mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 63b774993d
			
		
	
	
		63b774993d
		
	
	
	
	
		
			
			All but one caller already has a folio, so convert free_page_and_swap_cache() to have a folio and remove the call to page_folio(). Link: https://lkml.kernel.org/r/20240227174254.710559-19-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			964 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			964 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  *  linux/mm/swap_state.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | |
|  *  Swap reorganised 29.12.95, Stephen Tweedie
 | |
|  *
 | |
|  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
 | |
|  */
 | |
| #include <linux/mm.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/swap_slots.h>
 | |
| #include <linux/huge_mm.h>
 | |
| #include <linux/shmem_fs.h>
 | |
| #include "internal.h"
 | |
| #include "swap.h"
 | |
| 
 | |
| /*
 | |
|  * swapper_space is a fiction, retained to simplify the path through
 | |
|  * vmscan's shrink_page_list.
 | |
|  */
 | |
| static const struct address_space_operations swap_aops = {
 | |
| 	.writepage	= swap_writepage,
 | |
| 	.dirty_folio	= noop_dirty_folio,
 | |
| #ifdef CONFIG_MIGRATION
 | |
| 	.migrate_folio	= migrate_folio,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
 | |
| static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
 | |
| static bool enable_vma_readahead __read_mostly = true;
 | |
| 
 | |
| #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
 | |
| #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
 | |
| #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
 | |
| #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
 | |
| 
 | |
| #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
 | |
| #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
 | |
| #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
 | |
| 
 | |
| #define SWAP_RA_VAL(addr, win, hits)				\
 | |
| 	(((addr) & PAGE_MASK) |					\
 | |
| 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
 | |
| 	 ((hits) & SWAP_RA_HITS_MASK))
 | |
| 
 | |
| /* Initial readahead hits is 4 to start up with a small window */
 | |
| #define GET_SWAP_RA_VAL(vma)					\
 | |
| 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
 | |
| 
 | |
| static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
 | |
| 
 | |
| void show_swap_cache_info(void)
 | |
| {
 | |
| 	printk("%lu pages in swap cache\n", total_swapcache_pages());
 | |
| 	printk("Free swap  = %ldkB\n", K(get_nr_swap_pages()));
 | |
| 	printk("Total swap = %lukB\n", K(total_swap_pages));
 | |
| }
 | |
| 
 | |
| void *get_shadow_from_swap_cache(swp_entry_t entry)
 | |
| {
 | |
| 	struct address_space *address_space = swap_address_space(entry);
 | |
| 	pgoff_t idx = swp_offset(entry);
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = xa_load(&address_space->i_pages, idx);
 | |
| 	if (xa_is_value(page))
 | |
| 		return page;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * add_to_swap_cache resembles filemap_add_folio on swapper_space,
 | |
|  * but sets SwapCache flag and private instead of mapping and index.
 | |
|  */
 | |
| int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
 | |
| 			gfp_t gfp, void **shadowp)
 | |
| {
 | |
| 	struct address_space *address_space = swap_address_space(entry);
 | |
| 	pgoff_t idx = swp_offset(entry);
 | |
| 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
 | |
| 	unsigned long i, nr = folio_nr_pages(folio);
 | |
| 	void *old;
 | |
| 
 | |
| 	xas_set_update(&xas, workingset_update_node);
 | |
| 
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 | |
| 	VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
 | |
| 
 | |
| 	folio_ref_add(folio, nr);
 | |
| 	folio_set_swapcache(folio);
 | |
| 	folio->swap = entry;
 | |
| 
 | |
| 	do {
 | |
| 		xas_lock_irq(&xas);
 | |
| 		xas_create_range(&xas);
 | |
| 		if (xas_error(&xas))
 | |
| 			goto unlock;
 | |
| 		for (i = 0; i < nr; i++) {
 | |
| 			VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
 | |
| 			if (shadowp) {
 | |
| 				old = xas_load(&xas);
 | |
| 				if (xa_is_value(old))
 | |
| 					*shadowp = old;
 | |
| 			}
 | |
| 			xas_store(&xas, folio);
 | |
| 			xas_next(&xas);
 | |
| 		}
 | |
| 		address_space->nrpages += nr;
 | |
| 		__node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
 | |
| 		__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
 | |
| unlock:
 | |
| 		xas_unlock_irq(&xas);
 | |
| 	} while (xas_nomem(&xas, gfp));
 | |
| 
 | |
| 	if (!xas_error(&xas))
 | |
| 		return 0;
 | |
| 
 | |
| 	folio_clear_swapcache(folio);
 | |
| 	folio_ref_sub(folio, nr);
 | |
| 	return xas_error(&xas);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This must be called only on folios that have
 | |
|  * been verified to be in the swap cache.
 | |
|  */
 | |
| void __delete_from_swap_cache(struct folio *folio,
 | |
| 			swp_entry_t entry, void *shadow)
 | |
| {
 | |
| 	struct address_space *address_space = swap_address_space(entry);
 | |
| 	int i;
 | |
| 	long nr = folio_nr_pages(folio);
 | |
| 	pgoff_t idx = swp_offset(entry);
 | |
| 	XA_STATE(xas, &address_space->i_pages, idx);
 | |
| 
 | |
| 	xas_set_update(&xas, workingset_update_node);
 | |
| 
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
 | |
| 	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
 | |
| 
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		void *entry = xas_store(&xas, shadow);
 | |
| 		VM_BUG_ON_PAGE(entry != folio, entry);
 | |
| 		xas_next(&xas);
 | |
| 	}
 | |
| 	folio->swap.val = 0;
 | |
| 	folio_clear_swapcache(folio);
 | |
| 	address_space->nrpages -= nr;
 | |
| 	__node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
 | |
| 	__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * add_to_swap - allocate swap space for a folio
 | |
|  * @folio: folio we want to move to swap
 | |
|  *
 | |
|  * Allocate swap space for the folio and add the folio to the
 | |
|  * swap cache.
 | |
|  *
 | |
|  * Context: Caller needs to hold the folio lock.
 | |
|  * Return: Whether the folio was added to the swap cache.
 | |
|  */
 | |
| bool add_to_swap(struct folio *folio)
 | |
| {
 | |
| 	swp_entry_t entry;
 | |
| 	int err;
 | |
| 
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
 | |
| 
 | |
| 	entry = folio_alloc_swap(folio);
 | |
| 	if (!entry.val)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * XArray node allocations from PF_MEMALLOC contexts could
 | |
| 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
 | |
| 	 * stops emergency reserves from being allocated.
 | |
| 	 *
 | |
| 	 * TODO: this could cause a theoretical memory reclaim
 | |
| 	 * deadlock in the swap out path.
 | |
| 	 */
 | |
| 	/*
 | |
| 	 * Add it to the swap cache.
 | |
| 	 */
 | |
| 	err = add_to_swap_cache(folio, entry,
 | |
| 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
 | |
| 	if (err)
 | |
| 		/*
 | |
| 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
 | |
| 		 * clear SWAP_HAS_CACHE flag.
 | |
| 		 */
 | |
| 		goto fail;
 | |
| 	/*
 | |
| 	 * Normally the folio will be dirtied in unmap because its
 | |
| 	 * pte should be dirty. A special case is MADV_FREE page. The
 | |
| 	 * page's pte could have dirty bit cleared but the folio's
 | |
| 	 * SwapBacked flag is still set because clearing the dirty bit
 | |
| 	 * and SwapBacked flag has no lock protected. For such folio,
 | |
| 	 * unmap will not set dirty bit for it, so folio reclaim will
 | |
| 	 * not write the folio out. This can cause data corruption when
 | |
| 	 * the folio is swapped in later. Always setting the dirty flag
 | |
| 	 * for the folio solves the problem.
 | |
| 	 */
 | |
| 	folio_mark_dirty(folio);
 | |
| 
 | |
| 	return true;
 | |
| 
 | |
| fail:
 | |
| 	put_swap_folio(folio, entry);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This must be called only on folios that have
 | |
|  * been verified to be in the swap cache and locked.
 | |
|  * It will never put the folio into the free list,
 | |
|  * the caller has a reference on the folio.
 | |
|  */
 | |
| void delete_from_swap_cache(struct folio *folio)
 | |
| {
 | |
| 	swp_entry_t entry = folio->swap;
 | |
| 	struct address_space *address_space = swap_address_space(entry);
 | |
| 
 | |
| 	xa_lock_irq(&address_space->i_pages);
 | |
| 	__delete_from_swap_cache(folio, entry, NULL);
 | |
| 	xa_unlock_irq(&address_space->i_pages);
 | |
| 
 | |
| 	put_swap_folio(folio, entry);
 | |
| 	folio_ref_sub(folio, folio_nr_pages(folio));
 | |
| }
 | |
| 
 | |
| void clear_shadow_from_swap_cache(int type, unsigned long begin,
 | |
| 				unsigned long end)
 | |
| {
 | |
| 	unsigned long curr = begin;
 | |
| 	void *old;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		swp_entry_t entry = swp_entry(type, curr);
 | |
| 		struct address_space *address_space = swap_address_space(entry);
 | |
| 		XA_STATE(xas, &address_space->i_pages, curr);
 | |
| 
 | |
| 		xas_set_update(&xas, workingset_update_node);
 | |
| 
 | |
| 		xa_lock_irq(&address_space->i_pages);
 | |
| 		xas_for_each(&xas, old, end) {
 | |
| 			if (!xa_is_value(old))
 | |
| 				continue;
 | |
| 			xas_store(&xas, NULL);
 | |
| 		}
 | |
| 		xa_unlock_irq(&address_space->i_pages);
 | |
| 
 | |
| 		/* search the next swapcache until we meet end */
 | |
| 		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
 | |
| 		curr++;
 | |
| 		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
 | |
| 		if (curr > end)
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we are the only user, then try to free up the swap cache.
 | |
|  *
 | |
|  * Its ok to check the swapcache flag without the folio lock
 | |
|  * here because we are going to recheck again inside
 | |
|  * folio_free_swap() _with_ the lock.
 | |
|  * 					- Marcelo
 | |
|  */
 | |
| void free_swap_cache(struct folio *folio)
 | |
| {
 | |
| 	if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
 | |
| 	    folio_trylock(folio)) {
 | |
| 		folio_free_swap(folio);
 | |
| 		folio_unlock(folio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform a free_page(), also freeing any swap cache associated with
 | |
|  * this page if it is the last user of the page.
 | |
|  */
 | |
| void free_page_and_swap_cache(struct page *page)
 | |
| {
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 
 | |
| 	free_swap_cache(folio);
 | |
| 	if (!is_huge_zero_page(page))
 | |
| 		folio_put(folio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Passed an array of pages, drop them all from swapcache and then release
 | |
|  * them.  They are removed from the LRU and freed if this is their last use.
 | |
|  */
 | |
| void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
 | |
| {
 | |
| 	struct folio_batch folios;
 | |
| 	unsigned int refs[PAGEVEC_SIZE];
 | |
| 
 | |
| 	lru_add_drain();
 | |
| 	folio_batch_init(&folios);
 | |
| 	for (int i = 0; i < nr; i++) {
 | |
| 		struct folio *folio = page_folio(encoded_page_ptr(pages[i]));
 | |
| 
 | |
| 		free_swap_cache(folio);
 | |
| 		refs[folios.nr] = 1;
 | |
| 		if (unlikely(encoded_page_flags(pages[i]) &
 | |
| 			     ENCODED_PAGE_BIT_NR_PAGES_NEXT))
 | |
| 			refs[folios.nr] = encoded_nr_pages(pages[++i]);
 | |
| 
 | |
| 		if (folio_batch_add(&folios, folio) == 0)
 | |
| 			folios_put_refs(&folios, refs);
 | |
| 	}
 | |
| 	if (folios.nr)
 | |
| 		folios_put_refs(&folios, refs);
 | |
| }
 | |
| 
 | |
| static inline bool swap_use_vma_readahead(void)
 | |
| {
 | |
| 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lookup a swap entry in the swap cache. A found folio will be returned
 | |
|  * unlocked and with its refcount incremented - we rely on the kernel
 | |
|  * lock getting page table operations atomic even if we drop the folio
 | |
|  * lock before returning.
 | |
|  *
 | |
|  * Caller must lock the swap device or hold a reference to keep it valid.
 | |
|  */
 | |
| struct folio *swap_cache_get_folio(swp_entry_t entry,
 | |
| 		struct vm_area_struct *vma, unsigned long addr)
 | |
| {
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry));
 | |
| 	if (!IS_ERR(folio)) {
 | |
| 		bool vma_ra = swap_use_vma_readahead();
 | |
| 		bool readahead;
 | |
| 
 | |
| 		/*
 | |
| 		 * At the moment, we don't support PG_readahead for anon THP
 | |
| 		 * so let's bail out rather than confusing the readahead stat.
 | |
| 		 */
 | |
| 		if (unlikely(folio_test_large(folio)))
 | |
| 			return folio;
 | |
| 
 | |
| 		readahead = folio_test_clear_readahead(folio);
 | |
| 		if (vma && vma_ra) {
 | |
| 			unsigned long ra_val;
 | |
| 			int win, hits;
 | |
| 
 | |
| 			ra_val = GET_SWAP_RA_VAL(vma);
 | |
| 			win = SWAP_RA_WIN(ra_val);
 | |
| 			hits = SWAP_RA_HITS(ra_val);
 | |
| 			if (readahead)
 | |
| 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
 | |
| 			atomic_long_set(&vma->swap_readahead_info,
 | |
| 					SWAP_RA_VAL(addr, win, hits));
 | |
| 		}
 | |
| 
 | |
| 		if (readahead) {
 | |
| 			count_vm_event(SWAP_RA_HIT);
 | |
| 			if (!vma || !vma_ra)
 | |
| 				atomic_inc(&swapin_readahead_hits);
 | |
| 		}
 | |
| 	} else {
 | |
| 		folio = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return folio;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
 | |
|  * @mapping: The address_space to search.
 | |
|  * @index: The page cache index.
 | |
|  *
 | |
|  * This differs from filemap_get_folio() in that it will also look for the
 | |
|  * folio in the swap cache.
 | |
|  *
 | |
|  * Return: The found folio or %NULL.
 | |
|  */
 | |
| struct folio *filemap_get_incore_folio(struct address_space *mapping,
 | |
| 		pgoff_t index)
 | |
| {
 | |
| 	swp_entry_t swp;
 | |
| 	struct swap_info_struct *si;
 | |
| 	struct folio *folio = filemap_get_entry(mapping, index);
 | |
| 
 | |
| 	if (!folio)
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 	if (!xa_is_value(folio))
 | |
| 		return folio;
 | |
| 	if (!shmem_mapping(mapping))
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 
 | |
| 	swp = radix_to_swp_entry(folio);
 | |
| 	/* There might be swapin error entries in shmem mapping. */
 | |
| 	if (non_swap_entry(swp))
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 	/* Prevent swapoff from happening to us */
 | |
| 	si = get_swap_device(swp);
 | |
| 	if (!si)
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 	index = swp_offset(swp);
 | |
| 	folio = filemap_get_folio(swap_address_space(swp), index);
 | |
| 	put_swap_device(si);
 | |
| 	return folio;
 | |
| }
 | |
| 
 | |
| struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
 | |
| 		struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated,
 | |
| 		bool skip_if_exists)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 	struct folio *folio;
 | |
| 	void *shadow = NULL;
 | |
| 
 | |
| 	*new_page_allocated = false;
 | |
| 	si = get_swap_device(entry);
 | |
| 	if (!si)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		int err;
 | |
| 		/*
 | |
| 		 * First check the swap cache.  Since this is normally
 | |
| 		 * called after swap_cache_get_folio() failed, re-calling
 | |
| 		 * that would confuse statistics.
 | |
| 		 */
 | |
| 		folio = filemap_get_folio(swap_address_space(entry),
 | |
| 						swp_offset(entry));
 | |
| 		if (!IS_ERR(folio))
 | |
| 			goto got_folio;
 | |
| 
 | |
| 		/*
 | |
| 		 * Just skip read ahead for unused swap slot.
 | |
| 		 * During swap_off when swap_slot_cache is disabled,
 | |
| 		 * we have to handle the race between putting
 | |
| 		 * swap entry in swap cache and marking swap slot
 | |
| 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
 | |
| 		 * else swap_off will be aborted if we return NULL.
 | |
| 		 */
 | |
| 		if (!swap_swapcount(si, entry) && swap_slot_cache_enabled)
 | |
| 			goto fail_put_swap;
 | |
| 
 | |
| 		/*
 | |
| 		 * Get a new folio to read into from swap.  Allocate it now,
 | |
| 		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
 | |
| 		 * cause any racers to loop around until we add it to cache.
 | |
| 		 */
 | |
| 		folio = (struct folio *)alloc_pages_mpol(gfp_mask, 0,
 | |
| 						mpol, ilx, numa_node_id());
 | |
| 		if (!folio)
 | |
|                         goto fail_put_swap;
 | |
| 
 | |
| 		/*
 | |
| 		 * Swap entry may have been freed since our caller observed it.
 | |
| 		 */
 | |
| 		err = swapcache_prepare(entry);
 | |
| 		if (!err)
 | |
| 			break;
 | |
| 
 | |
| 		folio_put(folio);
 | |
| 		if (err != -EEXIST)
 | |
| 			goto fail_put_swap;
 | |
| 
 | |
| 		/*
 | |
| 		 * Protect against a recursive call to __read_swap_cache_async()
 | |
| 		 * on the same entry waiting forever here because SWAP_HAS_CACHE
 | |
| 		 * is set but the folio is not the swap cache yet. This can
 | |
| 		 * happen today if mem_cgroup_swapin_charge_folio() below
 | |
| 		 * triggers reclaim through zswap, which may call
 | |
| 		 * __read_swap_cache_async() in the writeback path.
 | |
| 		 */
 | |
| 		if (skip_if_exists)
 | |
| 			goto fail_put_swap;
 | |
| 
 | |
| 		/*
 | |
| 		 * We might race against __delete_from_swap_cache(), and
 | |
| 		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
 | |
| 		 * has not yet been cleared.  Or race against another
 | |
| 		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
 | |
| 		 * in swap_map, but not yet added its folio to swap cache.
 | |
| 		 */
 | |
| 		schedule_timeout_uninterruptible(1);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The swap entry is ours to swap in. Prepare the new folio.
 | |
| 	 */
 | |
| 
 | |
| 	__folio_set_locked(folio);
 | |
| 	__folio_set_swapbacked(folio);
 | |
| 
 | |
| 	if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
 | |
| 		goto fail_unlock;
 | |
| 
 | |
| 	/* May fail (-ENOMEM) if XArray node allocation failed. */
 | |
| 	if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
 | |
| 		goto fail_unlock;
 | |
| 
 | |
| 	mem_cgroup_swapin_uncharge_swap(entry);
 | |
| 
 | |
| 	if (shadow)
 | |
| 		workingset_refault(folio, shadow);
 | |
| 
 | |
| 	/* Caller will initiate read into locked folio */
 | |
| 	folio_add_lru(folio);
 | |
| 	*new_page_allocated = true;
 | |
| got_folio:
 | |
| 	put_swap_device(si);
 | |
| 	return folio;
 | |
| 
 | |
| fail_unlock:
 | |
| 	put_swap_folio(folio, entry);
 | |
| 	folio_unlock(folio);
 | |
| 	folio_put(folio);
 | |
| fail_put_swap:
 | |
| 	put_swap_device(si);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Locate a page of swap in physical memory, reserving swap cache space
 | |
|  * and reading the disk if it is not already cached.
 | |
|  * A failure return means that either the page allocation failed or that
 | |
|  * the swap entry is no longer in use.
 | |
|  *
 | |
|  * get/put_swap_device() aren't needed to call this function, because
 | |
|  * __read_swap_cache_async() call them and swap_read_folio() holds the
 | |
|  * swap cache folio lock.
 | |
|  */
 | |
| struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
 | |
| 		struct vm_area_struct *vma, unsigned long addr,
 | |
| 		struct swap_iocb **plug)
 | |
| {
 | |
| 	bool page_allocated;
 | |
| 	struct mempolicy *mpol;
 | |
| 	pgoff_t ilx;
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	mpol = get_vma_policy(vma, addr, 0, &ilx);
 | |
| 	folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
 | |
| 					&page_allocated, false);
 | |
| 	mpol_cond_put(mpol);
 | |
| 
 | |
| 	if (page_allocated)
 | |
| 		swap_read_folio(folio, false, plug);
 | |
| 	return folio;
 | |
| }
 | |
| 
 | |
| static unsigned int __swapin_nr_pages(unsigned long prev_offset,
 | |
| 				      unsigned long offset,
 | |
| 				      int hits,
 | |
| 				      int max_pages,
 | |
| 				      int prev_win)
 | |
| {
 | |
| 	unsigned int pages, last_ra;
 | |
| 
 | |
| 	/*
 | |
| 	 * This heuristic has been found to work well on both sequential and
 | |
| 	 * random loads, swapping to hard disk or to SSD: please don't ask
 | |
| 	 * what the "+ 2" means, it just happens to work well, that's all.
 | |
| 	 */
 | |
| 	pages = hits + 2;
 | |
| 	if (pages == 2) {
 | |
| 		/*
 | |
| 		 * We can have no readahead hits to judge by: but must not get
 | |
| 		 * stuck here forever, so check for an adjacent offset instead
 | |
| 		 * (and don't even bother to check whether swap type is same).
 | |
| 		 */
 | |
| 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
 | |
| 			pages = 1;
 | |
| 	} else {
 | |
| 		unsigned int roundup = 4;
 | |
| 		while (roundup < pages)
 | |
| 			roundup <<= 1;
 | |
| 		pages = roundup;
 | |
| 	}
 | |
| 
 | |
| 	if (pages > max_pages)
 | |
| 		pages = max_pages;
 | |
| 
 | |
| 	/* Don't shrink readahead too fast */
 | |
| 	last_ra = prev_win / 2;
 | |
| 	if (pages < last_ra)
 | |
| 		pages = last_ra;
 | |
| 
 | |
| 	return pages;
 | |
| }
 | |
| 
 | |
| static unsigned long swapin_nr_pages(unsigned long offset)
 | |
| {
 | |
| 	static unsigned long prev_offset;
 | |
| 	unsigned int hits, pages, max_pages;
 | |
| 	static atomic_t last_readahead_pages;
 | |
| 
 | |
| 	max_pages = 1 << READ_ONCE(page_cluster);
 | |
| 	if (max_pages <= 1)
 | |
| 		return 1;
 | |
| 
 | |
| 	hits = atomic_xchg(&swapin_readahead_hits, 0);
 | |
| 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
 | |
| 				  max_pages,
 | |
| 				  atomic_read(&last_readahead_pages));
 | |
| 	if (!hits)
 | |
| 		WRITE_ONCE(prev_offset, offset);
 | |
| 	atomic_set(&last_readahead_pages, pages);
 | |
| 
 | |
| 	return pages;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * swap_cluster_readahead - swap in pages in hope we need them soon
 | |
|  * @entry: swap entry of this memory
 | |
|  * @gfp_mask: memory allocation flags
 | |
|  * @mpol: NUMA memory allocation policy to be applied
 | |
|  * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
 | |
|  *
 | |
|  * Returns the struct folio for entry and addr, after queueing swapin.
 | |
|  *
 | |
|  * Primitive swap readahead code. We simply read an aligned block of
 | |
|  * (1 << page_cluster) entries in the swap area. This method is chosen
 | |
|  * because it doesn't cost us any seek time.  We also make sure to queue
 | |
|  * the 'original' request together with the readahead ones...
 | |
|  *
 | |
|  * Note: it is intentional that the same NUMA policy and interleave index
 | |
|  * are used for every page of the readahead: neighbouring pages on swap
 | |
|  * are fairly likely to have been swapped out from the same node.
 | |
|  */
 | |
| struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
 | |
| 				    struct mempolicy *mpol, pgoff_t ilx)
 | |
| {
 | |
| 	struct folio *folio;
 | |
| 	unsigned long entry_offset = swp_offset(entry);
 | |
| 	unsigned long offset = entry_offset;
 | |
| 	unsigned long start_offset, end_offset;
 | |
| 	unsigned long mask;
 | |
| 	struct swap_info_struct *si = swp_swap_info(entry);
 | |
| 	struct blk_plug plug;
 | |
| 	struct swap_iocb *splug = NULL;
 | |
| 	bool page_allocated;
 | |
| 
 | |
| 	mask = swapin_nr_pages(offset) - 1;
 | |
| 	if (!mask)
 | |
| 		goto skip;
 | |
| 
 | |
| 	/* Read a page_cluster sized and aligned cluster around offset. */
 | |
| 	start_offset = offset & ~mask;
 | |
| 	end_offset = offset | mask;
 | |
| 	if (!start_offset)	/* First page is swap header. */
 | |
| 		start_offset++;
 | |
| 	if (end_offset >= si->max)
 | |
| 		end_offset = si->max - 1;
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 	for (offset = start_offset; offset <= end_offset ; offset++) {
 | |
| 		/* Ok, do the async read-ahead now */
 | |
| 		folio = __read_swap_cache_async(
 | |
| 				swp_entry(swp_type(entry), offset),
 | |
| 				gfp_mask, mpol, ilx, &page_allocated, false);
 | |
| 		if (!folio)
 | |
| 			continue;
 | |
| 		if (page_allocated) {
 | |
| 			swap_read_folio(folio, false, &splug);
 | |
| 			if (offset != entry_offset) {
 | |
| 				folio_set_readahead(folio);
 | |
| 				count_vm_event(SWAP_RA);
 | |
| 			}
 | |
| 		}
 | |
| 		folio_put(folio);
 | |
| 	}
 | |
| 	blk_finish_plug(&plug);
 | |
| 	swap_read_unplug(splug);
 | |
| 	lru_add_drain();	/* Push any new pages onto the LRU now */
 | |
| skip:
 | |
| 	/* The page was likely read above, so no need for plugging here */
 | |
| 	folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
 | |
| 					&page_allocated, false);
 | |
| 	if (unlikely(page_allocated)) {
 | |
| 		zswap_folio_swapin(folio);
 | |
| 		swap_read_folio(folio, false, NULL);
 | |
| 	}
 | |
| 	return folio;
 | |
| }
 | |
| 
 | |
| int init_swap_address_space(unsigned int type, unsigned long nr_pages)
 | |
| {
 | |
| 	struct address_space *spaces, *space;
 | |
| 	unsigned int i, nr;
 | |
| 
 | |
| 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
 | |
| 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
 | |
| 	if (!spaces)
 | |
| 		return -ENOMEM;
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		space = spaces + i;
 | |
| 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
 | |
| 		atomic_set(&space->i_mmap_writable, 0);
 | |
| 		space->a_ops = &swap_aops;
 | |
| 		/* swap cache doesn't use writeback related tags */
 | |
| 		mapping_set_no_writeback_tags(space);
 | |
| 	}
 | |
| 	nr_swapper_spaces[type] = nr;
 | |
| 	swapper_spaces[type] = spaces;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void exit_swap_address_space(unsigned int type)
 | |
| {
 | |
| 	int i;
 | |
| 	struct address_space *spaces = swapper_spaces[type];
 | |
| 
 | |
| 	for (i = 0; i < nr_swapper_spaces[type]; i++)
 | |
| 		VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
 | |
| 	kvfree(spaces);
 | |
| 	nr_swapper_spaces[type] = 0;
 | |
| 	swapper_spaces[type] = NULL;
 | |
| }
 | |
| 
 | |
| #define SWAP_RA_ORDER_CEILING	5
 | |
| 
 | |
| struct vma_swap_readahead {
 | |
| 	unsigned short win;
 | |
| 	unsigned short offset;
 | |
| 	unsigned short nr_pte;
 | |
| };
 | |
| 
 | |
| static void swap_ra_info(struct vm_fault *vmf,
 | |
| 			 struct vma_swap_readahead *ra_info)
 | |
| {
 | |
| 	struct vm_area_struct *vma = vmf->vma;
 | |
| 	unsigned long ra_val;
 | |
| 	unsigned long faddr, pfn, fpfn, lpfn, rpfn;
 | |
| 	unsigned long start, end;
 | |
| 	unsigned int max_win, hits, prev_win, win;
 | |
| 
 | |
| 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
 | |
| 			     SWAP_RA_ORDER_CEILING);
 | |
| 	if (max_win == 1) {
 | |
| 		ra_info->win = 1;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	faddr = vmf->address;
 | |
| 	fpfn = PFN_DOWN(faddr);
 | |
| 	ra_val = GET_SWAP_RA_VAL(vma);
 | |
| 	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
 | |
| 	prev_win = SWAP_RA_WIN(ra_val);
 | |
| 	hits = SWAP_RA_HITS(ra_val);
 | |
| 	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
 | |
| 					       max_win, prev_win);
 | |
| 	atomic_long_set(&vma->swap_readahead_info,
 | |
| 			SWAP_RA_VAL(faddr, win, 0));
 | |
| 	if (win == 1)
 | |
| 		return;
 | |
| 
 | |
| 	if (fpfn == pfn + 1) {
 | |
| 		lpfn = fpfn;
 | |
| 		rpfn = fpfn + win;
 | |
| 	} else if (pfn == fpfn + 1) {
 | |
| 		lpfn = fpfn - win + 1;
 | |
| 		rpfn = fpfn + 1;
 | |
| 	} else {
 | |
| 		unsigned int left = (win - 1) / 2;
 | |
| 
 | |
| 		lpfn = fpfn - left;
 | |
| 		rpfn = fpfn + win - left;
 | |
| 	}
 | |
| 	start = max3(lpfn, PFN_DOWN(vma->vm_start),
 | |
| 		     PFN_DOWN(faddr & PMD_MASK));
 | |
| 	end = min3(rpfn, PFN_DOWN(vma->vm_end),
 | |
| 		   PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
 | |
| 
 | |
| 	ra_info->nr_pte = end - start;
 | |
| 	ra_info->offset = fpfn - start;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * swap_vma_readahead - swap in pages in hope we need them soon
 | |
|  * @targ_entry: swap entry of the targeted memory
 | |
|  * @gfp_mask: memory allocation flags
 | |
|  * @mpol: NUMA memory allocation policy to be applied
 | |
|  * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
 | |
|  * @vmf: fault information
 | |
|  *
 | |
|  * Returns the struct folio for entry and addr, after queueing swapin.
 | |
|  *
 | |
|  * Primitive swap readahead code. We simply read in a few pages whose
 | |
|  * virtual addresses are around the fault address in the same vma.
 | |
|  *
 | |
|  * Caller must hold read mmap_lock if vmf->vma is not NULL.
 | |
|  *
 | |
|  */
 | |
| static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask,
 | |
| 		struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf)
 | |
| {
 | |
| 	struct blk_plug plug;
 | |
| 	struct swap_iocb *splug = NULL;
 | |
| 	struct folio *folio;
 | |
| 	pte_t *pte = NULL, pentry;
 | |
| 	unsigned long addr;
 | |
| 	swp_entry_t entry;
 | |
| 	pgoff_t ilx;
 | |
| 	unsigned int i;
 | |
| 	bool page_allocated;
 | |
| 	struct vma_swap_readahead ra_info = {
 | |
| 		.win = 1,
 | |
| 	};
 | |
| 
 | |
| 	swap_ra_info(vmf, &ra_info);
 | |
| 	if (ra_info.win == 1)
 | |
| 		goto skip;
 | |
| 
 | |
| 	addr = vmf->address - (ra_info.offset * PAGE_SIZE);
 | |
| 	ilx = targ_ilx - ra_info.offset;
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 	for (i = 0; i < ra_info.nr_pte; i++, ilx++, addr += PAGE_SIZE) {
 | |
| 		if (!pte++) {
 | |
| 			pte = pte_offset_map(vmf->pmd, addr);
 | |
| 			if (!pte)
 | |
| 				break;
 | |
| 		}
 | |
| 		pentry = ptep_get_lockless(pte);
 | |
| 		if (!is_swap_pte(pentry))
 | |
| 			continue;
 | |
| 		entry = pte_to_swp_entry(pentry);
 | |
| 		if (unlikely(non_swap_entry(entry)))
 | |
| 			continue;
 | |
| 		pte_unmap(pte);
 | |
| 		pte = NULL;
 | |
| 		folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
 | |
| 						&page_allocated, false);
 | |
| 		if (!folio)
 | |
| 			continue;
 | |
| 		if (page_allocated) {
 | |
| 			swap_read_folio(folio, false, &splug);
 | |
| 			if (i != ra_info.offset) {
 | |
| 				folio_set_readahead(folio);
 | |
| 				count_vm_event(SWAP_RA);
 | |
| 			}
 | |
| 		}
 | |
| 		folio_put(folio);
 | |
| 	}
 | |
| 	if (pte)
 | |
| 		pte_unmap(pte);
 | |
| 	blk_finish_plug(&plug);
 | |
| 	swap_read_unplug(splug);
 | |
| 	lru_add_drain();
 | |
| skip:
 | |
| 	/* The folio was likely read above, so no need for plugging here */
 | |
| 	folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx,
 | |
| 					&page_allocated, false);
 | |
| 	if (unlikely(page_allocated)) {
 | |
| 		zswap_folio_swapin(folio);
 | |
| 		swap_read_folio(folio, false, NULL);
 | |
| 	}
 | |
| 	return folio;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * swapin_readahead - swap in pages in hope we need them soon
 | |
|  * @entry: swap entry of this memory
 | |
|  * @gfp_mask: memory allocation flags
 | |
|  * @vmf: fault information
 | |
|  *
 | |
|  * Returns the struct page for entry and addr, after queueing swapin.
 | |
|  *
 | |
|  * It's a main entry function for swap readahead. By the configuration,
 | |
|  * it will read ahead blocks by cluster-based(ie, physical disk based)
 | |
|  * or vma-based(ie, virtual address based on faulty address) readahead.
 | |
|  */
 | |
| struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
 | |
| 				struct vm_fault *vmf)
 | |
| {
 | |
| 	struct mempolicy *mpol;
 | |
| 	pgoff_t ilx;
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx);
 | |
| 	folio = swap_use_vma_readahead() ?
 | |
| 		swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) :
 | |
| 		swap_cluster_readahead(entry, gfp_mask, mpol, ilx);
 | |
| 	mpol_cond_put(mpol);
 | |
| 
 | |
| 	if (!folio)
 | |
| 		return NULL;
 | |
| 	return folio_file_page(folio, swp_offset(entry));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SYSFS
 | |
| static ssize_t vma_ra_enabled_show(struct kobject *kobj,
 | |
| 				     struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%s\n",
 | |
| 			  enable_vma_readahead ? "true" : "false");
 | |
| }
 | |
| static ssize_t vma_ra_enabled_store(struct kobject *kobj,
 | |
| 				      struct kobj_attribute *attr,
 | |
| 				      const char *buf, size_t count)
 | |
| {
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	ret = kstrtobool(buf, &enable_vma_readahead);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
 | |
| 
 | |
| static struct attribute *swap_attrs[] = {
 | |
| 	&vma_ra_enabled_attr.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static const struct attribute_group swap_attr_group = {
 | |
| 	.attrs = swap_attrs,
 | |
| };
 | |
| 
 | |
| static int __init swap_init_sysfs(void)
 | |
| {
 | |
| 	int err;
 | |
| 	struct kobject *swap_kobj;
 | |
| 
 | |
| 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
 | |
| 	if (!swap_kobj) {
 | |
| 		pr_err("failed to create swap kobject\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
 | |
| 	if (err) {
 | |
| 		pr_err("failed to register swap group\n");
 | |
| 		goto delete_obj;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| delete_obj:
 | |
| 	kobject_put(swap_kobj);
 | |
| 	return err;
 | |
| }
 | |
| subsys_initcall(swap_init_sysfs);
 | |
| #endif
 |