mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 1a1c4e4576
			
		
	
	
		1a1c4e4576
		
	
	
	
	
		
			
			Merge a series from myself that replaces hardcoded SLAB_ cache flag values with an enum, and explicitly deprecates the SLAB_MEM_SPREAD flag that is a no-op sine SLAB removal.
		
			
				
	
	
		
			7112 lines
		
	
	
	
		
			177 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			7112 lines
		
	
	
	
		
			177 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * SLUB: A slab allocator that limits cache line use instead of queuing
 | |
|  * objects in per cpu and per node lists.
 | |
|  *
 | |
|  * The allocator synchronizes using per slab locks or atomic operations
 | |
|  * and only uses a centralized lock to manage a pool of partial slabs.
 | |
|  *
 | |
|  * (C) 2007 SGI, Christoph Lameter
 | |
|  * (C) 2011 Linux Foundation, Christoph Lameter
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h> /* mm_account_reclaimed_pages() */
 | |
| #include <linux/module.h>
 | |
| #include <linux/bit_spinlock.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/swab.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/slab.h>
 | |
| #include "slab.h"
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/kasan.h>
 | |
| #include <linux/kmsan.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/stackdepot.h>
 | |
| #include <linux/debugobjects.h>
 | |
| #include <linux/kallsyms.h>
 | |
| #include <linux/kfence.h>
 | |
| #include <linux/memory.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/fault-inject.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/stacktrace.h>
 | |
| #include <linux/prefetch.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/random.h>
 | |
| #include <kunit/test.h>
 | |
| #include <kunit/test-bug.h>
 | |
| #include <linux/sort.h>
 | |
| 
 | |
| #include <linux/debugfs.h>
 | |
| #include <trace/events/kmem.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| /*
 | |
|  * Lock order:
 | |
|  *   1. slab_mutex (Global Mutex)
 | |
|  *   2. node->list_lock (Spinlock)
 | |
|  *   3. kmem_cache->cpu_slab->lock (Local lock)
 | |
|  *   4. slab_lock(slab) (Only on some arches)
 | |
|  *   5. object_map_lock (Only for debugging)
 | |
|  *
 | |
|  *   slab_mutex
 | |
|  *
 | |
|  *   The role of the slab_mutex is to protect the list of all the slabs
 | |
|  *   and to synchronize major metadata changes to slab cache structures.
 | |
|  *   Also synchronizes memory hotplug callbacks.
 | |
|  *
 | |
|  *   slab_lock
 | |
|  *
 | |
|  *   The slab_lock is a wrapper around the page lock, thus it is a bit
 | |
|  *   spinlock.
 | |
|  *
 | |
|  *   The slab_lock is only used on arches that do not have the ability
 | |
|  *   to do a cmpxchg_double. It only protects:
 | |
|  *
 | |
|  *	A. slab->freelist	-> List of free objects in a slab
 | |
|  *	B. slab->inuse		-> Number of objects in use
 | |
|  *	C. slab->objects	-> Number of objects in slab
 | |
|  *	D. slab->frozen		-> frozen state
 | |
|  *
 | |
|  *   Frozen slabs
 | |
|  *
 | |
|  *   If a slab is frozen then it is exempt from list management. It is
 | |
|  *   the cpu slab which is actively allocated from by the processor that
 | |
|  *   froze it and it is not on any list. The processor that froze the
 | |
|  *   slab is the one who can perform list operations on the slab. Other
 | |
|  *   processors may put objects onto the freelist but the processor that
 | |
|  *   froze the slab is the only one that can retrieve the objects from the
 | |
|  *   slab's freelist.
 | |
|  *
 | |
|  *   CPU partial slabs
 | |
|  *
 | |
|  *   The partially empty slabs cached on the CPU partial list are used
 | |
|  *   for performance reasons, which speeds up the allocation process.
 | |
|  *   These slabs are not frozen, but are also exempt from list management,
 | |
|  *   by clearing the PG_workingset flag when moving out of the node
 | |
|  *   partial list. Please see __slab_free() for more details.
 | |
|  *
 | |
|  *   To sum up, the current scheme is:
 | |
|  *   - node partial slab: PG_Workingset && !frozen
 | |
|  *   - cpu partial slab: !PG_Workingset && !frozen
 | |
|  *   - cpu slab: !PG_Workingset && frozen
 | |
|  *   - full slab: !PG_Workingset && !frozen
 | |
|  *
 | |
|  *   list_lock
 | |
|  *
 | |
|  *   The list_lock protects the partial and full list on each node and
 | |
|  *   the partial slab counter. If taken then no new slabs may be added or
 | |
|  *   removed from the lists nor make the number of partial slabs be modified.
 | |
|  *   (Note that the total number of slabs is an atomic value that may be
 | |
|  *   modified without taking the list lock).
 | |
|  *
 | |
|  *   The list_lock is a centralized lock and thus we avoid taking it as
 | |
|  *   much as possible. As long as SLUB does not have to handle partial
 | |
|  *   slabs, operations can continue without any centralized lock. F.e.
 | |
|  *   allocating a long series of objects that fill up slabs does not require
 | |
|  *   the list lock.
 | |
|  *
 | |
|  *   For debug caches, all allocations are forced to go through a list_lock
 | |
|  *   protected region to serialize against concurrent validation.
 | |
|  *
 | |
|  *   cpu_slab->lock local lock
 | |
|  *
 | |
|  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
 | |
|  *   except the stat counters. This is a percpu structure manipulated only by
 | |
|  *   the local cpu, so the lock protects against being preempted or interrupted
 | |
|  *   by an irq. Fast path operations rely on lockless operations instead.
 | |
|  *
 | |
|  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
 | |
|  *   which means the lockless fastpath cannot be used as it might interfere with
 | |
|  *   an in-progress slow path operations. In this case the local lock is always
 | |
|  *   taken but it still utilizes the freelist for the common operations.
 | |
|  *
 | |
|  *   lockless fastpaths
 | |
|  *
 | |
|  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
 | |
|  *   are fully lockless when satisfied from the percpu slab (and when
 | |
|  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
 | |
|  *   They also don't disable preemption or migration or irqs. They rely on
 | |
|  *   the transaction id (tid) field to detect being preempted or moved to
 | |
|  *   another cpu.
 | |
|  *
 | |
|  *   irq, preemption, migration considerations
 | |
|  *
 | |
|  *   Interrupts are disabled as part of list_lock or local_lock operations, or
 | |
|  *   around the slab_lock operation, in order to make the slab allocator safe
 | |
|  *   to use in the context of an irq.
 | |
|  *
 | |
|  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
 | |
|  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
 | |
|  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
 | |
|  *   doesn't have to be revalidated in each section protected by the local lock.
 | |
|  *
 | |
|  * SLUB assigns one slab for allocation to each processor.
 | |
|  * Allocations only occur from these slabs called cpu slabs.
 | |
|  *
 | |
|  * Slabs with free elements are kept on a partial list and during regular
 | |
|  * operations no list for full slabs is used. If an object in a full slab is
 | |
|  * freed then the slab will show up again on the partial lists.
 | |
|  * We track full slabs for debugging purposes though because otherwise we
 | |
|  * cannot scan all objects.
 | |
|  *
 | |
|  * Slabs are freed when they become empty. Teardown and setup is
 | |
|  * minimal so we rely on the page allocators per cpu caches for
 | |
|  * fast frees and allocs.
 | |
|  *
 | |
|  * slab->frozen		The slab is frozen and exempt from list processing.
 | |
|  * 			This means that the slab is dedicated to a purpose
 | |
|  * 			such as satisfying allocations for a specific
 | |
|  * 			processor. Objects may be freed in the slab while
 | |
|  * 			it is frozen but slab_free will then skip the usual
 | |
|  * 			list operations. It is up to the processor holding
 | |
|  * 			the slab to integrate the slab into the slab lists
 | |
|  * 			when the slab is no longer needed.
 | |
|  *
 | |
|  * 			One use of this flag is to mark slabs that are
 | |
|  * 			used for allocations. Then such a slab becomes a cpu
 | |
|  * 			slab. The cpu slab may be equipped with an additional
 | |
|  * 			freelist that allows lockless access to
 | |
|  * 			free objects in addition to the regular freelist
 | |
|  * 			that requires the slab lock.
 | |
|  *
 | |
|  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
 | |
|  * 			options set. This moves	slab handling out of
 | |
|  * 			the fast path and disables lockless freelists.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * We could simply use migrate_disable()/enable() but as long as it's a
 | |
|  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
 | |
|  */
 | |
| #ifndef CONFIG_PREEMPT_RT
 | |
| #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
 | |
| #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
 | |
| #define USE_LOCKLESS_FAST_PATH()	(true)
 | |
| #else
 | |
| #define slub_get_cpu_ptr(var)		\
 | |
| ({					\
 | |
| 	migrate_disable();		\
 | |
| 	this_cpu_ptr(var);		\
 | |
| })
 | |
| #define slub_put_cpu_ptr(var)		\
 | |
| do {					\
 | |
| 	(void)(var);			\
 | |
| 	migrate_enable();		\
 | |
| } while (0)
 | |
| #define USE_LOCKLESS_FAST_PATH()	(false)
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_SLUB_TINY
 | |
| #define __fastpath_inline __always_inline
 | |
| #else
 | |
| #define __fastpath_inline
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| #ifdef CONFIG_SLUB_DEBUG_ON
 | |
| DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
 | |
| #else
 | |
| DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
 | |
| #endif
 | |
| #endif		/* CONFIG_SLUB_DEBUG */
 | |
| 
 | |
| /* Structure holding parameters for get_partial() call chain */
 | |
| struct partial_context {
 | |
| 	gfp_t flags;
 | |
| 	unsigned int orig_size;
 | |
| 	void *object;
 | |
| };
 | |
| 
 | |
| static inline bool kmem_cache_debug(struct kmem_cache *s)
 | |
| {
 | |
| 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
 | |
| }
 | |
| 
 | |
| static inline bool slub_debug_orig_size(struct kmem_cache *s)
 | |
| {
 | |
| 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
 | |
| 			(s->flags & SLAB_KMALLOC));
 | |
| }
 | |
| 
 | |
| void *fixup_red_left(struct kmem_cache *s, void *p)
 | |
| {
 | |
| 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
 | |
| 		p += s->red_left_pad;
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
 | |
| {
 | |
| #ifdef CONFIG_SLUB_CPU_PARTIAL
 | |
| 	return !kmem_cache_debug(s);
 | |
| #else
 | |
| 	return false;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Issues still to be resolved:
 | |
|  *
 | |
|  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 | |
|  *
 | |
|  * - Variable sizing of the per node arrays
 | |
|  */
 | |
| 
 | |
| /* Enable to log cmpxchg failures */
 | |
| #undef SLUB_DEBUG_CMPXCHG
 | |
| 
 | |
| #ifndef CONFIG_SLUB_TINY
 | |
| /*
 | |
|  * Minimum number of partial slabs. These will be left on the partial
 | |
|  * lists even if they are empty. kmem_cache_shrink may reclaim them.
 | |
|  */
 | |
| #define MIN_PARTIAL 5
 | |
| 
 | |
| /*
 | |
|  * Maximum number of desirable partial slabs.
 | |
|  * The existence of more partial slabs makes kmem_cache_shrink
 | |
|  * sort the partial list by the number of objects in use.
 | |
|  */
 | |
| #define MAX_PARTIAL 10
 | |
| #else
 | |
| #define MIN_PARTIAL 0
 | |
| #define MAX_PARTIAL 0
 | |
| #endif
 | |
| 
 | |
| #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
 | |
| 				SLAB_POISON | SLAB_STORE_USER)
 | |
| 
 | |
| /*
 | |
|  * These debug flags cannot use CMPXCHG because there might be consistency
 | |
|  * issues when checking or reading debug information
 | |
|  */
 | |
| #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
 | |
| 				SLAB_TRACE)
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Debugging flags that require metadata to be stored in the slab.  These get
 | |
|  * disabled when slab_debug=O is used and a cache's min order increases with
 | |
|  * metadata.
 | |
|  */
 | |
| #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 | |
| 
 | |
| #define OO_SHIFT	16
 | |
| #define OO_MASK		((1 << OO_SHIFT) - 1)
 | |
| #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
 | |
| 
 | |
| /* Internal SLUB flags */
 | |
| /* Poison object */
 | |
| #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
 | |
| /* Use cmpxchg_double */
 | |
| 
 | |
| #ifdef system_has_freelist_aba
 | |
| #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
 | |
| #else
 | |
| #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Tracking user of a slab.
 | |
|  */
 | |
| #define TRACK_ADDRS_COUNT 16
 | |
| struct track {
 | |
| 	unsigned long addr;	/* Called from address */
 | |
| #ifdef CONFIG_STACKDEPOT
 | |
| 	depot_stack_handle_t handle;
 | |
| #endif
 | |
| 	int cpu;		/* Was running on cpu */
 | |
| 	int pid;		/* Pid context */
 | |
| 	unsigned long when;	/* When did the operation occur */
 | |
| };
 | |
| 
 | |
| enum track_item { TRACK_ALLOC, TRACK_FREE };
 | |
| 
 | |
| #ifdef SLAB_SUPPORTS_SYSFS
 | |
| static int sysfs_slab_add(struct kmem_cache *);
 | |
| static int sysfs_slab_alias(struct kmem_cache *, const char *);
 | |
| #else
 | |
| static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 | |
| static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 | |
| 							{ return 0; }
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
 | |
| static void debugfs_slab_add(struct kmem_cache *);
 | |
| #else
 | |
| static inline void debugfs_slab_add(struct kmem_cache *s) { }
 | |
| #endif
 | |
| 
 | |
| enum stat_item {
 | |
| 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
 | |
| 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
 | |
| 	FREE_FASTPATH,		/* Free to cpu slab */
 | |
| 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
 | |
| 	FREE_FROZEN,		/* Freeing to frozen slab */
 | |
| 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
 | |
| 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
 | |
| 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
 | |
| 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
 | |
| 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
 | |
| 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
 | |
| 	FREE_SLAB,		/* Slab freed to the page allocator */
 | |
| 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
 | |
| 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
 | |
| 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
 | |
| 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
 | |
| 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
 | |
| 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
 | |
| 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
 | |
| 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
 | |
| 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
 | |
| 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
 | |
| 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
 | |
| 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
 | |
| 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
 | |
| 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
 | |
| 	NR_SLUB_STAT_ITEMS
 | |
| };
 | |
| 
 | |
| #ifndef CONFIG_SLUB_TINY
 | |
| /*
 | |
|  * When changing the layout, make sure freelist and tid are still compatible
 | |
|  * with this_cpu_cmpxchg_double() alignment requirements.
 | |
|  */
 | |
| struct kmem_cache_cpu {
 | |
| 	union {
 | |
| 		struct {
 | |
| 			void **freelist;	/* Pointer to next available object */
 | |
| 			unsigned long tid;	/* Globally unique transaction id */
 | |
| 		};
 | |
| 		freelist_aba_t freelist_tid;
 | |
| 	};
 | |
| 	struct slab *slab;	/* The slab from which we are allocating */
 | |
| #ifdef CONFIG_SLUB_CPU_PARTIAL
 | |
| 	struct slab *partial;	/* Partially allocated slabs */
 | |
| #endif
 | |
| 	local_lock_t lock;	/* Protects the fields above */
 | |
| #ifdef CONFIG_SLUB_STATS
 | |
| 	unsigned int stat[NR_SLUB_STAT_ITEMS];
 | |
| #endif
 | |
| };
 | |
| #endif /* CONFIG_SLUB_TINY */
 | |
| 
 | |
| static inline void stat(const struct kmem_cache *s, enum stat_item si)
 | |
| {
 | |
| #ifdef CONFIG_SLUB_STATS
 | |
| 	/*
 | |
| 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
 | |
| 	 * avoid this_cpu_add()'s irq-disable overhead.
 | |
| 	 */
 | |
| 	raw_cpu_inc(s->cpu_slab->stat[si]);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
 | |
| {
 | |
| #ifdef CONFIG_SLUB_STATS
 | |
| 	raw_cpu_add(s->cpu_slab->stat[si], v);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The slab lists for all objects.
 | |
|  */
 | |
| struct kmem_cache_node {
 | |
| 	spinlock_t list_lock;
 | |
| 	unsigned long nr_partial;
 | |
| 	struct list_head partial;
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	atomic_long_t nr_slabs;
 | |
| 	atomic_long_t total_objects;
 | |
| 	struct list_head full;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
 | |
| {
 | |
| 	return s->node[node];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Iterator over all nodes. The body will be executed for each node that has
 | |
|  * a kmem_cache_node structure allocated (which is true for all online nodes)
 | |
|  */
 | |
| #define for_each_kmem_cache_node(__s, __node, __n) \
 | |
| 	for (__node = 0; __node < nr_node_ids; __node++) \
 | |
| 		 if ((__n = get_node(__s, __node)))
 | |
| 
 | |
| /*
 | |
|  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
 | |
|  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
 | |
|  * differ during memory hotplug/hotremove operations.
 | |
|  * Protected by slab_mutex.
 | |
|  */
 | |
| static nodemask_t slab_nodes;
 | |
| 
 | |
| #ifndef CONFIG_SLUB_TINY
 | |
| /*
 | |
|  * Workqueue used for flush_cpu_slab().
 | |
|  */
 | |
| static struct workqueue_struct *flushwq;
 | |
| #endif
 | |
| 
 | |
| /********************************************************************
 | |
|  * 			Core slab cache functions
 | |
|  *******************************************************************/
 | |
| 
 | |
| /*
 | |
|  * freeptr_t represents a SLUB freelist pointer, which might be encoded
 | |
|  * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
 | |
|  */
 | |
| typedef struct { unsigned long v; } freeptr_t;
 | |
| 
 | |
| /*
 | |
|  * Returns freelist pointer (ptr). With hardening, this is obfuscated
 | |
|  * with an XOR of the address where the pointer is held and a per-cache
 | |
|  * random number.
 | |
|  */
 | |
| static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
 | |
| 					    void *ptr, unsigned long ptr_addr)
 | |
| {
 | |
| 	unsigned long encoded;
 | |
| 
 | |
| #ifdef CONFIG_SLAB_FREELIST_HARDENED
 | |
| 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
 | |
| #else
 | |
| 	encoded = (unsigned long)ptr;
 | |
| #endif
 | |
| 	return (freeptr_t){.v = encoded};
 | |
| }
 | |
| 
 | |
| static inline void *freelist_ptr_decode(const struct kmem_cache *s,
 | |
| 					freeptr_t ptr, unsigned long ptr_addr)
 | |
| {
 | |
| 	void *decoded;
 | |
| 
 | |
| #ifdef CONFIG_SLAB_FREELIST_HARDENED
 | |
| 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
 | |
| #else
 | |
| 	decoded = (void *)ptr.v;
 | |
| #endif
 | |
| 	return decoded;
 | |
| }
 | |
| 
 | |
| static inline void *get_freepointer(struct kmem_cache *s, void *object)
 | |
| {
 | |
| 	unsigned long ptr_addr;
 | |
| 	freeptr_t p;
 | |
| 
 | |
| 	object = kasan_reset_tag(object);
 | |
| 	ptr_addr = (unsigned long)object + s->offset;
 | |
| 	p = *(freeptr_t *)(ptr_addr);
 | |
| 	return freelist_ptr_decode(s, p, ptr_addr);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SLUB_TINY
 | |
| static void prefetch_freepointer(const struct kmem_cache *s, void *object)
 | |
| {
 | |
| 	prefetchw(object + s->offset);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
 | |
|  * pointer value in the case the current thread loses the race for the next
 | |
|  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
 | |
|  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
 | |
|  * KMSAN will still check all arguments of cmpxchg because of imperfect
 | |
|  * handling of inline assembly.
 | |
|  * To work around this problem, we apply __no_kmsan_checks to ensure that
 | |
|  * get_freepointer_safe() returns initialized memory.
 | |
|  */
 | |
| __no_kmsan_checks
 | |
| static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 | |
| {
 | |
| 	unsigned long freepointer_addr;
 | |
| 	freeptr_t p;
 | |
| 
 | |
| 	if (!debug_pagealloc_enabled_static())
 | |
| 		return get_freepointer(s, object);
 | |
| 
 | |
| 	object = kasan_reset_tag(object);
 | |
| 	freepointer_addr = (unsigned long)object + s->offset;
 | |
| 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
 | |
| 	return freelist_ptr_decode(s, p, freepointer_addr);
 | |
| }
 | |
| 
 | |
| static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 | |
| {
 | |
| 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
 | |
| 
 | |
| #ifdef CONFIG_SLAB_FREELIST_HARDENED
 | |
| 	BUG_ON(object == fp); /* naive detection of double free or corruption */
 | |
| #endif
 | |
| 
 | |
| 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
 | |
| 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
 | |
| }
 | |
| 
 | |
| /* Loop over all objects in a slab */
 | |
| #define for_each_object(__p, __s, __addr, __objects) \
 | |
| 	for (__p = fixup_red_left(__s, __addr); \
 | |
| 		__p < (__addr) + (__objects) * (__s)->size; \
 | |
| 		__p += (__s)->size)
 | |
| 
 | |
| static inline unsigned int order_objects(unsigned int order, unsigned int size)
 | |
| {
 | |
| 	return ((unsigned int)PAGE_SIZE << order) / size;
 | |
| }
 | |
| 
 | |
| static inline struct kmem_cache_order_objects oo_make(unsigned int order,
 | |
| 		unsigned int size)
 | |
| {
 | |
| 	struct kmem_cache_order_objects x = {
 | |
| 		(order << OO_SHIFT) + order_objects(order, size)
 | |
| 	};
 | |
| 
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| static inline unsigned int oo_order(struct kmem_cache_order_objects x)
 | |
| {
 | |
| 	return x.x >> OO_SHIFT;
 | |
| }
 | |
| 
 | |
| static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
 | |
| {
 | |
| 	return x.x & OO_MASK;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SLUB_CPU_PARTIAL
 | |
| static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
 | |
| {
 | |
| 	unsigned int nr_slabs;
 | |
| 
 | |
| 	s->cpu_partial = nr_objects;
 | |
| 
 | |
| 	/*
 | |
| 	 * We take the number of objects but actually limit the number of
 | |
| 	 * slabs on the per cpu partial list, in order to limit excessive
 | |
| 	 * growth of the list. For simplicity we assume that the slabs will
 | |
| 	 * be half-full.
 | |
| 	 */
 | |
| 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
 | |
| 	s->cpu_partial_slabs = nr_slabs;
 | |
| }
 | |
| #else
 | |
| static inline void
 | |
| slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_SLUB_CPU_PARTIAL */
 | |
| 
 | |
| /*
 | |
|  * Per slab locking using the pagelock
 | |
|  */
 | |
| static __always_inline void slab_lock(struct slab *slab)
 | |
| {
 | |
| 	struct page *page = slab_page(slab);
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(PageTail(page), page);
 | |
| 	bit_spin_lock(PG_locked, &page->flags);
 | |
| }
 | |
| 
 | |
| static __always_inline void slab_unlock(struct slab *slab)
 | |
| {
 | |
| 	struct page *page = slab_page(slab);
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(PageTail(page), page);
 | |
| 	bit_spin_unlock(PG_locked, &page->flags);
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| __update_freelist_fast(struct slab *slab,
 | |
| 		      void *freelist_old, unsigned long counters_old,
 | |
| 		      void *freelist_new, unsigned long counters_new)
 | |
| {
 | |
| #ifdef system_has_freelist_aba
 | |
| 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
 | |
| 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
 | |
| 
 | |
| 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
 | |
| #else
 | |
| 	return false;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| __update_freelist_slow(struct slab *slab,
 | |
| 		      void *freelist_old, unsigned long counters_old,
 | |
| 		      void *freelist_new, unsigned long counters_new)
 | |
| {
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	slab_lock(slab);
 | |
| 	if (slab->freelist == freelist_old &&
 | |
| 	    slab->counters == counters_old) {
 | |
| 		slab->freelist = freelist_new;
 | |
| 		slab->counters = counters_new;
 | |
| 		ret = true;
 | |
| 	}
 | |
| 	slab_unlock(slab);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interrupts must be disabled (for the fallback code to work right), typically
 | |
|  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
 | |
|  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
 | |
|  * allocation/ free operation in hardirq context. Therefore nothing can
 | |
|  * interrupt the operation.
 | |
|  */
 | |
| static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
 | |
| 		void *freelist_old, unsigned long counters_old,
 | |
| 		void *freelist_new, unsigned long counters_new,
 | |
| 		const char *n)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	if (USE_LOCKLESS_FAST_PATH())
 | |
| 		lockdep_assert_irqs_disabled();
 | |
| 
 | |
| 	if (s->flags & __CMPXCHG_DOUBLE) {
 | |
| 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
 | |
| 				            freelist_new, counters_new);
 | |
| 	} else {
 | |
| 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
 | |
| 				            freelist_new, counters_new);
 | |
| 	}
 | |
| 	if (likely(ret))
 | |
| 		return true;
 | |
| 
 | |
| 	cpu_relax();
 | |
| 	stat(s, CMPXCHG_DOUBLE_FAIL);
 | |
| 
 | |
| #ifdef SLUB_DEBUG_CMPXCHG
 | |
| 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
 | |
| #endif
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
 | |
| 		void *freelist_old, unsigned long counters_old,
 | |
| 		void *freelist_new, unsigned long counters_new,
 | |
| 		const char *n)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	if (s->flags & __CMPXCHG_DOUBLE) {
 | |
| 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
 | |
| 				            freelist_new, counters_new);
 | |
| 	} else {
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		local_irq_save(flags);
 | |
| 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
 | |
| 				            freelist_new, counters_new);
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| 	if (likely(ret))
 | |
| 		return true;
 | |
| 
 | |
| 	cpu_relax();
 | |
| 	stat(s, CMPXCHG_DOUBLE_FAIL);
 | |
| 
 | |
| #ifdef SLUB_DEBUG_CMPXCHG
 | |
| 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
 | |
| #endif
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
 | |
| static DEFINE_SPINLOCK(object_map_lock);
 | |
| 
 | |
| static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
 | |
| 		       struct slab *slab)
 | |
| {
 | |
| 	void *addr = slab_address(slab);
 | |
| 	void *p;
 | |
| 
 | |
| 	bitmap_zero(obj_map, slab->objects);
 | |
| 
 | |
| 	for (p = slab->freelist; p; p = get_freepointer(s, p))
 | |
| 		set_bit(__obj_to_index(s, addr, p), obj_map);
 | |
| }
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_KUNIT)
 | |
| static bool slab_add_kunit_errors(void)
 | |
| {
 | |
| 	struct kunit_resource *resource;
 | |
| 
 | |
| 	if (!kunit_get_current_test())
 | |
| 		return false;
 | |
| 
 | |
| 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
 | |
| 	if (!resource)
 | |
| 		return false;
 | |
| 
 | |
| 	(*(int *)resource->data)++;
 | |
| 	kunit_put_resource(resource);
 | |
| 	return true;
 | |
| }
 | |
| #else
 | |
| static inline bool slab_add_kunit_errors(void) { return false; }
 | |
| #endif
 | |
| 
 | |
| static inline unsigned int size_from_object(struct kmem_cache *s)
 | |
| {
 | |
| 	if (s->flags & SLAB_RED_ZONE)
 | |
| 		return s->size - s->red_left_pad;
 | |
| 
 | |
| 	return s->size;
 | |
| }
 | |
| 
 | |
| static inline void *restore_red_left(struct kmem_cache *s, void *p)
 | |
| {
 | |
| 	if (s->flags & SLAB_RED_ZONE)
 | |
| 		p -= s->red_left_pad;
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Debug settings:
 | |
|  */
 | |
| #if defined(CONFIG_SLUB_DEBUG_ON)
 | |
| static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
 | |
| #else
 | |
| static slab_flags_t slub_debug;
 | |
| #endif
 | |
| 
 | |
| static char *slub_debug_string;
 | |
| static int disable_higher_order_debug;
 | |
| 
 | |
| /*
 | |
|  * slub is about to manipulate internal object metadata.  This memory lies
 | |
|  * outside the range of the allocated object, so accessing it would normally
 | |
|  * be reported by kasan as a bounds error.  metadata_access_enable() is used
 | |
|  * to tell kasan that these accesses are OK.
 | |
|  */
 | |
| static inline void metadata_access_enable(void)
 | |
| {
 | |
| 	kasan_disable_current();
 | |
| }
 | |
| 
 | |
| static inline void metadata_access_disable(void)
 | |
| {
 | |
| 	kasan_enable_current();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Object debugging
 | |
|  */
 | |
| 
 | |
| /* Verify that a pointer has an address that is valid within a slab page */
 | |
| static inline int check_valid_pointer(struct kmem_cache *s,
 | |
| 				struct slab *slab, void *object)
 | |
| {
 | |
| 	void *base;
 | |
| 
 | |
| 	if (!object)
 | |
| 		return 1;
 | |
| 
 | |
| 	base = slab_address(slab);
 | |
| 	object = kasan_reset_tag(object);
 | |
| 	object = restore_red_left(s, object);
 | |
| 	if (object < base || object >= base + slab->objects * s->size ||
 | |
| 		(object - base) % s->size) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void print_section(char *level, char *text, u8 *addr,
 | |
| 			  unsigned int length)
 | |
| {
 | |
| 	metadata_access_enable();
 | |
| 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
 | |
| 			16, 1, kasan_reset_tag((void *)addr), length, 1);
 | |
| 	metadata_access_disable();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See comment in calculate_sizes().
 | |
|  */
 | |
| static inline bool freeptr_outside_object(struct kmem_cache *s)
 | |
| {
 | |
| 	return s->offset >= s->inuse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return offset of the end of info block which is inuse + free pointer if
 | |
|  * not overlapping with object.
 | |
|  */
 | |
| static inline unsigned int get_info_end(struct kmem_cache *s)
 | |
| {
 | |
| 	if (freeptr_outside_object(s))
 | |
| 		return s->inuse + sizeof(void *);
 | |
| 	else
 | |
| 		return s->inuse;
 | |
| }
 | |
| 
 | |
| static struct track *get_track(struct kmem_cache *s, void *object,
 | |
| 	enum track_item alloc)
 | |
| {
 | |
| 	struct track *p;
 | |
| 
 | |
| 	p = object + get_info_end(s);
 | |
| 
 | |
| 	return kasan_reset_tag(p + alloc);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_STACKDEPOT
 | |
| static noinline depot_stack_handle_t set_track_prepare(void)
 | |
| {
 | |
| 	depot_stack_handle_t handle;
 | |
| 	unsigned long entries[TRACK_ADDRS_COUNT];
 | |
| 	unsigned int nr_entries;
 | |
| 
 | |
| 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
 | |
| 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
 | |
| 
 | |
| 	return handle;
 | |
| }
 | |
| #else
 | |
| static inline depot_stack_handle_t set_track_prepare(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void set_track_update(struct kmem_cache *s, void *object,
 | |
| 			     enum track_item alloc, unsigned long addr,
 | |
| 			     depot_stack_handle_t handle)
 | |
| {
 | |
| 	struct track *p = get_track(s, object, alloc);
 | |
| 
 | |
| #ifdef CONFIG_STACKDEPOT
 | |
| 	p->handle = handle;
 | |
| #endif
 | |
| 	p->addr = addr;
 | |
| 	p->cpu = smp_processor_id();
 | |
| 	p->pid = current->pid;
 | |
| 	p->when = jiffies;
 | |
| }
 | |
| 
 | |
| static __always_inline void set_track(struct kmem_cache *s, void *object,
 | |
| 				      enum track_item alloc, unsigned long addr)
 | |
| {
 | |
| 	depot_stack_handle_t handle = set_track_prepare();
 | |
| 
 | |
| 	set_track_update(s, object, alloc, addr, handle);
 | |
| }
 | |
| 
 | |
| static void init_tracking(struct kmem_cache *s, void *object)
 | |
| {
 | |
| 	struct track *p;
 | |
| 
 | |
| 	if (!(s->flags & SLAB_STORE_USER))
 | |
| 		return;
 | |
| 
 | |
| 	p = get_track(s, object, TRACK_ALLOC);
 | |
| 	memset(p, 0, 2*sizeof(struct track));
 | |
| }
 | |
| 
 | |
| static void print_track(const char *s, struct track *t, unsigned long pr_time)
 | |
| {
 | |
| 	depot_stack_handle_t handle __maybe_unused;
 | |
| 
 | |
| 	if (!t->addr)
 | |
| 		return;
 | |
| 
 | |
| 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
 | |
| 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
 | |
| #ifdef CONFIG_STACKDEPOT
 | |
| 	handle = READ_ONCE(t->handle);
 | |
| 	if (handle)
 | |
| 		stack_depot_print(handle);
 | |
| 	else
 | |
| 		pr_err("object allocation/free stack trace missing\n");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void print_tracking(struct kmem_cache *s, void *object)
 | |
| {
 | |
| 	unsigned long pr_time = jiffies;
 | |
| 	if (!(s->flags & SLAB_STORE_USER))
 | |
| 		return;
 | |
| 
 | |
| 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
 | |
| 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
 | |
| }
 | |
| 
 | |
| static void print_slab_info(const struct slab *slab)
 | |
| {
 | |
| 	struct folio *folio = (struct folio *)slab_folio(slab);
 | |
| 
 | |
| 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
 | |
| 	       slab, slab->objects, slab->inuse, slab->freelist,
 | |
| 	       folio_flags(folio, 0));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
 | |
|  * family will round up the real request size to these fixed ones, so
 | |
|  * there could be an extra area than what is requested. Save the original
 | |
|  * request size in the meta data area, for better debug and sanity check.
 | |
|  */
 | |
| static inline void set_orig_size(struct kmem_cache *s,
 | |
| 				void *object, unsigned int orig_size)
 | |
| {
 | |
| 	void *p = kasan_reset_tag(object);
 | |
| 	unsigned int kasan_meta_size;
 | |
| 
 | |
| 	if (!slub_debug_orig_size(s))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * KASAN can save its free meta data inside of the object at offset 0.
 | |
| 	 * If this meta data size is larger than 'orig_size', it will overlap
 | |
| 	 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
 | |
| 	 * 'orig_size' to be as at least as big as KASAN's meta data.
 | |
| 	 */
 | |
| 	kasan_meta_size = kasan_metadata_size(s, true);
 | |
| 	if (kasan_meta_size > orig_size)
 | |
| 		orig_size = kasan_meta_size;
 | |
| 
 | |
| 	p += get_info_end(s);
 | |
| 	p += sizeof(struct track) * 2;
 | |
| 
 | |
| 	*(unsigned int *)p = orig_size;
 | |
| }
 | |
| 
 | |
| static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
 | |
| {
 | |
| 	void *p = kasan_reset_tag(object);
 | |
| 
 | |
| 	if (!slub_debug_orig_size(s))
 | |
| 		return s->object_size;
 | |
| 
 | |
| 	p += get_info_end(s);
 | |
| 	p += sizeof(struct track) * 2;
 | |
| 
 | |
| 	return *(unsigned int *)p;
 | |
| }
 | |
| 
 | |
| void skip_orig_size_check(struct kmem_cache *s, const void *object)
 | |
| {
 | |
| 	set_orig_size(s, (void *)object, s->object_size);
 | |
| }
 | |
| 
 | |
| static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 | |
| {
 | |
| 	struct va_format vaf;
 | |
| 	va_list args;
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 	vaf.fmt = fmt;
 | |
| 	vaf.va = &args;
 | |
| 	pr_err("=============================================================================\n");
 | |
| 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
 | |
| 	pr_err("-----------------------------------------------------------------------------\n\n");
 | |
| 	va_end(args);
 | |
| }
 | |
| 
 | |
| __printf(2, 3)
 | |
| static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 | |
| {
 | |
| 	struct va_format vaf;
 | |
| 	va_list args;
 | |
| 
 | |
| 	if (slab_add_kunit_errors())
 | |
| 		return;
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 	vaf.fmt = fmt;
 | |
| 	vaf.va = &args;
 | |
| 	pr_err("FIX %s: %pV\n", s->name, &vaf);
 | |
| 	va_end(args);
 | |
| }
 | |
| 
 | |
| static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
 | |
| {
 | |
| 	unsigned int off;	/* Offset of last byte */
 | |
| 	u8 *addr = slab_address(slab);
 | |
| 
 | |
| 	print_tracking(s, p);
 | |
| 
 | |
| 	print_slab_info(slab);
 | |
| 
 | |
| 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
 | |
| 	       p, p - addr, get_freepointer(s, p));
 | |
| 
 | |
| 	if (s->flags & SLAB_RED_ZONE)
 | |
| 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
 | |
| 			      s->red_left_pad);
 | |
| 	else if (p > addr + 16)
 | |
| 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
 | |
| 
 | |
| 	print_section(KERN_ERR,         "Object   ", p,
 | |
| 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
 | |
| 	if (s->flags & SLAB_RED_ZONE)
 | |
| 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
 | |
| 			s->inuse - s->object_size);
 | |
| 
 | |
| 	off = get_info_end(s);
 | |
| 
 | |
| 	if (s->flags & SLAB_STORE_USER)
 | |
| 		off += 2 * sizeof(struct track);
 | |
| 
 | |
| 	if (slub_debug_orig_size(s))
 | |
| 		off += sizeof(unsigned int);
 | |
| 
 | |
| 	off += kasan_metadata_size(s, false);
 | |
| 
 | |
| 	if (off != size_from_object(s))
 | |
| 		/* Beginning of the filler is the free pointer */
 | |
| 		print_section(KERN_ERR, "Padding  ", p + off,
 | |
| 			      size_from_object(s) - off);
 | |
| 
 | |
| 	dump_stack();
 | |
| }
 | |
| 
 | |
| static void object_err(struct kmem_cache *s, struct slab *slab,
 | |
| 			u8 *object, char *reason)
 | |
| {
 | |
| 	if (slab_add_kunit_errors())
 | |
| 		return;
 | |
| 
 | |
| 	slab_bug(s, "%s", reason);
 | |
| 	print_trailer(s, slab, object);
 | |
| 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 | |
| }
 | |
| 
 | |
| static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
 | |
| 			       void **freelist, void *nextfree)
 | |
| {
 | |
| 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
 | |
| 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
 | |
| 		object_err(s, slab, *freelist, "Freechain corrupt");
 | |
| 		*freelist = NULL;
 | |
| 		slab_fix(s, "Isolate corrupted freechain");
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
 | |
| 			const char *fmt, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 	char buf[100];
 | |
| 
 | |
| 	if (slab_add_kunit_errors())
 | |
| 		return;
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 	vsnprintf(buf, sizeof(buf), fmt, args);
 | |
| 	va_end(args);
 | |
| 	slab_bug(s, "%s", buf);
 | |
| 	print_slab_info(slab);
 | |
| 	dump_stack();
 | |
| 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 | |
| }
 | |
| 
 | |
| static void init_object(struct kmem_cache *s, void *object, u8 val)
 | |
| {
 | |
| 	u8 *p = kasan_reset_tag(object);
 | |
| 	unsigned int poison_size = s->object_size;
 | |
| 
 | |
| 	if (s->flags & SLAB_RED_ZONE) {
 | |
| 		memset(p - s->red_left_pad, val, s->red_left_pad);
 | |
| 
 | |
| 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
 | |
| 			/*
 | |
| 			 * Redzone the extra allocated space by kmalloc than
 | |
| 			 * requested, and the poison size will be limited to
 | |
| 			 * the original request size accordingly.
 | |
| 			 */
 | |
| 			poison_size = get_orig_size(s, object);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (s->flags & __OBJECT_POISON) {
 | |
| 		memset(p, POISON_FREE, poison_size - 1);
 | |
| 		p[poison_size - 1] = POISON_END;
 | |
| 	}
 | |
| 
 | |
| 	if (s->flags & SLAB_RED_ZONE)
 | |
| 		memset(p + poison_size, val, s->inuse - poison_size);
 | |
| }
 | |
| 
 | |
| static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 | |
| 						void *from, void *to)
 | |
| {
 | |
| 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
 | |
| 	memset(from, data, to - from);
 | |
| }
 | |
| 
 | |
| static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
 | |
| 			u8 *object, char *what,
 | |
| 			u8 *start, unsigned int value, unsigned int bytes)
 | |
| {
 | |
| 	u8 *fault;
 | |
| 	u8 *end;
 | |
| 	u8 *addr = slab_address(slab);
 | |
| 
 | |
| 	metadata_access_enable();
 | |
| 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
 | |
| 	metadata_access_disable();
 | |
| 	if (!fault)
 | |
| 		return 1;
 | |
| 
 | |
| 	end = start + bytes;
 | |
| 	while (end > fault && end[-1] == value)
 | |
| 		end--;
 | |
| 
 | |
| 	if (slab_add_kunit_errors())
 | |
| 		goto skip_bug_print;
 | |
| 
 | |
| 	slab_bug(s, "%s overwritten", what);
 | |
| 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
 | |
| 					fault, end - 1, fault - addr,
 | |
| 					fault[0], value);
 | |
| 	print_trailer(s, slab, object);
 | |
| 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 | |
| 
 | |
| skip_bug_print:
 | |
| 	restore_bytes(s, what, value, fault, end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Object layout:
 | |
|  *
 | |
|  * object address
 | |
|  * 	Bytes of the object to be managed.
 | |
|  * 	If the freepointer may overlay the object then the free
 | |
|  *	pointer is at the middle of the object.
 | |
|  *
 | |
|  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 | |
|  * 	0xa5 (POISON_END)
 | |
|  *
 | |
|  * object + s->object_size
 | |
|  * 	Padding to reach word boundary. This is also used for Redzoning.
 | |
|  * 	Padding is extended by another word if Redzoning is enabled and
 | |
|  * 	object_size == inuse.
 | |
|  *
 | |
|  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 | |
|  * 	0xcc (RED_ACTIVE) for objects in use.
 | |
|  *
 | |
|  * object + s->inuse
 | |
|  * 	Meta data starts here.
 | |
|  *
 | |
|  * 	A. Free pointer (if we cannot overwrite object on free)
 | |
|  * 	B. Tracking data for SLAB_STORE_USER
 | |
|  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
 | |
|  *	D. Padding to reach required alignment boundary or at minimum
 | |
|  * 		one word if debugging is on to be able to detect writes
 | |
|  * 		before the word boundary.
 | |
|  *
 | |
|  *	Padding is done using 0x5a (POISON_INUSE)
 | |
|  *
 | |
|  * object + s->size
 | |
|  * 	Nothing is used beyond s->size.
 | |
|  *
 | |
|  * If slabcaches are merged then the object_size and inuse boundaries are mostly
 | |
|  * ignored. And therefore no slab options that rely on these boundaries
 | |
|  * may be used with merged slabcaches.
 | |
|  */
 | |
| 
 | |
| static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
 | |
| {
 | |
| 	unsigned long off = get_info_end(s);	/* The end of info */
 | |
| 
 | |
| 	if (s->flags & SLAB_STORE_USER) {
 | |
| 		/* We also have user information there */
 | |
| 		off += 2 * sizeof(struct track);
 | |
| 
 | |
| 		if (s->flags & SLAB_KMALLOC)
 | |
| 			off += sizeof(unsigned int);
 | |
| 	}
 | |
| 
 | |
| 	off += kasan_metadata_size(s, false);
 | |
| 
 | |
| 	if (size_from_object(s) == off)
 | |
| 		return 1;
 | |
| 
 | |
| 	return check_bytes_and_report(s, slab, p, "Object padding",
 | |
| 			p + off, POISON_INUSE, size_from_object(s) - off);
 | |
| }
 | |
| 
 | |
| /* Check the pad bytes at the end of a slab page */
 | |
| static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
 | |
| {
 | |
| 	u8 *start;
 | |
| 	u8 *fault;
 | |
| 	u8 *end;
 | |
| 	u8 *pad;
 | |
| 	int length;
 | |
| 	int remainder;
 | |
| 
 | |
| 	if (!(s->flags & SLAB_POISON))
 | |
| 		return;
 | |
| 
 | |
| 	start = slab_address(slab);
 | |
| 	length = slab_size(slab);
 | |
| 	end = start + length;
 | |
| 	remainder = length % s->size;
 | |
| 	if (!remainder)
 | |
| 		return;
 | |
| 
 | |
| 	pad = end - remainder;
 | |
| 	metadata_access_enable();
 | |
| 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
 | |
| 	metadata_access_disable();
 | |
| 	if (!fault)
 | |
| 		return;
 | |
| 	while (end > fault && end[-1] == POISON_INUSE)
 | |
| 		end--;
 | |
| 
 | |
| 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
 | |
| 			fault, end - 1, fault - start);
 | |
| 	print_section(KERN_ERR, "Padding ", pad, remainder);
 | |
| 
 | |
| 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
 | |
| }
 | |
| 
 | |
| static int check_object(struct kmem_cache *s, struct slab *slab,
 | |
| 					void *object, u8 val)
 | |
| {
 | |
| 	u8 *p = object;
 | |
| 	u8 *endobject = object + s->object_size;
 | |
| 	unsigned int orig_size, kasan_meta_size;
 | |
| 
 | |
| 	if (s->flags & SLAB_RED_ZONE) {
 | |
| 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
 | |
| 			object - s->red_left_pad, val, s->red_left_pad))
 | |
| 			return 0;
 | |
| 
 | |
| 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
 | |
| 			endobject, val, s->inuse - s->object_size))
 | |
| 			return 0;
 | |
| 
 | |
| 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
 | |
| 			orig_size = get_orig_size(s, object);
 | |
| 
 | |
| 			if (s->object_size > orig_size  &&
 | |
| 				!check_bytes_and_report(s, slab, object,
 | |
| 					"kmalloc Redzone", p + orig_size,
 | |
| 					val, s->object_size - orig_size)) {
 | |
| 				return 0;
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
 | |
| 			check_bytes_and_report(s, slab, p, "Alignment padding",
 | |
| 				endobject, POISON_INUSE,
 | |
| 				s->inuse - s->object_size);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (s->flags & SLAB_POISON) {
 | |
| 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
 | |
| 			/*
 | |
| 			 * KASAN can save its free meta data inside of the
 | |
| 			 * object at offset 0. Thus, skip checking the part of
 | |
| 			 * the redzone that overlaps with the meta data.
 | |
| 			 */
 | |
| 			kasan_meta_size = kasan_metadata_size(s, true);
 | |
| 			if (kasan_meta_size < s->object_size - 1 &&
 | |
| 			    !check_bytes_and_report(s, slab, p, "Poison",
 | |
| 					p + kasan_meta_size, POISON_FREE,
 | |
| 					s->object_size - kasan_meta_size - 1))
 | |
| 				return 0;
 | |
| 			if (kasan_meta_size < s->object_size &&
 | |
| 			    !check_bytes_and_report(s, slab, p, "End Poison",
 | |
| 					p + s->object_size - 1, POISON_END, 1))
 | |
| 				return 0;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * check_pad_bytes cleans up on its own.
 | |
| 		 */
 | |
| 		check_pad_bytes(s, slab, p);
 | |
| 	}
 | |
| 
 | |
| 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
 | |
| 		/*
 | |
| 		 * Object and freepointer overlap. Cannot check
 | |
| 		 * freepointer while object is allocated.
 | |
| 		 */
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Check free pointer validity */
 | |
| 	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
 | |
| 		object_err(s, slab, p, "Freepointer corrupt");
 | |
| 		/*
 | |
| 		 * No choice but to zap it and thus lose the remainder
 | |
| 		 * of the free objects in this slab. May cause
 | |
| 		 * another error because the object count is now wrong.
 | |
| 		 */
 | |
| 		set_freepointer(s, p, NULL);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int check_slab(struct kmem_cache *s, struct slab *slab)
 | |
| {
 | |
| 	int maxobj;
 | |
| 
 | |
| 	if (!folio_test_slab(slab_folio(slab))) {
 | |
| 		slab_err(s, slab, "Not a valid slab page");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	maxobj = order_objects(slab_order(slab), s->size);
 | |
| 	if (slab->objects > maxobj) {
 | |
| 		slab_err(s, slab, "objects %u > max %u",
 | |
| 			slab->objects, maxobj);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (slab->inuse > slab->objects) {
 | |
| 		slab_err(s, slab, "inuse %u > max %u",
 | |
| 			slab->inuse, slab->objects);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/* Slab_pad_check fixes things up after itself */
 | |
| 	slab_pad_check(s, slab);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine if a certain object in a slab is on the freelist. Must hold the
 | |
|  * slab lock to guarantee that the chains are in a consistent state.
 | |
|  */
 | |
| static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
 | |
| {
 | |
| 	int nr = 0;
 | |
| 	void *fp;
 | |
| 	void *object = NULL;
 | |
| 	int max_objects;
 | |
| 
 | |
| 	fp = slab->freelist;
 | |
| 	while (fp && nr <= slab->objects) {
 | |
| 		if (fp == search)
 | |
| 			return 1;
 | |
| 		if (!check_valid_pointer(s, slab, fp)) {
 | |
| 			if (object) {
 | |
| 				object_err(s, slab, object,
 | |
| 					"Freechain corrupt");
 | |
| 				set_freepointer(s, object, NULL);
 | |
| 			} else {
 | |
| 				slab_err(s, slab, "Freepointer corrupt");
 | |
| 				slab->freelist = NULL;
 | |
| 				slab->inuse = slab->objects;
 | |
| 				slab_fix(s, "Freelist cleared");
 | |
| 				return 0;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		object = fp;
 | |
| 		fp = get_freepointer(s, object);
 | |
| 		nr++;
 | |
| 	}
 | |
| 
 | |
| 	max_objects = order_objects(slab_order(slab), s->size);
 | |
| 	if (max_objects > MAX_OBJS_PER_PAGE)
 | |
| 		max_objects = MAX_OBJS_PER_PAGE;
 | |
| 
 | |
| 	if (slab->objects != max_objects) {
 | |
| 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
 | |
| 			 slab->objects, max_objects);
 | |
| 		slab->objects = max_objects;
 | |
| 		slab_fix(s, "Number of objects adjusted");
 | |
| 	}
 | |
| 	if (slab->inuse != slab->objects - nr) {
 | |
| 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
 | |
| 			 slab->inuse, slab->objects - nr);
 | |
| 		slab->inuse = slab->objects - nr;
 | |
| 		slab_fix(s, "Object count adjusted");
 | |
| 	}
 | |
| 	return search == NULL;
 | |
| }
 | |
| 
 | |
| static void trace(struct kmem_cache *s, struct slab *slab, void *object,
 | |
| 								int alloc)
 | |
| {
 | |
| 	if (s->flags & SLAB_TRACE) {
 | |
| 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
 | |
| 			s->name,
 | |
| 			alloc ? "alloc" : "free",
 | |
| 			object, slab->inuse,
 | |
| 			slab->freelist);
 | |
| 
 | |
| 		if (!alloc)
 | |
| 			print_section(KERN_INFO, "Object ", (void *)object,
 | |
| 					s->object_size);
 | |
| 
 | |
| 		dump_stack();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tracking of fully allocated slabs for debugging purposes.
 | |
|  */
 | |
| static void add_full(struct kmem_cache *s,
 | |
| 	struct kmem_cache_node *n, struct slab *slab)
 | |
| {
 | |
| 	if (!(s->flags & SLAB_STORE_USER))
 | |
| 		return;
 | |
| 
 | |
| 	lockdep_assert_held(&n->list_lock);
 | |
| 	list_add(&slab->slab_list, &n->full);
 | |
| }
 | |
| 
 | |
| static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
 | |
| {
 | |
| 	if (!(s->flags & SLAB_STORE_USER))
 | |
| 		return;
 | |
| 
 | |
| 	lockdep_assert_held(&n->list_lock);
 | |
| 	list_del(&slab->slab_list);
 | |
| }
 | |
| 
 | |
| static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
 | |
| {
 | |
| 	return atomic_long_read(&n->nr_slabs);
 | |
| }
 | |
| 
 | |
| static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
 | |
| {
 | |
| 	struct kmem_cache_node *n = get_node(s, node);
 | |
| 
 | |
| 	atomic_long_inc(&n->nr_slabs);
 | |
| 	atomic_long_add(objects, &n->total_objects);
 | |
| }
 | |
| static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
 | |
| {
 | |
| 	struct kmem_cache_node *n = get_node(s, node);
 | |
| 
 | |
| 	atomic_long_dec(&n->nr_slabs);
 | |
| 	atomic_long_sub(objects, &n->total_objects);
 | |
| }
 | |
| 
 | |
| /* Object debug checks for alloc/free paths */
 | |
| static void setup_object_debug(struct kmem_cache *s, void *object)
 | |
| {
 | |
| 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
 | |
| 		return;
 | |
| 
 | |
| 	init_object(s, object, SLUB_RED_INACTIVE);
 | |
| 	init_tracking(s, object);
 | |
| }
 | |
| 
 | |
| static
 | |
| void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
 | |
| {
 | |
| 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
 | |
| 		return;
 | |
| 
 | |
| 	metadata_access_enable();
 | |
| 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
 | |
| 	metadata_access_disable();
 | |
| }
 | |
| 
 | |
| static inline int alloc_consistency_checks(struct kmem_cache *s,
 | |
| 					struct slab *slab, void *object)
 | |
| {
 | |
| 	if (!check_slab(s, slab))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!check_valid_pointer(s, slab, object)) {
 | |
| 		object_err(s, slab, object, "Freelist Pointer check fails");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static noinline bool alloc_debug_processing(struct kmem_cache *s,
 | |
| 			struct slab *slab, void *object, int orig_size)
 | |
| {
 | |
| 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
 | |
| 		if (!alloc_consistency_checks(s, slab, object))
 | |
| 			goto bad;
 | |
| 	}
 | |
| 
 | |
| 	/* Success. Perform special debug activities for allocs */
 | |
| 	trace(s, slab, object, 1);
 | |
| 	set_orig_size(s, object, orig_size);
 | |
| 	init_object(s, object, SLUB_RED_ACTIVE);
 | |
| 	return true;
 | |
| 
 | |
| bad:
 | |
| 	if (folio_test_slab(slab_folio(slab))) {
 | |
| 		/*
 | |
| 		 * If this is a slab page then lets do the best we can
 | |
| 		 * to avoid issues in the future. Marking all objects
 | |
| 		 * as used avoids touching the remaining objects.
 | |
| 		 */
 | |
| 		slab_fix(s, "Marking all objects used");
 | |
| 		slab->inuse = slab->objects;
 | |
| 		slab->freelist = NULL;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline int free_consistency_checks(struct kmem_cache *s,
 | |
| 		struct slab *slab, void *object, unsigned long addr)
 | |
| {
 | |
| 	if (!check_valid_pointer(s, slab, object)) {
 | |
| 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (on_freelist(s, slab, object)) {
 | |
| 		object_err(s, slab, object, "Object already free");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(s != slab->slab_cache)) {
 | |
| 		if (!folio_test_slab(slab_folio(slab))) {
 | |
| 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
 | |
| 				 object);
 | |
| 		} else if (!slab->slab_cache) {
 | |
| 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
 | |
| 			       object);
 | |
| 			dump_stack();
 | |
| 		} else
 | |
| 			object_err(s, slab, object,
 | |
| 					"page slab pointer corrupt.");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Parse a block of slab_debug options. Blocks are delimited by ';'
 | |
|  *
 | |
|  * @str:    start of block
 | |
|  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
 | |
|  * @slabs:  return start of list of slabs, or NULL when there's no list
 | |
|  * @init:   assume this is initial parsing and not per-kmem-create parsing
 | |
|  *
 | |
|  * returns the start of next block if there's any, or NULL
 | |
|  */
 | |
| static char *
 | |
| parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
 | |
| {
 | |
| 	bool higher_order_disable = false;
 | |
| 
 | |
| 	/* Skip any completely empty blocks */
 | |
| 	while (*str && *str == ';')
 | |
| 		str++;
 | |
| 
 | |
| 	if (*str == ',') {
 | |
| 		/*
 | |
| 		 * No options but restriction on slabs. This means full
 | |
| 		 * debugging for slabs matching a pattern.
 | |
| 		 */
 | |
| 		*flags = DEBUG_DEFAULT_FLAGS;
 | |
| 		goto check_slabs;
 | |
| 	}
 | |
| 	*flags = 0;
 | |
| 
 | |
| 	/* Determine which debug features should be switched on */
 | |
| 	for (; *str && *str != ',' && *str != ';'; str++) {
 | |
| 		switch (tolower(*str)) {
 | |
| 		case '-':
 | |
| 			*flags = 0;
 | |
| 			break;
 | |
| 		case 'f':
 | |
| 			*flags |= SLAB_CONSISTENCY_CHECKS;
 | |
| 			break;
 | |
| 		case 'z':
 | |
| 			*flags |= SLAB_RED_ZONE;
 | |
| 			break;
 | |
| 		case 'p':
 | |
| 			*flags |= SLAB_POISON;
 | |
| 			break;
 | |
| 		case 'u':
 | |
| 			*flags |= SLAB_STORE_USER;
 | |
| 			break;
 | |
| 		case 't':
 | |
| 			*flags |= SLAB_TRACE;
 | |
| 			break;
 | |
| 		case 'a':
 | |
| 			*flags |= SLAB_FAILSLAB;
 | |
| 			break;
 | |
| 		case 'o':
 | |
| 			/*
 | |
| 			 * Avoid enabling debugging on caches if its minimum
 | |
| 			 * order would increase as a result.
 | |
| 			 */
 | |
| 			higher_order_disable = true;
 | |
| 			break;
 | |
| 		default:
 | |
| 			if (init)
 | |
| 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
 | |
| 		}
 | |
| 	}
 | |
| check_slabs:
 | |
| 	if (*str == ',')
 | |
| 		*slabs = ++str;
 | |
| 	else
 | |
| 		*slabs = NULL;
 | |
| 
 | |
| 	/* Skip over the slab list */
 | |
| 	while (*str && *str != ';')
 | |
| 		str++;
 | |
| 
 | |
| 	/* Skip any completely empty blocks */
 | |
| 	while (*str && *str == ';')
 | |
| 		str++;
 | |
| 
 | |
| 	if (init && higher_order_disable)
 | |
| 		disable_higher_order_debug = 1;
 | |
| 
 | |
| 	if (*str)
 | |
| 		return str;
 | |
| 	else
 | |
| 		return NULL;
 | |
| }
 | |
| 
 | |
| static int __init setup_slub_debug(char *str)
 | |
| {
 | |
| 	slab_flags_t flags;
 | |
| 	slab_flags_t global_flags;
 | |
| 	char *saved_str;
 | |
| 	char *slab_list;
 | |
| 	bool global_slub_debug_changed = false;
 | |
| 	bool slab_list_specified = false;
 | |
| 
 | |
| 	global_flags = DEBUG_DEFAULT_FLAGS;
 | |
| 	if (*str++ != '=' || !*str)
 | |
| 		/*
 | |
| 		 * No options specified. Switch on full debugging.
 | |
| 		 */
 | |
| 		goto out;
 | |
| 
 | |
| 	saved_str = str;
 | |
| 	while (str) {
 | |
| 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
 | |
| 
 | |
| 		if (!slab_list) {
 | |
| 			global_flags = flags;
 | |
| 			global_slub_debug_changed = true;
 | |
| 		} else {
 | |
| 			slab_list_specified = true;
 | |
| 			if (flags & SLAB_STORE_USER)
 | |
| 				stack_depot_request_early_init();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For backwards compatibility, a single list of flags with list of
 | |
| 	 * slabs means debugging is only changed for those slabs, so the global
 | |
| 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
 | |
| 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
 | |
| 	 * long as there is no option specifying flags without a slab list.
 | |
| 	 */
 | |
| 	if (slab_list_specified) {
 | |
| 		if (!global_slub_debug_changed)
 | |
| 			global_flags = slub_debug;
 | |
| 		slub_debug_string = saved_str;
 | |
| 	}
 | |
| out:
 | |
| 	slub_debug = global_flags;
 | |
| 	if (slub_debug & SLAB_STORE_USER)
 | |
| 		stack_depot_request_early_init();
 | |
| 	if (slub_debug != 0 || slub_debug_string)
 | |
| 		static_branch_enable(&slub_debug_enabled);
 | |
| 	else
 | |
| 		static_branch_disable(&slub_debug_enabled);
 | |
| 	if ((static_branch_unlikely(&init_on_alloc) ||
 | |
| 	     static_branch_unlikely(&init_on_free)) &&
 | |
| 	    (slub_debug & SLAB_POISON))
 | |
| 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("slab_debug", setup_slub_debug);
 | |
| __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
 | |
| 
 | |
| /*
 | |
|  * kmem_cache_flags - apply debugging options to the cache
 | |
|  * @flags:		flags to set
 | |
|  * @name:		name of the cache
 | |
|  *
 | |
|  * Debug option(s) are applied to @flags. In addition to the debug
 | |
|  * option(s), if a slab name (or multiple) is specified i.e.
 | |
|  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
 | |
|  * then only the select slabs will receive the debug option(s).
 | |
|  */
 | |
| slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
 | |
| {
 | |
| 	char *iter;
 | |
| 	size_t len;
 | |
| 	char *next_block;
 | |
| 	slab_flags_t block_flags;
 | |
| 	slab_flags_t slub_debug_local = slub_debug;
 | |
| 
 | |
| 	if (flags & SLAB_NO_USER_FLAGS)
 | |
| 		return flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the slab cache is for debugging (e.g. kmemleak) then
 | |
| 	 * don't store user (stack trace) information by default,
 | |
| 	 * but let the user enable it via the command line below.
 | |
| 	 */
 | |
| 	if (flags & SLAB_NOLEAKTRACE)
 | |
| 		slub_debug_local &= ~SLAB_STORE_USER;
 | |
| 
 | |
| 	len = strlen(name);
 | |
| 	next_block = slub_debug_string;
 | |
| 	/* Go through all blocks of debug options, see if any matches our slab's name */
 | |
| 	while (next_block) {
 | |
| 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
 | |
| 		if (!iter)
 | |
| 			continue;
 | |
| 		/* Found a block that has a slab list, search it */
 | |
| 		while (*iter) {
 | |
| 			char *end, *glob;
 | |
| 			size_t cmplen;
 | |
| 
 | |
| 			end = strchrnul(iter, ',');
 | |
| 			if (next_block && next_block < end)
 | |
| 				end = next_block - 1;
 | |
| 
 | |
| 			glob = strnchr(iter, end - iter, '*');
 | |
| 			if (glob)
 | |
| 				cmplen = glob - iter;
 | |
| 			else
 | |
| 				cmplen = max_t(size_t, len, (end - iter));
 | |
| 
 | |
| 			if (!strncmp(name, iter, cmplen)) {
 | |
| 				flags |= block_flags;
 | |
| 				return flags;
 | |
| 			}
 | |
| 
 | |
| 			if (!*end || *end == ';')
 | |
| 				break;
 | |
| 			iter = end + 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return flags | slub_debug_local;
 | |
| }
 | |
| #else /* !CONFIG_SLUB_DEBUG */
 | |
| static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
 | |
| static inline
 | |
| void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
 | |
| 
 | |
| static inline bool alloc_debug_processing(struct kmem_cache *s,
 | |
| 	struct slab *slab, void *object, int orig_size) { return true; }
 | |
| 
 | |
| static inline bool free_debug_processing(struct kmem_cache *s,
 | |
| 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
 | |
| 	unsigned long addr, depot_stack_handle_t handle) { return true; }
 | |
| 
 | |
| static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
 | |
| static inline int check_object(struct kmem_cache *s, struct slab *slab,
 | |
| 			void *object, u8 val) { return 1; }
 | |
| static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
 | |
| static inline void set_track(struct kmem_cache *s, void *object,
 | |
| 			     enum track_item alloc, unsigned long addr) {}
 | |
| static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
 | |
| 					struct slab *slab) {}
 | |
| static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
 | |
| 					struct slab *slab) {}
 | |
| slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
 | |
| {
 | |
| 	return flags;
 | |
| }
 | |
| #define slub_debug 0
 | |
| 
 | |
| #define disable_higher_order_debug 0
 | |
| 
 | |
| static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
 | |
| 							{ return 0; }
 | |
| static inline void inc_slabs_node(struct kmem_cache *s, int node,
 | |
| 							int objects) {}
 | |
| static inline void dec_slabs_node(struct kmem_cache *s, int node,
 | |
| 							int objects) {}
 | |
| 
 | |
| #ifndef CONFIG_SLUB_TINY
 | |
| static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
 | |
| 			       void **freelist, void *nextfree)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif
 | |
| #endif /* CONFIG_SLUB_DEBUG */
 | |
| 
 | |
| static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
 | |
| {
 | |
| 	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
 | |
| 		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| static inline void memcg_free_slab_cgroups(struct slab *slab)
 | |
| {
 | |
| 	kfree(slab_objcgs(slab));
 | |
| 	slab->memcg_data = 0;
 | |
| }
 | |
| 
 | |
| static inline size_t obj_full_size(struct kmem_cache *s)
 | |
| {
 | |
| 	/*
 | |
| 	 * For each accounted object there is an extra space which is used
 | |
| 	 * to store obj_cgroup membership. Charge it too.
 | |
| 	 */
 | |
| 	return s->size + sizeof(struct obj_cgroup *);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns false if the allocation should fail.
 | |
|  */
 | |
| static bool __memcg_slab_pre_alloc_hook(struct kmem_cache *s,
 | |
| 					struct list_lru *lru,
 | |
| 					struct obj_cgroup **objcgp,
 | |
| 					size_t objects, gfp_t flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * The obtained objcg pointer is safe to use within the current scope,
 | |
| 	 * defined by current task or set_active_memcg() pair.
 | |
| 	 * obj_cgroup_get() is used to get a permanent reference.
 | |
| 	 */
 | |
| 	struct obj_cgroup *objcg = current_obj_cgroup();
 | |
| 	if (!objcg)
 | |
| 		return true;
 | |
| 
 | |
| 	if (lru) {
 | |
| 		int ret;
 | |
| 		struct mem_cgroup *memcg;
 | |
| 
 | |
| 		memcg = get_mem_cgroup_from_objcg(objcg);
 | |
| 		ret = memcg_list_lru_alloc(memcg, lru, flags);
 | |
| 		css_put(&memcg->css);
 | |
| 
 | |
| 		if (ret)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
 | |
| 		return false;
 | |
| 
 | |
| 	*objcgp = objcg;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns false if the allocation should fail.
 | |
|  */
 | |
| static __fastpath_inline
 | |
| bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
 | |
| 			       struct obj_cgroup **objcgp, size_t objects,
 | |
| 			       gfp_t flags)
 | |
| {
 | |
| 	if (!memcg_kmem_online())
 | |
| 		return true;
 | |
| 
 | |
| 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
 | |
| 		return true;
 | |
| 
 | |
| 	return likely(__memcg_slab_pre_alloc_hook(s, lru, objcgp, objects,
 | |
| 						  flags));
 | |
| }
 | |
| 
 | |
| static void __memcg_slab_post_alloc_hook(struct kmem_cache *s,
 | |
| 					 struct obj_cgroup *objcg,
 | |
| 					 gfp_t flags, size_t size,
 | |
| 					 void **p)
 | |
| {
 | |
| 	struct slab *slab;
 | |
| 	unsigned long off;
 | |
| 	size_t i;
 | |
| 
 | |
| 	flags &= gfp_allowed_mask;
 | |
| 
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		if (likely(p[i])) {
 | |
| 			slab = virt_to_slab(p[i]);
 | |
| 
 | |
| 			if (!slab_objcgs(slab) &&
 | |
| 			    memcg_alloc_slab_cgroups(slab, s, flags, false)) {
 | |
| 				obj_cgroup_uncharge(objcg, obj_full_size(s));
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			off = obj_to_index(s, slab, p[i]);
 | |
| 			obj_cgroup_get(objcg);
 | |
| 			slab_objcgs(slab)[off] = objcg;
 | |
| 			mod_objcg_state(objcg, slab_pgdat(slab),
 | |
| 					cache_vmstat_idx(s), obj_full_size(s));
 | |
| 		} else {
 | |
| 			obj_cgroup_uncharge(objcg, obj_full_size(s));
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static __fastpath_inline
 | |
| void memcg_slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg,
 | |
| 				gfp_t flags, size_t size, void **p)
 | |
| {
 | |
| 	if (likely(!memcg_kmem_online() || !objcg))
 | |
| 		return;
 | |
| 
 | |
| 	return __memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
 | |
| }
 | |
| 
 | |
| static void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
 | |
| 				   void **p, int objects,
 | |
| 				   struct obj_cgroup **objcgs)
 | |
| {
 | |
| 	for (int i = 0; i < objects; i++) {
 | |
| 		struct obj_cgroup *objcg;
 | |
| 		unsigned int off;
 | |
| 
 | |
| 		off = obj_to_index(s, slab, p[i]);
 | |
| 		objcg = objcgs[off];
 | |
| 		if (!objcg)
 | |
| 			continue;
 | |
| 
 | |
| 		objcgs[off] = NULL;
 | |
| 		obj_cgroup_uncharge(objcg, obj_full_size(s));
 | |
| 		mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
 | |
| 				-obj_full_size(s));
 | |
| 		obj_cgroup_put(objcg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static __fastpath_inline
 | |
| void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
 | |
| 			  int objects)
 | |
| {
 | |
| 	struct obj_cgroup **objcgs;
 | |
| 
 | |
| 	if (!memcg_kmem_online())
 | |
| 		return;
 | |
| 
 | |
| 	objcgs = slab_objcgs(slab);
 | |
| 	if (likely(!objcgs))
 | |
| 		return;
 | |
| 
 | |
| 	__memcg_slab_free_hook(s, slab, p, objects, objcgs);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects,
 | |
| 			   struct obj_cgroup *objcg)
 | |
| {
 | |
| 	if (objcg)
 | |
| 		obj_cgroup_uncharge(objcg, objects * obj_full_size(s));
 | |
| }
 | |
| #else /* CONFIG_MEMCG_KMEM */
 | |
| static inline void memcg_free_slab_cgroups(struct slab *slab)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
 | |
| 					     struct list_lru *lru,
 | |
| 					     struct obj_cgroup **objcgp,
 | |
| 					     size_t objects, gfp_t flags)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
 | |
| 					      struct obj_cgroup *objcg,
 | |
| 					      gfp_t flags, size_t size,
 | |
| 					      void **p)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
 | |
| 					void **p, int objects)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects,
 | |
| 				 struct obj_cgroup *objcg)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_MEMCG_KMEM */
 | |
| 
 | |
| /*
 | |
|  * Hooks for other subsystems that check memory allocations. In a typical
 | |
|  * production configuration these hooks all should produce no code at all.
 | |
|  *
 | |
|  * Returns true if freeing of the object can proceed, false if its reuse
 | |
|  * was delayed by KASAN quarantine, or it was returned to KFENCE.
 | |
|  */
 | |
| static __always_inline
 | |
| bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
 | |
| {
 | |
| 	kmemleak_free_recursive(x, s->flags);
 | |
| 	kmsan_slab_free(s, x);
 | |
| 
 | |
| 	debug_check_no_locks_freed(x, s->object_size);
 | |
| 
 | |
| 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
 | |
| 		debug_check_no_obj_freed(x, s->object_size);
 | |
| 
 | |
| 	/* Use KCSAN to help debug racy use-after-free. */
 | |
| 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
 | |
| 		__kcsan_check_access(x, s->object_size,
 | |
| 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
 | |
| 
 | |
| 	if (kfence_free(x))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * As memory initialization might be integrated into KASAN,
 | |
| 	 * kasan_slab_free and initialization memset's must be
 | |
| 	 * kept together to avoid discrepancies in behavior.
 | |
| 	 *
 | |
| 	 * The initialization memset's clear the object and the metadata,
 | |
| 	 * but don't touch the SLAB redzone.
 | |
| 	 */
 | |
| 	if (unlikely(init)) {
 | |
| 		int rsize;
 | |
| 
 | |
| 		if (!kasan_has_integrated_init())
 | |
| 			memset(kasan_reset_tag(x), 0, s->object_size);
 | |
| 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
 | |
| 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
 | |
| 		       s->size - s->inuse - rsize);
 | |
| 	}
 | |
| 	/* KASAN might put x into memory quarantine, delaying its reuse. */
 | |
| 	return !kasan_slab_free(s, x, init);
 | |
| }
 | |
| 
 | |
| static inline bool slab_free_freelist_hook(struct kmem_cache *s,
 | |
| 					   void **head, void **tail,
 | |
| 					   int *cnt)
 | |
| {
 | |
| 
 | |
| 	void *object;
 | |
| 	void *next = *head;
 | |
| 	void *old_tail = *tail;
 | |
| 	bool init;
 | |
| 
 | |
| 	if (is_kfence_address(next)) {
 | |
| 		slab_free_hook(s, next, false);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* Head and tail of the reconstructed freelist */
 | |
| 	*head = NULL;
 | |
| 	*tail = NULL;
 | |
| 
 | |
| 	init = slab_want_init_on_free(s);
 | |
| 
 | |
| 	do {
 | |
| 		object = next;
 | |
| 		next = get_freepointer(s, object);
 | |
| 
 | |
| 		/* If object's reuse doesn't have to be delayed */
 | |
| 		if (likely(slab_free_hook(s, object, init))) {
 | |
| 			/* Move object to the new freelist */
 | |
| 			set_freepointer(s, object, *head);
 | |
| 			*head = object;
 | |
| 			if (!*tail)
 | |
| 				*tail = object;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Adjust the reconstructed freelist depth
 | |
| 			 * accordingly if object's reuse is delayed.
 | |
| 			 */
 | |
| 			--(*cnt);
 | |
| 		}
 | |
| 	} while (object != old_tail);
 | |
| 
 | |
| 	return *head != NULL;
 | |
| }
 | |
| 
 | |
| static void *setup_object(struct kmem_cache *s, void *object)
 | |
| {
 | |
| 	setup_object_debug(s, object);
 | |
| 	object = kasan_init_slab_obj(s, object);
 | |
| 	if (unlikely(s->ctor)) {
 | |
| 		kasan_unpoison_new_object(s, object);
 | |
| 		s->ctor(object);
 | |
| 		kasan_poison_new_object(s, object);
 | |
| 	}
 | |
| 	return object;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Slab allocation and freeing
 | |
|  */
 | |
| static inline struct slab *alloc_slab_page(gfp_t flags, int node,
 | |
| 		struct kmem_cache_order_objects oo)
 | |
| {
 | |
| 	struct folio *folio;
 | |
| 	struct slab *slab;
 | |
| 	unsigned int order = oo_order(oo);
 | |
| 
 | |
| 	folio = (struct folio *)alloc_pages_node(node, flags, order);
 | |
| 	if (!folio)
 | |
| 		return NULL;
 | |
| 
 | |
| 	slab = folio_slab(folio);
 | |
| 	__folio_set_slab(folio);
 | |
| 	/* Make the flag visible before any changes to folio->mapping */
 | |
| 	smp_wmb();
 | |
| 	if (folio_is_pfmemalloc(folio))
 | |
| 		slab_set_pfmemalloc(slab);
 | |
| 
 | |
| 	return slab;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SLAB_FREELIST_RANDOM
 | |
| /* Pre-initialize the random sequence cache */
 | |
| static int init_cache_random_seq(struct kmem_cache *s)
 | |
| {
 | |
| 	unsigned int count = oo_objects(s->oo);
 | |
| 	int err;
 | |
| 
 | |
| 	/* Bailout if already initialised */
 | |
| 	if (s->random_seq)
 | |
| 		return 0;
 | |
| 
 | |
| 	err = cache_random_seq_create(s, count, GFP_KERNEL);
 | |
| 	if (err) {
 | |
| 		pr_err("SLUB: Unable to initialize free list for %s\n",
 | |
| 			s->name);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* Transform to an offset on the set of pages */
 | |
| 	if (s->random_seq) {
 | |
| 		unsigned int i;
 | |
| 
 | |
| 		for (i = 0; i < count; i++)
 | |
| 			s->random_seq[i] *= s->size;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Initialize each random sequence freelist per cache */
 | |
| static void __init init_freelist_randomization(void)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 
 | |
| 	list_for_each_entry(s, &slab_caches, list)
 | |
| 		init_cache_random_seq(s);
 | |
| 
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| }
 | |
| 
 | |
| /* Get the next entry on the pre-computed freelist randomized */
 | |
| static void *next_freelist_entry(struct kmem_cache *s,
 | |
| 				unsigned long *pos, void *start,
 | |
| 				unsigned long page_limit,
 | |
| 				unsigned long freelist_count)
 | |
| {
 | |
| 	unsigned int idx;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the target page allocation failed, the number of objects on the
 | |
| 	 * page might be smaller than the usual size defined by the cache.
 | |
| 	 */
 | |
| 	do {
 | |
| 		idx = s->random_seq[*pos];
 | |
| 		*pos += 1;
 | |
| 		if (*pos >= freelist_count)
 | |
| 			*pos = 0;
 | |
| 	} while (unlikely(idx >= page_limit));
 | |
| 
 | |
| 	return (char *)start + idx;
 | |
| }
 | |
| 
 | |
| /* Shuffle the single linked freelist based on a random pre-computed sequence */
 | |
| static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
 | |
| {
 | |
| 	void *start;
 | |
| 	void *cur;
 | |
| 	void *next;
 | |
| 	unsigned long idx, pos, page_limit, freelist_count;
 | |
| 
 | |
| 	if (slab->objects < 2 || !s->random_seq)
 | |
| 		return false;
 | |
| 
 | |
| 	freelist_count = oo_objects(s->oo);
 | |
| 	pos = get_random_u32_below(freelist_count);
 | |
| 
 | |
| 	page_limit = slab->objects * s->size;
 | |
| 	start = fixup_red_left(s, slab_address(slab));
 | |
| 
 | |
| 	/* First entry is used as the base of the freelist */
 | |
| 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
 | |
| 	cur = setup_object(s, cur);
 | |
| 	slab->freelist = cur;
 | |
| 
 | |
| 	for (idx = 1; idx < slab->objects; idx++) {
 | |
| 		next = next_freelist_entry(s, &pos, start, page_limit,
 | |
| 			freelist_count);
 | |
| 		next = setup_object(s, next);
 | |
| 		set_freepointer(s, cur, next);
 | |
| 		cur = next;
 | |
| 	}
 | |
| 	set_freepointer(s, cur, NULL);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| #else
 | |
| static inline int init_cache_random_seq(struct kmem_cache *s)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline void init_freelist_randomization(void) { }
 | |
| static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif /* CONFIG_SLAB_FREELIST_RANDOM */
 | |
| 
 | |
| static __always_inline void account_slab(struct slab *slab, int order,
 | |
| 					 struct kmem_cache *s, gfp_t gfp)
 | |
| {
 | |
| 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
 | |
| 		memcg_alloc_slab_cgroups(slab, s, gfp, true);
 | |
| 
 | |
| 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
 | |
| 			    PAGE_SIZE << order);
 | |
| }
 | |
| 
 | |
| static __always_inline void unaccount_slab(struct slab *slab, int order,
 | |
| 					   struct kmem_cache *s)
 | |
| {
 | |
| 	if (memcg_kmem_online())
 | |
| 		memcg_free_slab_cgroups(slab);
 | |
| 
 | |
| 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
 | |
| 			    -(PAGE_SIZE << order));
 | |
| }
 | |
| 
 | |
| static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
 | |
| {
 | |
| 	struct slab *slab;
 | |
| 	struct kmem_cache_order_objects oo = s->oo;
 | |
| 	gfp_t alloc_gfp;
 | |
| 	void *start, *p, *next;
 | |
| 	int idx;
 | |
| 	bool shuffle;
 | |
| 
 | |
| 	flags &= gfp_allowed_mask;
 | |
| 
 | |
| 	flags |= s->allocflags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Let the initial higher-order allocation fail under memory pressure
 | |
| 	 * so we fall-back to the minimum order allocation.
 | |
| 	 */
 | |
| 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
 | |
| 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
 | |
| 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
 | |
| 
 | |
| 	slab = alloc_slab_page(alloc_gfp, node, oo);
 | |
| 	if (unlikely(!slab)) {
 | |
| 		oo = s->min;
 | |
| 		alloc_gfp = flags;
 | |
| 		/*
 | |
| 		 * Allocation may have failed due to fragmentation.
 | |
| 		 * Try a lower order alloc if possible
 | |
| 		 */
 | |
| 		slab = alloc_slab_page(alloc_gfp, node, oo);
 | |
| 		if (unlikely(!slab))
 | |
| 			return NULL;
 | |
| 		stat(s, ORDER_FALLBACK);
 | |
| 	}
 | |
| 
 | |
| 	slab->objects = oo_objects(oo);
 | |
| 	slab->inuse = 0;
 | |
| 	slab->frozen = 0;
 | |
| 
 | |
| 	account_slab(slab, oo_order(oo), s, flags);
 | |
| 
 | |
| 	slab->slab_cache = s;
 | |
| 
 | |
| 	kasan_poison_slab(slab);
 | |
| 
 | |
| 	start = slab_address(slab);
 | |
| 
 | |
| 	setup_slab_debug(s, slab, start);
 | |
| 
 | |
| 	shuffle = shuffle_freelist(s, slab);
 | |
| 
 | |
| 	if (!shuffle) {
 | |
| 		start = fixup_red_left(s, start);
 | |
| 		start = setup_object(s, start);
 | |
| 		slab->freelist = start;
 | |
| 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
 | |
| 			next = p + s->size;
 | |
| 			next = setup_object(s, next);
 | |
| 			set_freepointer(s, p, next);
 | |
| 			p = next;
 | |
| 		}
 | |
| 		set_freepointer(s, p, NULL);
 | |
| 	}
 | |
| 
 | |
| 	return slab;
 | |
| }
 | |
| 
 | |
| static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
 | |
| {
 | |
| 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
 | |
| 		flags = kmalloc_fix_flags(flags);
 | |
| 
 | |
| 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
 | |
| 
 | |
| 	return allocate_slab(s,
 | |
| 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
 | |
| }
 | |
| 
 | |
| static void __free_slab(struct kmem_cache *s, struct slab *slab)
 | |
| {
 | |
| 	struct folio *folio = slab_folio(slab);
 | |
| 	int order = folio_order(folio);
 | |
| 	int pages = 1 << order;
 | |
| 
 | |
| 	__slab_clear_pfmemalloc(slab);
 | |
| 	folio->mapping = NULL;
 | |
| 	/* Make the mapping reset visible before clearing the flag */
 | |
| 	smp_wmb();
 | |
| 	__folio_clear_slab(folio);
 | |
| 	mm_account_reclaimed_pages(pages);
 | |
| 	unaccount_slab(slab, order, s);
 | |
| 	__free_pages(&folio->page, order);
 | |
| }
 | |
| 
 | |
| static void rcu_free_slab(struct rcu_head *h)
 | |
| {
 | |
| 	struct slab *slab = container_of(h, struct slab, rcu_head);
 | |
| 
 | |
| 	__free_slab(slab->slab_cache, slab);
 | |
| }
 | |
| 
 | |
| static void free_slab(struct kmem_cache *s, struct slab *slab)
 | |
| {
 | |
| 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
 | |
| 		void *p;
 | |
| 
 | |
| 		slab_pad_check(s, slab);
 | |
| 		for_each_object(p, s, slab_address(slab), slab->objects)
 | |
| 			check_object(s, slab, p, SLUB_RED_INACTIVE);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
 | |
| 		call_rcu(&slab->rcu_head, rcu_free_slab);
 | |
| 	else
 | |
| 		__free_slab(s, slab);
 | |
| }
 | |
| 
 | |
| static void discard_slab(struct kmem_cache *s, struct slab *slab)
 | |
| {
 | |
| 	dec_slabs_node(s, slab_nid(slab), slab->objects);
 | |
| 	free_slab(s, slab);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * SLUB reuses PG_workingset bit to keep track of whether it's on
 | |
|  * the per-node partial list.
 | |
|  */
 | |
| static inline bool slab_test_node_partial(const struct slab *slab)
 | |
| {
 | |
| 	return folio_test_workingset((struct folio *)slab_folio(slab));
 | |
| }
 | |
| 
 | |
| static inline void slab_set_node_partial(struct slab *slab)
 | |
| {
 | |
| 	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
 | |
| }
 | |
| 
 | |
| static inline void slab_clear_node_partial(struct slab *slab)
 | |
| {
 | |
| 	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Management of partially allocated slabs.
 | |
|  */
 | |
| static inline void
 | |
| __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
 | |
| {
 | |
| 	n->nr_partial++;
 | |
| 	if (tail == DEACTIVATE_TO_TAIL)
 | |
| 		list_add_tail(&slab->slab_list, &n->partial);
 | |
| 	else
 | |
| 		list_add(&slab->slab_list, &n->partial);
 | |
| 	slab_set_node_partial(slab);
 | |
| }
 | |
| 
 | |
| static inline void add_partial(struct kmem_cache_node *n,
 | |
| 				struct slab *slab, int tail)
 | |
| {
 | |
| 	lockdep_assert_held(&n->list_lock);
 | |
| 	__add_partial(n, slab, tail);
 | |
| }
 | |
| 
 | |
| static inline void remove_partial(struct kmem_cache_node *n,
 | |
| 					struct slab *slab)
 | |
| {
 | |
| 	lockdep_assert_held(&n->list_lock);
 | |
| 	list_del(&slab->slab_list);
 | |
| 	slab_clear_node_partial(slab);
 | |
| 	n->nr_partial--;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
 | |
|  * slab from the n->partial list. Remove only a single object from the slab, do
 | |
|  * the alloc_debug_processing() checks and leave the slab on the list, or move
 | |
|  * it to full list if it was the last free object.
 | |
|  */
 | |
| static void *alloc_single_from_partial(struct kmem_cache *s,
 | |
| 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
 | |
| {
 | |
| 	void *object;
 | |
| 
 | |
| 	lockdep_assert_held(&n->list_lock);
 | |
| 
 | |
| 	object = slab->freelist;
 | |
| 	slab->freelist = get_freepointer(s, object);
 | |
| 	slab->inuse++;
 | |
| 
 | |
| 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
 | |
| 		remove_partial(n, slab);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (slab->inuse == slab->objects) {
 | |
| 		remove_partial(n, slab);
 | |
| 		add_full(s, n, slab);
 | |
| 	}
 | |
| 
 | |
| 	return object;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called only for kmem_cache_debug() caches to allocate from a freshly
 | |
|  * allocated slab. Allocate a single object instead of whole freelist
 | |
|  * and put the slab to the partial (or full) list.
 | |
|  */
 | |
| static void *alloc_single_from_new_slab(struct kmem_cache *s,
 | |
| 					struct slab *slab, int orig_size)
 | |
| {
 | |
| 	int nid = slab_nid(slab);
 | |
| 	struct kmem_cache_node *n = get_node(s, nid);
 | |
| 	unsigned long flags;
 | |
| 	void *object;
 | |
| 
 | |
| 
 | |
| 	object = slab->freelist;
 | |
| 	slab->freelist = get_freepointer(s, object);
 | |
| 	slab->inuse = 1;
 | |
| 
 | |
| 	if (!alloc_debug_processing(s, slab, object, orig_size))
 | |
| 		/*
 | |
| 		 * It's not really expected that this would fail on a
 | |
| 		 * freshly allocated slab, but a concurrent memory
 | |
| 		 * corruption in theory could cause that.
 | |
| 		 */
 | |
| 		return NULL;
 | |
| 
 | |
| 	spin_lock_irqsave(&n->list_lock, flags);
 | |
| 
 | |
| 	if (slab->inuse == slab->objects)
 | |
| 		add_full(s, n, slab);
 | |
| 	else
 | |
| 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
 | |
| 
 | |
| 	inc_slabs_node(s, nid, slab->objects);
 | |
| 	spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 
 | |
| 	return object;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SLUB_CPU_PARTIAL
 | |
| static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
 | |
| #else
 | |
| static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
 | |
| 				   int drain) { }
 | |
| #endif
 | |
| static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
 | |
| 
 | |
| /*
 | |
|  * Try to allocate a partial slab from a specific node.
 | |
|  */
 | |
| static struct slab *get_partial_node(struct kmem_cache *s,
 | |
| 				     struct kmem_cache_node *n,
 | |
| 				     struct partial_context *pc)
 | |
| {
 | |
| 	struct slab *slab, *slab2, *partial = NULL;
 | |
| 	unsigned long flags;
 | |
| 	unsigned int partial_slabs = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Racy check. If we mistakenly see no partial slabs then we
 | |
| 	 * just allocate an empty slab. If we mistakenly try to get a
 | |
| 	 * partial slab and there is none available then get_partial()
 | |
| 	 * will return NULL.
 | |
| 	 */
 | |
| 	if (!n || !n->nr_partial)
 | |
| 		return NULL;
 | |
| 
 | |
| 	spin_lock_irqsave(&n->list_lock, flags);
 | |
| 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
 | |
| 		if (!pfmemalloc_match(slab, pc->flags))
 | |
| 			continue;
 | |
| 
 | |
| 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
 | |
| 			void *object = alloc_single_from_partial(s, n, slab,
 | |
| 							pc->orig_size);
 | |
| 			if (object) {
 | |
| 				partial = slab;
 | |
| 				pc->object = object;
 | |
| 				break;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		remove_partial(n, slab);
 | |
| 
 | |
| 		if (!partial) {
 | |
| 			partial = slab;
 | |
| 			stat(s, ALLOC_FROM_PARTIAL);
 | |
| 		} else {
 | |
| 			put_cpu_partial(s, slab, 0);
 | |
| 			stat(s, CPU_PARTIAL_NODE);
 | |
| 			partial_slabs++;
 | |
| 		}
 | |
| #ifdef CONFIG_SLUB_CPU_PARTIAL
 | |
| 		if (!kmem_cache_has_cpu_partial(s)
 | |
| 			|| partial_slabs > s->cpu_partial_slabs / 2)
 | |
| 			break;
 | |
| #else
 | |
| 		break;
 | |
| #endif
 | |
| 
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 	return partial;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get a slab from somewhere. Search in increasing NUMA distances.
 | |
|  */
 | |
| static struct slab *get_any_partial(struct kmem_cache *s,
 | |
| 				    struct partial_context *pc)
 | |
| {
 | |
| #ifdef CONFIG_NUMA
 | |
| 	struct zonelist *zonelist;
 | |
| 	struct zoneref *z;
 | |
| 	struct zone *zone;
 | |
| 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
 | |
| 	struct slab *slab;
 | |
| 	unsigned int cpuset_mems_cookie;
 | |
| 
 | |
| 	/*
 | |
| 	 * The defrag ratio allows a configuration of the tradeoffs between
 | |
| 	 * inter node defragmentation and node local allocations. A lower
 | |
| 	 * defrag_ratio increases the tendency to do local allocations
 | |
| 	 * instead of attempting to obtain partial slabs from other nodes.
 | |
| 	 *
 | |
| 	 * If the defrag_ratio is set to 0 then kmalloc() always
 | |
| 	 * returns node local objects. If the ratio is higher then kmalloc()
 | |
| 	 * may return off node objects because partial slabs are obtained
 | |
| 	 * from other nodes and filled up.
 | |
| 	 *
 | |
| 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
 | |
| 	 * (which makes defrag_ratio = 1000) then every (well almost)
 | |
| 	 * allocation will first attempt to defrag slab caches on other nodes.
 | |
| 	 * This means scanning over all nodes to look for partial slabs which
 | |
| 	 * may be expensive if we do it every time we are trying to find a slab
 | |
| 	 * with available objects.
 | |
| 	 */
 | |
| 	if (!s->remote_node_defrag_ratio ||
 | |
| 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
 | |
| 		return NULL;
 | |
| 
 | |
| 	do {
 | |
| 		cpuset_mems_cookie = read_mems_allowed_begin();
 | |
| 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
 | |
| 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
 | |
| 			struct kmem_cache_node *n;
 | |
| 
 | |
| 			n = get_node(s, zone_to_nid(zone));
 | |
| 
 | |
| 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
 | |
| 					n->nr_partial > s->min_partial) {
 | |
| 				slab = get_partial_node(s, n, pc);
 | |
| 				if (slab) {
 | |
| 					/*
 | |
| 					 * Don't check read_mems_allowed_retry()
 | |
| 					 * here - if mems_allowed was updated in
 | |
| 					 * parallel, that was a harmless race
 | |
| 					 * between allocation and the cpuset
 | |
| 					 * update
 | |
| 					 */
 | |
| 					return slab;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
 | |
| #endif	/* CONFIG_NUMA */
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get a partial slab, lock it and return it.
 | |
|  */
 | |
| static struct slab *get_partial(struct kmem_cache *s, int node,
 | |
| 				struct partial_context *pc)
 | |
| {
 | |
| 	struct slab *slab;
 | |
| 	int searchnode = node;
 | |
| 
 | |
| 	if (node == NUMA_NO_NODE)
 | |
| 		searchnode = numa_mem_id();
 | |
| 
 | |
| 	slab = get_partial_node(s, get_node(s, searchnode), pc);
 | |
| 	if (slab || node != NUMA_NO_NODE)
 | |
| 		return slab;
 | |
| 
 | |
| 	return get_any_partial(s, pc);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SLUB_TINY
 | |
| 
 | |
| #ifdef CONFIG_PREEMPTION
 | |
| /*
 | |
|  * Calculate the next globally unique transaction for disambiguation
 | |
|  * during cmpxchg. The transactions start with the cpu number and are then
 | |
|  * incremented by CONFIG_NR_CPUS.
 | |
|  */
 | |
| #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
 | |
| #else
 | |
| /*
 | |
|  * No preemption supported therefore also no need to check for
 | |
|  * different cpus.
 | |
|  */
 | |
| #define TID_STEP 1
 | |
| #endif /* CONFIG_PREEMPTION */
 | |
| 
 | |
| static inline unsigned long next_tid(unsigned long tid)
 | |
| {
 | |
| 	return tid + TID_STEP;
 | |
| }
 | |
| 
 | |
| #ifdef SLUB_DEBUG_CMPXCHG
 | |
| static inline unsigned int tid_to_cpu(unsigned long tid)
 | |
| {
 | |
| 	return tid % TID_STEP;
 | |
| }
 | |
| 
 | |
| static inline unsigned long tid_to_event(unsigned long tid)
 | |
| {
 | |
| 	return tid / TID_STEP;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline unsigned int init_tid(int cpu)
 | |
| {
 | |
| 	return cpu;
 | |
| }
 | |
| 
 | |
| static inline void note_cmpxchg_failure(const char *n,
 | |
| 		const struct kmem_cache *s, unsigned long tid)
 | |
| {
 | |
| #ifdef SLUB_DEBUG_CMPXCHG
 | |
| 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
 | |
| 
 | |
| 	pr_info("%s %s: cmpxchg redo ", n, s->name);
 | |
| 
 | |
| #ifdef CONFIG_PREEMPTION
 | |
| 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
 | |
| 		pr_warn("due to cpu change %d -> %d\n",
 | |
| 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
 | |
| 	else
 | |
| #endif
 | |
| 	if (tid_to_event(tid) != tid_to_event(actual_tid))
 | |
| 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
 | |
| 			tid_to_event(tid), tid_to_event(actual_tid));
 | |
| 	else
 | |
| 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
 | |
| 			actual_tid, tid, next_tid(tid));
 | |
| #endif
 | |
| 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
 | |
| }
 | |
| 
 | |
| static void init_kmem_cache_cpus(struct kmem_cache *s)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct kmem_cache_cpu *c;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		c = per_cpu_ptr(s->cpu_slab, cpu);
 | |
| 		local_lock_init(&c->lock);
 | |
| 		c->tid = init_tid(cpu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
 | |
|  * unfreezes the slabs and puts it on the proper list.
 | |
|  * Assumes the slab has been already safely taken away from kmem_cache_cpu
 | |
|  * by the caller.
 | |
|  */
 | |
| static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
 | |
| 			    void *freelist)
 | |
| {
 | |
| 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
 | |
| 	int free_delta = 0;
 | |
| 	void *nextfree, *freelist_iter, *freelist_tail;
 | |
| 	int tail = DEACTIVATE_TO_HEAD;
 | |
| 	unsigned long flags = 0;
 | |
| 	struct slab new;
 | |
| 	struct slab old;
 | |
| 
 | |
| 	if (slab->freelist) {
 | |
| 		stat(s, DEACTIVATE_REMOTE_FREES);
 | |
| 		tail = DEACTIVATE_TO_TAIL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Stage one: Count the objects on cpu's freelist as free_delta and
 | |
| 	 * remember the last object in freelist_tail for later splicing.
 | |
| 	 */
 | |
| 	freelist_tail = NULL;
 | |
| 	freelist_iter = freelist;
 | |
| 	while (freelist_iter) {
 | |
| 		nextfree = get_freepointer(s, freelist_iter);
 | |
| 
 | |
| 		/*
 | |
| 		 * If 'nextfree' is invalid, it is possible that the object at
 | |
| 		 * 'freelist_iter' is already corrupted.  So isolate all objects
 | |
| 		 * starting at 'freelist_iter' by skipping them.
 | |
| 		 */
 | |
| 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
 | |
| 			break;
 | |
| 
 | |
| 		freelist_tail = freelist_iter;
 | |
| 		free_delta++;
 | |
| 
 | |
| 		freelist_iter = nextfree;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Stage two: Unfreeze the slab while splicing the per-cpu
 | |
| 	 * freelist to the head of slab's freelist.
 | |
| 	 */
 | |
| 	do {
 | |
| 		old.freelist = READ_ONCE(slab->freelist);
 | |
| 		old.counters = READ_ONCE(slab->counters);
 | |
| 		VM_BUG_ON(!old.frozen);
 | |
| 
 | |
| 		/* Determine target state of the slab */
 | |
| 		new.counters = old.counters;
 | |
| 		new.frozen = 0;
 | |
| 		if (freelist_tail) {
 | |
| 			new.inuse -= free_delta;
 | |
| 			set_freepointer(s, freelist_tail, old.freelist);
 | |
| 			new.freelist = freelist;
 | |
| 		} else {
 | |
| 			new.freelist = old.freelist;
 | |
| 		}
 | |
| 	} while (!slab_update_freelist(s, slab,
 | |
| 		old.freelist, old.counters,
 | |
| 		new.freelist, new.counters,
 | |
| 		"unfreezing slab"));
 | |
| 
 | |
| 	/*
 | |
| 	 * Stage three: Manipulate the slab list based on the updated state.
 | |
| 	 */
 | |
| 	if (!new.inuse && n->nr_partial >= s->min_partial) {
 | |
| 		stat(s, DEACTIVATE_EMPTY);
 | |
| 		discard_slab(s, slab);
 | |
| 		stat(s, FREE_SLAB);
 | |
| 	} else if (new.freelist) {
 | |
| 		spin_lock_irqsave(&n->list_lock, flags);
 | |
| 		add_partial(n, slab, tail);
 | |
| 		spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 		stat(s, tail);
 | |
| 	} else {
 | |
| 		stat(s, DEACTIVATE_FULL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SLUB_CPU_PARTIAL
 | |
| static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
 | |
| {
 | |
| 	struct kmem_cache_node *n = NULL, *n2 = NULL;
 | |
| 	struct slab *slab, *slab_to_discard = NULL;
 | |
| 	unsigned long flags = 0;
 | |
| 
 | |
| 	while (partial_slab) {
 | |
| 		slab = partial_slab;
 | |
| 		partial_slab = slab->next;
 | |
| 
 | |
| 		n2 = get_node(s, slab_nid(slab));
 | |
| 		if (n != n2) {
 | |
| 			if (n)
 | |
| 				spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 
 | |
| 			n = n2;
 | |
| 			spin_lock_irqsave(&n->list_lock, flags);
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
 | |
| 			slab->next = slab_to_discard;
 | |
| 			slab_to_discard = slab;
 | |
| 		} else {
 | |
| 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
 | |
| 			stat(s, FREE_ADD_PARTIAL);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (n)
 | |
| 		spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 
 | |
| 	while (slab_to_discard) {
 | |
| 		slab = slab_to_discard;
 | |
| 		slab_to_discard = slab_to_discard->next;
 | |
| 
 | |
| 		stat(s, DEACTIVATE_EMPTY);
 | |
| 		discard_slab(s, slab);
 | |
| 		stat(s, FREE_SLAB);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Put all the cpu partial slabs to the node partial list.
 | |
|  */
 | |
| static void put_partials(struct kmem_cache *s)
 | |
| {
 | |
| 	struct slab *partial_slab;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_lock_irqsave(&s->cpu_slab->lock, flags);
 | |
| 	partial_slab = this_cpu_read(s->cpu_slab->partial);
 | |
| 	this_cpu_write(s->cpu_slab->partial, NULL);
 | |
| 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
 | |
| 
 | |
| 	if (partial_slab)
 | |
| 		__put_partials(s, partial_slab);
 | |
| }
 | |
| 
 | |
| static void put_partials_cpu(struct kmem_cache *s,
 | |
| 			     struct kmem_cache_cpu *c)
 | |
| {
 | |
| 	struct slab *partial_slab;
 | |
| 
 | |
| 	partial_slab = slub_percpu_partial(c);
 | |
| 	c->partial = NULL;
 | |
| 
 | |
| 	if (partial_slab)
 | |
| 		__put_partials(s, partial_slab);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Put a slab into a partial slab slot if available.
 | |
|  *
 | |
|  * If we did not find a slot then simply move all the partials to the
 | |
|  * per node partial list.
 | |
|  */
 | |
| static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
 | |
| {
 | |
| 	struct slab *oldslab;
 | |
| 	struct slab *slab_to_put = NULL;
 | |
| 	unsigned long flags;
 | |
| 	int slabs = 0;
 | |
| 
 | |
| 	local_lock_irqsave(&s->cpu_slab->lock, flags);
 | |
| 
 | |
| 	oldslab = this_cpu_read(s->cpu_slab->partial);
 | |
| 
 | |
| 	if (oldslab) {
 | |
| 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
 | |
| 			/*
 | |
| 			 * Partial array is full. Move the existing set to the
 | |
| 			 * per node partial list. Postpone the actual unfreezing
 | |
| 			 * outside of the critical section.
 | |
| 			 */
 | |
| 			slab_to_put = oldslab;
 | |
| 			oldslab = NULL;
 | |
| 		} else {
 | |
| 			slabs = oldslab->slabs;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	slabs++;
 | |
| 
 | |
| 	slab->slabs = slabs;
 | |
| 	slab->next = oldslab;
 | |
| 
 | |
| 	this_cpu_write(s->cpu_slab->partial, slab);
 | |
| 
 | |
| 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
 | |
| 
 | |
| 	if (slab_to_put) {
 | |
| 		__put_partials(s, slab_to_put);
 | |
| 		stat(s, CPU_PARTIAL_DRAIN);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else	/* CONFIG_SLUB_CPU_PARTIAL */
 | |
| 
 | |
| static inline void put_partials(struct kmem_cache *s) { }
 | |
| static inline void put_partials_cpu(struct kmem_cache *s,
 | |
| 				    struct kmem_cache_cpu *c) { }
 | |
| 
 | |
| #endif	/* CONFIG_SLUB_CPU_PARTIAL */
 | |
| 
 | |
| static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct slab *slab;
 | |
| 	void *freelist;
 | |
| 
 | |
| 	local_lock_irqsave(&s->cpu_slab->lock, flags);
 | |
| 
 | |
| 	slab = c->slab;
 | |
| 	freelist = c->freelist;
 | |
| 
 | |
| 	c->slab = NULL;
 | |
| 	c->freelist = NULL;
 | |
| 	c->tid = next_tid(c->tid);
 | |
| 
 | |
| 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
 | |
| 
 | |
| 	if (slab) {
 | |
| 		deactivate_slab(s, slab, freelist);
 | |
| 		stat(s, CPUSLAB_FLUSH);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
 | |
| {
 | |
| 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
 | |
| 	void *freelist = c->freelist;
 | |
| 	struct slab *slab = c->slab;
 | |
| 
 | |
| 	c->slab = NULL;
 | |
| 	c->freelist = NULL;
 | |
| 	c->tid = next_tid(c->tid);
 | |
| 
 | |
| 	if (slab) {
 | |
| 		deactivate_slab(s, slab, freelist);
 | |
| 		stat(s, CPUSLAB_FLUSH);
 | |
| 	}
 | |
| 
 | |
| 	put_partials_cpu(s, c);
 | |
| }
 | |
| 
 | |
| struct slub_flush_work {
 | |
| 	struct work_struct work;
 | |
| 	struct kmem_cache *s;
 | |
| 	bool skip;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Flush cpu slab.
 | |
|  *
 | |
|  * Called from CPU work handler with migration disabled.
 | |
|  */
 | |
| static void flush_cpu_slab(struct work_struct *w)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	struct kmem_cache_cpu *c;
 | |
| 	struct slub_flush_work *sfw;
 | |
| 
 | |
| 	sfw = container_of(w, struct slub_flush_work, work);
 | |
| 
 | |
| 	s = sfw->s;
 | |
| 	c = this_cpu_ptr(s->cpu_slab);
 | |
| 
 | |
| 	if (c->slab)
 | |
| 		flush_slab(s, c);
 | |
| 
 | |
| 	put_partials(s);
 | |
| }
 | |
| 
 | |
| static bool has_cpu_slab(int cpu, struct kmem_cache *s)
 | |
| {
 | |
| 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
 | |
| 
 | |
| 	return c->slab || slub_percpu_partial(c);
 | |
| }
 | |
| 
 | |
| static DEFINE_MUTEX(flush_lock);
 | |
| static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
 | |
| 
 | |
| static void flush_all_cpus_locked(struct kmem_cache *s)
 | |
| {
 | |
| 	struct slub_flush_work *sfw;
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	lockdep_assert_cpus_held();
 | |
| 	mutex_lock(&flush_lock);
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		sfw = &per_cpu(slub_flush, cpu);
 | |
| 		if (!has_cpu_slab(cpu, s)) {
 | |
| 			sfw->skip = true;
 | |
| 			continue;
 | |
| 		}
 | |
| 		INIT_WORK(&sfw->work, flush_cpu_slab);
 | |
| 		sfw->skip = false;
 | |
| 		sfw->s = s;
 | |
| 		queue_work_on(cpu, flushwq, &sfw->work);
 | |
| 	}
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		sfw = &per_cpu(slub_flush, cpu);
 | |
| 		if (sfw->skip)
 | |
| 			continue;
 | |
| 		flush_work(&sfw->work);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&flush_lock);
 | |
| }
 | |
| 
 | |
| static void flush_all(struct kmem_cache *s)
 | |
| {
 | |
| 	cpus_read_lock();
 | |
| 	flush_all_cpus_locked(s);
 | |
| 	cpus_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use the cpu notifier to insure that the cpu slabs are flushed when
 | |
|  * necessary.
 | |
|  */
 | |
| static int slub_cpu_dead(unsigned int cpu)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	list_for_each_entry(s, &slab_caches, list)
 | |
| 		__flush_cpu_slab(s, cpu);
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_SLUB_TINY */
 | |
| static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
 | |
| static inline void flush_all(struct kmem_cache *s) { }
 | |
| static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
 | |
| static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
 | |
| #endif /* CONFIG_SLUB_TINY */
 | |
| 
 | |
| /*
 | |
|  * Check if the objects in a per cpu structure fit numa
 | |
|  * locality expectations.
 | |
|  */
 | |
| static inline int node_match(struct slab *slab, int node)
 | |
| {
 | |
| #ifdef CONFIG_NUMA
 | |
| 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
 | |
| 		return 0;
 | |
| #endif
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| static int count_free(struct slab *slab)
 | |
| {
 | |
| 	return slab->objects - slab->inuse;
 | |
| }
 | |
| 
 | |
| static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
 | |
| {
 | |
| 	return atomic_long_read(&n->total_objects);
 | |
| }
 | |
| 
 | |
| /* Supports checking bulk free of a constructed freelist */
 | |
| static inline bool free_debug_processing(struct kmem_cache *s,
 | |
| 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
 | |
| 	unsigned long addr, depot_stack_handle_t handle)
 | |
| {
 | |
| 	bool checks_ok = false;
 | |
| 	void *object = head;
 | |
| 	int cnt = 0;
 | |
| 
 | |
| 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
 | |
| 		if (!check_slab(s, slab))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (slab->inuse < *bulk_cnt) {
 | |
| 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
 | |
| 			 slab->inuse, *bulk_cnt);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| next_object:
 | |
| 
 | |
| 	if (++cnt > *bulk_cnt)
 | |
| 		goto out_cnt;
 | |
| 
 | |
| 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
 | |
| 		if (!free_consistency_checks(s, slab, object, addr))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (s->flags & SLAB_STORE_USER)
 | |
| 		set_track_update(s, object, TRACK_FREE, addr, handle);
 | |
| 	trace(s, slab, object, 0);
 | |
| 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
 | |
| 	init_object(s, object, SLUB_RED_INACTIVE);
 | |
| 
 | |
| 	/* Reached end of constructed freelist yet? */
 | |
| 	if (object != tail) {
 | |
| 		object = get_freepointer(s, object);
 | |
| 		goto next_object;
 | |
| 	}
 | |
| 	checks_ok = true;
 | |
| 
 | |
| out_cnt:
 | |
| 	if (cnt != *bulk_cnt) {
 | |
| 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
 | |
| 			 *bulk_cnt, cnt);
 | |
| 		*bulk_cnt = cnt;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 
 | |
| 	if (!checks_ok)
 | |
| 		slab_fix(s, "Object at 0x%p not freed", object);
 | |
| 
 | |
| 	return checks_ok;
 | |
| }
 | |
| #endif /* CONFIG_SLUB_DEBUG */
 | |
| 
 | |
| #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
 | |
| static unsigned long count_partial(struct kmem_cache_node *n,
 | |
| 					int (*get_count)(struct slab *))
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned long x = 0;
 | |
| 	struct slab *slab;
 | |
| 
 | |
| 	spin_lock_irqsave(&n->list_lock, flags);
 | |
| 	list_for_each_entry(slab, &n->partial, slab_list)
 | |
| 		x += get_count(slab);
 | |
| 	spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 	return x;
 | |
| }
 | |
| #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| static noinline void
 | |
| slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
 | |
| {
 | |
| 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
 | |
| 				      DEFAULT_RATELIMIT_BURST);
 | |
| 	int node;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
 | |
| 		return;
 | |
| 
 | |
| 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
 | |
| 		nid, gfpflags, &gfpflags);
 | |
| 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
 | |
| 		s->name, s->object_size, s->size, oo_order(s->oo),
 | |
| 		oo_order(s->min));
 | |
| 
 | |
| 	if (oo_order(s->min) > get_order(s->object_size))
 | |
| 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
 | |
| 			s->name);
 | |
| 
 | |
| 	for_each_kmem_cache_node(s, node, n) {
 | |
| 		unsigned long nr_slabs;
 | |
| 		unsigned long nr_objs;
 | |
| 		unsigned long nr_free;
 | |
| 
 | |
| 		nr_free  = count_partial(n, count_free);
 | |
| 		nr_slabs = node_nr_slabs(n);
 | |
| 		nr_objs  = node_nr_objs(n);
 | |
| 
 | |
| 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
 | |
| 			node, nr_slabs, nr_objs, nr_free);
 | |
| 	}
 | |
| }
 | |
| #else /* CONFIG_SLUB_DEBUG */
 | |
| static inline void
 | |
| slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
 | |
| #endif
 | |
| 
 | |
| static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
 | |
| {
 | |
| 	if (unlikely(slab_test_pfmemalloc(slab)))
 | |
| 		return gfp_pfmemalloc_allowed(gfpflags);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SLUB_TINY
 | |
| static inline bool
 | |
| __update_cpu_freelist_fast(struct kmem_cache *s,
 | |
| 			   void *freelist_old, void *freelist_new,
 | |
| 			   unsigned long tid)
 | |
| {
 | |
| 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
 | |
| 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
 | |
| 
 | |
| 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
 | |
| 					     &old.full, new.full);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check the slab->freelist and either transfer the freelist to the
 | |
|  * per cpu freelist or deactivate the slab.
 | |
|  *
 | |
|  * The slab is still frozen if the return value is not NULL.
 | |
|  *
 | |
|  * If this function returns NULL then the slab has been unfrozen.
 | |
|  */
 | |
| static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
 | |
| {
 | |
| 	struct slab new;
 | |
| 	unsigned long counters;
 | |
| 	void *freelist;
 | |
| 
 | |
| 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
 | |
| 
 | |
| 	do {
 | |
| 		freelist = slab->freelist;
 | |
| 		counters = slab->counters;
 | |
| 
 | |
| 		new.counters = counters;
 | |
| 
 | |
| 		new.inuse = slab->objects;
 | |
| 		new.frozen = freelist != NULL;
 | |
| 
 | |
| 	} while (!__slab_update_freelist(s, slab,
 | |
| 		freelist, counters,
 | |
| 		NULL, new.counters,
 | |
| 		"get_freelist"));
 | |
| 
 | |
| 	return freelist;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Freeze the partial slab and return the pointer to the freelist.
 | |
|  */
 | |
| static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
 | |
| {
 | |
| 	struct slab new;
 | |
| 	unsigned long counters;
 | |
| 	void *freelist;
 | |
| 
 | |
| 	do {
 | |
| 		freelist = slab->freelist;
 | |
| 		counters = slab->counters;
 | |
| 
 | |
| 		new.counters = counters;
 | |
| 		VM_BUG_ON(new.frozen);
 | |
| 
 | |
| 		new.inuse = slab->objects;
 | |
| 		new.frozen = 1;
 | |
| 
 | |
| 	} while (!slab_update_freelist(s, slab,
 | |
| 		freelist, counters,
 | |
| 		NULL, new.counters,
 | |
| 		"freeze_slab"));
 | |
| 
 | |
| 	return freelist;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Slow path. The lockless freelist is empty or we need to perform
 | |
|  * debugging duties.
 | |
|  *
 | |
|  * Processing is still very fast if new objects have been freed to the
 | |
|  * regular freelist. In that case we simply take over the regular freelist
 | |
|  * as the lockless freelist and zap the regular freelist.
 | |
|  *
 | |
|  * If that is not working then we fall back to the partial lists. We take the
 | |
|  * first element of the freelist as the object to allocate now and move the
 | |
|  * rest of the freelist to the lockless freelist.
 | |
|  *
 | |
|  * And if we were unable to get a new slab from the partial slab lists then
 | |
|  * we need to allocate a new slab. This is the slowest path since it involves
 | |
|  * a call to the page allocator and the setup of a new slab.
 | |
|  *
 | |
|  * Version of __slab_alloc to use when we know that preemption is
 | |
|  * already disabled (which is the case for bulk allocation).
 | |
|  */
 | |
| static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
 | |
| 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
 | |
| {
 | |
| 	void *freelist;
 | |
| 	struct slab *slab;
 | |
| 	unsigned long flags;
 | |
| 	struct partial_context pc;
 | |
| 
 | |
| 	stat(s, ALLOC_SLOWPATH);
 | |
| 
 | |
| reread_slab:
 | |
| 
 | |
| 	slab = READ_ONCE(c->slab);
 | |
| 	if (!slab) {
 | |
| 		/*
 | |
| 		 * if the node is not online or has no normal memory, just
 | |
| 		 * ignore the node constraint
 | |
| 		 */
 | |
| 		if (unlikely(node != NUMA_NO_NODE &&
 | |
| 			     !node_isset(node, slab_nodes)))
 | |
| 			node = NUMA_NO_NODE;
 | |
| 		goto new_slab;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!node_match(slab, node))) {
 | |
| 		/*
 | |
| 		 * same as above but node_match() being false already
 | |
| 		 * implies node != NUMA_NO_NODE
 | |
| 		 */
 | |
| 		if (!node_isset(node, slab_nodes)) {
 | |
| 			node = NUMA_NO_NODE;
 | |
| 		} else {
 | |
| 			stat(s, ALLOC_NODE_MISMATCH);
 | |
| 			goto deactivate_slab;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * By rights, we should be searching for a slab page that was
 | |
| 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
 | |
| 	 * information when the page leaves the per-cpu allocator
 | |
| 	 */
 | |
| 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
 | |
| 		goto deactivate_slab;
 | |
| 
 | |
| 	/* must check again c->slab in case we got preempted and it changed */
 | |
| 	local_lock_irqsave(&s->cpu_slab->lock, flags);
 | |
| 	if (unlikely(slab != c->slab)) {
 | |
| 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
 | |
| 		goto reread_slab;
 | |
| 	}
 | |
| 	freelist = c->freelist;
 | |
| 	if (freelist)
 | |
| 		goto load_freelist;
 | |
| 
 | |
| 	freelist = get_freelist(s, slab);
 | |
| 
 | |
| 	if (!freelist) {
 | |
| 		c->slab = NULL;
 | |
| 		c->tid = next_tid(c->tid);
 | |
| 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
 | |
| 		stat(s, DEACTIVATE_BYPASS);
 | |
| 		goto new_slab;
 | |
| 	}
 | |
| 
 | |
| 	stat(s, ALLOC_REFILL);
 | |
| 
 | |
| load_freelist:
 | |
| 
 | |
| 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
 | |
| 
 | |
| 	/*
 | |
| 	 * freelist is pointing to the list of objects to be used.
 | |
| 	 * slab is pointing to the slab from which the objects are obtained.
 | |
| 	 * That slab must be frozen for per cpu allocations to work.
 | |
| 	 */
 | |
| 	VM_BUG_ON(!c->slab->frozen);
 | |
| 	c->freelist = get_freepointer(s, freelist);
 | |
| 	c->tid = next_tid(c->tid);
 | |
| 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
 | |
| 	return freelist;
 | |
| 
 | |
| deactivate_slab:
 | |
| 
 | |
| 	local_lock_irqsave(&s->cpu_slab->lock, flags);
 | |
| 	if (slab != c->slab) {
 | |
| 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
 | |
| 		goto reread_slab;
 | |
| 	}
 | |
| 	freelist = c->freelist;
 | |
| 	c->slab = NULL;
 | |
| 	c->freelist = NULL;
 | |
| 	c->tid = next_tid(c->tid);
 | |
| 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
 | |
| 	deactivate_slab(s, slab, freelist);
 | |
| 
 | |
| new_slab:
 | |
| 
 | |
| #ifdef CONFIG_SLUB_CPU_PARTIAL
 | |
| 	while (slub_percpu_partial(c)) {
 | |
| 		local_lock_irqsave(&s->cpu_slab->lock, flags);
 | |
| 		if (unlikely(c->slab)) {
 | |
| 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
 | |
| 			goto reread_slab;
 | |
| 		}
 | |
| 		if (unlikely(!slub_percpu_partial(c))) {
 | |
| 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
 | |
| 			/* we were preempted and partial list got empty */
 | |
| 			goto new_objects;
 | |
| 		}
 | |
| 
 | |
| 		slab = slub_percpu_partial(c);
 | |
| 		slub_set_percpu_partial(c, slab);
 | |
| 
 | |
| 		if (likely(node_match(slab, node) &&
 | |
| 			   pfmemalloc_match(slab, gfpflags))) {
 | |
| 			c->slab = slab;
 | |
| 			freelist = get_freelist(s, slab);
 | |
| 			VM_BUG_ON(!freelist);
 | |
| 			stat(s, CPU_PARTIAL_ALLOC);
 | |
| 			goto load_freelist;
 | |
| 		}
 | |
| 
 | |
| 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
 | |
| 
 | |
| 		slab->next = NULL;
 | |
| 		__put_partials(s, slab);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| new_objects:
 | |
| 
 | |
| 	pc.flags = gfpflags;
 | |
| 	pc.orig_size = orig_size;
 | |
| 	slab = get_partial(s, node, &pc);
 | |
| 	if (slab) {
 | |
| 		if (kmem_cache_debug(s)) {
 | |
| 			freelist = pc.object;
 | |
| 			/*
 | |
| 			 * For debug caches here we had to go through
 | |
| 			 * alloc_single_from_partial() so just store the
 | |
| 			 * tracking info and return the object.
 | |
| 			 */
 | |
| 			if (s->flags & SLAB_STORE_USER)
 | |
| 				set_track(s, freelist, TRACK_ALLOC, addr);
 | |
| 
 | |
| 			return freelist;
 | |
| 		}
 | |
| 
 | |
| 		freelist = freeze_slab(s, slab);
 | |
| 		goto retry_load_slab;
 | |
| 	}
 | |
| 
 | |
| 	slub_put_cpu_ptr(s->cpu_slab);
 | |
| 	slab = new_slab(s, gfpflags, node);
 | |
| 	c = slub_get_cpu_ptr(s->cpu_slab);
 | |
| 
 | |
| 	if (unlikely(!slab)) {
 | |
| 		slab_out_of_memory(s, gfpflags, node);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	stat(s, ALLOC_SLAB);
 | |
| 
 | |
| 	if (kmem_cache_debug(s)) {
 | |
| 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
 | |
| 
 | |
| 		if (unlikely(!freelist))
 | |
| 			goto new_objects;
 | |
| 
 | |
| 		if (s->flags & SLAB_STORE_USER)
 | |
| 			set_track(s, freelist, TRACK_ALLOC, addr);
 | |
| 
 | |
| 		return freelist;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * No other reference to the slab yet so we can
 | |
| 	 * muck around with it freely without cmpxchg
 | |
| 	 */
 | |
| 	freelist = slab->freelist;
 | |
| 	slab->freelist = NULL;
 | |
| 	slab->inuse = slab->objects;
 | |
| 	slab->frozen = 1;
 | |
| 
 | |
| 	inc_slabs_node(s, slab_nid(slab), slab->objects);
 | |
| 
 | |
| 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
 | |
| 		/*
 | |
| 		 * For !pfmemalloc_match() case we don't load freelist so that
 | |
| 		 * we don't make further mismatched allocations easier.
 | |
| 		 */
 | |
| 		deactivate_slab(s, slab, get_freepointer(s, freelist));
 | |
| 		return freelist;
 | |
| 	}
 | |
| 
 | |
| retry_load_slab:
 | |
| 
 | |
| 	local_lock_irqsave(&s->cpu_slab->lock, flags);
 | |
| 	if (unlikely(c->slab)) {
 | |
| 		void *flush_freelist = c->freelist;
 | |
| 		struct slab *flush_slab = c->slab;
 | |
| 
 | |
| 		c->slab = NULL;
 | |
| 		c->freelist = NULL;
 | |
| 		c->tid = next_tid(c->tid);
 | |
| 
 | |
| 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
 | |
| 
 | |
| 		deactivate_slab(s, flush_slab, flush_freelist);
 | |
| 
 | |
| 		stat(s, CPUSLAB_FLUSH);
 | |
| 
 | |
| 		goto retry_load_slab;
 | |
| 	}
 | |
| 	c->slab = slab;
 | |
| 
 | |
| 	goto load_freelist;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
 | |
|  * disabled. Compensates for possible cpu changes by refetching the per cpu area
 | |
|  * pointer.
 | |
|  */
 | |
| static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
 | |
| 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
 | |
| {
 | |
| 	void *p;
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT_COUNT
 | |
| 	/*
 | |
| 	 * We may have been preempted and rescheduled on a different
 | |
| 	 * cpu before disabling preemption. Need to reload cpu area
 | |
| 	 * pointer.
 | |
| 	 */
 | |
| 	c = slub_get_cpu_ptr(s->cpu_slab);
 | |
| #endif
 | |
| 
 | |
| 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
 | |
| #ifdef CONFIG_PREEMPT_COUNT
 | |
| 	slub_put_cpu_ptr(s->cpu_slab);
 | |
| #endif
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
 | |
| 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
 | |
| {
 | |
| 	struct kmem_cache_cpu *c;
 | |
| 	struct slab *slab;
 | |
| 	unsigned long tid;
 | |
| 	void *object;
 | |
| 
 | |
| redo:
 | |
| 	/*
 | |
| 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
 | |
| 	 * enabled. We may switch back and forth between cpus while
 | |
| 	 * reading from one cpu area. That does not matter as long
 | |
| 	 * as we end up on the original cpu again when doing the cmpxchg.
 | |
| 	 *
 | |
| 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
 | |
| 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
 | |
| 	 * the tid. If we are preempted and switched to another cpu between the
 | |
| 	 * two reads, it's OK as the two are still associated with the same cpu
 | |
| 	 * and cmpxchg later will validate the cpu.
 | |
| 	 */
 | |
| 	c = raw_cpu_ptr(s->cpu_slab);
 | |
| 	tid = READ_ONCE(c->tid);
 | |
| 
 | |
| 	/*
 | |
| 	 * Irqless object alloc/free algorithm used here depends on sequence
 | |
| 	 * of fetching cpu_slab's data. tid should be fetched before anything
 | |
| 	 * on c to guarantee that object and slab associated with previous tid
 | |
| 	 * won't be used with current tid. If we fetch tid first, object and
 | |
| 	 * slab could be one associated with next tid and our alloc/free
 | |
| 	 * request will be failed. In this case, we will retry. So, no problem.
 | |
| 	 */
 | |
| 	barrier();
 | |
| 
 | |
| 	/*
 | |
| 	 * The transaction ids are globally unique per cpu and per operation on
 | |
| 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
 | |
| 	 * occurs on the right processor and that there was no operation on the
 | |
| 	 * linked list in between.
 | |
| 	 */
 | |
| 
 | |
| 	object = c->freelist;
 | |
| 	slab = c->slab;
 | |
| 
 | |
| 	if (!USE_LOCKLESS_FAST_PATH() ||
 | |
| 	    unlikely(!object || !slab || !node_match(slab, node))) {
 | |
| 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
 | |
| 	} else {
 | |
| 		void *next_object = get_freepointer_safe(s, object);
 | |
| 
 | |
| 		/*
 | |
| 		 * The cmpxchg will only match if there was no additional
 | |
| 		 * operation and if we are on the right processor.
 | |
| 		 *
 | |
| 		 * The cmpxchg does the following atomically (without lock
 | |
| 		 * semantics!)
 | |
| 		 * 1. Relocate first pointer to the current per cpu area.
 | |
| 		 * 2. Verify that tid and freelist have not been changed
 | |
| 		 * 3. If they were not changed replace tid and freelist
 | |
| 		 *
 | |
| 		 * Since this is without lock semantics the protection is only
 | |
| 		 * against code executing on this cpu *not* from access by
 | |
| 		 * other cpus.
 | |
| 		 */
 | |
| 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
 | |
| 			note_cmpxchg_failure("slab_alloc", s, tid);
 | |
| 			goto redo;
 | |
| 		}
 | |
| 		prefetch_freepointer(s, next_object);
 | |
| 		stat(s, ALLOC_FASTPATH);
 | |
| 	}
 | |
| 
 | |
| 	return object;
 | |
| }
 | |
| #else /* CONFIG_SLUB_TINY */
 | |
| static void *__slab_alloc_node(struct kmem_cache *s,
 | |
| 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
 | |
| {
 | |
| 	struct partial_context pc;
 | |
| 	struct slab *slab;
 | |
| 	void *object;
 | |
| 
 | |
| 	pc.flags = gfpflags;
 | |
| 	pc.orig_size = orig_size;
 | |
| 	slab = get_partial(s, node, &pc);
 | |
| 
 | |
| 	if (slab)
 | |
| 		return pc.object;
 | |
| 
 | |
| 	slab = new_slab(s, gfpflags, node);
 | |
| 	if (unlikely(!slab)) {
 | |
| 		slab_out_of_memory(s, gfpflags, node);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	object = alloc_single_from_new_slab(s, slab, orig_size);
 | |
| 
 | |
| 	return object;
 | |
| }
 | |
| #endif /* CONFIG_SLUB_TINY */
 | |
| 
 | |
| /*
 | |
|  * If the object has been wiped upon free, make sure it's fully initialized by
 | |
|  * zeroing out freelist pointer.
 | |
|  */
 | |
| static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
 | |
| 						   void *obj)
 | |
| {
 | |
| 	if (unlikely(slab_want_init_on_free(s)) && obj)
 | |
| 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
 | |
| 			0, sizeof(void *));
 | |
| }
 | |
| 
 | |
| noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
 | |
| {
 | |
| 	if (__should_failslab(s, gfpflags))
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
 | |
| 
 | |
| static __fastpath_inline
 | |
| struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
 | |
| 				       struct list_lru *lru,
 | |
| 				       struct obj_cgroup **objcgp,
 | |
| 				       size_t size, gfp_t flags)
 | |
| {
 | |
| 	flags &= gfp_allowed_mask;
 | |
| 
 | |
| 	might_alloc(flags);
 | |
| 
 | |
| 	if (unlikely(should_failslab(s, flags)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (unlikely(!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| static __fastpath_inline
 | |
| void slab_post_alloc_hook(struct kmem_cache *s,	struct obj_cgroup *objcg,
 | |
| 			  gfp_t flags, size_t size, void **p, bool init,
 | |
| 			  unsigned int orig_size)
 | |
| {
 | |
| 	unsigned int zero_size = s->object_size;
 | |
| 	bool kasan_init = init;
 | |
| 	size_t i;
 | |
| 	gfp_t init_flags = flags & gfp_allowed_mask;
 | |
| 
 | |
| 	/*
 | |
| 	 * For kmalloc object, the allocated memory size(object_size) is likely
 | |
| 	 * larger than the requested size(orig_size). If redzone check is
 | |
| 	 * enabled for the extra space, don't zero it, as it will be redzoned
 | |
| 	 * soon. The redzone operation for this extra space could be seen as a
 | |
| 	 * replacement of current poisoning under certain debug option, and
 | |
| 	 * won't break other sanity checks.
 | |
| 	 */
 | |
| 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
 | |
| 	    (s->flags & SLAB_KMALLOC))
 | |
| 		zero_size = orig_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * When slab_debug is enabled, avoid memory initialization integrated
 | |
| 	 * into KASAN and instead zero out the memory via the memset below with
 | |
| 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
 | |
| 	 * cause false-positive reports. This does not lead to a performance
 | |
| 	 * penalty on production builds, as slab_debug is not intended to be
 | |
| 	 * enabled there.
 | |
| 	 */
 | |
| 	if (__slub_debug_enabled())
 | |
| 		kasan_init = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * As memory initialization might be integrated into KASAN,
 | |
| 	 * kasan_slab_alloc and initialization memset must be
 | |
| 	 * kept together to avoid discrepancies in behavior.
 | |
| 	 *
 | |
| 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
 | |
| 	 */
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
 | |
| 		if (p[i] && init && (!kasan_init ||
 | |
| 				     !kasan_has_integrated_init()))
 | |
| 			memset(p[i], 0, zero_size);
 | |
| 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
 | |
| 					 s->flags, init_flags);
 | |
| 		kmsan_slab_alloc(s, p[i], init_flags);
 | |
| 	}
 | |
| 
 | |
| 	memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 | |
|  * have the fastpath folded into their functions. So no function call
 | |
|  * overhead for requests that can be satisfied on the fastpath.
 | |
|  *
 | |
|  * The fastpath works by first checking if the lockless freelist can be used.
 | |
|  * If not then __slab_alloc is called for slow processing.
 | |
|  *
 | |
|  * Otherwise we can simply pick the next object from the lockless free list.
 | |
|  */
 | |
| static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
 | |
| 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
 | |
| {
 | |
| 	void *object;
 | |
| 	struct obj_cgroup *objcg = NULL;
 | |
| 	bool init = false;
 | |
| 
 | |
| 	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
 | |
| 	if (unlikely(!s))
 | |
| 		return NULL;
 | |
| 
 | |
| 	object = kfence_alloc(s, orig_size, gfpflags);
 | |
| 	if (unlikely(object))
 | |
| 		goto out;
 | |
| 
 | |
| 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
 | |
| 
 | |
| 	maybe_wipe_obj_freeptr(s, object);
 | |
| 	init = slab_want_init_on_alloc(gfpflags, s);
 | |
| 
 | |
| out:
 | |
| 	/*
 | |
| 	 * When init equals 'true', like for kzalloc() family, only
 | |
| 	 * @orig_size bytes might be zeroed instead of s->object_size
 | |
| 	 */
 | |
| 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
 | |
| 
 | |
| 	return object;
 | |
| }
 | |
| 
 | |
| void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
 | |
| {
 | |
| 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
 | |
| 				    s->object_size);
 | |
| 
 | |
| 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc);
 | |
| 
 | |
| void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
 | |
| 			   gfp_t gfpflags)
 | |
| {
 | |
| 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
 | |
| 				    s->object_size);
 | |
| 
 | |
| 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc_lru);
 | |
| 
 | |
| /**
 | |
|  * kmem_cache_alloc_node - Allocate an object on the specified node
 | |
|  * @s: The cache to allocate from.
 | |
|  * @gfpflags: See kmalloc().
 | |
|  * @node: node number of the target node.
 | |
|  *
 | |
|  * Identical to kmem_cache_alloc but it will allocate memory on the given
 | |
|  * node, which can improve the performance for cpu bound structures.
 | |
|  *
 | |
|  * Fallback to other node is possible if __GFP_THISNODE is not set.
 | |
|  *
 | |
|  * Return: pointer to the new object or %NULL in case of error
 | |
|  */
 | |
| void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
 | |
| {
 | |
| 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
 | |
| 
 | |
| 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc_node);
 | |
| 
 | |
| /*
 | |
|  * To avoid unnecessary overhead, we pass through large allocation requests
 | |
|  * directly to the page allocator. We use __GFP_COMP, because we will need to
 | |
|  * know the allocation order to free the pages properly in kfree.
 | |
|  */
 | |
| static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
 | |
| {
 | |
| 	struct folio *folio;
 | |
| 	void *ptr = NULL;
 | |
| 	unsigned int order = get_order(size);
 | |
| 
 | |
| 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
 | |
| 		flags = kmalloc_fix_flags(flags);
 | |
| 
 | |
| 	flags |= __GFP_COMP;
 | |
| 	folio = (struct folio *)alloc_pages_node(node, flags, order);
 | |
| 	if (folio) {
 | |
| 		ptr = folio_address(folio);
 | |
| 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
 | |
| 				      PAGE_SIZE << order);
 | |
| 	}
 | |
| 
 | |
| 	ptr = kasan_kmalloc_large(ptr, size, flags);
 | |
| 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
 | |
| 	kmemleak_alloc(ptr, size, 1, flags);
 | |
| 	kmsan_kmalloc_large(ptr, size, flags);
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| void *kmalloc_large(size_t size, gfp_t flags)
 | |
| {
 | |
| 	void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
 | |
| 
 | |
| 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
 | |
| 		      flags, NUMA_NO_NODE);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmalloc_large);
 | |
| 
 | |
| void *kmalloc_large_node(size_t size, gfp_t flags, int node)
 | |
| {
 | |
| 	void *ret = __kmalloc_large_node(size, flags, node);
 | |
| 
 | |
| 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
 | |
| 		      flags, node);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmalloc_large_node);
 | |
| 
 | |
| static __always_inline
 | |
| void *__do_kmalloc_node(size_t size, gfp_t flags, int node,
 | |
| 			unsigned long caller)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
 | |
| 		ret = __kmalloc_large_node(size, flags, node);
 | |
| 		trace_kmalloc(caller, ret, size,
 | |
| 			      PAGE_SIZE << get_order(size), flags, node);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!size))
 | |
| 		return ZERO_SIZE_PTR;
 | |
| 
 | |
| 	s = kmalloc_slab(size, flags, caller);
 | |
| 
 | |
| 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
 | |
| 	ret = kasan_kmalloc(s, ret, size, flags);
 | |
| 	trace_kmalloc(caller, ret, size, s->size, flags, node);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void *__kmalloc_node(size_t size, gfp_t flags, int node)
 | |
| {
 | |
| 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
 | |
| }
 | |
| EXPORT_SYMBOL(__kmalloc_node);
 | |
| 
 | |
| void *__kmalloc(size_t size, gfp_t flags)
 | |
| {
 | |
| 	return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
 | |
| }
 | |
| EXPORT_SYMBOL(__kmalloc);
 | |
| 
 | |
| void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
 | |
| 				  int node, unsigned long caller)
 | |
| {
 | |
| 	return __do_kmalloc_node(size, flags, node, caller);
 | |
| }
 | |
| EXPORT_SYMBOL(__kmalloc_node_track_caller);
 | |
| 
 | |
| void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
 | |
| {
 | |
| 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
 | |
| 					    _RET_IP_, size);
 | |
| 
 | |
| 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
 | |
| 
 | |
| 	ret = kasan_kmalloc(s, ret, size, gfpflags);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmalloc_trace);
 | |
| 
 | |
| void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
 | |
| 			 int node, size_t size)
 | |
| {
 | |
| 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
 | |
| 
 | |
| 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
 | |
| 
 | |
| 	ret = kasan_kmalloc(s, ret, size, gfpflags);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmalloc_node_trace);
 | |
| 
 | |
| static noinline void free_to_partial_list(
 | |
| 	struct kmem_cache *s, struct slab *slab,
 | |
| 	void *head, void *tail, int bulk_cnt,
 | |
| 	unsigned long addr)
 | |
| {
 | |
| 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
 | |
| 	struct slab *slab_free = NULL;
 | |
| 	int cnt = bulk_cnt;
 | |
| 	unsigned long flags;
 | |
| 	depot_stack_handle_t handle = 0;
 | |
| 
 | |
| 	if (s->flags & SLAB_STORE_USER)
 | |
| 		handle = set_track_prepare();
 | |
| 
 | |
| 	spin_lock_irqsave(&n->list_lock, flags);
 | |
| 
 | |
| 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
 | |
| 		void *prior = slab->freelist;
 | |
| 
 | |
| 		/* Perform the actual freeing while we still hold the locks */
 | |
| 		slab->inuse -= cnt;
 | |
| 		set_freepointer(s, tail, prior);
 | |
| 		slab->freelist = head;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the slab is empty, and node's partial list is full,
 | |
| 		 * it should be discarded anyway no matter it's on full or
 | |
| 		 * partial list.
 | |
| 		 */
 | |
| 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
 | |
| 			slab_free = slab;
 | |
| 
 | |
| 		if (!prior) {
 | |
| 			/* was on full list */
 | |
| 			remove_full(s, n, slab);
 | |
| 			if (!slab_free) {
 | |
| 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
 | |
| 				stat(s, FREE_ADD_PARTIAL);
 | |
| 			}
 | |
| 		} else if (slab_free) {
 | |
| 			remove_partial(n, slab);
 | |
| 			stat(s, FREE_REMOVE_PARTIAL);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (slab_free) {
 | |
| 		/*
 | |
| 		 * Update the counters while still holding n->list_lock to
 | |
| 		 * prevent spurious validation warnings
 | |
| 		 */
 | |
| 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 
 | |
| 	if (slab_free) {
 | |
| 		stat(s, FREE_SLAB);
 | |
| 		free_slab(s, slab_free);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Slow path handling. This may still be called frequently since objects
 | |
|  * have a longer lifetime than the cpu slabs in most processing loads.
 | |
|  *
 | |
|  * So we still attempt to reduce cache line usage. Just take the slab
 | |
|  * lock and free the item. If there is no additional partial slab
 | |
|  * handling required then we can return immediately.
 | |
|  */
 | |
| static void __slab_free(struct kmem_cache *s, struct slab *slab,
 | |
| 			void *head, void *tail, int cnt,
 | |
| 			unsigned long addr)
 | |
| 
 | |
| {
 | |
| 	void *prior;
 | |
| 	int was_frozen;
 | |
| 	struct slab new;
 | |
| 	unsigned long counters;
 | |
| 	struct kmem_cache_node *n = NULL;
 | |
| 	unsigned long flags;
 | |
| 	bool on_node_partial;
 | |
| 
 | |
| 	stat(s, FREE_SLOWPATH);
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
 | |
| 		free_to_partial_list(s, slab, head, tail, cnt, addr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		if (unlikely(n)) {
 | |
| 			spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 			n = NULL;
 | |
| 		}
 | |
| 		prior = slab->freelist;
 | |
| 		counters = slab->counters;
 | |
| 		set_freepointer(s, tail, prior);
 | |
| 		new.counters = counters;
 | |
| 		was_frozen = new.frozen;
 | |
| 		new.inuse -= cnt;
 | |
| 		if ((!new.inuse || !prior) && !was_frozen) {
 | |
| 			/* Needs to be taken off a list */
 | |
| 			if (!kmem_cache_has_cpu_partial(s) || prior) {
 | |
| 
 | |
| 				n = get_node(s, slab_nid(slab));
 | |
| 				/*
 | |
| 				 * Speculatively acquire the list_lock.
 | |
| 				 * If the cmpxchg does not succeed then we may
 | |
| 				 * drop the list_lock without any processing.
 | |
| 				 *
 | |
| 				 * Otherwise the list_lock will synchronize with
 | |
| 				 * other processors updating the list of slabs.
 | |
| 				 */
 | |
| 				spin_lock_irqsave(&n->list_lock, flags);
 | |
| 
 | |
| 				on_node_partial = slab_test_node_partial(slab);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	} while (!slab_update_freelist(s, slab,
 | |
| 		prior, counters,
 | |
| 		head, new.counters,
 | |
| 		"__slab_free"));
 | |
| 
 | |
| 	if (likely(!n)) {
 | |
| 
 | |
| 		if (likely(was_frozen)) {
 | |
| 			/*
 | |
| 			 * The list lock was not taken therefore no list
 | |
| 			 * activity can be necessary.
 | |
| 			 */
 | |
| 			stat(s, FREE_FROZEN);
 | |
| 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
 | |
| 			/*
 | |
| 			 * If we started with a full slab then put it onto the
 | |
| 			 * per cpu partial list.
 | |
| 			 */
 | |
| 			put_cpu_partial(s, slab, 1);
 | |
| 			stat(s, CPU_PARTIAL_FREE);
 | |
| 		}
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This slab was partially empty but not on the per-node partial list,
 | |
| 	 * in which case we shouldn't manipulate its list, just return.
 | |
| 	 */
 | |
| 	if (prior && !on_node_partial) {
 | |
| 		spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
 | |
| 		goto slab_empty;
 | |
| 
 | |
| 	/*
 | |
| 	 * Objects left in the slab. If it was not on the partial list before
 | |
| 	 * then add it.
 | |
| 	 */
 | |
| 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
 | |
| 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
 | |
| 		stat(s, FREE_ADD_PARTIAL);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 	return;
 | |
| 
 | |
| slab_empty:
 | |
| 	if (prior) {
 | |
| 		/*
 | |
| 		 * Slab on the partial list.
 | |
| 		 */
 | |
| 		remove_partial(n, slab);
 | |
| 		stat(s, FREE_REMOVE_PARTIAL);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 	stat(s, FREE_SLAB);
 | |
| 	discard_slab(s, slab);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SLUB_TINY
 | |
| /*
 | |
|  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 | |
|  * can perform fastpath freeing without additional function calls.
 | |
|  *
 | |
|  * The fastpath is only possible if we are freeing to the current cpu slab
 | |
|  * of this processor. This typically the case if we have just allocated
 | |
|  * the item before.
 | |
|  *
 | |
|  * If fastpath is not possible then fall back to __slab_free where we deal
 | |
|  * with all sorts of special processing.
 | |
|  *
 | |
|  * Bulk free of a freelist with several objects (all pointing to the
 | |
|  * same slab) possible by specifying head and tail ptr, plus objects
 | |
|  * count (cnt). Bulk free indicated by tail pointer being set.
 | |
|  */
 | |
| static __always_inline void do_slab_free(struct kmem_cache *s,
 | |
| 				struct slab *slab, void *head, void *tail,
 | |
| 				int cnt, unsigned long addr)
 | |
| {
 | |
| 	struct kmem_cache_cpu *c;
 | |
| 	unsigned long tid;
 | |
| 	void **freelist;
 | |
| 
 | |
| redo:
 | |
| 	/*
 | |
| 	 * Determine the currently cpus per cpu slab.
 | |
| 	 * The cpu may change afterward. However that does not matter since
 | |
| 	 * data is retrieved via this pointer. If we are on the same cpu
 | |
| 	 * during the cmpxchg then the free will succeed.
 | |
| 	 */
 | |
| 	c = raw_cpu_ptr(s->cpu_slab);
 | |
| 	tid = READ_ONCE(c->tid);
 | |
| 
 | |
| 	/* Same with comment on barrier() in slab_alloc_node() */
 | |
| 	barrier();
 | |
| 
 | |
| 	if (unlikely(slab != c->slab)) {
 | |
| 		__slab_free(s, slab, head, tail, cnt, addr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (USE_LOCKLESS_FAST_PATH()) {
 | |
| 		freelist = READ_ONCE(c->freelist);
 | |
| 
 | |
| 		set_freepointer(s, tail, freelist);
 | |
| 
 | |
| 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
 | |
| 			note_cmpxchg_failure("slab_free", s, tid);
 | |
| 			goto redo;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Update the free list under the local lock */
 | |
| 		local_lock(&s->cpu_slab->lock);
 | |
| 		c = this_cpu_ptr(s->cpu_slab);
 | |
| 		if (unlikely(slab != c->slab)) {
 | |
| 			local_unlock(&s->cpu_slab->lock);
 | |
| 			goto redo;
 | |
| 		}
 | |
| 		tid = c->tid;
 | |
| 		freelist = c->freelist;
 | |
| 
 | |
| 		set_freepointer(s, tail, freelist);
 | |
| 		c->freelist = head;
 | |
| 		c->tid = next_tid(tid);
 | |
| 
 | |
| 		local_unlock(&s->cpu_slab->lock);
 | |
| 	}
 | |
| 	stat_add(s, FREE_FASTPATH, cnt);
 | |
| }
 | |
| #else /* CONFIG_SLUB_TINY */
 | |
| static void do_slab_free(struct kmem_cache *s,
 | |
| 				struct slab *slab, void *head, void *tail,
 | |
| 				int cnt, unsigned long addr)
 | |
| {
 | |
| 	__slab_free(s, slab, head, tail, cnt, addr);
 | |
| }
 | |
| #endif /* CONFIG_SLUB_TINY */
 | |
| 
 | |
| static __fastpath_inline
 | |
| void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
 | |
| 	       unsigned long addr)
 | |
| {
 | |
| 	memcg_slab_free_hook(s, slab, &object, 1);
 | |
| 
 | |
| 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
 | |
| 		do_slab_free(s, slab, object, object, 1, addr);
 | |
| }
 | |
| 
 | |
| static __fastpath_inline
 | |
| void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
 | |
| 		    void *tail, void **p, int cnt, unsigned long addr)
 | |
| {
 | |
| 	memcg_slab_free_hook(s, slab, p, cnt);
 | |
| 	/*
 | |
| 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
 | |
| 	 * to remove objects, whose reuse must be delayed.
 | |
| 	 */
 | |
| 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
 | |
| 		do_slab_free(s, slab, head, tail, cnt, addr);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KASAN_GENERIC
 | |
| void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
 | |
| {
 | |
| 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline struct kmem_cache *virt_to_cache(const void *obj)
 | |
| {
 | |
| 	struct slab *slab;
 | |
| 
 | |
| 	slab = virt_to_slab(obj);
 | |
| 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
 | |
| 		return NULL;
 | |
| 	return slab->slab_cache;
 | |
| }
 | |
| 
 | |
| static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
 | |
| {
 | |
| 	struct kmem_cache *cachep;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
 | |
| 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
 | |
| 		return s;
 | |
| 
 | |
| 	cachep = virt_to_cache(x);
 | |
| 	if (WARN(cachep && cachep != s,
 | |
| 		 "%s: Wrong slab cache. %s but object is from %s\n",
 | |
| 		 __func__, s->name, cachep->name))
 | |
| 		print_tracking(cachep, x);
 | |
| 	return cachep;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kmem_cache_free - Deallocate an object
 | |
|  * @s: The cache the allocation was from.
 | |
|  * @x: The previously allocated object.
 | |
|  *
 | |
|  * Free an object which was previously allocated from this
 | |
|  * cache.
 | |
|  */
 | |
| void kmem_cache_free(struct kmem_cache *s, void *x)
 | |
| {
 | |
| 	s = cache_from_obj(s, x);
 | |
| 	if (!s)
 | |
| 		return;
 | |
| 	trace_kmem_cache_free(_RET_IP_, x, s);
 | |
| 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_free);
 | |
| 
 | |
| static void free_large_kmalloc(struct folio *folio, void *object)
 | |
| {
 | |
| 	unsigned int order = folio_order(folio);
 | |
| 
 | |
| 	if (WARN_ON_ONCE(order == 0))
 | |
| 		pr_warn_once("object pointer: 0x%p\n", object);
 | |
| 
 | |
| 	kmemleak_free(object);
 | |
| 	kasan_kfree_large(object);
 | |
| 	kmsan_kfree_large(object);
 | |
| 
 | |
| 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
 | |
| 			      -(PAGE_SIZE << order));
 | |
| 	folio_put(folio);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kfree - free previously allocated memory
 | |
|  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
 | |
|  *
 | |
|  * If @object is NULL, no operation is performed.
 | |
|  */
 | |
| void kfree(const void *object)
 | |
| {
 | |
| 	struct folio *folio;
 | |
| 	struct slab *slab;
 | |
| 	struct kmem_cache *s;
 | |
| 	void *x = (void *)object;
 | |
| 
 | |
| 	trace_kfree(_RET_IP_, object);
 | |
| 
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(object)))
 | |
| 		return;
 | |
| 
 | |
| 	folio = virt_to_folio(object);
 | |
| 	if (unlikely(!folio_test_slab(folio))) {
 | |
| 		free_large_kmalloc(folio, (void *)object);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	slab = folio_slab(folio);
 | |
| 	s = slab->slab_cache;
 | |
| 	slab_free(s, slab, x, _RET_IP_);
 | |
| }
 | |
| EXPORT_SYMBOL(kfree);
 | |
| 
 | |
| struct detached_freelist {
 | |
| 	struct slab *slab;
 | |
| 	void *tail;
 | |
| 	void *freelist;
 | |
| 	int cnt;
 | |
| 	struct kmem_cache *s;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This function progressively scans the array with free objects (with
 | |
|  * a limited look ahead) and extract objects belonging to the same
 | |
|  * slab.  It builds a detached freelist directly within the given
 | |
|  * slab/objects.  This can happen without any need for
 | |
|  * synchronization, because the objects are owned by running process.
 | |
|  * The freelist is build up as a single linked list in the objects.
 | |
|  * The idea is, that this detached freelist can then be bulk
 | |
|  * transferred to the real freelist(s), but only requiring a single
 | |
|  * synchronization primitive.  Look ahead in the array is limited due
 | |
|  * to performance reasons.
 | |
|  */
 | |
| static inline
 | |
| int build_detached_freelist(struct kmem_cache *s, size_t size,
 | |
| 			    void **p, struct detached_freelist *df)
 | |
| {
 | |
| 	int lookahead = 3;
 | |
| 	void *object;
 | |
| 	struct folio *folio;
 | |
| 	size_t same;
 | |
| 
 | |
| 	object = p[--size];
 | |
| 	folio = virt_to_folio(object);
 | |
| 	if (!s) {
 | |
| 		/* Handle kalloc'ed objects */
 | |
| 		if (unlikely(!folio_test_slab(folio))) {
 | |
| 			free_large_kmalloc(folio, object);
 | |
| 			df->slab = NULL;
 | |
| 			return size;
 | |
| 		}
 | |
| 		/* Derive kmem_cache from object */
 | |
| 		df->slab = folio_slab(folio);
 | |
| 		df->s = df->slab->slab_cache;
 | |
| 	} else {
 | |
| 		df->slab = folio_slab(folio);
 | |
| 		df->s = cache_from_obj(s, object); /* Support for memcg */
 | |
| 	}
 | |
| 
 | |
| 	/* Start new detached freelist */
 | |
| 	df->tail = object;
 | |
| 	df->freelist = object;
 | |
| 	df->cnt = 1;
 | |
| 
 | |
| 	if (is_kfence_address(object))
 | |
| 		return size;
 | |
| 
 | |
| 	set_freepointer(df->s, object, NULL);
 | |
| 
 | |
| 	same = size;
 | |
| 	while (size) {
 | |
| 		object = p[--size];
 | |
| 		/* df->slab is always set at this point */
 | |
| 		if (df->slab == virt_to_slab(object)) {
 | |
| 			/* Opportunity build freelist */
 | |
| 			set_freepointer(df->s, object, df->freelist);
 | |
| 			df->freelist = object;
 | |
| 			df->cnt++;
 | |
| 			same--;
 | |
| 			if (size != same)
 | |
| 				swap(p[size], p[same]);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Limit look ahead search */
 | |
| 		if (!--lookahead)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return same;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Internal bulk free of objects that were not initialised by the post alloc
 | |
|  * hooks and thus should not be processed by the free hooks
 | |
|  */
 | |
| static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
 | |
| {
 | |
| 	if (!size)
 | |
| 		return;
 | |
| 
 | |
| 	do {
 | |
| 		struct detached_freelist df;
 | |
| 
 | |
| 		size = build_detached_freelist(s, size, p, &df);
 | |
| 		if (!df.slab)
 | |
| 			continue;
 | |
| 
 | |
| 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
 | |
| 			     _RET_IP_);
 | |
| 	} while (likely(size));
 | |
| }
 | |
| 
 | |
| /* Note that interrupts must be enabled when calling this function. */
 | |
| void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
 | |
| {
 | |
| 	if (!size)
 | |
| 		return;
 | |
| 
 | |
| 	do {
 | |
| 		struct detached_freelist df;
 | |
| 
 | |
| 		size = build_detached_freelist(s, size, p, &df);
 | |
| 		if (!df.slab)
 | |
| 			continue;
 | |
| 
 | |
| 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
 | |
| 			       df.cnt, _RET_IP_);
 | |
| 	} while (likely(size));
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_free_bulk);
 | |
| 
 | |
| #ifndef CONFIG_SLUB_TINY
 | |
| static inline
 | |
| int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
 | |
| 			    void **p)
 | |
| {
 | |
| 	struct kmem_cache_cpu *c;
 | |
| 	unsigned long irqflags;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Drain objects in the per cpu slab, while disabling local
 | |
| 	 * IRQs, which protects against PREEMPT and interrupts
 | |
| 	 * handlers invoking normal fastpath.
 | |
| 	 */
 | |
| 	c = slub_get_cpu_ptr(s->cpu_slab);
 | |
| 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
 | |
| 
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		void *object = kfence_alloc(s, s->object_size, flags);
 | |
| 
 | |
| 		if (unlikely(object)) {
 | |
| 			p[i] = object;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		object = c->freelist;
 | |
| 		if (unlikely(!object)) {
 | |
| 			/*
 | |
| 			 * We may have removed an object from c->freelist using
 | |
| 			 * the fastpath in the previous iteration; in that case,
 | |
| 			 * c->tid has not been bumped yet.
 | |
| 			 * Since ___slab_alloc() may reenable interrupts while
 | |
| 			 * allocating memory, we should bump c->tid now.
 | |
| 			 */
 | |
| 			c->tid = next_tid(c->tid);
 | |
| 
 | |
| 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
 | |
| 
 | |
| 			/*
 | |
| 			 * Invoking slow path likely have side-effect
 | |
| 			 * of re-populating per CPU c->freelist
 | |
| 			 */
 | |
| 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
 | |
| 					    _RET_IP_, c, s->object_size);
 | |
| 			if (unlikely(!p[i]))
 | |
| 				goto error;
 | |
| 
 | |
| 			c = this_cpu_ptr(s->cpu_slab);
 | |
| 			maybe_wipe_obj_freeptr(s, p[i]);
 | |
| 
 | |
| 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
 | |
| 
 | |
| 			continue; /* goto for-loop */
 | |
| 		}
 | |
| 		c->freelist = get_freepointer(s, object);
 | |
| 		p[i] = object;
 | |
| 		maybe_wipe_obj_freeptr(s, p[i]);
 | |
| 		stat(s, ALLOC_FASTPATH);
 | |
| 	}
 | |
| 	c->tid = next_tid(c->tid);
 | |
| 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
 | |
| 	slub_put_cpu_ptr(s->cpu_slab);
 | |
| 
 | |
| 	return i;
 | |
| 
 | |
| error:
 | |
| 	slub_put_cpu_ptr(s->cpu_slab);
 | |
| 	__kmem_cache_free_bulk(s, i, p);
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| #else /* CONFIG_SLUB_TINY */
 | |
| static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
 | |
| 				   size_t size, void **p)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		void *object = kfence_alloc(s, s->object_size, flags);
 | |
| 
 | |
| 		if (unlikely(object)) {
 | |
| 			p[i] = object;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
 | |
| 					 _RET_IP_, s->object_size);
 | |
| 		if (unlikely(!p[i]))
 | |
| 			goto error;
 | |
| 
 | |
| 		maybe_wipe_obj_freeptr(s, p[i]);
 | |
| 	}
 | |
| 
 | |
| 	return i;
 | |
| 
 | |
| error:
 | |
| 	__kmem_cache_free_bulk(s, i, p);
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_SLUB_TINY */
 | |
| 
 | |
| /* Note that interrupts must be enabled when calling this function. */
 | |
| int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
 | |
| 			  void **p)
 | |
| {
 | |
| 	int i;
 | |
| 	struct obj_cgroup *objcg = NULL;
 | |
| 
 | |
| 	if (!size)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* memcg and kmem_cache debug support */
 | |
| 	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
 | |
| 	if (unlikely(!s))
 | |
| 		return 0;
 | |
| 
 | |
| 	i = __kmem_cache_alloc_bulk(s, flags, size, p);
 | |
| 
 | |
| 	/*
 | |
| 	 * memcg and kmem_cache debug support and memory initialization.
 | |
| 	 * Done outside of the IRQ disabled fastpath loop.
 | |
| 	 */
 | |
| 	if (likely(i != 0)) {
 | |
| 		slab_post_alloc_hook(s, objcg, flags, size, p,
 | |
| 			slab_want_init_on_alloc(flags, s), s->object_size);
 | |
| 	} else {
 | |
| 		memcg_slab_alloc_error_hook(s, size, objcg);
 | |
| 	}
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc_bulk);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Object placement in a slab is made very easy because we always start at
 | |
|  * offset 0. If we tune the size of the object to the alignment then we can
 | |
|  * get the required alignment by putting one properly sized object after
 | |
|  * another.
 | |
|  *
 | |
|  * Notice that the allocation order determines the sizes of the per cpu
 | |
|  * caches. Each processor has always one slab available for allocations.
 | |
|  * Increasing the allocation order reduces the number of times that slabs
 | |
|  * must be moved on and off the partial lists and is therefore a factor in
 | |
|  * locking overhead.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Minimum / Maximum order of slab pages. This influences locking overhead
 | |
|  * and slab fragmentation. A higher order reduces the number of partial slabs
 | |
|  * and increases the number of allocations possible without having to
 | |
|  * take the list_lock.
 | |
|  */
 | |
| static unsigned int slub_min_order;
 | |
| static unsigned int slub_max_order =
 | |
| 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
 | |
| static unsigned int slub_min_objects;
 | |
| 
 | |
| /*
 | |
|  * Calculate the order of allocation given an slab object size.
 | |
|  *
 | |
|  * The order of allocation has significant impact on performance and other
 | |
|  * system components. Generally order 0 allocations should be preferred since
 | |
|  * order 0 does not cause fragmentation in the page allocator. Larger objects
 | |
|  * be problematic to put into order 0 slabs because there may be too much
 | |
|  * unused space left. We go to a higher order if more than 1/16th of the slab
 | |
|  * would be wasted.
 | |
|  *
 | |
|  * In order to reach satisfactory performance we must ensure that a minimum
 | |
|  * number of objects is in one slab. Otherwise we may generate too much
 | |
|  * activity on the partial lists which requires taking the list_lock. This is
 | |
|  * less a concern for large slabs though which are rarely used.
 | |
|  *
 | |
|  * slab_max_order specifies the order where we begin to stop considering the
 | |
|  * number of objects in a slab as critical. If we reach slab_max_order then
 | |
|  * we try to keep the page order as low as possible. So we accept more waste
 | |
|  * of space in favor of a small page order.
 | |
|  *
 | |
|  * Higher order allocations also allow the placement of more objects in a
 | |
|  * slab and thereby reduce object handling overhead. If the user has
 | |
|  * requested a higher minimum order then we start with that one instead of
 | |
|  * the smallest order which will fit the object.
 | |
|  */
 | |
| static inline unsigned int calc_slab_order(unsigned int size,
 | |
| 		unsigned int min_order, unsigned int max_order,
 | |
| 		unsigned int fract_leftover)
 | |
| {
 | |
| 	unsigned int order;
 | |
| 
 | |
| 	for (order = min_order; order <= max_order; order++) {
 | |
| 
 | |
| 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
 | |
| 		unsigned int rem;
 | |
| 
 | |
| 		rem = slab_size % size;
 | |
| 
 | |
| 		if (rem <= slab_size / fract_leftover)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return order;
 | |
| }
 | |
| 
 | |
| static inline int calculate_order(unsigned int size)
 | |
| {
 | |
| 	unsigned int order;
 | |
| 	unsigned int min_objects;
 | |
| 	unsigned int max_objects;
 | |
| 	unsigned int min_order;
 | |
| 
 | |
| 	min_objects = slub_min_objects;
 | |
| 	if (!min_objects) {
 | |
| 		/*
 | |
| 		 * Some architectures will only update present cpus when
 | |
| 		 * onlining them, so don't trust the number if it's just 1. But
 | |
| 		 * we also don't want to use nr_cpu_ids always, as on some other
 | |
| 		 * architectures, there can be many possible cpus, but never
 | |
| 		 * onlined. Here we compromise between trying to avoid too high
 | |
| 		 * order on systems that appear larger than they are, and too
 | |
| 		 * low order on systems that appear smaller than they are.
 | |
| 		 */
 | |
| 		unsigned int nr_cpus = num_present_cpus();
 | |
| 		if (nr_cpus <= 1)
 | |
| 			nr_cpus = nr_cpu_ids;
 | |
| 		min_objects = 4 * (fls(nr_cpus) + 1);
 | |
| 	}
 | |
| 	/* min_objects can't be 0 because get_order(0) is undefined */
 | |
| 	max_objects = max(order_objects(slub_max_order, size), 1U);
 | |
| 	min_objects = min(min_objects, max_objects);
 | |
| 
 | |
| 	min_order = max_t(unsigned int, slub_min_order,
 | |
| 			  get_order(min_objects * size));
 | |
| 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
 | |
| 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Attempt to find best configuration for a slab. This works by first
 | |
| 	 * attempting to generate a layout with the best possible configuration
 | |
| 	 * and backing off gradually.
 | |
| 	 *
 | |
| 	 * We start with accepting at most 1/16 waste and try to find the
 | |
| 	 * smallest order from min_objects-derived/slab_min_order up to
 | |
| 	 * slab_max_order that will satisfy the constraint. Note that increasing
 | |
| 	 * the order can only result in same or less fractional waste, not more.
 | |
| 	 *
 | |
| 	 * If that fails, we increase the acceptable fraction of waste and try
 | |
| 	 * again. The last iteration with fraction of 1/2 would effectively
 | |
| 	 * accept any waste and give us the order determined by min_objects, as
 | |
| 	 * long as at least single object fits within slab_max_order.
 | |
| 	 */
 | |
| 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
 | |
| 		order = calc_slab_order(size, min_order, slub_max_order,
 | |
| 					fraction);
 | |
| 		if (order <= slub_max_order)
 | |
| 			return order;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Doh this slab cannot be placed using slab_max_order.
 | |
| 	 */
 | |
| 	order = get_order(size);
 | |
| 	if (order <= MAX_PAGE_ORDER)
 | |
| 		return order;
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| 
 | |
| static void
 | |
| init_kmem_cache_node(struct kmem_cache_node *n)
 | |
| {
 | |
| 	n->nr_partial = 0;
 | |
| 	spin_lock_init(&n->list_lock);
 | |
| 	INIT_LIST_HEAD(&n->partial);
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	atomic_long_set(&n->nr_slabs, 0);
 | |
| 	atomic_long_set(&n->total_objects, 0);
 | |
| 	INIT_LIST_HEAD(&n->full);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SLUB_TINY
 | |
| static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
 | |
| {
 | |
| 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
 | |
| 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
 | |
| 			sizeof(struct kmem_cache_cpu));
 | |
| 
 | |
| 	/*
 | |
| 	 * Must align to double word boundary for the double cmpxchg
 | |
| 	 * instructions to work; see __pcpu_double_call_return_bool().
 | |
| 	 */
 | |
| 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
 | |
| 				     2 * sizeof(void *));
 | |
| 
 | |
| 	if (!s->cpu_slab)
 | |
| 		return 0;
 | |
| 
 | |
| 	init_kmem_cache_cpus(s);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| #else
 | |
| static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| #endif /* CONFIG_SLUB_TINY */
 | |
| 
 | |
| static struct kmem_cache *kmem_cache_node;
 | |
| 
 | |
| /*
 | |
|  * No kmalloc_node yet so do it by hand. We know that this is the first
 | |
|  * slab on the node for this slabcache. There are no concurrent accesses
 | |
|  * possible.
 | |
|  *
 | |
|  * Note that this function only works on the kmem_cache_node
 | |
|  * when allocating for the kmem_cache_node. This is used for bootstrapping
 | |
|  * memory on a fresh node that has no slab structures yet.
 | |
|  */
 | |
| static void early_kmem_cache_node_alloc(int node)
 | |
| {
 | |
| 	struct slab *slab;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
 | |
| 
 | |
| 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
 | |
| 
 | |
| 	BUG_ON(!slab);
 | |
| 	if (slab_nid(slab) != node) {
 | |
| 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
 | |
| 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
 | |
| 	}
 | |
| 
 | |
| 	n = slab->freelist;
 | |
| 	BUG_ON(!n);
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
 | |
| 	init_tracking(kmem_cache_node, n);
 | |
| #endif
 | |
| 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
 | |
| 	slab->freelist = get_freepointer(kmem_cache_node, n);
 | |
| 	slab->inuse = 1;
 | |
| 	kmem_cache_node->node[node] = n;
 | |
| 	init_kmem_cache_node(n);
 | |
| 	inc_slabs_node(kmem_cache_node, node, slab->objects);
 | |
| 
 | |
| 	/*
 | |
| 	 * No locks need to be taken here as it has just been
 | |
| 	 * initialized and there is no concurrent access.
 | |
| 	 */
 | |
| 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
 | |
| }
 | |
| 
 | |
| static void free_kmem_cache_nodes(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	for_each_kmem_cache_node(s, node, n) {
 | |
| 		s->node[node] = NULL;
 | |
| 		kmem_cache_free(kmem_cache_node, n);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __kmem_cache_release(struct kmem_cache *s)
 | |
| {
 | |
| 	cache_random_seq_destroy(s);
 | |
| #ifndef CONFIG_SLUB_TINY
 | |
| 	free_percpu(s->cpu_slab);
 | |
| #endif
 | |
| 	free_kmem_cache_nodes(s);
 | |
| }
 | |
| 
 | |
| static int init_kmem_cache_nodes(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	for_each_node_mask(node, slab_nodes) {
 | |
| 		struct kmem_cache_node *n;
 | |
| 
 | |
| 		if (slab_state == DOWN) {
 | |
| 			early_kmem_cache_node_alloc(node);
 | |
| 			continue;
 | |
| 		}
 | |
| 		n = kmem_cache_alloc_node(kmem_cache_node,
 | |
| 						GFP_KERNEL, node);
 | |
| 
 | |
| 		if (!n) {
 | |
| 			free_kmem_cache_nodes(s);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		init_kmem_cache_node(n);
 | |
| 		s->node[node] = n;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void set_cpu_partial(struct kmem_cache *s)
 | |
| {
 | |
| #ifdef CONFIG_SLUB_CPU_PARTIAL
 | |
| 	unsigned int nr_objects;
 | |
| 
 | |
| 	/*
 | |
| 	 * cpu_partial determined the maximum number of objects kept in the
 | |
| 	 * per cpu partial lists of a processor.
 | |
| 	 *
 | |
| 	 * Per cpu partial lists mainly contain slabs that just have one
 | |
| 	 * object freed. If they are used for allocation then they can be
 | |
| 	 * filled up again with minimal effort. The slab will never hit the
 | |
| 	 * per node partial lists and therefore no locking will be required.
 | |
| 	 *
 | |
| 	 * For backwards compatibility reasons, this is determined as number
 | |
| 	 * of objects, even though we now limit maximum number of pages, see
 | |
| 	 * slub_set_cpu_partial()
 | |
| 	 */
 | |
| 	if (!kmem_cache_has_cpu_partial(s))
 | |
| 		nr_objects = 0;
 | |
| 	else if (s->size >= PAGE_SIZE)
 | |
| 		nr_objects = 6;
 | |
| 	else if (s->size >= 1024)
 | |
| 		nr_objects = 24;
 | |
| 	else if (s->size >= 256)
 | |
| 		nr_objects = 52;
 | |
| 	else
 | |
| 		nr_objects = 120;
 | |
| 
 | |
| 	slub_set_cpu_partial(s, nr_objects);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * calculate_sizes() determines the order and the distribution of data within
 | |
|  * a slab object.
 | |
|  */
 | |
| static int calculate_sizes(struct kmem_cache *s)
 | |
| {
 | |
| 	slab_flags_t flags = s->flags;
 | |
| 	unsigned int size = s->object_size;
 | |
| 	unsigned int order;
 | |
| 
 | |
| 	/*
 | |
| 	 * Round up object size to the next word boundary. We can only
 | |
| 	 * place the free pointer at word boundaries and this determines
 | |
| 	 * the possible location of the free pointer.
 | |
| 	 */
 | |
| 	size = ALIGN(size, sizeof(void *));
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	/*
 | |
| 	 * Determine if we can poison the object itself. If the user of
 | |
| 	 * the slab may touch the object after free or before allocation
 | |
| 	 * then we should never poison the object itself.
 | |
| 	 */
 | |
| 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
 | |
| 			!s->ctor)
 | |
| 		s->flags |= __OBJECT_POISON;
 | |
| 	else
 | |
| 		s->flags &= ~__OBJECT_POISON;
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are Redzoning then check if there is some space between the
 | |
| 	 * end of the object and the free pointer. If not then add an
 | |
| 	 * additional word to have some bytes to store Redzone information.
 | |
| 	 */
 | |
| 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
 | |
| 		size += sizeof(void *);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * With that we have determined the number of bytes in actual use
 | |
| 	 * by the object and redzoning.
 | |
| 	 */
 | |
| 	s->inuse = size;
 | |
| 
 | |
| 	if (slub_debug_orig_size(s) ||
 | |
| 	    (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
 | |
| 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
 | |
| 	    s->ctor) {
 | |
| 		/*
 | |
| 		 * Relocate free pointer after the object if it is not
 | |
| 		 * permitted to overwrite the first word of the object on
 | |
| 		 * kmem_cache_free.
 | |
| 		 *
 | |
| 		 * This is the case if we do RCU, have a constructor or
 | |
| 		 * destructor, are poisoning the objects, or are
 | |
| 		 * redzoning an object smaller than sizeof(void *).
 | |
| 		 *
 | |
| 		 * The assumption that s->offset >= s->inuse means free
 | |
| 		 * pointer is outside of the object is used in the
 | |
| 		 * freeptr_outside_object() function. If that is no
 | |
| 		 * longer true, the function needs to be modified.
 | |
| 		 */
 | |
| 		s->offset = size;
 | |
| 		size += sizeof(void *);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Store freelist pointer near middle of object to keep
 | |
| 		 * it away from the edges of the object to avoid small
 | |
| 		 * sized over/underflows from neighboring allocations.
 | |
| 		 */
 | |
| 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	if (flags & SLAB_STORE_USER) {
 | |
| 		/*
 | |
| 		 * Need to store information about allocs and frees after
 | |
| 		 * the object.
 | |
| 		 */
 | |
| 		size += 2 * sizeof(struct track);
 | |
| 
 | |
| 		/* Save the original kmalloc request size */
 | |
| 		if (flags & SLAB_KMALLOC)
 | |
| 			size += sizeof(unsigned int);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	kasan_cache_create(s, &size, &s->flags);
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	if (flags & SLAB_RED_ZONE) {
 | |
| 		/*
 | |
| 		 * Add some empty padding so that we can catch
 | |
| 		 * overwrites from earlier objects rather than let
 | |
| 		 * tracking information or the free pointer be
 | |
| 		 * corrupted if a user writes before the start
 | |
| 		 * of the object.
 | |
| 		 */
 | |
| 		size += sizeof(void *);
 | |
| 
 | |
| 		s->red_left_pad = sizeof(void *);
 | |
| 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
 | |
| 		size += s->red_left_pad;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * SLUB stores one object immediately after another beginning from
 | |
| 	 * offset 0. In order to align the objects we have to simply size
 | |
| 	 * each object to conform to the alignment.
 | |
| 	 */
 | |
| 	size = ALIGN(size, s->align);
 | |
| 	s->size = size;
 | |
| 	s->reciprocal_size = reciprocal_value(size);
 | |
| 	order = calculate_order(size);
 | |
| 
 | |
| 	if ((int)order < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	s->allocflags = 0;
 | |
| 	if (order)
 | |
| 		s->allocflags |= __GFP_COMP;
 | |
| 
 | |
| 	if (s->flags & SLAB_CACHE_DMA)
 | |
| 		s->allocflags |= GFP_DMA;
 | |
| 
 | |
| 	if (s->flags & SLAB_CACHE_DMA32)
 | |
| 		s->allocflags |= GFP_DMA32;
 | |
| 
 | |
| 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
 | |
| 		s->allocflags |= __GFP_RECLAIMABLE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine the number of objects per slab
 | |
| 	 */
 | |
| 	s->oo = oo_make(order, size);
 | |
| 	s->min = oo_make(get_order(size), size);
 | |
| 
 | |
| 	return !!oo_objects(s->oo);
 | |
| }
 | |
| 
 | |
| static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
 | |
| {
 | |
| 	s->flags = kmem_cache_flags(flags, s->name);
 | |
| #ifdef CONFIG_SLAB_FREELIST_HARDENED
 | |
| 	s->random = get_random_long();
 | |
| #endif
 | |
| 
 | |
| 	if (!calculate_sizes(s))
 | |
| 		goto error;
 | |
| 	if (disable_higher_order_debug) {
 | |
| 		/*
 | |
| 		 * Disable debugging flags that store metadata if the min slab
 | |
| 		 * order increased.
 | |
| 		 */
 | |
| 		if (get_order(s->size) > get_order(s->object_size)) {
 | |
| 			s->flags &= ~DEBUG_METADATA_FLAGS;
 | |
| 			s->offset = 0;
 | |
| 			if (!calculate_sizes(s))
 | |
| 				goto error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef system_has_freelist_aba
 | |
| 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
 | |
| 		/* Enable fast mode */
 | |
| 		s->flags |= __CMPXCHG_DOUBLE;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * The larger the object size is, the more slabs we want on the partial
 | |
| 	 * list to avoid pounding the page allocator excessively.
 | |
| 	 */
 | |
| 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
 | |
| 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
 | |
| 
 | |
| 	set_cpu_partial(s);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	s->remote_node_defrag_ratio = 1000;
 | |
| #endif
 | |
| 
 | |
| 	/* Initialize the pre-computed randomized freelist if slab is up */
 | |
| 	if (slab_state >= UP) {
 | |
| 		if (init_cache_random_seq(s))
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	if (!init_kmem_cache_nodes(s))
 | |
| 		goto error;
 | |
| 
 | |
| 	if (alloc_kmem_cache_cpus(s))
 | |
| 		return 0;
 | |
| 
 | |
| error:
 | |
| 	__kmem_cache_release(s);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
 | |
| 			      const char *text)
 | |
| {
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	void *addr = slab_address(slab);
 | |
| 	void *p;
 | |
| 
 | |
| 	slab_err(s, slab, text, s->name);
 | |
| 
 | |
| 	spin_lock(&object_map_lock);
 | |
| 	__fill_map(object_map, s, slab);
 | |
| 
 | |
| 	for_each_object(p, s, addr, slab->objects) {
 | |
| 
 | |
| 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
 | |
| 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
 | |
| 			print_tracking(s, p);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&object_map_lock);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attempt to free all partial slabs on a node.
 | |
|  * This is called from __kmem_cache_shutdown(). We must take list_lock
 | |
|  * because sysfs file might still access partial list after the shutdowning.
 | |
|  */
 | |
| static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
 | |
| {
 | |
| 	LIST_HEAD(discard);
 | |
| 	struct slab *slab, *h;
 | |
| 
 | |
| 	BUG_ON(irqs_disabled());
 | |
| 	spin_lock_irq(&n->list_lock);
 | |
| 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
 | |
| 		if (!slab->inuse) {
 | |
| 			remove_partial(n, slab);
 | |
| 			list_add(&slab->slab_list, &discard);
 | |
| 		} else {
 | |
| 			list_slab_objects(s, slab,
 | |
| 			  "Objects remaining in %s on __kmem_cache_shutdown()");
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irq(&n->list_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(slab, h, &discard, slab_list)
 | |
| 		discard_slab(s, slab);
 | |
| }
 | |
| 
 | |
| bool __kmem_cache_empty(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	for_each_kmem_cache_node(s, node, n)
 | |
| 		if (n->nr_partial || node_nr_slabs(n))
 | |
| 			return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release all resources used by a slab cache.
 | |
|  */
 | |
| int __kmem_cache_shutdown(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	flush_all_cpus_locked(s);
 | |
| 	/* Attempt to free all objects */
 | |
| 	for_each_kmem_cache_node(s, node, n) {
 | |
| 		free_partial(s, n);
 | |
| 		if (n->nr_partial || node_nr_slabs(n))
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PRINTK
 | |
| void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
 | |
| {
 | |
| 	void *base;
 | |
| 	int __maybe_unused i;
 | |
| 	unsigned int objnr;
 | |
| 	void *objp;
 | |
| 	void *objp0;
 | |
| 	struct kmem_cache *s = slab->slab_cache;
 | |
| 	struct track __maybe_unused *trackp;
 | |
| 
 | |
| 	kpp->kp_ptr = object;
 | |
| 	kpp->kp_slab = slab;
 | |
| 	kpp->kp_slab_cache = s;
 | |
| 	base = slab_address(slab);
 | |
| 	objp0 = kasan_reset_tag(object);
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	objp = restore_red_left(s, objp0);
 | |
| #else
 | |
| 	objp = objp0;
 | |
| #endif
 | |
| 	objnr = obj_to_index(s, slab, objp);
 | |
| 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
 | |
| 	objp = base + s->size * objnr;
 | |
| 	kpp->kp_objp = objp;
 | |
| 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
 | |
| 			 || (objp - base) % s->size) ||
 | |
| 	    !(s->flags & SLAB_STORE_USER))
 | |
| 		return;
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	objp = fixup_red_left(s, objp);
 | |
| 	trackp = get_track(s, objp, TRACK_ALLOC);
 | |
| 	kpp->kp_ret = (void *)trackp->addr;
 | |
| #ifdef CONFIG_STACKDEPOT
 | |
| 	{
 | |
| 		depot_stack_handle_t handle;
 | |
| 		unsigned long *entries;
 | |
| 		unsigned int nr_entries;
 | |
| 
 | |
| 		handle = READ_ONCE(trackp->handle);
 | |
| 		if (handle) {
 | |
| 			nr_entries = stack_depot_fetch(handle, &entries);
 | |
| 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
 | |
| 				kpp->kp_stack[i] = (void *)entries[i];
 | |
| 		}
 | |
| 
 | |
| 		trackp = get_track(s, objp, TRACK_FREE);
 | |
| 		handle = READ_ONCE(trackp->handle);
 | |
| 		if (handle) {
 | |
| 			nr_entries = stack_depot_fetch(handle, &entries);
 | |
| 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
 | |
| 				kpp->kp_free_stack[i] = (void *)entries[i];
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| #endif
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /********************************************************************
 | |
|  *		Kmalloc subsystem
 | |
|  *******************************************************************/
 | |
| 
 | |
| static int __init setup_slub_min_order(char *str)
 | |
| {
 | |
| 	get_option(&str, (int *)&slub_min_order);
 | |
| 
 | |
| 	if (slub_min_order > slub_max_order)
 | |
| 		slub_max_order = slub_min_order;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("slab_min_order=", setup_slub_min_order);
 | |
| __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
 | |
| 
 | |
| 
 | |
| static int __init setup_slub_max_order(char *str)
 | |
| {
 | |
| 	get_option(&str, (int *)&slub_max_order);
 | |
| 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
 | |
| 
 | |
| 	if (slub_min_order > slub_max_order)
 | |
| 		slub_min_order = slub_max_order;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("slab_max_order=", setup_slub_max_order);
 | |
| __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
 | |
| 
 | |
| static int __init setup_slub_min_objects(char *str)
 | |
| {
 | |
| 	get_option(&str, (int *)&slub_min_objects);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("slab_min_objects=", setup_slub_min_objects);
 | |
| __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
 | |
| 
 | |
| #ifdef CONFIG_HARDENED_USERCOPY
 | |
| /*
 | |
|  * Rejects incorrectly sized objects and objects that are to be copied
 | |
|  * to/from userspace but do not fall entirely within the containing slab
 | |
|  * cache's usercopy region.
 | |
|  *
 | |
|  * Returns NULL if check passes, otherwise const char * to name of cache
 | |
|  * to indicate an error.
 | |
|  */
 | |
| void __check_heap_object(const void *ptr, unsigned long n,
 | |
| 			 const struct slab *slab, bool to_user)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	unsigned int offset;
 | |
| 	bool is_kfence = is_kfence_address(ptr);
 | |
| 
 | |
| 	ptr = kasan_reset_tag(ptr);
 | |
| 
 | |
| 	/* Find object and usable object size. */
 | |
| 	s = slab->slab_cache;
 | |
| 
 | |
| 	/* Reject impossible pointers. */
 | |
| 	if (ptr < slab_address(slab))
 | |
| 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
 | |
| 			       to_user, 0, n);
 | |
| 
 | |
| 	/* Find offset within object. */
 | |
| 	if (is_kfence)
 | |
| 		offset = ptr - kfence_object_start(ptr);
 | |
| 	else
 | |
| 		offset = (ptr - slab_address(slab)) % s->size;
 | |
| 
 | |
| 	/* Adjust for redzone and reject if within the redzone. */
 | |
| 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
 | |
| 		if (offset < s->red_left_pad)
 | |
| 			usercopy_abort("SLUB object in left red zone",
 | |
| 				       s->name, to_user, offset, n);
 | |
| 		offset -= s->red_left_pad;
 | |
| 	}
 | |
| 
 | |
| 	/* Allow address range falling entirely within usercopy region. */
 | |
| 	if (offset >= s->useroffset &&
 | |
| 	    offset - s->useroffset <= s->usersize &&
 | |
| 	    n <= s->useroffset - offset + s->usersize)
 | |
| 		return;
 | |
| 
 | |
| 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
 | |
| }
 | |
| #endif /* CONFIG_HARDENED_USERCOPY */
 | |
| 
 | |
| #define SHRINK_PROMOTE_MAX 32
 | |
| 
 | |
| /*
 | |
|  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 | |
|  * up most to the head of the partial lists. New allocations will then
 | |
|  * fill those up and thus they can be removed from the partial lists.
 | |
|  *
 | |
|  * The slabs with the least items are placed last. This results in them
 | |
|  * being allocated from last increasing the chance that the last objects
 | |
|  * are freed in them.
 | |
|  */
 | |
| static int __kmem_cache_do_shrink(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 	int i;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	struct slab *slab;
 | |
| 	struct slab *t;
 | |
| 	struct list_head discard;
 | |
| 	struct list_head promote[SHRINK_PROMOTE_MAX];
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	for_each_kmem_cache_node(s, node, n) {
 | |
| 		INIT_LIST_HEAD(&discard);
 | |
| 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
 | |
| 			INIT_LIST_HEAD(promote + i);
 | |
| 
 | |
| 		spin_lock_irqsave(&n->list_lock, flags);
 | |
| 
 | |
| 		/*
 | |
| 		 * Build lists of slabs to discard or promote.
 | |
| 		 *
 | |
| 		 * Note that concurrent frees may occur while we hold the
 | |
| 		 * list_lock. slab->inuse here is the upper limit.
 | |
| 		 */
 | |
| 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
 | |
| 			int free = slab->objects - slab->inuse;
 | |
| 
 | |
| 			/* Do not reread slab->inuse */
 | |
| 			barrier();
 | |
| 
 | |
| 			/* We do not keep full slabs on the list */
 | |
| 			BUG_ON(free <= 0);
 | |
| 
 | |
| 			if (free == slab->objects) {
 | |
| 				list_move(&slab->slab_list, &discard);
 | |
| 				slab_clear_node_partial(slab);
 | |
| 				n->nr_partial--;
 | |
| 				dec_slabs_node(s, node, slab->objects);
 | |
| 			} else if (free <= SHRINK_PROMOTE_MAX)
 | |
| 				list_move(&slab->slab_list, promote + free - 1);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Promote the slabs filled up most to the head of the
 | |
| 		 * partial list.
 | |
| 		 */
 | |
| 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
 | |
| 			list_splice(promote + i, &n->partial);
 | |
| 
 | |
| 		spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 
 | |
| 		/* Release empty slabs */
 | |
| 		list_for_each_entry_safe(slab, t, &discard, slab_list)
 | |
| 			free_slab(s, slab);
 | |
| 
 | |
| 		if (node_nr_slabs(n))
 | |
| 			ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int __kmem_cache_shrink(struct kmem_cache *s)
 | |
| {
 | |
| 	flush_all(s);
 | |
| 	return __kmem_cache_do_shrink(s);
 | |
| }
 | |
| 
 | |
| static int slab_mem_going_offline_callback(void *arg)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	list_for_each_entry(s, &slab_caches, list) {
 | |
| 		flush_all_cpus_locked(s);
 | |
| 		__kmem_cache_do_shrink(s);
 | |
| 	}
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void slab_mem_offline_callback(void *arg)
 | |
| {
 | |
| 	struct memory_notify *marg = arg;
 | |
| 	int offline_node;
 | |
| 
 | |
| 	offline_node = marg->status_change_nid_normal;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the node still has available memory. we need kmem_cache_node
 | |
| 	 * for it yet.
 | |
| 	 */
 | |
| 	if (offline_node < 0)
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	node_clear(offline_node, slab_nodes);
 | |
| 	/*
 | |
| 	 * We no longer free kmem_cache_node structures here, as it would be
 | |
| 	 * racy with all get_node() users, and infeasible to protect them with
 | |
| 	 * slab_mutex.
 | |
| 	 */
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| }
 | |
| 
 | |
| static int slab_mem_going_online_callback(void *arg)
 | |
| {
 | |
| 	struct kmem_cache_node *n;
 | |
| 	struct kmem_cache *s;
 | |
| 	struct memory_notify *marg = arg;
 | |
| 	int nid = marg->status_change_nid_normal;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the node's memory is already available, then kmem_cache_node is
 | |
| 	 * already created. Nothing to do.
 | |
| 	 */
 | |
| 	if (nid < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are bringing a node online. No memory is available yet. We must
 | |
| 	 * allocate a kmem_cache_node structure in order to bring the node
 | |
| 	 * online.
 | |
| 	 */
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	list_for_each_entry(s, &slab_caches, list) {
 | |
| 		/*
 | |
| 		 * The structure may already exist if the node was previously
 | |
| 		 * onlined and offlined.
 | |
| 		 */
 | |
| 		if (get_node(s, nid))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
 | |
| 		 *      since memory is not yet available from the node that
 | |
| 		 *      is brought up.
 | |
| 		 */
 | |
| 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
 | |
| 		if (!n) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		init_kmem_cache_node(n);
 | |
| 		s->node[nid] = n;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Any cache created after this point will also have kmem_cache_node
 | |
| 	 * initialized for the new node.
 | |
| 	 */
 | |
| 	node_set(nid, slab_nodes);
 | |
| out:
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int slab_memory_callback(struct notifier_block *self,
 | |
| 				unsigned long action, void *arg)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case MEM_GOING_ONLINE:
 | |
| 		ret = slab_mem_going_online_callback(arg);
 | |
| 		break;
 | |
| 	case MEM_GOING_OFFLINE:
 | |
| 		ret = slab_mem_going_offline_callback(arg);
 | |
| 		break;
 | |
| 	case MEM_OFFLINE:
 | |
| 	case MEM_CANCEL_ONLINE:
 | |
| 		slab_mem_offline_callback(arg);
 | |
| 		break;
 | |
| 	case MEM_ONLINE:
 | |
| 	case MEM_CANCEL_OFFLINE:
 | |
| 		break;
 | |
| 	}
 | |
| 	if (ret)
 | |
| 		ret = notifier_from_errno(ret);
 | |
| 	else
 | |
| 		ret = NOTIFY_OK;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /********************************************************************
 | |
|  *			Basic setup of slabs
 | |
|  *******************************************************************/
 | |
| 
 | |
| /*
 | |
|  * Used for early kmem_cache structures that were allocated using
 | |
|  * the page allocator. Allocate them properly then fix up the pointers
 | |
|  * that may be pointing to the wrong kmem_cache structure.
 | |
|  */
 | |
| 
 | |
| static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
 | |
| {
 | |
| 	int node;
 | |
| 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	memcpy(s, static_cache, kmem_cache->object_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * This runs very early, and only the boot processor is supposed to be
 | |
| 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
 | |
| 	 * IPIs around.
 | |
| 	 */
 | |
| 	__flush_cpu_slab(s, smp_processor_id());
 | |
| 	for_each_kmem_cache_node(s, node, n) {
 | |
| 		struct slab *p;
 | |
| 
 | |
| 		list_for_each_entry(p, &n->partial, slab_list)
 | |
| 			p->slab_cache = s;
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 		list_for_each_entry(p, &n->full, slab_list)
 | |
| 			p->slab_cache = s;
 | |
| #endif
 | |
| 	}
 | |
| 	list_add(&s->list, &slab_caches);
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| void __init kmem_cache_init(void)
 | |
| {
 | |
| 	static __initdata struct kmem_cache boot_kmem_cache,
 | |
| 		boot_kmem_cache_node;
 | |
| 	int node;
 | |
| 
 | |
| 	if (debug_guardpage_minorder())
 | |
| 		slub_max_order = 0;
 | |
| 
 | |
| 	/* Print slub debugging pointers without hashing */
 | |
| 	if (__slub_debug_enabled())
 | |
| 		no_hash_pointers_enable(NULL);
 | |
| 
 | |
| 	kmem_cache_node = &boot_kmem_cache_node;
 | |
| 	kmem_cache = &boot_kmem_cache;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the nodemask for which we will allocate per node
 | |
| 	 * structures. Here we don't need taking slab_mutex yet.
 | |
| 	 */
 | |
| 	for_each_node_state(node, N_NORMAL_MEMORY)
 | |
| 		node_set(node, slab_nodes);
 | |
| 
 | |
| 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
 | |
| 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
 | |
| 
 | |
| 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
 | |
| 
 | |
| 	/* Able to allocate the per node structures */
 | |
| 	slab_state = PARTIAL;
 | |
| 
 | |
| 	create_boot_cache(kmem_cache, "kmem_cache",
 | |
| 			offsetof(struct kmem_cache, node) +
 | |
| 				nr_node_ids * sizeof(struct kmem_cache_node *),
 | |
| 		       SLAB_HWCACHE_ALIGN, 0, 0);
 | |
| 
 | |
| 	kmem_cache = bootstrap(&boot_kmem_cache);
 | |
| 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
 | |
| 
 | |
| 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
 | |
| 	setup_kmalloc_cache_index_table();
 | |
| 	create_kmalloc_caches();
 | |
| 
 | |
| 	/* Setup random freelists for each cache */
 | |
| 	init_freelist_randomization();
 | |
| 
 | |
| 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
 | |
| 				  slub_cpu_dead);
 | |
| 
 | |
| 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
 | |
| 		cache_line_size(),
 | |
| 		slub_min_order, slub_max_order, slub_min_objects,
 | |
| 		nr_cpu_ids, nr_node_ids);
 | |
| }
 | |
| 
 | |
| void __init kmem_cache_init_late(void)
 | |
| {
 | |
| #ifndef CONFIG_SLUB_TINY
 | |
| 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
 | |
| 	WARN_ON(!flushwq);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| struct kmem_cache *
 | |
| __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
 | |
| 		   slab_flags_t flags, void (*ctor)(void *))
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 
 | |
| 	s = find_mergeable(size, align, flags, name, ctor);
 | |
| 	if (s) {
 | |
| 		if (sysfs_slab_alias(s, name))
 | |
| 			return NULL;
 | |
| 
 | |
| 		s->refcount++;
 | |
| 
 | |
| 		/*
 | |
| 		 * Adjust the object sizes so that we clear
 | |
| 		 * the complete object on kzalloc.
 | |
| 		 */
 | |
| 		s->object_size = max(s->object_size, size);
 | |
| 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
 | |
| 	}
 | |
| 
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = kmem_cache_open(s, flags);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Mutex is not taken during early boot */
 | |
| 	if (slab_state <= UP)
 | |
| 		return 0;
 | |
| 
 | |
| 	err = sysfs_slab_add(s);
 | |
| 	if (err) {
 | |
| 		__kmem_cache_release(s);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	if (s->flags & SLAB_STORE_USER)
 | |
| 		debugfs_slab_add(s);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef SLAB_SUPPORTS_SYSFS
 | |
| static int count_inuse(struct slab *slab)
 | |
| {
 | |
| 	return slab->inuse;
 | |
| }
 | |
| 
 | |
| static int count_total(struct slab *slab)
 | |
| {
 | |
| 	return slab->objects;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| static void validate_slab(struct kmem_cache *s, struct slab *slab,
 | |
| 			  unsigned long *obj_map)
 | |
| {
 | |
| 	void *p;
 | |
| 	void *addr = slab_address(slab);
 | |
| 
 | |
| 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
 | |
| 		return;
 | |
| 
 | |
| 	/* Now we know that a valid freelist exists */
 | |
| 	__fill_map(obj_map, s, slab);
 | |
| 	for_each_object(p, s, addr, slab->objects) {
 | |
| 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
 | |
| 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
 | |
| 
 | |
| 		if (!check_object(s, slab, p, val))
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int validate_slab_node(struct kmem_cache *s,
 | |
| 		struct kmem_cache_node *n, unsigned long *obj_map)
 | |
| {
 | |
| 	unsigned long count = 0;
 | |
| 	struct slab *slab;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&n->list_lock, flags);
 | |
| 
 | |
| 	list_for_each_entry(slab, &n->partial, slab_list) {
 | |
| 		validate_slab(s, slab, obj_map);
 | |
| 		count++;
 | |
| 	}
 | |
| 	if (count != n->nr_partial) {
 | |
| 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
 | |
| 		       s->name, count, n->nr_partial);
 | |
| 		slab_add_kunit_errors();
 | |
| 	}
 | |
| 
 | |
| 	if (!(s->flags & SLAB_STORE_USER))
 | |
| 		goto out;
 | |
| 
 | |
| 	list_for_each_entry(slab, &n->full, slab_list) {
 | |
| 		validate_slab(s, slab, obj_map);
 | |
| 		count++;
 | |
| 	}
 | |
| 	if (count != node_nr_slabs(n)) {
 | |
| 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
 | |
| 		       s->name, count, node_nr_slabs(n));
 | |
| 		slab_add_kunit_errors();
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| long validate_slab_cache(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 	unsigned long count = 0;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	unsigned long *obj_map;
 | |
| 
 | |
| 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
 | |
| 	if (!obj_map)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	flush_all(s);
 | |
| 	for_each_kmem_cache_node(s, node, n)
 | |
| 		count += validate_slab_node(s, n, obj_map);
 | |
| 
 | |
| 	bitmap_free(obj_map);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| EXPORT_SYMBOL(validate_slab_cache);
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_FS
 | |
| /*
 | |
|  * Generate lists of code addresses where slabcache objects are allocated
 | |
|  * and freed.
 | |
|  */
 | |
| 
 | |
| struct location {
 | |
| 	depot_stack_handle_t handle;
 | |
| 	unsigned long count;
 | |
| 	unsigned long addr;
 | |
| 	unsigned long waste;
 | |
| 	long long sum_time;
 | |
| 	long min_time;
 | |
| 	long max_time;
 | |
| 	long min_pid;
 | |
| 	long max_pid;
 | |
| 	DECLARE_BITMAP(cpus, NR_CPUS);
 | |
| 	nodemask_t nodes;
 | |
| };
 | |
| 
 | |
| struct loc_track {
 | |
| 	unsigned long max;
 | |
| 	unsigned long count;
 | |
| 	struct location *loc;
 | |
| 	loff_t idx;
 | |
| };
 | |
| 
 | |
| static struct dentry *slab_debugfs_root;
 | |
| 
 | |
| static void free_loc_track(struct loc_track *t)
 | |
| {
 | |
| 	if (t->max)
 | |
| 		free_pages((unsigned long)t->loc,
 | |
| 			get_order(sizeof(struct location) * t->max));
 | |
| }
 | |
| 
 | |
| static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
 | |
| {
 | |
| 	struct location *l;
 | |
| 	int order;
 | |
| 
 | |
| 	order = get_order(sizeof(struct location) * max);
 | |
| 
 | |
| 	l = (void *)__get_free_pages(flags, order);
 | |
| 	if (!l)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (t->count) {
 | |
| 		memcpy(l, t->loc, sizeof(struct location) * t->count);
 | |
| 		free_loc_track(t);
 | |
| 	}
 | |
| 	t->max = max;
 | |
| 	t->loc = l;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int add_location(struct loc_track *t, struct kmem_cache *s,
 | |
| 				const struct track *track,
 | |
| 				unsigned int orig_size)
 | |
| {
 | |
| 	long start, end, pos;
 | |
| 	struct location *l;
 | |
| 	unsigned long caddr, chandle, cwaste;
 | |
| 	unsigned long age = jiffies - track->when;
 | |
| 	depot_stack_handle_t handle = 0;
 | |
| 	unsigned int waste = s->object_size - orig_size;
 | |
| 
 | |
| #ifdef CONFIG_STACKDEPOT
 | |
| 	handle = READ_ONCE(track->handle);
 | |
| #endif
 | |
| 	start = -1;
 | |
| 	end = t->count;
 | |
| 
 | |
| 	for ( ; ; ) {
 | |
| 		pos = start + (end - start + 1) / 2;
 | |
| 
 | |
| 		/*
 | |
| 		 * There is nothing at "end". If we end up there
 | |
| 		 * we need to add something to before end.
 | |
| 		 */
 | |
| 		if (pos == end)
 | |
| 			break;
 | |
| 
 | |
| 		l = &t->loc[pos];
 | |
| 		caddr = l->addr;
 | |
| 		chandle = l->handle;
 | |
| 		cwaste = l->waste;
 | |
| 		if ((track->addr == caddr) && (handle == chandle) &&
 | |
| 			(waste == cwaste)) {
 | |
| 
 | |
| 			l->count++;
 | |
| 			if (track->when) {
 | |
| 				l->sum_time += age;
 | |
| 				if (age < l->min_time)
 | |
| 					l->min_time = age;
 | |
| 				if (age > l->max_time)
 | |
| 					l->max_time = age;
 | |
| 
 | |
| 				if (track->pid < l->min_pid)
 | |
| 					l->min_pid = track->pid;
 | |
| 				if (track->pid > l->max_pid)
 | |
| 					l->max_pid = track->pid;
 | |
| 
 | |
| 				cpumask_set_cpu(track->cpu,
 | |
| 						to_cpumask(l->cpus));
 | |
| 			}
 | |
| 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		if (track->addr < caddr)
 | |
| 			end = pos;
 | |
| 		else if (track->addr == caddr && handle < chandle)
 | |
| 			end = pos;
 | |
| 		else if (track->addr == caddr && handle == chandle &&
 | |
| 				waste < cwaste)
 | |
| 			end = pos;
 | |
| 		else
 | |
| 			start = pos;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Not found. Insert new tracking element.
 | |
| 	 */
 | |
| 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
 | |
| 		return 0;
 | |
| 
 | |
| 	l = t->loc + pos;
 | |
| 	if (pos < t->count)
 | |
| 		memmove(l + 1, l,
 | |
| 			(t->count - pos) * sizeof(struct location));
 | |
| 	t->count++;
 | |
| 	l->count = 1;
 | |
| 	l->addr = track->addr;
 | |
| 	l->sum_time = age;
 | |
| 	l->min_time = age;
 | |
| 	l->max_time = age;
 | |
| 	l->min_pid = track->pid;
 | |
| 	l->max_pid = track->pid;
 | |
| 	l->handle = handle;
 | |
| 	l->waste = waste;
 | |
| 	cpumask_clear(to_cpumask(l->cpus));
 | |
| 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
 | |
| 	nodes_clear(l->nodes);
 | |
| 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void process_slab(struct loc_track *t, struct kmem_cache *s,
 | |
| 		struct slab *slab, enum track_item alloc,
 | |
| 		unsigned long *obj_map)
 | |
| {
 | |
| 	void *addr = slab_address(slab);
 | |
| 	bool is_alloc = (alloc == TRACK_ALLOC);
 | |
| 	void *p;
 | |
| 
 | |
| 	__fill_map(obj_map, s, slab);
 | |
| 
 | |
| 	for_each_object(p, s, addr, slab->objects)
 | |
| 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
 | |
| 			add_location(t, s, get_track(s, p, alloc),
 | |
| 				     is_alloc ? get_orig_size(s, p) :
 | |
| 						s->object_size);
 | |
| }
 | |
| #endif  /* CONFIG_DEBUG_FS   */
 | |
| #endif	/* CONFIG_SLUB_DEBUG */
 | |
| 
 | |
| #ifdef SLAB_SUPPORTS_SYSFS
 | |
| enum slab_stat_type {
 | |
| 	SL_ALL,			/* All slabs */
 | |
| 	SL_PARTIAL,		/* Only partially allocated slabs */
 | |
| 	SL_CPU,			/* Only slabs used for cpu caches */
 | |
| 	SL_OBJECTS,		/* Determine allocated objects not slabs */
 | |
| 	SL_TOTAL		/* Determine object capacity not slabs */
 | |
| };
 | |
| 
 | |
| #define SO_ALL		(1 << SL_ALL)
 | |
| #define SO_PARTIAL	(1 << SL_PARTIAL)
 | |
| #define SO_CPU		(1 << SL_CPU)
 | |
| #define SO_OBJECTS	(1 << SL_OBJECTS)
 | |
| #define SO_TOTAL	(1 << SL_TOTAL)
 | |
| 
 | |
| static ssize_t show_slab_objects(struct kmem_cache *s,
 | |
| 				 char *buf, unsigned long flags)
 | |
| {
 | |
| 	unsigned long total = 0;
 | |
| 	int node;
 | |
| 	int x;
 | |
| 	unsigned long *nodes;
 | |
| 	int len = 0;
 | |
| 
 | |
| 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
 | |
| 	if (!nodes)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (flags & SO_CPU) {
 | |
| 		int cpu;
 | |
| 
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
 | |
| 							       cpu);
 | |
| 			int node;
 | |
| 			struct slab *slab;
 | |
| 
 | |
| 			slab = READ_ONCE(c->slab);
 | |
| 			if (!slab)
 | |
| 				continue;
 | |
| 
 | |
| 			node = slab_nid(slab);
 | |
| 			if (flags & SO_TOTAL)
 | |
| 				x = slab->objects;
 | |
| 			else if (flags & SO_OBJECTS)
 | |
| 				x = slab->inuse;
 | |
| 			else
 | |
| 				x = 1;
 | |
| 
 | |
| 			total += x;
 | |
| 			nodes[node] += x;
 | |
| 
 | |
| #ifdef CONFIG_SLUB_CPU_PARTIAL
 | |
| 			slab = slub_percpu_partial_read_once(c);
 | |
| 			if (slab) {
 | |
| 				node = slab_nid(slab);
 | |
| 				if (flags & SO_TOTAL)
 | |
| 					WARN_ON_ONCE(1);
 | |
| 				else if (flags & SO_OBJECTS)
 | |
| 					WARN_ON_ONCE(1);
 | |
| 				else
 | |
| 					x = slab->slabs;
 | |
| 				total += x;
 | |
| 				nodes[node] += x;
 | |
| 			}
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
 | |
| 	 * already held which will conflict with an existing lock order:
 | |
| 	 *
 | |
| 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
 | |
| 	 *
 | |
| 	 * We don't really need mem_hotplug_lock (to hold off
 | |
| 	 * slab_mem_going_offline_callback) here because slab's memory hot
 | |
| 	 * unplug code doesn't destroy the kmem_cache->node[] data.
 | |
| 	 */
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	if (flags & SO_ALL) {
 | |
| 		struct kmem_cache_node *n;
 | |
| 
 | |
| 		for_each_kmem_cache_node(s, node, n) {
 | |
| 
 | |
| 			if (flags & SO_TOTAL)
 | |
| 				x = node_nr_objs(n);
 | |
| 			else if (flags & SO_OBJECTS)
 | |
| 				x = node_nr_objs(n) - count_partial(n, count_free);
 | |
| 			else
 | |
| 				x = node_nr_slabs(n);
 | |
| 			total += x;
 | |
| 			nodes[node] += x;
 | |
| 		}
 | |
| 
 | |
| 	} else
 | |
| #endif
 | |
| 	if (flags & SO_PARTIAL) {
 | |
| 		struct kmem_cache_node *n;
 | |
| 
 | |
| 		for_each_kmem_cache_node(s, node, n) {
 | |
| 			if (flags & SO_TOTAL)
 | |
| 				x = count_partial(n, count_total);
 | |
| 			else if (flags & SO_OBJECTS)
 | |
| 				x = count_partial(n, count_inuse);
 | |
| 			else
 | |
| 				x = n->nr_partial;
 | |
| 			total += x;
 | |
| 			nodes[node] += x;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	len += sysfs_emit_at(buf, len, "%lu", total);
 | |
| #ifdef CONFIG_NUMA
 | |
| 	for (node = 0; node < nr_node_ids; node++) {
 | |
| 		if (nodes[node])
 | |
| 			len += sysfs_emit_at(buf, len, " N%d=%lu",
 | |
| 					     node, nodes[node]);
 | |
| 	}
 | |
| #endif
 | |
| 	len += sysfs_emit_at(buf, len, "\n");
 | |
| 	kfree(nodes);
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
 | |
| #define to_slab(n) container_of(n, struct kmem_cache, kobj)
 | |
| 
 | |
| struct slab_attribute {
 | |
| 	struct attribute attr;
 | |
| 	ssize_t (*show)(struct kmem_cache *s, char *buf);
 | |
| 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
 | |
| };
 | |
| 
 | |
| #define SLAB_ATTR_RO(_name) \
 | |
| 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
 | |
| 
 | |
| #define SLAB_ATTR(_name) \
 | |
| 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
 | |
| 
 | |
| static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%u\n", s->size);
 | |
| }
 | |
| SLAB_ATTR_RO(slab_size);
 | |
| 
 | |
| static ssize_t align_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%u\n", s->align);
 | |
| }
 | |
| SLAB_ATTR_RO(align);
 | |
| 
 | |
| static ssize_t object_size_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%u\n", s->object_size);
 | |
| }
 | |
| SLAB_ATTR_RO(object_size);
 | |
| 
 | |
| static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
 | |
| }
 | |
| SLAB_ATTR_RO(objs_per_slab);
 | |
| 
 | |
| static ssize_t order_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
 | |
| }
 | |
| SLAB_ATTR_RO(order);
 | |
| 
 | |
| static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%lu\n", s->min_partial);
 | |
| }
 | |
| 
 | |
| static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
 | |
| 				 size_t length)
 | |
| {
 | |
| 	unsigned long min;
 | |
| 	int err;
 | |
| 
 | |
| 	err = kstrtoul(buf, 10, &min);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	s->min_partial = min;
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(min_partial);
 | |
| 
 | |
| static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	unsigned int nr_partial = 0;
 | |
| #ifdef CONFIG_SLUB_CPU_PARTIAL
 | |
| 	nr_partial = s->cpu_partial;
 | |
| #endif
 | |
| 
 | |
| 	return sysfs_emit(buf, "%u\n", nr_partial);
 | |
| }
 | |
| 
 | |
| static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
 | |
| 				 size_t length)
 | |
| {
 | |
| 	unsigned int objects;
 | |
| 	int err;
 | |
| 
 | |
| 	err = kstrtouint(buf, 10, &objects);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	if (objects && !kmem_cache_has_cpu_partial(s))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	slub_set_cpu_partial(s, objects);
 | |
| 	flush_all(s);
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(cpu_partial);
 | |
| 
 | |
| static ssize_t ctor_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	if (!s->ctor)
 | |
| 		return 0;
 | |
| 	return sysfs_emit(buf, "%pS\n", s->ctor);
 | |
| }
 | |
| SLAB_ATTR_RO(ctor);
 | |
| 
 | |
| static ssize_t aliases_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
 | |
| }
 | |
| SLAB_ATTR_RO(aliases);
 | |
| 
 | |
| static ssize_t partial_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return show_slab_objects(s, buf, SO_PARTIAL);
 | |
| }
 | |
| SLAB_ATTR_RO(partial);
 | |
| 
 | |
| static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return show_slab_objects(s, buf, SO_CPU);
 | |
| }
 | |
| SLAB_ATTR_RO(cpu_slabs);
 | |
| 
 | |
| static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
 | |
| }
 | |
| SLAB_ATTR_RO(objects_partial);
 | |
| 
 | |
| static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	int objects = 0;
 | |
| 	int slabs = 0;
 | |
| 	int cpu __maybe_unused;
 | |
| 	int len = 0;
 | |
| 
 | |
| #ifdef CONFIG_SLUB_CPU_PARTIAL
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		struct slab *slab;
 | |
| 
 | |
| 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
 | |
| 
 | |
| 		if (slab)
 | |
| 			slabs += slab->slabs;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
 | |
| 	objects = (slabs * oo_objects(s->oo)) / 2;
 | |
| 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
 | |
| 
 | |
| #ifdef CONFIG_SLUB_CPU_PARTIAL
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		struct slab *slab;
 | |
| 
 | |
| 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
 | |
| 		if (slab) {
 | |
| 			slabs = READ_ONCE(slab->slabs);
 | |
| 			objects = (slabs * oo_objects(s->oo)) / 2;
 | |
| 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
 | |
| 					     cpu, objects, slabs);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	len += sysfs_emit_at(buf, len, "\n");
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| SLAB_ATTR_RO(slabs_cpu_partial);
 | |
| 
 | |
| static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
 | |
| }
 | |
| SLAB_ATTR_RO(reclaim_account);
 | |
| 
 | |
| static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
 | |
| }
 | |
| SLAB_ATTR_RO(hwcache_align);
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
 | |
| }
 | |
| SLAB_ATTR_RO(cache_dma);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_HARDENED_USERCOPY
 | |
| static ssize_t usersize_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%u\n", s->usersize);
 | |
| }
 | |
| SLAB_ATTR_RO(usersize);
 | |
| #endif
 | |
| 
 | |
| static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
 | |
| }
 | |
| SLAB_ATTR_RO(destroy_by_rcu);
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| static ssize_t slabs_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return show_slab_objects(s, buf, SO_ALL);
 | |
| }
 | |
| SLAB_ATTR_RO(slabs);
 | |
| 
 | |
| static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
 | |
| }
 | |
| SLAB_ATTR_RO(total_objects);
 | |
| 
 | |
| static ssize_t objects_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
 | |
| }
 | |
| SLAB_ATTR_RO(objects);
 | |
| 
 | |
| static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
 | |
| }
 | |
| SLAB_ATTR_RO(sanity_checks);
 | |
| 
 | |
| static ssize_t trace_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
 | |
| }
 | |
| SLAB_ATTR_RO(trace);
 | |
| 
 | |
| static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
 | |
| }
 | |
| 
 | |
| SLAB_ATTR_RO(red_zone);
 | |
| 
 | |
| static ssize_t poison_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
 | |
| }
 | |
| 
 | |
| SLAB_ATTR_RO(poison);
 | |
| 
 | |
| static ssize_t store_user_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
 | |
| }
 | |
| 
 | |
| SLAB_ATTR_RO(store_user);
 | |
| 
 | |
| static ssize_t validate_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t validate_store(struct kmem_cache *s,
 | |
| 			const char *buf, size_t length)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	if (buf[0] == '1' && kmem_cache_debug(s)) {
 | |
| 		ret = validate_slab_cache(s);
 | |
| 		if (ret >= 0)
 | |
| 			ret = length;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| SLAB_ATTR(validate);
 | |
| 
 | |
| #endif /* CONFIG_SLUB_DEBUG */
 | |
| 
 | |
| #ifdef CONFIG_FAILSLAB
 | |
| static ssize_t failslab_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
 | |
| }
 | |
| 
 | |
| static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
 | |
| 				size_t length)
 | |
| {
 | |
| 	if (s->refcount > 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (buf[0] == '1')
 | |
| 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
 | |
| 	else
 | |
| 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
 | |
| 
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(failslab);
 | |
| #endif
 | |
| 
 | |
| static ssize_t shrink_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t shrink_store(struct kmem_cache *s,
 | |
| 			const char *buf, size_t length)
 | |
| {
 | |
| 	if (buf[0] == '1')
 | |
| 		kmem_cache_shrink(s);
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(shrink);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
 | |
| }
 | |
| 
 | |
| static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
 | |
| 				const char *buf, size_t length)
 | |
| {
 | |
| 	unsigned int ratio;
 | |
| 	int err;
 | |
| 
 | |
| 	err = kstrtouint(buf, 10, &ratio);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	if (ratio > 100)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	s->remote_node_defrag_ratio = ratio * 10;
 | |
| 
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(remote_node_defrag_ratio);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SLUB_STATS
 | |
| static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
 | |
| {
 | |
| 	unsigned long sum  = 0;
 | |
| 	int cpu;
 | |
| 	int len = 0;
 | |
| 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
 | |
| 
 | |
| 	if (!data)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
 | |
| 
 | |
| 		data[cpu] = x;
 | |
| 		sum += x;
 | |
| 	}
 | |
| 
 | |
| 	len += sysfs_emit_at(buf, len, "%lu", sum);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (data[cpu])
 | |
| 			len += sysfs_emit_at(buf, len, " C%d=%u",
 | |
| 					     cpu, data[cpu]);
 | |
| 	}
 | |
| #endif
 | |
| 	kfree(data);
 | |
| 	len += sysfs_emit_at(buf, len, "\n");
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static void clear_stat(struct kmem_cache *s, enum stat_item si)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_online_cpu(cpu)
 | |
| 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
 | |
| }
 | |
| 
 | |
| #define STAT_ATTR(si, text) 					\
 | |
| static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
 | |
| {								\
 | |
| 	return show_stat(s, buf, si);				\
 | |
| }								\
 | |
| static ssize_t text##_store(struct kmem_cache *s,		\
 | |
| 				const char *buf, size_t length)	\
 | |
| {								\
 | |
| 	if (buf[0] != '0')					\
 | |
| 		return -EINVAL;					\
 | |
| 	clear_stat(s, si);					\
 | |
| 	return length;						\
 | |
| }								\
 | |
| SLAB_ATTR(text);						\
 | |
| 
 | |
| STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
 | |
| STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
 | |
| STAT_ATTR(FREE_FASTPATH, free_fastpath);
 | |
| STAT_ATTR(FREE_SLOWPATH, free_slowpath);
 | |
| STAT_ATTR(FREE_FROZEN, free_frozen);
 | |
| STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
 | |
| STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
 | |
| STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
 | |
| STAT_ATTR(ALLOC_SLAB, alloc_slab);
 | |
| STAT_ATTR(ALLOC_REFILL, alloc_refill);
 | |
| STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
 | |
| STAT_ATTR(FREE_SLAB, free_slab);
 | |
| STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
 | |
| STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
 | |
| STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
 | |
| STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
 | |
| STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
 | |
| STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
 | |
| STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
 | |
| STAT_ATTR(ORDER_FALLBACK, order_fallback);
 | |
| STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
 | |
| STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
 | |
| STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
 | |
| STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
 | |
| STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
 | |
| STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
 | |
| #endif	/* CONFIG_SLUB_STATS */
 | |
| 
 | |
| #ifdef CONFIG_KFENCE
 | |
| static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
 | |
| }
 | |
| 
 | |
| static ssize_t skip_kfence_store(struct kmem_cache *s,
 | |
| 			const char *buf, size_t length)
 | |
| {
 | |
| 	int ret = length;
 | |
| 
 | |
| 	if (buf[0] == '0')
 | |
| 		s->flags &= ~SLAB_SKIP_KFENCE;
 | |
| 	else if (buf[0] == '1')
 | |
| 		s->flags |= SLAB_SKIP_KFENCE;
 | |
| 	else
 | |
| 		ret = -EINVAL;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| SLAB_ATTR(skip_kfence);
 | |
| #endif
 | |
| 
 | |
| static struct attribute *slab_attrs[] = {
 | |
| 	&slab_size_attr.attr,
 | |
| 	&object_size_attr.attr,
 | |
| 	&objs_per_slab_attr.attr,
 | |
| 	&order_attr.attr,
 | |
| 	&min_partial_attr.attr,
 | |
| 	&cpu_partial_attr.attr,
 | |
| 	&objects_partial_attr.attr,
 | |
| 	&partial_attr.attr,
 | |
| 	&cpu_slabs_attr.attr,
 | |
| 	&ctor_attr.attr,
 | |
| 	&aliases_attr.attr,
 | |
| 	&align_attr.attr,
 | |
| 	&hwcache_align_attr.attr,
 | |
| 	&reclaim_account_attr.attr,
 | |
| 	&destroy_by_rcu_attr.attr,
 | |
| 	&shrink_attr.attr,
 | |
| 	&slabs_cpu_partial_attr.attr,
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	&total_objects_attr.attr,
 | |
| 	&objects_attr.attr,
 | |
| 	&slabs_attr.attr,
 | |
| 	&sanity_checks_attr.attr,
 | |
| 	&trace_attr.attr,
 | |
| 	&red_zone_attr.attr,
 | |
| 	&poison_attr.attr,
 | |
| 	&store_user_attr.attr,
 | |
| 	&validate_attr.attr,
 | |
| #endif
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| 	&cache_dma_attr.attr,
 | |
| #endif
 | |
| #ifdef CONFIG_NUMA
 | |
| 	&remote_node_defrag_ratio_attr.attr,
 | |
| #endif
 | |
| #ifdef CONFIG_SLUB_STATS
 | |
| 	&alloc_fastpath_attr.attr,
 | |
| 	&alloc_slowpath_attr.attr,
 | |
| 	&free_fastpath_attr.attr,
 | |
| 	&free_slowpath_attr.attr,
 | |
| 	&free_frozen_attr.attr,
 | |
| 	&free_add_partial_attr.attr,
 | |
| 	&free_remove_partial_attr.attr,
 | |
| 	&alloc_from_partial_attr.attr,
 | |
| 	&alloc_slab_attr.attr,
 | |
| 	&alloc_refill_attr.attr,
 | |
| 	&alloc_node_mismatch_attr.attr,
 | |
| 	&free_slab_attr.attr,
 | |
| 	&cpuslab_flush_attr.attr,
 | |
| 	&deactivate_full_attr.attr,
 | |
| 	&deactivate_empty_attr.attr,
 | |
| 	&deactivate_to_head_attr.attr,
 | |
| 	&deactivate_to_tail_attr.attr,
 | |
| 	&deactivate_remote_frees_attr.attr,
 | |
| 	&deactivate_bypass_attr.attr,
 | |
| 	&order_fallback_attr.attr,
 | |
| 	&cmpxchg_double_fail_attr.attr,
 | |
| 	&cmpxchg_double_cpu_fail_attr.attr,
 | |
| 	&cpu_partial_alloc_attr.attr,
 | |
| 	&cpu_partial_free_attr.attr,
 | |
| 	&cpu_partial_node_attr.attr,
 | |
| 	&cpu_partial_drain_attr.attr,
 | |
| #endif
 | |
| #ifdef CONFIG_FAILSLAB
 | |
| 	&failslab_attr.attr,
 | |
| #endif
 | |
| #ifdef CONFIG_HARDENED_USERCOPY
 | |
| 	&usersize_attr.attr,
 | |
| #endif
 | |
| #ifdef CONFIG_KFENCE
 | |
| 	&skip_kfence_attr.attr,
 | |
| #endif
 | |
| 
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static const struct attribute_group slab_attr_group = {
 | |
| 	.attrs = slab_attrs,
 | |
| };
 | |
| 
 | |
| static ssize_t slab_attr_show(struct kobject *kobj,
 | |
| 				struct attribute *attr,
 | |
| 				char *buf)
 | |
| {
 | |
| 	struct slab_attribute *attribute;
 | |
| 	struct kmem_cache *s;
 | |
| 
 | |
| 	attribute = to_slab_attr(attr);
 | |
| 	s = to_slab(kobj);
 | |
| 
 | |
| 	if (!attribute->show)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return attribute->show(s, buf);
 | |
| }
 | |
| 
 | |
| static ssize_t slab_attr_store(struct kobject *kobj,
 | |
| 				struct attribute *attr,
 | |
| 				const char *buf, size_t len)
 | |
| {
 | |
| 	struct slab_attribute *attribute;
 | |
| 	struct kmem_cache *s;
 | |
| 
 | |
| 	attribute = to_slab_attr(attr);
 | |
| 	s = to_slab(kobj);
 | |
| 
 | |
| 	if (!attribute->store)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return attribute->store(s, buf, len);
 | |
| }
 | |
| 
 | |
| static void kmem_cache_release(struct kobject *k)
 | |
| {
 | |
| 	slab_kmem_cache_release(to_slab(k));
 | |
| }
 | |
| 
 | |
| static const struct sysfs_ops slab_sysfs_ops = {
 | |
| 	.show = slab_attr_show,
 | |
| 	.store = slab_attr_store,
 | |
| };
 | |
| 
 | |
| static const struct kobj_type slab_ktype = {
 | |
| 	.sysfs_ops = &slab_sysfs_ops,
 | |
| 	.release = kmem_cache_release,
 | |
| };
 | |
| 
 | |
| static struct kset *slab_kset;
 | |
| 
 | |
| static inline struct kset *cache_kset(struct kmem_cache *s)
 | |
| {
 | |
| 	return slab_kset;
 | |
| }
 | |
| 
 | |
| #define ID_STR_LENGTH 32
 | |
| 
 | |
| /* Create a unique string id for a slab cache:
 | |
|  *
 | |
|  * Format	:[flags-]size
 | |
|  */
 | |
| static char *create_unique_id(struct kmem_cache *s)
 | |
| {
 | |
| 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
 | |
| 	char *p = name;
 | |
| 
 | |
| 	if (!name)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	*p++ = ':';
 | |
| 	/*
 | |
| 	 * First flags affecting slabcache operations. We will only
 | |
| 	 * get here for aliasable slabs so we do not need to support
 | |
| 	 * too many flags. The flags here must cover all flags that
 | |
| 	 * are matched during merging to guarantee that the id is
 | |
| 	 * unique.
 | |
| 	 */
 | |
| 	if (s->flags & SLAB_CACHE_DMA)
 | |
| 		*p++ = 'd';
 | |
| 	if (s->flags & SLAB_CACHE_DMA32)
 | |
| 		*p++ = 'D';
 | |
| 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
 | |
| 		*p++ = 'a';
 | |
| 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
 | |
| 		*p++ = 'F';
 | |
| 	if (s->flags & SLAB_ACCOUNT)
 | |
| 		*p++ = 'A';
 | |
| 	if (p != name + 1)
 | |
| 		*p++ = '-';
 | |
| 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
 | |
| 
 | |
| 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
 | |
| 		kfree(name);
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 	kmsan_unpoison_memory(name, p - name);
 | |
| 	return name;
 | |
| }
 | |
| 
 | |
| static int sysfs_slab_add(struct kmem_cache *s)
 | |
| {
 | |
| 	int err;
 | |
| 	const char *name;
 | |
| 	struct kset *kset = cache_kset(s);
 | |
| 	int unmergeable = slab_unmergeable(s);
 | |
| 
 | |
| 	if (!unmergeable && disable_higher_order_debug &&
 | |
| 			(slub_debug & DEBUG_METADATA_FLAGS))
 | |
| 		unmergeable = 1;
 | |
| 
 | |
| 	if (unmergeable) {
 | |
| 		/*
 | |
| 		 * Slabcache can never be merged so we can use the name proper.
 | |
| 		 * This is typically the case for debug situations. In that
 | |
| 		 * case we can catch duplicate names easily.
 | |
| 		 */
 | |
| 		sysfs_remove_link(&slab_kset->kobj, s->name);
 | |
| 		name = s->name;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Create a unique name for the slab as a target
 | |
| 		 * for the symlinks.
 | |
| 		 */
 | |
| 		name = create_unique_id(s);
 | |
| 		if (IS_ERR(name))
 | |
| 			return PTR_ERR(name);
 | |
| 	}
 | |
| 
 | |
| 	s->kobj.kset = kset;
 | |
| 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
 | |
| 	if (err)
 | |
| 		goto out_del_kobj;
 | |
| 
 | |
| 	if (!unmergeable) {
 | |
| 		/* Setup first alias */
 | |
| 		sysfs_slab_alias(s, s->name);
 | |
| 	}
 | |
| out:
 | |
| 	if (!unmergeable)
 | |
| 		kfree(name);
 | |
| 	return err;
 | |
| out_del_kobj:
 | |
| 	kobject_del(&s->kobj);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| void sysfs_slab_unlink(struct kmem_cache *s)
 | |
| {
 | |
| 	kobject_del(&s->kobj);
 | |
| }
 | |
| 
 | |
| void sysfs_slab_release(struct kmem_cache *s)
 | |
| {
 | |
| 	kobject_put(&s->kobj);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Need to buffer aliases during bootup until sysfs becomes
 | |
|  * available lest we lose that information.
 | |
|  */
 | |
| struct saved_alias {
 | |
| 	struct kmem_cache *s;
 | |
| 	const char *name;
 | |
| 	struct saved_alias *next;
 | |
| };
 | |
| 
 | |
| static struct saved_alias *alias_list;
 | |
| 
 | |
| static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
 | |
| {
 | |
| 	struct saved_alias *al;
 | |
| 
 | |
| 	if (slab_state == FULL) {
 | |
| 		/*
 | |
| 		 * If we have a leftover link then remove it.
 | |
| 		 */
 | |
| 		sysfs_remove_link(&slab_kset->kobj, name);
 | |
| 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
 | |
| 	}
 | |
| 
 | |
| 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
 | |
| 	if (!al)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	al->s = s;
 | |
| 	al->name = name;
 | |
| 	al->next = alias_list;
 | |
| 	alias_list = al;
 | |
| 	kmsan_unpoison_memory(al, sizeof(*al));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init slab_sysfs_init(void)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	int err;
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 
 | |
| 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
 | |
| 	if (!slab_kset) {
 | |
| 		mutex_unlock(&slab_mutex);
 | |
| 		pr_err("Cannot register slab subsystem.\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	slab_state = FULL;
 | |
| 
 | |
| 	list_for_each_entry(s, &slab_caches, list) {
 | |
| 		err = sysfs_slab_add(s);
 | |
| 		if (err)
 | |
| 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
 | |
| 			       s->name);
 | |
| 	}
 | |
| 
 | |
| 	while (alias_list) {
 | |
| 		struct saved_alias *al = alias_list;
 | |
| 
 | |
| 		alias_list = alias_list->next;
 | |
| 		err = sysfs_slab_alias(al->s, al->name);
 | |
| 		if (err)
 | |
| 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
 | |
| 			       al->name);
 | |
| 		kfree(al);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(slab_sysfs_init);
 | |
| #endif /* SLAB_SUPPORTS_SYSFS */
 | |
| 
 | |
| #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
 | |
| static int slab_debugfs_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct loc_track *t = seq->private;
 | |
| 	struct location *l;
 | |
| 	unsigned long idx;
 | |
| 
 | |
| 	idx = (unsigned long) t->idx;
 | |
| 	if (idx < t->count) {
 | |
| 		l = &t->loc[idx];
 | |
| 
 | |
| 		seq_printf(seq, "%7ld ", l->count);
 | |
| 
 | |
| 		if (l->addr)
 | |
| 			seq_printf(seq, "%pS", (void *)l->addr);
 | |
| 		else
 | |
| 			seq_puts(seq, "<not-available>");
 | |
| 
 | |
| 		if (l->waste)
 | |
| 			seq_printf(seq, " waste=%lu/%lu",
 | |
| 				l->count * l->waste, l->waste);
 | |
| 
 | |
| 		if (l->sum_time != l->min_time) {
 | |
| 			seq_printf(seq, " age=%ld/%llu/%ld",
 | |
| 				l->min_time, div_u64(l->sum_time, l->count),
 | |
| 				l->max_time);
 | |
| 		} else
 | |
| 			seq_printf(seq, " age=%ld", l->min_time);
 | |
| 
 | |
| 		if (l->min_pid != l->max_pid)
 | |
| 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
 | |
| 		else
 | |
| 			seq_printf(seq, " pid=%ld",
 | |
| 				l->min_pid);
 | |
| 
 | |
| 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
 | |
| 			seq_printf(seq, " cpus=%*pbl",
 | |
| 				 cpumask_pr_args(to_cpumask(l->cpus)));
 | |
| 
 | |
| 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
 | |
| 			seq_printf(seq, " nodes=%*pbl",
 | |
| 				 nodemask_pr_args(&l->nodes));
 | |
| 
 | |
| #ifdef CONFIG_STACKDEPOT
 | |
| 		{
 | |
| 			depot_stack_handle_t handle;
 | |
| 			unsigned long *entries;
 | |
| 			unsigned int nr_entries, j;
 | |
| 
 | |
| 			handle = READ_ONCE(l->handle);
 | |
| 			if (handle) {
 | |
| 				nr_entries = stack_depot_fetch(handle, &entries);
 | |
| 				seq_puts(seq, "\n");
 | |
| 				for (j = 0; j < nr_entries; j++)
 | |
| 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 		seq_puts(seq, "\n");
 | |
| 	}
 | |
| 
 | |
| 	if (!idx && !t->count)
 | |
| 		seq_puts(seq, "No data\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void slab_debugfs_stop(struct seq_file *seq, void *v)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
 | |
| {
 | |
| 	struct loc_track *t = seq->private;
 | |
| 
 | |
| 	t->idx = ++(*ppos);
 | |
| 	if (*ppos <= t->count)
 | |
| 		return ppos;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int cmp_loc_by_count(const void *a, const void *b, const void *data)
 | |
| {
 | |
| 	struct location *loc1 = (struct location *)a;
 | |
| 	struct location *loc2 = (struct location *)b;
 | |
| 
 | |
| 	if (loc1->count > loc2->count)
 | |
| 		return -1;
 | |
| 	else
 | |
| 		return 1;
 | |
| }
 | |
| 
 | |
| static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
 | |
| {
 | |
| 	struct loc_track *t = seq->private;
 | |
| 
 | |
| 	t->idx = *ppos;
 | |
| 	return ppos;
 | |
| }
 | |
| 
 | |
| static const struct seq_operations slab_debugfs_sops = {
 | |
| 	.start  = slab_debugfs_start,
 | |
| 	.next   = slab_debugfs_next,
 | |
| 	.stop   = slab_debugfs_stop,
 | |
| 	.show   = slab_debugfs_show,
 | |
| };
 | |
| 
 | |
| static int slab_debug_trace_open(struct inode *inode, struct file *filep)
 | |
| {
 | |
| 
 | |
| 	struct kmem_cache_node *n;
 | |
| 	enum track_item alloc;
 | |
| 	int node;
 | |
| 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
 | |
| 						sizeof(struct loc_track));
 | |
| 	struct kmem_cache *s = file_inode(filep)->i_private;
 | |
| 	unsigned long *obj_map;
 | |
| 
 | |
| 	if (!t)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
 | |
| 	if (!obj_map) {
 | |
| 		seq_release_private(inode, filep);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
 | |
| 		alloc = TRACK_ALLOC;
 | |
| 	else
 | |
| 		alloc = TRACK_FREE;
 | |
| 
 | |
| 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
 | |
| 		bitmap_free(obj_map);
 | |
| 		seq_release_private(inode, filep);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	for_each_kmem_cache_node(s, node, n) {
 | |
| 		unsigned long flags;
 | |
| 		struct slab *slab;
 | |
| 
 | |
| 		if (!node_nr_slabs(n))
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock_irqsave(&n->list_lock, flags);
 | |
| 		list_for_each_entry(slab, &n->partial, slab_list)
 | |
| 			process_slab(t, s, slab, alloc, obj_map);
 | |
| 		list_for_each_entry(slab, &n->full, slab_list)
 | |
| 			process_slab(t, s, slab, alloc, obj_map);
 | |
| 		spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	/* Sort locations by count */
 | |
| 	sort_r(t->loc, t->count, sizeof(struct location),
 | |
| 		cmp_loc_by_count, NULL, NULL);
 | |
| 
 | |
| 	bitmap_free(obj_map);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int slab_debug_trace_release(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	struct seq_file *seq = file->private_data;
 | |
| 	struct loc_track *t = seq->private;
 | |
| 
 | |
| 	free_loc_track(t);
 | |
| 	return seq_release_private(inode, file);
 | |
| }
 | |
| 
 | |
| static const struct file_operations slab_debugfs_fops = {
 | |
| 	.open    = slab_debug_trace_open,
 | |
| 	.read    = seq_read,
 | |
| 	.llseek  = seq_lseek,
 | |
| 	.release = slab_debug_trace_release,
 | |
| };
 | |
| 
 | |
| static void debugfs_slab_add(struct kmem_cache *s)
 | |
| {
 | |
| 	struct dentry *slab_cache_dir;
 | |
| 
 | |
| 	if (unlikely(!slab_debugfs_root))
 | |
| 		return;
 | |
| 
 | |
| 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
 | |
| 
 | |
| 	debugfs_create_file("alloc_traces", 0400,
 | |
| 		slab_cache_dir, s, &slab_debugfs_fops);
 | |
| 
 | |
| 	debugfs_create_file("free_traces", 0400,
 | |
| 		slab_cache_dir, s, &slab_debugfs_fops);
 | |
| }
 | |
| 
 | |
| void debugfs_slab_release(struct kmem_cache *s)
 | |
| {
 | |
| 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
 | |
| }
 | |
| 
 | |
| static int __init slab_debugfs_init(void)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 
 | |
| 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
 | |
| 
 | |
| 	list_for_each_entry(s, &slab_caches, list)
 | |
| 		if (s->flags & SLAB_STORE_USER)
 | |
| 			debugfs_slab_add(s);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| __initcall(slab_debugfs_init);
 | |
| #endif
 | |
| /*
 | |
|  * The /proc/slabinfo ABI
 | |
|  */
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
 | |
| {
 | |
| 	unsigned long nr_slabs = 0;
 | |
| 	unsigned long nr_objs = 0;
 | |
| 	unsigned long nr_free = 0;
 | |
| 	int node;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	for_each_kmem_cache_node(s, node, n) {
 | |
| 		nr_slabs += node_nr_slabs(n);
 | |
| 		nr_objs += node_nr_objs(n);
 | |
| 		nr_free += count_partial(n, count_free);
 | |
| 	}
 | |
| 
 | |
| 	sinfo->active_objs = nr_objs - nr_free;
 | |
| 	sinfo->num_objs = nr_objs;
 | |
| 	sinfo->active_slabs = nr_slabs;
 | |
| 	sinfo->num_slabs = nr_slabs;
 | |
| 	sinfo->objects_per_slab = oo_objects(s->oo);
 | |
| 	sinfo->cache_order = oo_order(s->oo);
 | |
| }
 | |
| 
 | |
| void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
 | |
| {
 | |
| }
 | |
| 
 | |
| ssize_t slabinfo_write(struct file *file, const char __user *buffer,
 | |
| 		       size_t count, loff_t *ppos)
 | |
| {
 | |
| 	return -EIO;
 | |
| }
 | |
| #endif /* CONFIG_SLUB_DEBUG */
 |