mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	Rationale:
Reduces attack surface on kernel devs opening the links for MITM
as HTTPS traffic is much harder to manipulate.
Deterministic algorithm:
For each file:
  If not .svg:
    For each line:
      If doesn't contain `\bxmlns\b`:
        For each link, `\bhttp://[^# \t\r\n]*(?:\w|/)`:
	  If neither `\bgnu\.org/license`, nor `\bmozilla\.org/MPL\b`:
            If both the HTTP and HTTPS versions
            return 200 OK and serve the same content:
              Replace HTTP with HTTPS.
Signed-off-by: Alexander A. Klimov <grandmaster@al2klimov.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
	
			
		
			
				
	
	
		
			430 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			430 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-or-later
 | 
						|
/* LRW: as defined by Cyril Guyot in
 | 
						|
 *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
 | 
						|
 *
 | 
						|
 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
 | 
						|
 *
 | 
						|
 * Based on ecb.c
 | 
						|
 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
 | 
						|
 */
 | 
						|
/* This implementation is checked against the test vectors in the above
 | 
						|
 * document and by a test vector provided by Ken Buchanan at
 | 
						|
 * https://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
 | 
						|
 *
 | 
						|
 * The test vectors are included in the testing module tcrypt.[ch] */
 | 
						|
 | 
						|
#include <crypto/internal/skcipher.h>
 | 
						|
#include <crypto/scatterwalk.h>
 | 
						|
#include <linux/err.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/scatterlist.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
 | 
						|
#include <crypto/b128ops.h>
 | 
						|
#include <crypto/gf128mul.h>
 | 
						|
 | 
						|
#define LRW_BLOCK_SIZE 16
 | 
						|
 | 
						|
struct lrw_tfm_ctx {
 | 
						|
	struct crypto_skcipher *child;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * optimizes multiplying a random (non incrementing, as at the
 | 
						|
	 * start of a new sector) value with key2, we could also have
 | 
						|
	 * used 4k optimization tables or no optimization at all. In the
 | 
						|
	 * latter case we would have to store key2 here
 | 
						|
	 */
 | 
						|
	struct gf128mul_64k *table;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * stores:
 | 
						|
	 *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
 | 
						|
	 *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
 | 
						|
	 *  key2*{ 0,0,...1,1,1,1,1 }, etc
 | 
						|
	 * needed for optimized multiplication of incrementing values
 | 
						|
	 * with key2
 | 
						|
	 */
 | 
						|
	be128 mulinc[128];
 | 
						|
};
 | 
						|
 | 
						|
struct lrw_request_ctx {
 | 
						|
	be128 t;
 | 
						|
	struct skcipher_request subreq;
 | 
						|
};
 | 
						|
 | 
						|
static inline void lrw_setbit128_bbe(void *b, int bit)
 | 
						|
{
 | 
						|
	__set_bit(bit ^ (0x80 -
 | 
						|
#ifdef __BIG_ENDIAN
 | 
						|
			 BITS_PER_LONG
 | 
						|
#else
 | 
						|
			 BITS_PER_BYTE
 | 
						|
#endif
 | 
						|
			), b);
 | 
						|
}
 | 
						|
 | 
						|
static int lrw_setkey(struct crypto_skcipher *parent, const u8 *key,
 | 
						|
		      unsigned int keylen)
 | 
						|
{
 | 
						|
	struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(parent);
 | 
						|
	struct crypto_skcipher *child = ctx->child;
 | 
						|
	int err, bsize = LRW_BLOCK_SIZE;
 | 
						|
	const u8 *tweak = key + keylen - bsize;
 | 
						|
	be128 tmp = { 0 };
 | 
						|
	int i;
 | 
						|
 | 
						|
	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
 | 
						|
	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
 | 
						|
					 CRYPTO_TFM_REQ_MASK);
 | 
						|
	err = crypto_skcipher_setkey(child, key, keylen - bsize);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	if (ctx->table)
 | 
						|
		gf128mul_free_64k(ctx->table);
 | 
						|
 | 
						|
	/* initialize multiplication table for Key2 */
 | 
						|
	ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
 | 
						|
	if (!ctx->table)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	/* initialize optimization table */
 | 
						|
	for (i = 0; i < 128; i++) {
 | 
						|
		lrw_setbit128_bbe(&tmp, i);
 | 
						|
		ctx->mulinc[i] = tmp;
 | 
						|
		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the number of trailing '1' bits in the words of the counter, which is
 | 
						|
 * represented by 4 32-bit words, arranged from least to most significant.
 | 
						|
 * At the same time, increments the counter by one.
 | 
						|
 *
 | 
						|
 * For example:
 | 
						|
 *
 | 
						|
 * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 };
 | 
						|
 * int i = lrw_next_index(&counter);
 | 
						|
 * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 }
 | 
						|
 */
 | 
						|
static int lrw_next_index(u32 *counter)
 | 
						|
{
 | 
						|
	int i, res = 0;
 | 
						|
 | 
						|
	for (i = 0; i < 4; i++) {
 | 
						|
		if (counter[i] + 1 != 0)
 | 
						|
			return res + ffz(counter[i]++);
 | 
						|
 | 
						|
		counter[i] = 0;
 | 
						|
		res += 32;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we get here, then x == 128 and we are incrementing the counter
 | 
						|
	 * from all ones to all zeros. This means we must return index 127, i.e.
 | 
						|
	 * the one corresponding to key2*{ 1,...,1 }.
 | 
						|
	 */
 | 
						|
	return 127;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We compute the tweak masks twice (both before and after the ECB encryption or
 | 
						|
 * decryption) to avoid having to allocate a temporary buffer and/or make
 | 
						|
 * mutliple calls to the 'ecb(..)' instance, which usually would be slower than
 | 
						|
 * just doing the lrw_next_index() calls again.
 | 
						|
 */
 | 
						|
static int lrw_xor_tweak(struct skcipher_request *req, bool second_pass)
 | 
						|
{
 | 
						|
	const int bs = LRW_BLOCK_SIZE;
 | 
						|
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 | 
						|
	const struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
 | 
						|
	struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
 | 
						|
	be128 t = rctx->t;
 | 
						|
	struct skcipher_walk w;
 | 
						|
	__be32 *iv;
 | 
						|
	u32 counter[4];
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (second_pass) {
 | 
						|
		req = &rctx->subreq;
 | 
						|
		/* set to our TFM to enforce correct alignment: */
 | 
						|
		skcipher_request_set_tfm(req, tfm);
 | 
						|
	}
 | 
						|
 | 
						|
	err = skcipher_walk_virt(&w, req, false);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	iv = (__be32 *)w.iv;
 | 
						|
	counter[0] = be32_to_cpu(iv[3]);
 | 
						|
	counter[1] = be32_to_cpu(iv[2]);
 | 
						|
	counter[2] = be32_to_cpu(iv[1]);
 | 
						|
	counter[3] = be32_to_cpu(iv[0]);
 | 
						|
 | 
						|
	while (w.nbytes) {
 | 
						|
		unsigned int avail = w.nbytes;
 | 
						|
		be128 *wsrc;
 | 
						|
		be128 *wdst;
 | 
						|
 | 
						|
		wsrc = w.src.virt.addr;
 | 
						|
		wdst = w.dst.virt.addr;
 | 
						|
 | 
						|
		do {
 | 
						|
			be128_xor(wdst++, &t, wsrc++);
 | 
						|
 | 
						|
			/* T <- I*Key2, using the optimization
 | 
						|
			 * discussed in the specification */
 | 
						|
			be128_xor(&t, &t,
 | 
						|
				  &ctx->mulinc[lrw_next_index(counter)]);
 | 
						|
		} while ((avail -= bs) >= bs);
 | 
						|
 | 
						|
		if (second_pass && w.nbytes == w.total) {
 | 
						|
			iv[0] = cpu_to_be32(counter[3]);
 | 
						|
			iv[1] = cpu_to_be32(counter[2]);
 | 
						|
			iv[2] = cpu_to_be32(counter[1]);
 | 
						|
			iv[3] = cpu_to_be32(counter[0]);
 | 
						|
		}
 | 
						|
 | 
						|
		err = skcipher_walk_done(&w, avail);
 | 
						|
	}
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static int lrw_xor_tweak_pre(struct skcipher_request *req)
 | 
						|
{
 | 
						|
	return lrw_xor_tweak(req, false);
 | 
						|
}
 | 
						|
 | 
						|
static int lrw_xor_tweak_post(struct skcipher_request *req)
 | 
						|
{
 | 
						|
	return lrw_xor_tweak(req, true);
 | 
						|
}
 | 
						|
 | 
						|
static void lrw_crypt_done(struct crypto_async_request *areq, int err)
 | 
						|
{
 | 
						|
	struct skcipher_request *req = areq->data;
 | 
						|
 | 
						|
	if (!err) {
 | 
						|
		struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
 | 
						|
 | 
						|
		rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
 | 
						|
		err = lrw_xor_tweak_post(req);
 | 
						|
	}
 | 
						|
 | 
						|
	skcipher_request_complete(req, err);
 | 
						|
}
 | 
						|
 | 
						|
static void lrw_init_crypt(struct skcipher_request *req)
 | 
						|
{
 | 
						|
	const struct lrw_tfm_ctx *ctx =
 | 
						|
		crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
 | 
						|
	struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
 | 
						|
	struct skcipher_request *subreq = &rctx->subreq;
 | 
						|
 | 
						|
	skcipher_request_set_tfm(subreq, ctx->child);
 | 
						|
	skcipher_request_set_callback(subreq, req->base.flags, lrw_crypt_done,
 | 
						|
				      req);
 | 
						|
	/* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */
 | 
						|
	skcipher_request_set_crypt(subreq, req->dst, req->dst,
 | 
						|
				   req->cryptlen, req->iv);
 | 
						|
 | 
						|
	/* calculate first value of T */
 | 
						|
	memcpy(&rctx->t, req->iv, sizeof(rctx->t));
 | 
						|
 | 
						|
	/* T <- I*Key2 */
 | 
						|
	gf128mul_64k_bbe(&rctx->t, ctx->table);
 | 
						|
}
 | 
						|
 | 
						|
static int lrw_encrypt(struct skcipher_request *req)
 | 
						|
{
 | 
						|
	struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
 | 
						|
	struct skcipher_request *subreq = &rctx->subreq;
 | 
						|
 | 
						|
	lrw_init_crypt(req);
 | 
						|
	return lrw_xor_tweak_pre(req) ?:
 | 
						|
		crypto_skcipher_encrypt(subreq) ?:
 | 
						|
		lrw_xor_tweak_post(req);
 | 
						|
}
 | 
						|
 | 
						|
static int lrw_decrypt(struct skcipher_request *req)
 | 
						|
{
 | 
						|
	struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
 | 
						|
	struct skcipher_request *subreq = &rctx->subreq;
 | 
						|
 | 
						|
	lrw_init_crypt(req);
 | 
						|
	return lrw_xor_tweak_pre(req) ?:
 | 
						|
		crypto_skcipher_decrypt(subreq) ?:
 | 
						|
		lrw_xor_tweak_post(req);
 | 
						|
}
 | 
						|
 | 
						|
static int lrw_init_tfm(struct crypto_skcipher *tfm)
 | 
						|
{
 | 
						|
	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
 | 
						|
	struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
 | 
						|
	struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
 | 
						|
	struct crypto_skcipher *cipher;
 | 
						|
 | 
						|
	cipher = crypto_spawn_skcipher(spawn);
 | 
						|
	if (IS_ERR(cipher))
 | 
						|
		return PTR_ERR(cipher);
 | 
						|
 | 
						|
	ctx->child = cipher;
 | 
						|
 | 
						|
	crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
 | 
						|
					 sizeof(struct lrw_request_ctx));
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void lrw_exit_tfm(struct crypto_skcipher *tfm)
 | 
						|
{
 | 
						|
	struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
 | 
						|
 | 
						|
	if (ctx->table)
 | 
						|
		gf128mul_free_64k(ctx->table);
 | 
						|
	crypto_free_skcipher(ctx->child);
 | 
						|
}
 | 
						|
 | 
						|
static void lrw_free_instance(struct skcipher_instance *inst)
 | 
						|
{
 | 
						|
	crypto_drop_skcipher(skcipher_instance_ctx(inst));
 | 
						|
	kfree(inst);
 | 
						|
}
 | 
						|
 | 
						|
static int lrw_create(struct crypto_template *tmpl, struct rtattr **tb)
 | 
						|
{
 | 
						|
	struct crypto_skcipher_spawn *spawn;
 | 
						|
	struct skcipher_instance *inst;
 | 
						|
	struct skcipher_alg *alg;
 | 
						|
	const char *cipher_name;
 | 
						|
	char ecb_name[CRYPTO_MAX_ALG_NAME];
 | 
						|
	u32 mask;
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	cipher_name = crypto_attr_alg_name(tb[1]);
 | 
						|
	if (IS_ERR(cipher_name))
 | 
						|
		return PTR_ERR(cipher_name);
 | 
						|
 | 
						|
	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
 | 
						|
	if (!inst)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	spawn = skcipher_instance_ctx(inst);
 | 
						|
 | 
						|
	err = crypto_grab_skcipher(spawn, skcipher_crypto_instance(inst),
 | 
						|
				   cipher_name, 0, mask);
 | 
						|
	if (err == -ENOENT) {
 | 
						|
		err = -ENAMETOOLONG;
 | 
						|
		if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
 | 
						|
			     cipher_name) >= CRYPTO_MAX_ALG_NAME)
 | 
						|
			goto err_free_inst;
 | 
						|
 | 
						|
		err = crypto_grab_skcipher(spawn,
 | 
						|
					   skcipher_crypto_instance(inst),
 | 
						|
					   ecb_name, 0, mask);
 | 
						|
	}
 | 
						|
 | 
						|
	if (err)
 | 
						|
		goto err_free_inst;
 | 
						|
 | 
						|
	alg = crypto_skcipher_spawn_alg(spawn);
 | 
						|
 | 
						|
	err = -EINVAL;
 | 
						|
	if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
 | 
						|
		goto err_free_inst;
 | 
						|
 | 
						|
	if (crypto_skcipher_alg_ivsize(alg))
 | 
						|
		goto err_free_inst;
 | 
						|
 | 
						|
	err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
 | 
						|
				  &alg->base);
 | 
						|
	if (err)
 | 
						|
		goto err_free_inst;
 | 
						|
 | 
						|
	err = -EINVAL;
 | 
						|
	cipher_name = alg->base.cra_name;
 | 
						|
 | 
						|
	/* Alas we screwed up the naming so we have to mangle the
 | 
						|
	 * cipher name.
 | 
						|
	 */
 | 
						|
	if (!strncmp(cipher_name, "ecb(", 4)) {
 | 
						|
		unsigned len;
 | 
						|
 | 
						|
		len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
 | 
						|
		if (len < 2 || len >= sizeof(ecb_name))
 | 
						|
			goto err_free_inst;
 | 
						|
 | 
						|
		if (ecb_name[len - 1] != ')')
 | 
						|
			goto err_free_inst;
 | 
						|
 | 
						|
		ecb_name[len - 1] = 0;
 | 
						|
 | 
						|
		if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
 | 
						|
			     "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
 | 
						|
			err = -ENAMETOOLONG;
 | 
						|
			goto err_free_inst;
 | 
						|
		}
 | 
						|
	} else
 | 
						|
		goto err_free_inst;
 | 
						|
 | 
						|
	inst->alg.base.cra_priority = alg->base.cra_priority;
 | 
						|
	inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
 | 
						|
	inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
 | 
						|
				       (__alignof__(be128) - 1);
 | 
						|
 | 
						|
	inst->alg.ivsize = LRW_BLOCK_SIZE;
 | 
						|
	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
 | 
						|
				LRW_BLOCK_SIZE;
 | 
						|
	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
 | 
						|
				LRW_BLOCK_SIZE;
 | 
						|
 | 
						|
	inst->alg.base.cra_ctxsize = sizeof(struct lrw_tfm_ctx);
 | 
						|
 | 
						|
	inst->alg.init = lrw_init_tfm;
 | 
						|
	inst->alg.exit = lrw_exit_tfm;
 | 
						|
 | 
						|
	inst->alg.setkey = lrw_setkey;
 | 
						|
	inst->alg.encrypt = lrw_encrypt;
 | 
						|
	inst->alg.decrypt = lrw_decrypt;
 | 
						|
 | 
						|
	inst->free = lrw_free_instance;
 | 
						|
 | 
						|
	err = skcipher_register_instance(tmpl, inst);
 | 
						|
	if (err) {
 | 
						|
err_free_inst:
 | 
						|
		lrw_free_instance(inst);
 | 
						|
	}
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static struct crypto_template lrw_tmpl = {
 | 
						|
	.name = "lrw",
 | 
						|
	.create = lrw_create,
 | 
						|
	.module = THIS_MODULE,
 | 
						|
};
 | 
						|
 | 
						|
static int __init lrw_module_init(void)
 | 
						|
{
 | 
						|
	return crypto_register_template(&lrw_tmpl);
 | 
						|
}
 | 
						|
 | 
						|
static void __exit lrw_module_exit(void)
 | 
						|
{
 | 
						|
	crypto_unregister_template(&lrw_tmpl);
 | 
						|
}
 | 
						|
 | 
						|
subsys_initcall(lrw_module_init);
 | 
						|
module_exit(lrw_module_exit);
 | 
						|
 | 
						|
MODULE_LICENSE("GPL");
 | 
						|
MODULE_DESCRIPTION("LRW block cipher mode");
 | 
						|
MODULE_ALIAS_CRYPTO("lrw");
 |