB_NO_MERGE)
 | |
| 
 | |
| #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
 | |
| 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
 | |
| 
 | |
| /*
 | |
|  * Merge control. If this is set then no merging of slab caches will occur.
 | |
|  */
 | |
| static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
 | |
| 
 | |
| static int __init setup_slab_nomerge(char *str)
 | |
| {
 | |
| 	slab_nomerge = true;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int __init setup_slab_merge(char *str)
 | |
| {
 | |
| 	slab_nomerge = false;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
 | |
| __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
 | |
| 
 | |
| __setup("slab_nomerge", setup_slab_nomerge);
 | |
| __setup("slab_merge", setup_slab_merge);
 | |
| 
 | |
| /*
 | |
|  * Determine the size of a slab object
 | |
|  */
 | |
| unsigned int kmem_cache_size(struct kmem_cache *s)
 | |
| {
 | |
| 	return s->object_size;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_size);
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| static int kmem_cache_sanity_check(const char *name, unsigned int size)
 | |
| {
 | |
| 	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
 | |
| 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Figure out what the alignment of the objects will be given a set of
 | |
|  * flags, a user specified alignment and the size of the objects.
 | |
|  */
 | |
| static unsigned int calculate_alignment(slab_flags_t flags,
 | |
| 		unsigned int align, unsigned int size)
 | |
| {
 | |
| 	/*
 | |
| 	 * If the user wants hardware cache aligned objects then follow that
 | |
| 	 * suggestion if the object is sufficiently large.
 | |
| 	 *
 | |
| 	 * The hardware cache alignment cannot override the specified
 | |
| 	 * alignment though. If that is greater then use it.
 | |
| 	 */
 | |
| 	if (flags & SLAB_HWCACHE_ALIGN) {
 | |
| 		unsigned int ralign;
 | |
| 
 | |
| 		ralign = cache_line_size();
 | |
| 		while (size <= ralign / 2)
 | |
| 			ralign /= 2;
 | |
| 		align = max(align, ralign);
 | |
| 	}
 | |
| 
 | |
| 	align = max(align, arch_slab_minalign());
 | |
| 
 | |
| 	return ALIGN(align, sizeof(void *));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a mergeable slab cache
 | |
|  */
 | |
| int slab_unmergeable(struct kmem_cache *s)
 | |
| {
 | |
| 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (s->ctor)
 | |
| 		return 1;
 | |
| 
 | |
| #ifdef CONFIG_HARDENED_USERCOPY
 | |
| 	if (s->usersize)
 | |
| 		return 1;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * We may have set a slab to be unmergeable during bootstrap.
 | |
| 	 */
 | |
| 	if (s->refcount < 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
 | |
| 		slab_flags_t flags, const char *name, void (*ctor)(void *))
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 
 | |
| 	if (slab_nomerge)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (ctor)
 | |
| 		return NULL;
 | |
| 
 | |
| 	size = ALIGN(size, sizeof(void *));
 | |
| 	align = calculate_alignment(flags, align, size);
 | |
| 	size = ALIGN(size, align);
 | |
| 	flags = kmem_cache_flags(flags, name);
 | |
| 
 | |
| 	if (flags & SLAB_NEVER_MERGE)
 | |
| 		return NULL;
 | |
| 
 | |
| 	list_for_each_entry_reverse(s, &slab_caches, list) {
 | |
| 		if (slab_unmergeable(s))
 | |
| 			continue;
 | |
| 
 | |
| 		if (size > s->size)
 | |
| 			continue;
 | |
| 
 | |
| 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * Check if alignment is compatible.
 | |
| 		 * Courtesy of Adrian Drzewiecki
 | |
| 		 */
 | |
| 		if ((s->size & ~(align - 1)) != s->size)
 | |
| 			continue;
 | |
| 
 | |
| 		if (s->size - size >= sizeof(void *))
 | |
| 			continue;
 | |
| 
 | |
| 		return s;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct kmem_cache *create_cache(const char *name,
 | |
| 		unsigned int object_size, unsigned int align,
 | |
| 		slab_flags_t flags, unsigned int useroffset,
 | |
| 		unsigned int usersize, void (*ctor)(void *),
 | |
| 		struct kmem_cache *root_cache)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	int err;
 | |
| 
 | |
| 	if (WARN_ON(useroffset + usersize > object_size))
 | |
| 		useroffset = usersize = 0;
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 | |
| 	if (!s)
 | |
| 		goto out;
 | |
| 
 | |
| 	s->name = name;
 | |
| 	s->size = s->object_size = object_size;
 | |
| 	s->align = align;
 | |
| 	s->ctor = ctor;
 | |
| #ifdef CONFIG_HARDENED_USERCOPY
 | |
| 	s->useroffset = useroffset;
 | |
| 	s->usersize = usersize;
 | |
| #endif
 | |
| 
 | |
| 	err = __kmem_cache_create(s, flags);
 | |
| 	if (err)
 | |
| 		goto out_free_cache;
 | |
| 
 | |
| 	s->refcount = 1;
 | |
| 	list_add(&s->list, &slab_caches);
 | |
| 	return s;
 | |
| 
 | |
| out_free_cache:
 | |
| 	kmem_cache_free(kmem_cache, s);
 | |
| out:
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kmem_cache_create_usercopy - Create a cache with a region suitable
 | |
|  * for copying to userspace
 | |
|  * @name: A string which is used in /proc/slabinfo to identify this cache.
 | |
|  * @size: The size of objects to be created in this cache.
 | |
|  * @align: The required alignment for the objects.
 | |
|  * @flags: SLAB flags
 | |
|  * @useroffset: Usercopy region offset
 | |
|  * @usersize: Usercopy region size
 | |
|  * @ctor: A constructor for the objects.
 | |
|  *
 | |
|  * Cannot be called within a interrupt, but can be interrupted.
 | |
|  * The @ctor is run when new pages are allocated by the cache.
 | |
|  *
 | |
|  * The flags are
 | |
|  *
 | |
|  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 | |
|  * to catch references to uninitialised memory.
 | |
|  *
 | |
|  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 | |
|  * for buffer overruns.
 | |
|  *
 | |
|  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 | |
|  * cacheline.  This can be beneficial if you're counting cycles as closely
 | |
|  * as davem.
 | |
|  *
 | |
|  * Return: a pointer to the cache on success, NULL on failure.
 | |
|  */
 | |
| struct kmem_cache *
 | |
| kmem_cache_create_usercopy(const char *name,
 | |
| 		  unsigned int size, unsigned int align,
 | |
| 		  slab_flags_t flags,
 | |
| 		  unsigned int useroffset, unsigned int usersize,
 | |
| 		  void (*ctor)(void *))
 | |
| {
 | |
| 	struct kmem_cache *s = NULL;
 | |
| 	const char *cache_name;
 | |
| 	int err;
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	/*
 | |
| 	 * If no slab_debug was enabled globally, the static key is not yet
 | |
| 	 * enabled by setup_slub_debug(). Enable it if the cache is being
 | |
| 	 * created with any of the debugging flags passed explicitly.
 | |
| 	 * It's also possible that this is the first cache created with
 | |
| 	 * SLAB_STORE_USER and we should init stack_depot for it.
 | |
| 	 */
 | |
| 	if (flags & SLAB_DEBUG_FLAGS)
 | |
| 		static_branch_enable(&slub_debug_enabled);
 | |
| 	if (flags & SLAB_STORE_USER)
 | |
| 		stack_depot_init();
 | |
| #endif
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 
 | |
| 	err = kmem_cache_sanity_check(name, size);
 | |
| 	if (err) {
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* Refuse requests with allocator specific flags */
 | |
| 	if (flags & ~SLAB_FLAGS_PERMITTED) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Some allocators will constraint the set of valid flags to a subset
 | |
| 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
 | |
| 	 * case, and we'll just provide them with a sanitized version of the
 | |
| 	 * passed flags.
 | |
| 	 */
 | |
| 	flags &= CACHE_CREATE_MASK;
 | |
| 
 | |
| 	/* Fail closed on bad usersize of useroffset values. */
 | |
| 	if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
 | |
| 	    WARN_ON(!usersize && useroffset) ||
 | |
| 	    WARN_ON(size < usersize || size - usersize < useroffset))
 | |
| 		usersize = useroffset = 0;
 | |
| 
 | |
| 	if (!usersize)
 | |
| 		s = __kmem_cache_alias(name, size, align, flags, ctor);
 | |
| 	if (s)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	cache_name = kstrdup_const(name, GFP_KERNEL);
 | |
| 	if (!cache_name) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	s = create_cache(cache_name, size,
 | |
| 			 calculate_alignment(flags, align, size),
 | |
| 			 flags, useroffset, usersize, ctor, NULL);
 | |
| 	if (IS_ERR(s)) {
 | |
| 		err = PTR_ERR(s);
 | |
| 		kfree_const(cache_name);
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 
 | |
| 	if (err) {
 | |
| 		if (flags & SLAB_PANIC)
 | |
| 			panic("%s: Failed to create slab '%s'. Error %d\n",
 | |
| 				__func__, name, err);
 | |
| 		else {
 | |
| 			pr_warn("%s(%s) failed with error %d\n",
 | |
| 				__func__, name, err);
 | |
| 			dump_stack();
 | |
| 		}
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return s;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_create_usercopy);
 | |
| 
 | |
| /**
 | |
|  * kmem_cache_create - Create a cache.
 | |
|  * @name: A string which is used in /proc/slabinfo to identify this cache.
 | |
|  * @size: The size of objects to be created in this cache.
 | |
|  * @align: The required alignment for the objects.
 | |
|  * @flags: SLAB flags
 | |
|  * @ctor: A constructor for the objects.
 | |
|  *
 | |
|  * Cannot be called within a interrupt, but can be interrupted.
 | |
|  * The @ctor is run when new pages are allocated by the cache.
 | |
|  *
 | |
|  * The flags are
 | |
|  *
 | |
|  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 | |
|  * to catch references to uninitialised memory.
 | |
|  *
 | |
|  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 | |
|  * for buffer overruns.
 | |
|  *
 | |
|  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 | |
|  * cacheline.  This can be beneficial if you're counting cycles as closely
 | |
|  * as davem.
 | |
|  *
 | |
|  * Return: a pointer to the cache on success, NULL on failure.
 | |
|  */
 | |
| struct kmem_cache *
 | |
| kmem_cache_create(const char *name, unsigned int size, unsigned int align,
 | |
| 		slab_flags_t flags, void (*ctor)(void *))
 | |
| {
 | |
| 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
 | |
| 					  ctor);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_create);
 | |
| 
 | |
| #ifdef SLAB_SUPPORTS_SYSFS
 | |
| /*
 | |
|  * For a given kmem_cache, kmem_cache_destroy() should only be called
 | |
|  * once or there will be a use-after-free problem. The actual deletion
 | |
|  * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
 | |
|  * protection. So they are now done without holding those locks.
 | |
|  *
 | |
|  * Note that there will be a slight delay in the deletion of sysfs files
 | |
|  * if kmem_cache_release() is called indrectly from a work function.
 | |
|  */
 | |
| static void kmem_cache_release(struct kmem_cache *s)
 | |
| {
 | |
| 	if (slab_state >= FULL) {
 | |
| 		sysfs_slab_unlink(s);
 | |
| 		sysfs_slab_release(s);
 | |
| 	} else {
 | |
| 		slab_kmem_cache_release(s);
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static void kmem_cache_release(struct kmem_cache *s)
 | |
| {
 | |
| 	slab_kmem_cache_release(s);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
 | |
| {
 | |
| 	LIST_HEAD(to_destroy);
 | |
| 	struct kmem_cache *s, *s2;
 | |
| 
 | |
| 	/*
 | |
| 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
 | |
| 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
 | |
| 	 * through RCU and the associated kmem_cache are dereferenced
 | |
| 	 * while freeing the pages, so the kmem_caches should be freed only
 | |
| 	 * after the pending RCU operations are finished.  As rcu_barrier()
 | |
| 	 * is a pretty slow operation, we batch all pending destructions
 | |
| 	 * asynchronously.
 | |
| 	 */
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 
 | |
| 	if (list_empty(&to_destroy))
 | |
| 		return;
 | |
| 
 | |
| 	rcu_barrier();
 | |
| 
 | |
| 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
 | |
| 		debugfs_slab_release(s);
 | |
| 		kfence_shutdown_cache(s);
 | |
| 		kmem_cache_release(s);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int shutdown_cache(struct kmem_cache *s)
 | |
| {
 | |
| 	/* free asan quarantined objects */
 | |
| 	kasan_cache_shutdown(s);
 | |
| 
 | |
| 	if (__kmem_cache_shutdown(s) != 0)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	list_del(&s->list);
 | |
| 
 | |
| 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
 | |
| 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
 | |
| 		schedule_work(&slab_caches_to_rcu_destroy_work);
 | |
| 	} else {
 | |
| 		kfence_shutdown_cache(s);
 | |
| 		debugfs_slab_release(s);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void slab_kmem_cache_release(struct kmem_cache *s)
 | |
| {
 | |
| 	__kmem_cache_release(s);
 | |
| 	kfree_const(s->name);
 | |
| 	kmem_cache_free(kmem_cache, s);
 | |
| }
 | |
| 
 | |
| void kmem_cache_destroy(struct kmem_cache *s)
 | |
| {
 | |
| 	int err = -EBUSY;
 | |
| 	bool rcu_set;
 | |
| 
 | |
| 	if (unlikely(!s) || !kasan_check_byte(s))
 | |
| 		return;
 | |
| 
 | |
| 	cpus_read_lock();
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 
 | |
| 	rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
 | |
| 
 | |
| 	s->refcount--;
 | |
| 	if (s->refcount)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	err = shutdown_cache(s);
 | |
| 	WARN(err, "%s %s: Slab cache still has objects when called from %pS",
 | |
| 	     __func__, s->name, (void *)_RET_IP_);
 | |
| out_unlock:
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 	cpus_read_unlock();
 | |
| 	if (!err && !rcu_set)
 | |
| 		kmem_cache_release(s);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_destroy);
 | |
| 
 | |
| /**
 | |
|  * kmem_cache_shrink - Shrink a cache.
 | |
|  * @cachep: The cache to shrink.
 | |
|  *
 | |
|  * Releases as many slabs as possible for a cache.
 | |
|  * To help debugging, a zero exit status indicates all slabs were released.
 | |
|  *
 | |
|  * Return: %0 if all slabs were released, non-zero otherwise
 | |
|  */
 | |
| int kmem_cache_shrink(struct kmem_cache *cachep)
 | |
| {
 | |
| 	kasan_cache_shrink(cachep);
 | |
| 
 | |
| 	return __kmem_cache_shrink(cachep);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_shrink);
 | |
| 
 | |
| bool slab_is_available(void)
 | |
| {
 | |
| 	return slab_state >= UP;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PRINTK
 | |
| static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
 | |
| {
 | |
| 	if (__kfence_obj_info(kpp, object, slab))
 | |
| 		return;
 | |
| 	__kmem_obj_info(kpp, object, slab);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kmem_dump_obj - Print available slab provenance information
 | |
|  * @object: slab object for which to find provenance information.
 | |
|  *
 | |
|  * This function uses pr_cont(), so that the caller is expected to have
 | |
|  * printed out whatever preamble is appropriate.  The provenance information
 | |
|  * depends on the type of object and on how much debugging is enabled.
 | |
|  * For a slab-cache object, the fact that it is a slab object is printed,
 | |
|  * and, if available, the slab name, return address, and stack trace from
 | |
|  * the allocation and last free path of that object.
 | |
|  *
 | |
|  * Return: %true if the pointer is to a not-yet-freed object from
 | |
|  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
 | |
|  * is to an already-freed object, and %false otherwise.
 | |
|  */
 | |
| bool kmem_dump_obj(void *object)
 | |
| {
 | |
| 	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
 | |
| 	int i;
 | |
| 	struct slab *slab;
 | |
| 	unsigned long ptroffset;
 | |
| 	struct kmem_obj_info kp = { };
 | |
| 
 | |
| 	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
 | |
| 	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
 | |
| 		return false;
 | |
| 	slab = virt_to_slab(object);
 | |
| 	if (!slab)
 | |
| 		return false;
 | |
| 
 | |
| 	kmem_obj_info(&kp, object, slab);
 | |
| 	if (kp.kp_slab_cache)
 | |
| 		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
 | |
| 	else
 | |
| 		pr_cont(" slab%s", cp);
 | |
| 	if (is_kfence_address(object))
 | |
| 		pr_cont(" (kfence)");
 | |
| 	if (kp.kp_objp)
 | |
| 		pr_cont(" start %px", kp.kp_objp);
 | |
| 	if (kp.kp_data_offset)
 | |
| 		pr_cont(" data offset %lu", kp.kp_data_offset);
 | |
| 	if (kp.kp_objp) {
 | |
| 		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
 | |
| 		pr_cont(" pointer offset %lu", ptroffset);
 | |
| 	}
 | |
| 	if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
 | |
| 		pr_cont(" size %u", kp.kp_slab_cache->object_size);
 | |
| 	if (kp.kp_ret)
 | |
| 		pr_cont(" allocated at %pS\n", kp.kp_ret);
 | |
| 	else
 | |
| 		pr_cont("\n");
 | |
| 	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
 | |
| 		if (!kp.kp_stack[i])
 | |
| 			break;
 | |
| 		pr_info("    %pS\n", kp.kp_stack[i]);
 | |
| 	}
 | |
| 
 | |
| 	if (kp.kp_free_stack[0])
 | |
| 		pr_cont(" Free path:\n");
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
 | |
| 		if (!kp.kp_free_stack[i])
 | |
| 			break;
 | |
| 		pr_info("    %pS\n", kp.kp_free_stack[i]);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kmem_dump_obj);
 | |
| #endif
 | |
| 
 | |
| /* Create a cache during boot when no slab services are available yet */
 | |
| void __init create_boot_cache(struct kmem_cache *s, const char *name,
 | |
| 		unsigned int size, slab_flags_t flags,
 | |
| 		unsigned int useroffset, unsigned int usersize)
 | |
| {
 | |
| 	int err;
 | |
| 	unsigned int align = ARCH_KMALLOC_MINALIGN;
 | |
| 
 | |
| 	s->name = name;
 | |
| 	s->size = s->object_size = size;
 | |
| 
 | |
| 	/*
 | |
| 	 * For power of two sizes, guarantee natural alignment for kmalloc
 | |
| 	 * caches, regardless of SL*B debugging options.
 | |
| 	 */
 | |
| 	if (is_power_of_2(size))
 | |
| 		align = max(align, size);
 | |
| 	s->align = calculate_alignment(flags, align, size);
 | |
| 
 | |
| #ifdef CONFIG_HARDENED_USERCOPY
 | |
| 	s->useroffset = useroffset;
 | |
| 	s->usersize = usersize;
 | |
| #endif
 | |
| 
 | |
| 	err = __kmem_cache_create(s, flags);
 | |
| 
 | |
| 	if (err)
 | |
| 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
 | |
| 					name, size, err);
 | |
| 
 | |
| 	s->refcount = -1;	/* Exempt from merging for now */
 | |
| }
 | |
| 
 | |
| static struct kmem_cache *__init create_kmalloc_cache(const char *name,
 | |
| 						      unsigned int size,
 | |
| 						      slab_flags_t flags)
 | |
| {
 | |
| 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 | |
| 
 | |
| 	if (!s)
 | |
| 		panic("Out of memory when creating slab %s\n", name);
 | |
| 
 | |
| 	create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size);
 | |
| 	list_add(&s->list, &slab_caches);
 | |
| 	s->refcount = 1;
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| struct kmem_cache *
 | |
| kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
 | |
| { /* initialization for https://llvm.org/pr42570 */ };
 | |
| EXPORT_SYMBOL(kmalloc_caches);
 | |
| 
 | |
| #ifdef CONFIG_RANDOM_KMALLOC_CACHES
 | |
| unsigned long random_kmalloc_seed __ro_after_init;
 | |
| EXPORT_SYMBOL(random_kmalloc_seed);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Conversion table for small slabs sizes / 8 to the index in the
 | |
|  * kmalloc array. This is necessary for slabs < 192 since we have non power
 | |
|  * of two cache sizes there. The size of larger slabs can be determined using
 | |
|  * fls.
 | |
|  */
 | |
| u8 kmalloc_size_index[24] __ro_after_init = {
 | |
| 	3,	/* 8 */
 | |
| 	4,	/* 16 */
 | |
| 	5,	/* 24 */
 | |
| 	5,	/* 32 */
 | |
| 	6,	/* 40 */
 | |
| 	6,	/* 48 */
 | |
| 	6,	/* 56 */
 | |
| 	6,	/* 64 */
 | |
| 	1,	/* 72 */
 | |
| 	1,	/* 80 */
 | |
| 	1,	/* 88 */
 | |
| 	1,	/* 96 */
 | |
| 	7,	/* 104 */
 | |
| 	7,	/* 112 */
 | |
| 	7,	/* 120 */
 | |
| 	7,	/* 128 */
 | |
| 	2,	/* 136 */
 | |
| 	2,	/* 144 */
 | |
| 	2,	/* 152 */
 | |
| 	2,	/* 160 */
 | |
| 	2,	/* 168 */
 | |
| 	2,	/* 176 */
 | |
| 	2,	/* 184 */
 | |
| 	2	/* 192 */
 | |
| };
 | |
| 
 | |
| size_t kmalloc_size_roundup(size_t size)
 | |
| {
 | |
| 	if (size && size <= KMALLOC_MAX_CACHE_SIZE) {
 | |
| 		/*
 | |
| 		 * The flags don't matter since size_index is common to all.
 | |
| 		 * Neither does the caller for just getting ->object_size.
 | |
| 		 */
 | |
| 		return kmalloc_slab(size, GFP_KERNEL, 0)->object_size;
 | |
| 	}
 | |
| 
 | |
| 	/* Above the smaller buckets, size is a multiple of page size. */
 | |
| 	if (size && size <= KMALLOC_MAX_SIZE)
 | |
| 		return PAGE_SIZE << get_order(size);
 | |
| 
 | |
| 	/*
 | |
| 	 * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR
 | |
| 	 * and very large size - kmalloc() may fail.
 | |
| 	 */
 | |
| 	return size;
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL(kmalloc_size_roundup);
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| #define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
 | |
| #else
 | |
| #define KMALLOC_DMA_NAME(sz)
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| #define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
 | |
| #else
 | |
| #define KMALLOC_CGROUP_NAME(sz)
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_SLUB_TINY
 | |
| #define KMALLOC_RCL_NAME(sz)	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
 | |
| #else
 | |
| #define KMALLOC_RCL_NAME(sz)
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_RANDOM_KMALLOC_CACHES
 | |
| #define __KMALLOC_RANDOM_CONCAT(a, b) a ## b
 | |
| #define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz)
 | |
| #define KMA_RAND_1(sz)                  .name[KMALLOC_RANDOM_START +  1] = "kmalloc-rnd-01-" #sz,
 | |
| #define KMA_RAND_2(sz)  KMA_RAND_1(sz)  .name[KMALLOC_RANDOM_START +  2] = "kmalloc-rnd-02-" #sz,
 | |
| #define KMA_RAND_3(sz)  KMA_RAND_2(sz)  .name[KMALLOC_RANDOM_START +  3] = "kmalloc-rnd-03-" #sz,
 | |
| #define KMA_RAND_4(sz)  KMA_RAND_3(sz)  .name[KMALLOC_RANDOM_START +  4] = "kmalloc-rnd-04-" #sz,
 | |
| #define KMA_RAND_5(sz)  KMA_RAND_4(sz)  .name[KMALLOC_RANDOM_START +  5] = "kmalloc-rnd-05-" #sz,
 | |
| #define KMA_RAND_6(sz)  KMA_RAND_5(sz)  .name[KMALLOC_RANDOM_START +  6] = "kmalloc-rnd-06-" #sz,
 | |
| #define KMA_RAND_7(sz)  KMA_RAND_6(sz)  .name[KMALLOC_RANDOM_START +  7] = "kmalloc-rnd-07-" #sz,
 | |
| #define KMA_RAND_8(sz)  KMA_RAND_7(sz)  .name[KMALLOC_RANDOM_START +  8] = "kmalloc-rnd-08-" #sz,
 | |
| #define KMA_RAND_9(sz)  KMA_RAND_8(sz)  .name[KMALLOC_RANDOM_START +  9] = "kmalloc-rnd-09-" #sz,
 | |
| #define KMA_RAND_10(sz) KMA_RAND_9(sz)  .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz,
 | |
| #define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz,
 | |
| #define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz,
 | |
| #define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz,
 | |
| #define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz,
 | |
| #define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz,
 | |
| #else // CONFIG_RANDOM_KMALLOC_CACHES
 | |
| #define KMALLOC_RANDOM_NAME(N, sz)
 | |
| #endif
 | |
| 
 | |
| #define INIT_KMALLOC_INFO(__size, __short_size)			\
 | |
| {								\
 | |
| 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
 | |
| 	KMALLOC_RCL_NAME(__short_size)				\
 | |
| 	KMALLOC_CGROUP_NAME(__short_size)			\
 | |
| 	KMALLOC_DMA_NAME(__short_size)				\
 | |
| 	KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size)	\
 | |
| 	.size = __size,						\
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * kmalloc_info[] is to make slab_debug=,kmalloc-xx option work at boot time.
 | |
|  * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
 | |
|  * kmalloc-2M.
 | |
|  */
 | |
| const struct kmalloc_info_struct kmalloc_info[] __initconst = {
 | |
| 	INIT_KMALLOC_INFO(0, 0),
 | |
| 	INIT_KMALLOC_INFO(96, 96),
 | |
| 	INIT_KMALLOC_INFO(192, 192),
 | |
| 	INIT_KMALLOC_INFO(8, 8),
 | |
| 	INIT_KMALLOC_INFO(16, 16),
 | |
| 	INIT_KMALLOC_INFO(32, 32),
 | |
| 	INIT_KMALLOC_INFO(64, 64),
 | |
| 	INIT_KMALLOC_INFO(128, 128),
 | |
| 	INIT_KMALLOC_INFO(256, 256),
 | |
| 	INIT_KMALLOC_INFO(512, 512),
 | |
| 	INIT_KMALLOC_INFO(1024, 1k),
 | |
| 	INIT_KMALLOC_INFO(2048, 2k),
 | |
| 	INIT_KMALLOC_INFO(4096, 4k),
 | |
| 	INIT_KMALLOC_INFO(8192, 8k),
 | |
| 	INIT_KMALLOC_INFO(16384, 16k),
 | |
| 	INIT_KMALLOC_INFO(32768, 32k),
 | |
| 	INIT_KMALLOC_INFO(65536, 64k),
 | |
| 	INIT_KMALLOC_INFO(131072, 128k),
 | |
| 	INIT_KMALLOC_INFO(262144, 256k),
 | |
| 	INIT_KMALLOC_INFO(524288, 512k),
 | |
| 	INIT_KMALLOC_INFO(1048576, 1M),
 | |
| 	INIT_KMALLOC_INFO(2097152, 2M)
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Patch up the size_index table if we have strange large alignment
 | |
|  * requirements for the kmalloc array. This is only the case for
 | |
|  * MIPS it seems. The standard arches will not generate any code here.
 | |
|  *
 | |
|  * Largest permitted alignment is 256 bytes due to the way we
 | |
|  * handle the index determination for the smaller caches.
 | |
|  *
 | |
|  * Make sure that nothing crazy happens if someone starts tinkering
 | |
|  * around with ARCH_KMALLOC_MINALIGN
 | |
|  */
 | |
| void __init setup_kmalloc_cache_index_table(void)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
 | |
| 		!is_power_of_2(KMALLOC_MIN_SIZE));
 | |
| 
 | |
| 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
 | |
| 		unsigned int elem = size_index_elem(i);
 | |
| 
 | |
| 		if (elem >= ARRAY_SIZE(kmalloc_size_index))
 | |
| 			break;
 | |
| 		kmalloc_size_index[elem] = KMALLOC_SHIFT_LOW;
 | |
| 	}
 | |
| 
 | |
| 	if (KMALLOC_MIN_SIZE >= 64) {
 | |
| 		/*
 | |
| 		 * The 96 byte sized cache is not used if the alignment
 | |
| 		 * is 64 byte.
 | |
| 		 */
 | |
| 		for (i = 64 + 8; i <= 96; i += 8)
 | |
| 			kmalloc_size_index[size_index_elem(i)] = 7;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	if (KMALLOC_MIN_SIZE >= 128) {
 | |
| 		/*
 | |
| 		 * The 192 byte sized cache is not used if the alignment
 | |
| 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
 | |
| 		 * instead.
 | |
| 		 */
 | |
| 		for (i = 128 + 8; i <= 192; i += 8)
 | |
| 			kmalloc_size_index[size_index_elem(i)] = 8;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned int __kmalloc_minalign(void)
 | |
| {
 | |
| 	unsigned int minalign = dma_get_cache_alignment();
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) &&
 | |
| 	    is_swiotlb_allocated())
 | |
| 		minalign = ARCH_KMALLOC_MINALIGN;
 | |
| 
 | |
| 	return max(minalign, arch_slab_minalign());
 | |
| }
 | |
| 
 | |
| static void __init
 | |
| new_kmalloc_cache(int idx, enum kmalloc_cache_type type)
 | |
| {
 | |
| 	slab_flags_t flags = 0;
 | |
| 	unsigned int minalign = __kmalloc_minalign();
 | |
| 	unsigned int aligned_size = kmalloc_info[idx].size;
 | |
| 	int aligned_idx = idx;
 | |
| 
 | |
| 	if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
 | |
| 		flags |= SLAB_RECLAIM_ACCOUNT;
 | |
| 	} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
 | |
| 		if (mem_cgroup_kmem_disabled()) {
 | |
| 			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
 | |
| 			return;
 | |
| 		}
 | |
| 		flags |= SLAB_ACCOUNT;
 | |
| 	} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
 | |
| 		flags |= SLAB_CACHE_DMA;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_RANDOM_KMALLOC_CACHES
 | |
| 	if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END)
 | |
| 		flags |= SLAB_NO_MERGE;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
 | |
| 	 * KMALLOC_NORMAL caches.
 | |
| 	 */
 | |
| 	if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
 | |
| 		flags |= SLAB_NO_MERGE;
 | |
| 
 | |
| 	if (minalign > ARCH_KMALLOC_MINALIGN) {
 | |
| 		aligned_size = ALIGN(aligned_size, minalign);
 | |
| 		aligned_idx = __kmalloc_index(aligned_size, false);
 | |
| 	}
 | |
| 
 | |
| 	if (!kmalloc_caches[type][aligned_idx])
 | |
| 		kmalloc_caches[type][aligned_idx] = create_kmalloc_cache(
 | |
| 					kmalloc_info[aligned_idx].name[type],
 | |
| 					aligned_size, flags);
 | |
| 	if (idx != aligned_idx)
 | |
| 		kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create the kmalloc array. Some of the regular kmalloc arrays
 | |
|  * may already have been created because they were needed to
 | |
|  * enable allocations for slab creation.
 | |
|  */
 | |
| void __init create_kmalloc_caches(void)
 | |
| {
 | |
| 	int i;
 | |
| 	enum kmalloc_cache_type type;
 | |
| 
 | |
| 	/*
 | |
| 	 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
 | |
| 	 */
 | |
| 	for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
 | |
| 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
 | |
| 			if (!kmalloc_caches[type][i])
 | |
| 				new_kmalloc_cache(i, type);
 | |
| 
 | |
| 			/*
 | |
| 			 * Caches that are not of the two-to-the-power-of size.
 | |
| 			 * These have to be created immediately after the
 | |
| 			 * earlier power of two caches
 | |
| 			 */
 | |
| 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
 | |
| 					!kmalloc_caches[type][1])
 | |
| 				new_kmalloc_cache(1, type);
 | |
| 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
 | |
| 					!kmalloc_caches[type][2])
 | |
| 				new_kmalloc_cache(2, type);
 | |
| 		}
 | |
| 	}
 | |
| #ifdef CONFIG_RANDOM_KMALLOC_CACHES
 | |
| 	random_kmalloc_seed = get_random_u64();
 | |
| #endif
 | |
| 
 | |
| 	/* Kmalloc array is now usable */
 | |
| 	slab_state = UP;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __ksize -- Report full size of underlying allocation
 | |
|  * @object: pointer to the object
 | |
|  *
 | |
|  * This should only be used internally to query the true size of allocations.
 | |
|  * It is not meant to be a way to discover the usable size of an allocation
 | |
|  * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
 | |
|  * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
 | |
|  * and/or FORTIFY_SOURCE.
 | |
|  *
 | |
|  * Return: size of the actual memory used by @object in bytes
 | |
|  */
 | |
| size_t __ksize(const void *object)
 | |
| {
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	if (unlikely(object == ZERO_SIZE_PTR))
 | |
| 		return 0;
 | |
| 
 | |
| 	folio = virt_to_folio(object);
 | |
| 
 | |
| 	if (unlikely(!folio_test_slab(folio))) {
 | |
| 		if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
 | |
| 			return 0;
 | |
| 		if (WARN_ON(object != folio_address(folio)))
 | |
| 			return 0;
 | |
| 		return folio_size(folio);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	skip_orig_size_check(folio_slab(folio)->slab_cache, object);
 | |
| #endif
 | |
| 
 | |
| 	return slab_ksize(folio_slab(folio)->slab_cache);
 | |
| }
 | |
| 
 | |
| gfp_t kmalloc_fix_flags(gfp_t flags)
 | |
| {
 | |
| 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
 | |
| 
 | |
| 	flags &= ~GFP_SLAB_BUG_MASK;
 | |
| 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
 | |
| 			invalid_mask, &invalid_mask, flags, &flags);
 | |
| 	dump_stack();
 | |
| 
 | |
| 	return flags;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SLAB_FREELIST_RANDOM
 | |
| /* Randomize a generic freelist */
 | |
| static void freelist_randomize(unsigned int *list,
 | |
| 			       unsigned int count)
 | |
| {
 | |
| 	unsigned int rand;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < count; i++)
 | |
| 		list[i] = i;
 | |
| 
 | |
| 	/* Fisher-Yates shuffle */
 | |
| 	for (i = count - 1; i > 0; i--) {
 | |
| 		rand = get_random_u32_below(i + 1);
 | |
| 		swap(list[i], list[rand]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Create a random sequence per cache */
 | |
| int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
 | |
| 				    gfp_t gfp)
 | |
| {
 | |
| 
 | |
| 	if (count < 2 || cachep->random_seq)
 | |
| 		return 0;
 | |
| 
 | |
| 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
 | |
| 	if (!cachep->random_seq)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	freelist_randomize(cachep->random_seq, count);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Destroy the per-cache random freelist sequence */
 | |
| void cache_random_seq_destroy(struct kmem_cache *cachep)
 | |
| {
 | |
| 	kfree(cachep->random_seq);
 | |
| 	cachep->random_seq = NULL;
 | |
| }
 | |
| #endif /* CONFIG_SLAB_FREELIST_RANDOM */
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| #define SLABINFO_RIGHTS (0400)
 | |
| 
 | |
| static void print_slabinfo_header(struct seq_file *m)
 | |
| {
 | |
| 	/*
 | |
| 	 * Output format version, so at least we can change it
 | |
| 	 * without _too_ many complaints.
 | |
| 	 */
 | |
| 	seq_puts(m, "slabinfo - version: 2.1\n");
 | |
| 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
 | |
| 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
 | |
| 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
 | |
| 	seq_putc(m, '\n');
 | |
| }
 | |
| 
 | |
| static void *slab_start(struct seq_file *m, loff_t *pos)
 | |
| {
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	return seq_list_start(&slab_caches, *pos);
 | |
| }
 | |
| 
 | |
| static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
 | |
| {
 | |
| 	return seq_list_next(p, &slab_caches, pos);
 | |
| }
 | |
| 
 | |
| static void slab_stop(struct seq_file *m, void *p)
 | |
| {
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| }
 | |
| 
 | |
| static void cache_show(struct kmem_cache *s, struct seq_file *m)
 | |
| {
 | |
| 	struct slabinfo sinfo;
 | |
| 
 | |
| 	memset(&sinfo, 0, sizeof(sinfo));
 | |
| 	get_slabinfo(s, &sinfo);
 | |
| 
 | |
| 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
 | |
| 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
 | |
| 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
 | |
| 
 | |
| 	seq_printf(m, " : tunables %4u %4u %4u",
 | |
| 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
 | |
| 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
 | |
| 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
 | |
| 	slabinfo_show_stats(m, s);
 | |
| 	seq_putc(m, '\n');
 | |
| }
 | |
| 
 | |
| static int slab_show(struct seq_file *m, void *p)
 | |
| {
 | |
| 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
 | |
| 
 | |
| 	if (p == slab_caches.next)
 | |
| 		print_slabinfo_header(m);
 | |
| 	cache_show(s, m);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void dump_unreclaimable_slab(void)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	struct slabinfo sinfo;
 | |
| 
 | |
| 	/*
 | |
| 	 * Here acquiring slab_mutex is risky since we don't prefer to get
 | |
| 	 * sleep in oom path. But, without mutex hold, it may introduce a
 | |
| 	 * risk of crash.
 | |
| 	 * Use mutex_trylock to protect the list traverse, dump nothing
 | |
| 	 * without acquiring the mutex.
 | |
| 	 */
 | |
| 	if (!mutex_trylock(&slab_mutex)) {
 | |
| 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pr_info("Unreclaimable slab info:\n");
 | |
| 	pr_info("Name                      Used          Total\n");
 | |
| 
 | |
| 	list_for_each_entry(s, &slab_caches, list) {
 | |
| 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
 | |
| 			continue;
 | |
| 
 | |
| 		get_slabinfo(s, &sinfo);
 | |
| 
 | |
| 		if (sinfo.num_objs > 0)
 | |
| 			pr_info("%-17s %10luKB %10luKB\n", s->name,
 | |
| 				(sinfo.active_objs * s->size) / 1024,
 | |
| 				(sinfo.num_objs * s->size) / 1024);
 | |
| 	}
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * slabinfo_op - iterator that generates /proc/slabinfo
 | |
|  *
 | |
|  * Output layout:
 | |
|  * cache-name
 | |
|  * num-active-objs
 | |
|  * total-objs
 | |
|  * object size
 | |
|  * num-active-slabs
 | |
|  * total-slabs
 | |
|  * num-pages-per-slab
 | |
|  * + further values on SMP and with statistics enabled
 | |
|  */
 | |
| static const struct seq_operations slabinfo_op = {
 | |
| 	.start = slab_start,
 | |
| 	.next = slab_next,
 | |
| 	.stop = slab_stop,
 | |
| 	.show = slab_show,
 | |
| };
 | |
| 
 | |
| static int slabinfo_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return seq_open(file, &slabinfo_op);
 | |
| }
 | |
| 
 | |
| static const struct proc_ops slabinfo_proc_ops = {
 | |
| 	.proc_flags	= PROC_ENTRY_PERMANENT,
 | |
| 	.proc_open	= slabinfo_open,
 | |
| 	.proc_read	= seq_read,
 | |
| 	.proc_write	= slabinfo_write,
 | |
| 	.proc_lseek	= seq_lseek,
 | |
| 	.proc_release	= seq_release,
 | |
| };
 | |
| 
 | |
| static int __init slab_proc_init(void)
 | |
| {
 | |
| 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
 | |
| 	return 0;
 | |
| }
 | |
| module_init(slab_proc_init);
 | |
| 
 | |
| #endif /* CONFIG_SLUB_DEBUG */
 | |
| 
 | |
| static __always_inline __realloc_size(2) void *
 | |
| __do_krealloc(const void *p, size_t new_size, gfp_t flags)
 | |
| {
 | |
| 	void *ret;
 | |
| 	size_t ks;
 | |
| 
 | |
| 	/* Check for double-free before calling ksize. */
 | |
| 	if (likely(!ZERO_OR_NULL_PTR(p))) {
 | |
| 		if (!kasan_check_byte(p))
 | |
| 			return NULL;
 | |
| 		ks = ksize(p);
 | |
| 	} else
 | |
| 		ks = 0;
 | |
| 
 | |
| 	/* If the object still fits, repoison it precisely. */
 | |
| 	if (ks >= new_size) {
 | |
| 		p = kasan_krealloc((void *)p, new_size, flags);
 | |
| 		return (void *)p;
 | |
| 	}
 | |
| 
 | |
| 	ret = kmalloc_track_caller(new_size, flags);
 | |
| 	if (ret && p) {
 | |
| 		/* Disable KASAN checks as the object's redzone is accessed. */
 | |
| 		kasan_disable_current();
 | |
| 		memcpy(ret, kasan_reset_tag(p), ks);
 | |
| 		kasan_enable_current();
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * krealloc - reallocate memory. The contents will remain unchanged.
 | |
|  * @p: object to reallocate memory for.
 | |
|  * @new_size: how many bytes of memory are required.
 | |
|  * @flags: the type of memory to allocate.
 | |
|  *
 | |
|  * The contents of the object pointed to are preserved up to the
 | |
|  * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
 | |
|  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
 | |
|  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
 | |
|  *
 | |
|  * Return: pointer to the allocated memory or %NULL in case of error
 | |
|  */
 | |
| void *krealloc(const void *p, size_t new_size, gfp_t flags)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (unlikely(!new_size)) {
 | |
| 		kfree(p);
 | |
| 		return ZERO_SIZE_PTR;
 | |
| 	}
 | |
| 
 | |
| 	ret = __do_krealloc(p, new_size, flags);
 | |
| 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
 | |
| 		kfree(p);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(krealloc);
 | |
| 
 | |
| /**
 | |
|  * kfree_sensitive - Clear sensitive information in memory before freeing
 | |
|  * @p: object to free memory of
 | |
|  *
 | |
|  * The memory of the object @p points to is zeroed before freed.
 | |
|  * If @p is %NULL, kfree_sensitive() does nothing.
 | |
|  *
 | |
|  * Note: this function zeroes the whole allocated buffer which can be a good
 | |
|  * deal bigger than the requested buffer size passed to kmalloc(). So be
 | |
|  * careful when using this function in performance sensitive code.
 | |
|  */
 | |
| void kfree_sensitive(const void *p)
 | |
| {
 | |
| 	size_t ks;
 | |
| 	void *mem = (void *)p;
 | |
| 
 | |
| 	ks = ksize(mem);
 | |
| 	if (ks) {
 | |
| 		kasan_unpoison_range(mem, ks);
 | |
| 		memzero_explicit(mem, ks);
 | |
| 	}
 | |
| 	kfree(mem);
 | |
| }
 | |
| EXPORT_SYMBOL(kfree_sensitive);
 | |
| 
 | |
| size_t ksize(const void *objp)
 | |
| {
 | |
| 	/*
 | |
| 	 * We need to first check that the pointer to the object is valid.
 | |
| 	 * The KASAN report printed from ksize() is more useful, then when
 | |
| 	 * it's printed later when the behaviour could be undefined due to
 | |
| 	 * a potential use-after-free or double-free.
 | |
| 	 *
 | |
| 	 * We use kasan_check_byte(), which is supported for the hardware
 | |
| 	 * tag-based KASAN mode, unlike kasan_check_read/write().
 | |
| 	 *
 | |
| 	 * If the pointed to memory is invalid, we return 0 to avoid users of
 | |
| 	 * ksize() writing to and potentially corrupting the memory region.
 | |
| 	 *
 | |
| 	 * We want to perform the check before __ksize(), to avoid potentially
 | |
| 	 * crashing in __ksize() due to accessing invalid metadata.
 | |
| 	 */
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
 | |
| 		return 0;
 | |
| 
 | |
| 	return kfence_ksize(objp) ?: __ksize(objp);
 | |
| }
 | |
| EXPORT_SYMBOL(ksize);
 | |
| 
 | |
| /* Tracepoints definitions. */
 | |
| EXPORT_TRACEPOINT_SYMBOL(kmalloc);
 | |
| EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
 | |
| EXPORT_TRACEPOINT_SYMBOL(kfree);
 | |
| EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
 | |
| 
 |