mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-30 16:18:41 +02:00 
			
		
		
		
	 7d4e49a77d
			
		
	
	
		7d4e49a77d
		
	
	
	
	
		
			
			semaphore" from Lance Yang enhances the hung task detector.  The
   detector presently dumps the blocking tasks's stack when it is blocked
   on a mutex.  Lance's series extends this to semaphores.
 
 - The 2 patch series "nilfs2: improve sanity checks in dirty state
   propagation" from Wentao Liang addresses a couple of minor flaws in
   nilfs2.
 
 - The 2 patch series "scripts/gdb: Fixes related to lx_per_cpu()" from
   Illia Ostapyshyn fixes a couple of issues in the gdb scripts.
 
 - The 9 patch series "Support kdump with LUKS encryption by reusing LUKS
   volume keys" from Coiby Xu addresses a usability problem with kdump.
   When the dump device is LUKS-encrypted, the kdump kernel may not have
   the keys to the encrypted filesystem.  A full writeup of this is in the
   series [0/N] cover letter.
 
 - The 2 patch series "sysfs: add counters for lockups and stalls" from
   Max Kellermann adds /sys/kernel/hardlockup_count and
   /sys/kernel/hardlockup_count and /sys/kernel/rcu_stall_count.
 
 - The 3 patch series "fork: Page operation cleanups in the fork code"
   from Pasha Tatashin implements a number of code cleanups in fork.c.
 
 - The 3 patch series "scripts/gdb/symbols: determine KASLR offset on
   s390 during early boot" from Ilya Leoshkevich fixes some s390 issues in
   the gdb scripts.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCaDuCvQAKCRDdBJ7gKXxA
 jrkxAQCnFAp/uK9ckkbN4nfpJ0+OMY36C+A+dawSDtuRsIkXBAEAq3e6MNAUdg5W
 Ca0cXdgSIq1Op7ZKEA+66Km6Rfvfow8=
 =g45L
 -----END PGP SIGNATURE-----
Merge tag 'mm-nonmm-stable-2025-05-31-15-28' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-MM updates from Andrew Morton:
 - "hung_task: extend blocking task stacktrace dump to semaphore" from
   Lance Yang enhances the hung task detector.
   The detector presently dumps the blocking tasks's stack when it is
   blocked on a mutex. Lance's series extends this to semaphores
 - "nilfs2: improve sanity checks in dirty state propagation" from
   Wentao Liang addresses a couple of minor flaws in nilfs2
 - "scripts/gdb: Fixes related to lx_per_cpu()" from Illia Ostapyshyn
   fixes a couple of issues in the gdb scripts
 - "Support kdump with LUKS encryption by reusing LUKS volume keys" from
   Coiby Xu addresses a usability problem with kdump.
   When the dump device is LUKS-encrypted, the kdump kernel may not have
   the keys to the encrypted filesystem. A full writeup of this is in
   the series [0/N] cover letter
 - "sysfs: add counters for lockups and stalls" from Max Kellermann adds
   /sys/kernel/hardlockup_count and /sys/kernel/hardlockup_count and
   /sys/kernel/rcu_stall_count
 - "fork: Page operation cleanups in the fork code" from Pasha Tatashin
   implements a number of code cleanups in fork.c
 - "scripts/gdb/symbols: determine KASLR offset on s390 during early
   boot" from Ilya Leoshkevich fixes some s390 issues in the gdb
   scripts
* tag 'mm-nonmm-stable-2025-05-31-15-28' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (67 commits)
  llist: make llist_add_batch() a static inline
  delayacct: remove redundant code and adjust indentation
  squashfs: add optional full compressed block caching
  crash_dump, nvme: select CONFIGFS_FS as built-in
  scripts/gdb/symbols: determine KASLR offset on s390 during early boot
  scripts/gdb/symbols: factor out pagination_off()
  scripts/gdb/symbols: factor out get_vmlinux()
  kernel/panic.c: format kernel-doc comments
  mailmap: update and consolidate Casey Connolly's name and email
  nilfs2: remove wbc->for_reclaim handling
  fork: define a local GFP_VMAP_STACK
  fork: check charging success before zeroing stack
  fork: clean-up naming of vm_stack/vm_struct variables in vmap stacks code
  fork: clean-up ifdef logic around stack allocation
  kernel/rcu/tree_stall: add /sys/kernel/rcu_stall_count
  kernel/watchdog: add /sys/kernel/{hard,soft}lockup_count
  x86/crash: make the page that stores the dm crypt keys inaccessible
  x86/crash: pass dm crypt keys to kdump kernel
  Revert "x86/mm: Remove unused __set_memory_prot()"
  crash_dump: retrieve dm crypt keys in kdump kernel
  ...
		
	
			
		
			
				
	
	
		
			1990 lines
		
	
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1990 lines
		
	
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *  linux/kernel/exit.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sched/autogroup.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/sched/stat.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/sched/task_stack.h>
 | |
| #include <linux/sched/cputime.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/personality.h>
 | |
| #include <linux/tty.h>
 | |
| #include <linux/iocontext.h>
 | |
| #include <linux/key.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/acct.h>
 | |
| #include <linux/tsacct_kern.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/binfmts.h>
 | |
| #include <linux/nsproxy.h>
 | |
| #include <linux/pid_namespace.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/taskstats_kern.h>
 | |
| #include <linux/delayacct.h>
 | |
| #include <linux/cgroup.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/posix-timers.h>
 | |
| #include <linux/cn_proc.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/futex.h>
 | |
| #include <linux/pipe_fs_i.h>
 | |
| #include <linux/audit.h> /* for audit_free() */
 | |
| #include <linux/resource.h>
 | |
| #include <linux/task_io_accounting_ops.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/task_work.h>
 | |
| #include <linux/fs_struct.h>
 | |
| #include <linux/init_task.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <trace/events/sched.h>
 | |
| #include <linux/hw_breakpoint.h>
 | |
| #include <linux/oom.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/shm.h>
 | |
| #include <linux/kcov.h>
 | |
| #include <linux/kmsan.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/rcuwait.h>
 | |
| #include <linux/compat.h>
 | |
| #include <linux/io_uring.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/rethook.h>
 | |
| #include <linux/sysfs.h>
 | |
| #include <linux/user_events.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/pidfs.h>
 | |
| 
 | |
| #include <uapi/linux/wait.h>
 | |
| 
 | |
| #include <asm/unistd.h>
 | |
| #include <asm/mmu_context.h>
 | |
| 
 | |
| #include "exit.h"
 | |
| 
 | |
| /*
 | |
|  * The default value should be high enough to not crash a system that randomly
 | |
|  * crashes its kernel from time to time, but low enough to at least not permit
 | |
|  * overflowing 32-bit refcounts or the ldsem writer count.
 | |
|  */
 | |
| static unsigned int oops_limit = 10000;
 | |
| 
 | |
| #ifdef CONFIG_SYSCTL
 | |
| static const struct ctl_table kern_exit_table[] = {
 | |
| 	{
 | |
| 		.procname       = "oops_limit",
 | |
| 		.data           = &oops_limit,
 | |
| 		.maxlen         = sizeof(oops_limit),
 | |
| 		.mode           = 0644,
 | |
| 		.proc_handler   = proc_douintvec,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static __init int kernel_exit_sysctls_init(void)
 | |
| {
 | |
| 	register_sysctl_init("kernel", kern_exit_table);
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(kernel_exit_sysctls_init);
 | |
| #endif
 | |
| 
 | |
| static atomic_t oops_count = ATOMIC_INIT(0);
 | |
| 
 | |
| #ifdef CONFIG_SYSFS
 | |
| static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
 | |
| 			       char *page)
 | |
| {
 | |
| 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
 | |
| }
 | |
| 
 | |
| static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
 | |
| 
 | |
| static __init int kernel_exit_sysfs_init(void)
 | |
| {
 | |
| 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(kernel_exit_sysfs_init);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * For things release_task() would like to do *after* tasklist_lock is released.
 | |
|  */
 | |
| struct release_task_post {
 | |
| 	struct pid *pids[PIDTYPE_MAX];
 | |
| };
 | |
| 
 | |
| static void __unhash_process(struct release_task_post *post, struct task_struct *p,
 | |
| 			     bool group_dead)
 | |
| {
 | |
| 	struct pid *pid = task_pid(p);
 | |
| 
 | |
| 	nr_threads--;
 | |
| 
 | |
| 	detach_pid(post->pids, p, PIDTYPE_PID);
 | |
| 	wake_up_all(&pid->wait_pidfd);
 | |
| 
 | |
| 	if (group_dead) {
 | |
| 		detach_pid(post->pids, p, PIDTYPE_TGID);
 | |
| 		detach_pid(post->pids, p, PIDTYPE_PGID);
 | |
| 		detach_pid(post->pids, p, PIDTYPE_SID);
 | |
| 
 | |
| 		list_del_rcu(&p->tasks);
 | |
| 		list_del_init(&p->sibling);
 | |
| 		__this_cpu_dec(process_counts);
 | |
| 	}
 | |
| 	list_del_rcu(&p->thread_node);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function expects the tasklist_lock write-locked.
 | |
|  */
 | |
| static void __exit_signal(struct release_task_post *post, struct task_struct *tsk)
 | |
| {
 | |
| 	struct signal_struct *sig = tsk->signal;
 | |
| 	bool group_dead = thread_group_leader(tsk);
 | |
| 	struct sighand_struct *sighand;
 | |
| 	struct tty_struct *tty;
 | |
| 	u64 utime, stime;
 | |
| 
 | |
| 	sighand = rcu_dereference_check(tsk->sighand,
 | |
| 					lockdep_tasklist_lock_is_held());
 | |
| 	spin_lock(&sighand->siglock);
 | |
| 
 | |
| #ifdef CONFIG_POSIX_TIMERS
 | |
| 	posix_cpu_timers_exit(tsk);
 | |
| 	if (group_dead)
 | |
| 		posix_cpu_timers_exit_group(tsk);
 | |
| #endif
 | |
| 
 | |
| 	if (group_dead) {
 | |
| 		tty = sig->tty;
 | |
| 		sig->tty = NULL;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If there is any task waiting for the group exit
 | |
| 		 * then notify it:
 | |
| 		 */
 | |
| 		if (sig->notify_count > 0 && !--sig->notify_count)
 | |
| 			wake_up_process(sig->group_exec_task);
 | |
| 
 | |
| 		if (tsk == sig->curr_target)
 | |
| 			sig->curr_target = next_thread(tsk);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Accumulate here the counters for all threads as they die. We could
 | |
| 	 * skip the group leader because it is the last user of signal_struct,
 | |
| 	 * but we want to avoid the race with thread_group_cputime() which can
 | |
| 	 * see the empty ->thread_head list.
 | |
| 	 */
 | |
| 	task_cputime(tsk, &utime, &stime);
 | |
| 	write_seqlock(&sig->stats_lock);
 | |
| 	sig->utime += utime;
 | |
| 	sig->stime += stime;
 | |
| 	sig->gtime += task_gtime(tsk);
 | |
| 	sig->min_flt += tsk->min_flt;
 | |
| 	sig->maj_flt += tsk->maj_flt;
 | |
| 	sig->nvcsw += tsk->nvcsw;
 | |
| 	sig->nivcsw += tsk->nivcsw;
 | |
| 	sig->inblock += task_io_get_inblock(tsk);
 | |
| 	sig->oublock += task_io_get_oublock(tsk);
 | |
| 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
 | |
| 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 | |
| 	sig->nr_threads--;
 | |
| 	__unhash_process(post, tsk, group_dead);
 | |
| 	write_sequnlock(&sig->stats_lock);
 | |
| 
 | |
| 	tsk->sighand = NULL;
 | |
| 	spin_unlock(&sighand->siglock);
 | |
| 
 | |
| 	__cleanup_sighand(sighand);
 | |
| 	if (group_dead)
 | |
| 		tty_kref_put(tty);
 | |
| }
 | |
| 
 | |
| static void delayed_put_task_struct(struct rcu_head *rhp)
 | |
| {
 | |
| 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 | |
| 
 | |
| 	kprobe_flush_task(tsk);
 | |
| 	rethook_flush_task(tsk);
 | |
| 	perf_event_delayed_put(tsk);
 | |
| 	trace_sched_process_free(tsk);
 | |
| 	put_task_struct(tsk);
 | |
| }
 | |
| 
 | |
| void put_task_struct_rcu_user(struct task_struct *task)
 | |
| {
 | |
| 	if (refcount_dec_and_test(&task->rcu_users))
 | |
| 		call_rcu(&task->rcu, delayed_put_task_struct);
 | |
| }
 | |
| 
 | |
| void __weak release_thread(struct task_struct *dead_task)
 | |
| {
 | |
| }
 | |
| 
 | |
| void release_task(struct task_struct *p)
 | |
| {
 | |
| 	struct release_task_post post;
 | |
| 	struct task_struct *leader;
 | |
| 	struct pid *thread_pid;
 | |
| 	int zap_leader;
 | |
| repeat:
 | |
| 	memset(&post, 0, sizeof(post));
 | |
| 
 | |
| 	/* don't need to get the RCU readlock here - the process is dead and
 | |
| 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
 | |
| 	rcu_read_lock();
 | |
| 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	pidfs_exit(p);
 | |
| 	cgroup_release(p);
 | |
| 
 | |
| 	/* Retrieve @thread_pid before __unhash_process() may set it to NULL. */
 | |
| 	thread_pid = task_pid(p);
 | |
| 
 | |
| 	write_lock_irq(&tasklist_lock);
 | |
| 	ptrace_release_task(p);
 | |
| 	__exit_signal(&post, p);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are the last non-leader member of the thread
 | |
| 	 * group, and the leader is zombie, then notify the
 | |
| 	 * group leader's parent process. (if it wants notification.)
 | |
| 	 */
 | |
| 	zap_leader = 0;
 | |
| 	leader = p->group_leader;
 | |
| 	if (leader != p && thread_group_empty(leader)
 | |
| 			&& leader->exit_state == EXIT_ZOMBIE) {
 | |
| 		/* for pidfs_exit() and do_notify_parent() */
 | |
| 		if (leader->signal->flags & SIGNAL_GROUP_EXIT)
 | |
| 			leader->exit_code = leader->signal->group_exit_code;
 | |
| 		/*
 | |
| 		 * If we were the last child thread and the leader has
 | |
| 		 * exited already, and the leader's parent ignores SIGCHLD,
 | |
| 		 * then we are the one who should release the leader.
 | |
| 		 */
 | |
| 		zap_leader = do_notify_parent(leader, leader->exit_signal);
 | |
| 		if (zap_leader)
 | |
| 			leader->exit_state = EXIT_DEAD;
 | |
| 	}
 | |
| 
 | |
| 	write_unlock_irq(&tasklist_lock);
 | |
| 	/* @thread_pid can't go away until free_pids() below */
 | |
| 	proc_flush_pid(thread_pid);
 | |
| 	add_device_randomness(&p->se.sum_exec_runtime,
 | |
| 			      sizeof(p->se.sum_exec_runtime));
 | |
| 	free_pids(post.pids);
 | |
| 	release_thread(p);
 | |
| 	/*
 | |
| 	 * This task was already removed from the process/thread/pid lists
 | |
| 	 * and lock_task_sighand(p) can't succeed. Nobody else can touch
 | |
| 	 * ->pending or, if group dead, signal->shared_pending. We can call
 | |
| 	 * flush_sigqueue() lockless.
 | |
| 	 */
 | |
| 	flush_sigqueue(&p->pending);
 | |
| 	if (thread_group_leader(p))
 | |
| 		flush_sigqueue(&p->signal->shared_pending);
 | |
| 
 | |
| 	put_task_struct_rcu_user(p);
 | |
| 
 | |
| 	p = leader;
 | |
| 	if (unlikely(zap_leader))
 | |
| 		goto repeat;
 | |
| }
 | |
| 
 | |
| int rcuwait_wake_up(struct rcuwait *w)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct task_struct *task;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	/*
 | |
| 	 * Order condition vs @task, such that everything prior to the load
 | |
| 	 * of @task is visible. This is the condition as to why the user called
 | |
| 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
 | |
| 	 * barrier (A) in rcuwait_wait_event().
 | |
| 	 *
 | |
| 	 *    WAIT                WAKE
 | |
| 	 *    [S] tsk = current	  [S] cond = true
 | |
| 	 *        MB (A)	      MB (B)
 | |
| 	 *    [L] cond		  [L] tsk
 | |
| 	 */
 | |
| 	smp_mb(); /* (B) */
 | |
| 
 | |
| 	task = rcu_dereference(w->task);
 | |
| 	if (task)
 | |
| 		ret = wake_up_process(task);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcuwait_wake_up);
 | |
| 
 | |
| /*
 | |
|  * Determine if a process group is "orphaned", according to the POSIX
 | |
|  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 | |
|  * by terminal-generated stop signals.  Newly orphaned process groups are
 | |
|  * to receive a SIGHUP and a SIGCONT.
 | |
|  *
 | |
|  * "I ask you, have you ever known what it is to be an orphan?"
 | |
|  */
 | |
| static int will_become_orphaned_pgrp(struct pid *pgrp,
 | |
| 					struct task_struct *ignored_task)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 | |
| 		if ((p == ignored_task) ||
 | |
| 		    (p->exit_state && thread_group_empty(p)) ||
 | |
| 		    is_global_init(p->real_parent))
 | |
| 			continue;
 | |
| 
 | |
| 		if (task_pgrp(p->real_parent) != pgrp &&
 | |
| 		    task_session(p->real_parent) == task_session(p))
 | |
| 			return 0;
 | |
| 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int is_current_pgrp_orphaned(void)
 | |
| {
 | |
| 	int retval;
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static bool has_stopped_jobs(struct pid *pgrp)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 | |
| 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
 | |
| 			return true;
 | |
| 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see if any process groups have become orphaned as
 | |
|  * a result of our exiting, and if they have any stopped jobs,
 | |
|  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 | |
|  */
 | |
| static void
 | |
| kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
 | |
| {
 | |
| 	struct pid *pgrp = task_pgrp(tsk);
 | |
| 	struct task_struct *ignored_task = tsk;
 | |
| 
 | |
| 	if (!parent)
 | |
| 		/* exit: our father is in a different pgrp than
 | |
| 		 * we are and we were the only connection outside.
 | |
| 		 */
 | |
| 		parent = tsk->real_parent;
 | |
| 	else
 | |
| 		/* reparent: our child is in a different pgrp than
 | |
| 		 * we are, and it was the only connection outside.
 | |
| 		 */
 | |
| 		ignored_task = NULL;
 | |
| 
 | |
| 	if (task_pgrp(parent) != pgrp &&
 | |
| 	    task_session(parent) == task_session(tsk) &&
 | |
| 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
 | |
| 	    has_stopped_jobs(pgrp)) {
 | |
| 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
 | |
| 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void coredump_task_exit(struct task_struct *tsk,
 | |
| 			       struct core_state *core_state)
 | |
| {
 | |
| 	struct core_thread self;
 | |
| 
 | |
| 	self.task = tsk;
 | |
| 	if (self.task->flags & PF_SIGNALED)
 | |
| 		self.next = xchg(&core_state->dumper.next, &self);
 | |
| 	else
 | |
| 		self.task = NULL;
 | |
| 	/*
 | |
| 	 * Implies mb(), the result of xchg() must be visible
 | |
| 	 * to core_state->dumper.
 | |
| 	 */
 | |
| 	if (atomic_dec_and_test(&core_state->nr_threads))
 | |
| 		complete(&core_state->startup);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		set_current_state(TASK_IDLE|TASK_FREEZABLE);
 | |
| 		if (!self.task) /* see coredump_finish() */
 | |
| 			break;
 | |
| 		schedule();
 | |
| 	}
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG
 | |
| /* drops tasklist_lock if succeeds */
 | |
| static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
 | |
| {
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	task_lock(tsk);
 | |
| 	if (likely(tsk->mm == mm)) {
 | |
| 		/* tsk can't pass exit_mm/exec_mmap and exit */
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 		WRITE_ONCE(mm->owner, tsk);
 | |
| 		lru_gen_migrate_mm(mm);
 | |
| 		ret = true;
 | |
| 	}
 | |
| 	task_unlock(tsk);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm)
 | |
| {
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	for_each_thread(g, t) {
 | |
| 		struct mm_struct *t_mm = READ_ONCE(t->mm);
 | |
| 		if (t_mm == mm) {
 | |
| 			if (__try_to_set_owner(t, mm))
 | |
| 				return true;
 | |
| 		} else if (t_mm)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A task is exiting.   If it owned this mm, find a new owner for the mm.
 | |
|  */
 | |
| void mm_update_next_owner(struct mm_struct *mm)
 | |
| {
 | |
| 	struct task_struct *g, *p = current;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the exiting or execing task is not the owner, it's
 | |
| 	 * someone else's problem.
 | |
| 	 */
 | |
| 	if (mm->owner != p)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * The current owner is exiting/execing and there are no other
 | |
| 	 * candidates.  Do not leave the mm pointing to a possibly
 | |
| 	 * freed task structure.
 | |
| 	 */
 | |
| 	if (atomic_read(&mm->mm_users) <= 1) {
 | |
| 		WRITE_ONCE(mm->owner, NULL);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	/*
 | |
| 	 * Search in the children
 | |
| 	 */
 | |
| 	list_for_each_entry(g, &p->children, sibling) {
 | |
| 		if (try_to_set_owner(g, mm))
 | |
| 			goto ret;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Search in the siblings
 | |
| 	 */
 | |
| 	list_for_each_entry(g, &p->real_parent->children, sibling) {
 | |
| 		if (try_to_set_owner(g, mm))
 | |
| 			goto ret;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Search through everything else, we should not get here often.
 | |
| 	 */
 | |
| 	for_each_process(g) {
 | |
| 		if (atomic_read(&mm->mm_users) <= 1)
 | |
| 			break;
 | |
| 		if (g->flags & PF_KTHREAD)
 | |
| 			continue;
 | |
| 		if (try_to_set_owner(g, mm))
 | |
| 			goto ret;
 | |
| 	}
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	/*
 | |
| 	 * We found no owner yet mm_users > 1: this implies that we are
 | |
| 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
 | |
| 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
 | |
| 	 */
 | |
| 	WRITE_ONCE(mm->owner, NULL);
 | |
|  ret:
 | |
| 	return;
 | |
| 
 | |
| }
 | |
| #endif /* CONFIG_MEMCG */
 | |
| 
 | |
| /*
 | |
|  * Turn us into a lazy TLB process if we
 | |
|  * aren't already..
 | |
|  */
 | |
| static void exit_mm(void)
 | |
| {
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 
 | |
| 	exit_mm_release(current, mm);
 | |
| 	if (!mm)
 | |
| 		return;
 | |
| 	mmap_read_lock(mm);
 | |
| 	mmgrab_lazy_tlb(mm);
 | |
| 	BUG_ON(mm != current->active_mm);
 | |
| 	/* more a memory barrier than a real lock */
 | |
| 	task_lock(current);
 | |
| 	/*
 | |
| 	 * When a thread stops operating on an address space, the loop
 | |
| 	 * in membarrier_private_expedited() may not observe that
 | |
| 	 * tsk->mm, and the loop in membarrier_global_expedited() may
 | |
| 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
 | |
| 	 * rq->membarrier_state, so those would not issue an IPI.
 | |
| 	 * Membarrier requires a memory barrier after accessing
 | |
| 	 * user-space memory, before clearing tsk->mm or the
 | |
| 	 * rq->membarrier_state.
 | |
| 	 */
 | |
| 	smp_mb__after_spinlock();
 | |
| 	local_irq_disable();
 | |
| 	current->mm = NULL;
 | |
| 	membarrier_update_current_mm(NULL);
 | |
| 	enter_lazy_tlb(mm, current);
 | |
| 	local_irq_enable();
 | |
| 	task_unlock(current);
 | |
| 	mmap_read_unlock(mm);
 | |
| 	mm_update_next_owner(mm);
 | |
| 	mmput(mm);
 | |
| 	if (test_thread_flag(TIF_MEMDIE))
 | |
| 		exit_oom_victim();
 | |
| }
 | |
| 
 | |
| static struct task_struct *find_alive_thread(struct task_struct *p)
 | |
| {
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	for_each_thread(p, t) {
 | |
| 		if (!(t->flags & PF_EXITING))
 | |
| 			return t;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct task_struct *find_child_reaper(struct task_struct *father,
 | |
| 						struct list_head *dead)
 | |
| 	__releases(&tasklist_lock)
 | |
| 	__acquires(&tasklist_lock)
 | |
| {
 | |
| 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
 | |
| 	struct task_struct *reaper = pid_ns->child_reaper;
 | |
| 	struct task_struct *p, *n;
 | |
| 
 | |
| 	if (likely(reaper != father))
 | |
| 		return reaper;
 | |
| 
 | |
| 	reaper = find_alive_thread(father);
 | |
| 	if (reaper) {
 | |
| 		pid_ns->child_reaper = reaper;
 | |
| 		return reaper;
 | |
| 	}
 | |
| 
 | |
| 	write_unlock_irq(&tasklist_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
 | |
| 		list_del_init(&p->ptrace_entry);
 | |
| 		release_task(p);
 | |
| 	}
 | |
| 
 | |
| 	zap_pid_ns_processes(pid_ns);
 | |
| 	write_lock_irq(&tasklist_lock);
 | |
| 
 | |
| 	return father;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When we die, we re-parent all our children, and try to:
 | |
|  * 1. give them to another thread in our thread group, if such a member exists
 | |
|  * 2. give it to the first ancestor process which prctl'd itself as a
 | |
|  *    child_subreaper for its children (like a service manager)
 | |
|  * 3. give it to the init process (PID 1) in our pid namespace
 | |
|  */
 | |
| static struct task_struct *find_new_reaper(struct task_struct *father,
 | |
| 					   struct task_struct *child_reaper)
 | |
| {
 | |
| 	struct task_struct *thread, *reaper;
 | |
| 
 | |
| 	thread = find_alive_thread(father);
 | |
| 	if (thread)
 | |
| 		return thread;
 | |
| 
 | |
| 	if (father->signal->has_child_subreaper) {
 | |
| 		unsigned int ns_level = task_pid(father)->level;
 | |
| 		/*
 | |
| 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
 | |
| 		 * We can't check reaper != child_reaper to ensure we do not
 | |
| 		 * cross the namespaces, the exiting parent could be injected
 | |
| 		 * by setns() + fork().
 | |
| 		 * We check pid->level, this is slightly more efficient than
 | |
| 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
 | |
| 		 */
 | |
| 		for (reaper = father->real_parent;
 | |
| 		     task_pid(reaper)->level == ns_level;
 | |
| 		     reaper = reaper->real_parent) {
 | |
| 			if (reaper == &init_task)
 | |
| 				break;
 | |
| 			if (!reaper->signal->is_child_subreaper)
 | |
| 				continue;
 | |
| 			thread = find_alive_thread(reaper);
 | |
| 			if (thread)
 | |
| 				return thread;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return child_reaper;
 | |
| }
 | |
| 
 | |
| /*
 | |
| * Any that need to be release_task'd are put on the @dead list.
 | |
|  */
 | |
| static void reparent_leader(struct task_struct *father, struct task_struct *p,
 | |
| 				struct list_head *dead)
 | |
| {
 | |
| 	if (unlikely(p->exit_state == EXIT_DEAD))
 | |
| 		return;
 | |
| 
 | |
| 	/* We don't want people slaying init. */
 | |
| 	p->exit_signal = SIGCHLD;
 | |
| 
 | |
| 	/* If it has exited notify the new parent about this child's death. */
 | |
| 	if (!p->ptrace &&
 | |
| 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
 | |
| 		if (do_notify_parent(p, p->exit_signal)) {
 | |
| 			p->exit_state = EXIT_DEAD;
 | |
| 			list_add(&p->ptrace_entry, dead);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kill_orphaned_pgrp(p, father);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This does two things:
 | |
|  *
 | |
|  * A.  Make init inherit all the child processes
 | |
|  * B.  Check to see if any process groups have become orphaned
 | |
|  *	as a result of our exiting, and if they have any stopped
 | |
|  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
 | |
|  */
 | |
| static void forget_original_parent(struct task_struct *father,
 | |
| 					struct list_head *dead)
 | |
| {
 | |
| 	struct task_struct *p, *t, *reaper;
 | |
| 
 | |
| 	if (unlikely(!list_empty(&father->ptraced)))
 | |
| 		exit_ptrace(father, dead);
 | |
| 
 | |
| 	/* Can drop and reacquire tasklist_lock */
 | |
| 	reaper = find_child_reaper(father, dead);
 | |
| 	if (list_empty(&father->children))
 | |
| 		return;
 | |
| 
 | |
| 	reaper = find_new_reaper(father, reaper);
 | |
| 	list_for_each_entry(p, &father->children, sibling) {
 | |
| 		for_each_thread(p, t) {
 | |
| 			RCU_INIT_POINTER(t->real_parent, reaper);
 | |
| 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
 | |
| 			if (likely(!t->ptrace))
 | |
| 				t->parent = t->real_parent;
 | |
| 			if (t->pdeath_signal)
 | |
| 				group_send_sig_info(t->pdeath_signal,
 | |
| 						    SEND_SIG_NOINFO, t,
 | |
| 						    PIDTYPE_TGID);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * If this is a threaded reparent there is no need to
 | |
| 		 * notify anyone anything has happened.
 | |
| 		 */
 | |
| 		if (!same_thread_group(reaper, father))
 | |
| 			reparent_leader(father, p, dead);
 | |
| 	}
 | |
| 	list_splice_tail_init(&father->children, &reaper->children);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Send signals to all our closest relatives so that they know
 | |
|  * to properly mourn us..
 | |
|  */
 | |
| static void exit_notify(struct task_struct *tsk, int group_dead)
 | |
| {
 | |
| 	bool autoreap;
 | |
| 	struct task_struct *p, *n;
 | |
| 	LIST_HEAD(dead);
 | |
| 
 | |
| 	write_lock_irq(&tasklist_lock);
 | |
| 	forget_original_parent(tsk, &dead);
 | |
| 
 | |
| 	if (group_dead)
 | |
| 		kill_orphaned_pgrp(tsk->group_leader, NULL);
 | |
| 
 | |
| 	tsk->exit_state = EXIT_ZOMBIE;
 | |
| 
 | |
| 	if (unlikely(tsk->ptrace)) {
 | |
| 		int sig = thread_group_leader(tsk) &&
 | |
| 				thread_group_empty(tsk) &&
 | |
| 				!ptrace_reparented(tsk) ?
 | |
| 			tsk->exit_signal : SIGCHLD;
 | |
| 		autoreap = do_notify_parent(tsk, sig);
 | |
| 	} else if (thread_group_leader(tsk)) {
 | |
| 		autoreap = thread_group_empty(tsk) &&
 | |
| 			do_notify_parent(tsk, tsk->exit_signal);
 | |
| 	} else {
 | |
| 		autoreap = true;
 | |
| 		/* untraced sub-thread */
 | |
| 		do_notify_pidfd(tsk);
 | |
| 	}
 | |
| 
 | |
| 	if (autoreap) {
 | |
| 		tsk->exit_state = EXIT_DEAD;
 | |
| 		list_add(&tsk->ptrace_entry, &dead);
 | |
| 	}
 | |
| 
 | |
| 	/* mt-exec, de_thread() is waiting for group leader */
 | |
| 	if (unlikely(tsk->signal->notify_count < 0))
 | |
| 		wake_up_process(tsk->signal->group_exec_task);
 | |
| 	write_unlock_irq(&tasklist_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
 | |
| 		list_del_init(&p->ptrace_entry);
 | |
| 		release_task(p);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_STACK_USAGE
 | |
| unsigned long stack_not_used(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long *n = end_of_stack(p);
 | |
| 
 | |
| 	do {	/* Skip over canary */
 | |
| # ifdef CONFIG_STACK_GROWSUP
 | |
| 		n--;
 | |
| # else
 | |
| 		n++;
 | |
| # endif
 | |
| 	} while (!*n);
 | |
| 
 | |
| # ifdef CONFIG_STACK_GROWSUP
 | |
| 	return (unsigned long)end_of_stack(p) - (unsigned long)n;
 | |
| # else
 | |
| 	return (unsigned long)n - (unsigned long)end_of_stack(p);
 | |
| # endif
 | |
| }
 | |
| 
 | |
| /* Count the maximum pages reached in kernel stacks */
 | |
| static inline void kstack_histogram(unsigned long used_stack)
 | |
| {
 | |
| #ifdef CONFIG_VM_EVENT_COUNTERS
 | |
| 	if (used_stack <= 1024)
 | |
| 		count_vm_event(KSTACK_1K);
 | |
| #if THREAD_SIZE > 1024
 | |
| 	else if (used_stack <= 2048)
 | |
| 		count_vm_event(KSTACK_2K);
 | |
| #endif
 | |
| #if THREAD_SIZE > 2048
 | |
| 	else if (used_stack <= 4096)
 | |
| 		count_vm_event(KSTACK_4K);
 | |
| #endif
 | |
| #if THREAD_SIZE > 4096
 | |
| 	else if (used_stack <= 8192)
 | |
| 		count_vm_event(KSTACK_8K);
 | |
| #endif
 | |
| #if THREAD_SIZE > 8192
 | |
| 	else if (used_stack <= 16384)
 | |
| 		count_vm_event(KSTACK_16K);
 | |
| #endif
 | |
| #if THREAD_SIZE > 16384
 | |
| 	else if (used_stack <= 32768)
 | |
| 		count_vm_event(KSTACK_32K);
 | |
| #endif
 | |
| #if THREAD_SIZE > 32768
 | |
| 	else if (used_stack <= 65536)
 | |
| 		count_vm_event(KSTACK_64K);
 | |
| #endif
 | |
| #if THREAD_SIZE > 65536
 | |
| 	else
 | |
| 		count_vm_event(KSTACK_REST);
 | |
| #endif
 | |
| #endif /* CONFIG_VM_EVENT_COUNTERS */
 | |
| }
 | |
| 
 | |
| static void check_stack_usage(void)
 | |
| {
 | |
| 	static DEFINE_SPINLOCK(low_water_lock);
 | |
| 	static int lowest_to_date = THREAD_SIZE;
 | |
| 	unsigned long free;
 | |
| 
 | |
| 	free = stack_not_used(current);
 | |
| 	kstack_histogram(THREAD_SIZE - free);
 | |
| 
 | |
| 	if (free >= lowest_to_date)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&low_water_lock);
 | |
| 	if (free < lowest_to_date) {
 | |
| 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
 | |
| 			current->comm, task_pid_nr(current), free);
 | |
| 		lowest_to_date = free;
 | |
| 	}
 | |
| 	spin_unlock(&low_water_lock);
 | |
| }
 | |
| #else
 | |
| static inline void check_stack_usage(void) {}
 | |
| #endif
 | |
| 
 | |
| static void synchronize_group_exit(struct task_struct *tsk, long code)
 | |
| {
 | |
| 	struct sighand_struct *sighand = tsk->sighand;
 | |
| 	struct signal_struct *signal = tsk->signal;
 | |
| 	struct core_state *core_state;
 | |
| 
 | |
| 	spin_lock_irq(&sighand->siglock);
 | |
| 	signal->quick_threads--;
 | |
| 	if ((signal->quick_threads == 0) &&
 | |
| 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
 | |
| 		signal->flags = SIGNAL_GROUP_EXIT;
 | |
| 		signal->group_exit_code = code;
 | |
| 		signal->group_stop_count = 0;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Serialize with any possible pending coredump.
 | |
| 	 * We must hold siglock around checking core_state
 | |
| 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
 | |
| 	 * will increment ->nr_threads for each thread in the
 | |
| 	 * group without PF_POSTCOREDUMP set.
 | |
| 	 */
 | |
| 	tsk->flags |= PF_POSTCOREDUMP;
 | |
| 	core_state = signal->core_state;
 | |
| 	spin_unlock_irq(&sighand->siglock);
 | |
| 
 | |
| 	if (unlikely(core_state))
 | |
| 		coredump_task_exit(tsk, core_state);
 | |
| }
 | |
| 
 | |
| void __noreturn do_exit(long code)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	int group_dead;
 | |
| 
 | |
| 	WARN_ON(irqs_disabled());
 | |
| 	WARN_ON(tsk->plug);
 | |
| 
 | |
| 	kcov_task_exit(tsk);
 | |
| 	kmsan_task_exit(tsk);
 | |
| 
 | |
| 	synchronize_group_exit(tsk, code);
 | |
| 	ptrace_event(PTRACE_EVENT_EXIT, code);
 | |
| 	user_events_exit(tsk);
 | |
| 
 | |
| 	io_uring_files_cancel();
 | |
| 	exit_signals(tsk);  /* sets PF_EXITING */
 | |
| 
 | |
| 	seccomp_filter_release(tsk);
 | |
| 
 | |
| 	acct_update_integrals(tsk);
 | |
| 	group_dead = atomic_dec_and_test(&tsk->signal->live);
 | |
| 	if (group_dead) {
 | |
| 		/*
 | |
| 		 * If the last thread of global init has exited, panic
 | |
| 		 * immediately to get a useable coredump.
 | |
| 		 */
 | |
| 		if (unlikely(is_global_init(tsk)))
 | |
| 			panic("Attempted to kill init! exitcode=0x%08x\n",
 | |
| 				tsk->signal->group_exit_code ?: (int)code);
 | |
| 
 | |
| #ifdef CONFIG_POSIX_TIMERS
 | |
| 		hrtimer_cancel(&tsk->signal->real_timer);
 | |
| 		exit_itimers(tsk);
 | |
| #endif
 | |
| 		if (tsk->mm)
 | |
| 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
 | |
| 	}
 | |
| 	acct_collect(code, group_dead);
 | |
| 	if (group_dead)
 | |
| 		tty_audit_exit();
 | |
| 	audit_free(tsk);
 | |
| 
 | |
| 	tsk->exit_code = code;
 | |
| 	taskstats_exit(tsk, group_dead);
 | |
| 	trace_sched_process_exit(tsk, group_dead);
 | |
| 
 | |
| 	exit_mm();
 | |
| 
 | |
| 	if (group_dead)
 | |
| 		acct_process();
 | |
| 
 | |
| 	exit_sem(tsk);
 | |
| 	exit_shm(tsk);
 | |
| 	exit_files(tsk);
 | |
| 	exit_fs(tsk);
 | |
| 	if (group_dead)
 | |
| 		disassociate_ctty(1);
 | |
| 	exit_task_namespaces(tsk);
 | |
| 	exit_task_work(tsk);
 | |
| 	exit_thread(tsk);
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush inherited counters to the parent - before the parent
 | |
| 	 * gets woken up by child-exit notifications.
 | |
| 	 *
 | |
| 	 * because of cgroup mode, must be called before cgroup_exit()
 | |
| 	 */
 | |
| 	perf_event_exit_task(tsk);
 | |
| 
 | |
| 	sched_autogroup_exit_task(tsk);
 | |
| 	cgroup_exit(tsk);
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME: do that only when needed, using sched_exit tracepoint
 | |
| 	 */
 | |
| 	flush_ptrace_hw_breakpoint(tsk);
 | |
| 
 | |
| 	exit_tasks_rcu_start();
 | |
| 	exit_notify(tsk, group_dead);
 | |
| 	proc_exit_connector(tsk);
 | |
| 	mpol_put_task_policy(tsk);
 | |
| #ifdef CONFIG_FUTEX
 | |
| 	if (unlikely(current->pi_state_cache))
 | |
| 		kfree(current->pi_state_cache);
 | |
| #endif
 | |
| 	/*
 | |
| 	 * Make sure we are holding no locks:
 | |
| 	 */
 | |
| 	debug_check_no_locks_held();
 | |
| 
 | |
| 	if (tsk->io_context)
 | |
| 		exit_io_context(tsk);
 | |
| 
 | |
| 	if (tsk->splice_pipe)
 | |
| 		free_pipe_info(tsk->splice_pipe);
 | |
| 
 | |
| 	if (tsk->task_frag.page)
 | |
| 		put_page(tsk->task_frag.page);
 | |
| 
 | |
| 	exit_task_stack_account(tsk);
 | |
| 
 | |
| 	check_stack_usage();
 | |
| 	preempt_disable();
 | |
| 	if (tsk->nr_dirtied)
 | |
| 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
 | |
| 	exit_rcu();
 | |
| 	exit_tasks_rcu_finish();
 | |
| 
 | |
| 	lockdep_free_task(tsk);
 | |
| 	do_task_dead();
 | |
| }
 | |
| 
 | |
| void __noreturn make_task_dead(int signr)
 | |
| {
 | |
| 	/*
 | |
| 	 * Take the task off the cpu after something catastrophic has
 | |
| 	 * happened.
 | |
| 	 *
 | |
| 	 * We can get here from a kernel oops, sometimes with preemption off.
 | |
| 	 * Start by checking for critical errors.
 | |
| 	 * Then fix up important state like USER_DS and preemption.
 | |
| 	 * Then do everything else.
 | |
| 	 */
 | |
| 	struct task_struct *tsk = current;
 | |
| 	unsigned int limit;
 | |
| 
 | |
| 	if (unlikely(in_interrupt()))
 | |
| 		panic("Aiee, killing interrupt handler!");
 | |
| 	if (unlikely(!tsk->pid))
 | |
| 		panic("Attempted to kill the idle task!");
 | |
| 
 | |
| 	if (unlikely(irqs_disabled())) {
 | |
| 		pr_info("note: %s[%d] exited with irqs disabled\n",
 | |
| 			current->comm, task_pid_nr(current));
 | |
| 		local_irq_enable();
 | |
| 	}
 | |
| 	if (unlikely(in_atomic())) {
 | |
| 		pr_info("note: %s[%d] exited with preempt_count %d\n",
 | |
| 			current->comm, task_pid_nr(current),
 | |
| 			preempt_count());
 | |
| 		preempt_count_set(PREEMPT_ENABLED);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Every time the system oopses, if the oops happens while a reference
 | |
| 	 * to an object was held, the reference leaks.
 | |
| 	 * If the oops doesn't also leak memory, repeated oopsing can cause
 | |
| 	 * reference counters to wrap around (if they're not using refcount_t).
 | |
| 	 * This means that repeated oopsing can make unexploitable-looking bugs
 | |
| 	 * exploitable through repeated oopsing.
 | |
| 	 * To make sure this can't happen, place an upper bound on how often the
 | |
| 	 * kernel may oops without panic().
 | |
| 	 */
 | |
| 	limit = READ_ONCE(oops_limit);
 | |
| 	if (atomic_inc_return(&oops_count) >= limit && limit)
 | |
| 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
 | |
| 
 | |
| 	/*
 | |
| 	 * We're taking recursive faults here in make_task_dead. Safest is to just
 | |
| 	 * leave this task alone and wait for reboot.
 | |
| 	 */
 | |
| 	if (unlikely(tsk->flags & PF_EXITING)) {
 | |
| 		pr_alert("Fixing recursive fault but reboot is needed!\n");
 | |
| 		futex_exit_recursive(tsk);
 | |
| 		tsk->exit_state = EXIT_DEAD;
 | |
| 		refcount_inc(&tsk->rcu_users);
 | |
| 		do_task_dead();
 | |
| 	}
 | |
| 
 | |
| 	do_exit(signr);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(exit, int, error_code)
 | |
| {
 | |
| 	do_exit((error_code&0xff)<<8);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Take down every thread in the group.  This is called by fatal signals
 | |
|  * as well as by sys_exit_group (below).
 | |
|  */
 | |
| void __noreturn
 | |
| do_group_exit(int exit_code)
 | |
| {
 | |
| 	struct signal_struct *sig = current->signal;
 | |
| 
 | |
| 	if (sig->flags & SIGNAL_GROUP_EXIT)
 | |
| 		exit_code = sig->group_exit_code;
 | |
| 	else if (sig->group_exec_task)
 | |
| 		exit_code = 0;
 | |
| 	else {
 | |
| 		struct sighand_struct *const sighand = current->sighand;
 | |
| 
 | |
| 		spin_lock_irq(&sighand->siglock);
 | |
| 		if (sig->flags & SIGNAL_GROUP_EXIT)
 | |
| 			/* Another thread got here before we took the lock.  */
 | |
| 			exit_code = sig->group_exit_code;
 | |
| 		else if (sig->group_exec_task)
 | |
| 			exit_code = 0;
 | |
| 		else {
 | |
| 			sig->group_exit_code = exit_code;
 | |
| 			sig->flags = SIGNAL_GROUP_EXIT;
 | |
| 			zap_other_threads(current);
 | |
| 		}
 | |
| 		spin_unlock_irq(&sighand->siglock);
 | |
| 	}
 | |
| 
 | |
| 	do_exit(exit_code);
 | |
| 	/* NOTREACHED */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this kills every thread in the thread group. Note that any externally
 | |
|  * wait4()-ing process will get the correct exit code - even if this
 | |
|  * thread is not the thread group leader.
 | |
|  */
 | |
| SYSCALL_DEFINE1(exit_group, int, error_code)
 | |
| {
 | |
| 	do_group_exit((error_code & 0xff) << 8);
 | |
| 	/* NOTREACHED */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
 | |
| {
 | |
| 	return	wo->wo_type == PIDTYPE_MAX ||
 | |
| 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
 | |
| }
 | |
| 
 | |
| static int
 | |
| eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
 | |
| {
 | |
| 	if (!eligible_pid(wo, p))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for all children (clone and not) if __WALL is set or
 | |
| 	 * if it is traced by us.
 | |
| 	 */
 | |
| 	if (ptrace || (wo->wo_flags & __WALL))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
 | |
| 	 * otherwise, wait for non-clone children *only*.
 | |
| 	 *
 | |
| 	 * Note: a "clone" child here is one that reports to its parent
 | |
| 	 * using a signal other than SIGCHLD, or a non-leader thread which
 | |
| 	 * we can only see if it is traced by us.
 | |
| 	 */
 | |
| 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
 | |
|  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 | |
|  * the lock and this task is uninteresting.  If we return nonzero, we have
 | |
|  * released the lock and the system call should return.
 | |
|  */
 | |
| static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
 | |
| {
 | |
| 	int state, status;
 | |
| 	pid_t pid = task_pid_vnr(p);
 | |
| 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
 | |
| 	struct waitid_info *infop;
 | |
| 
 | |
| 	if (!likely(wo->wo_flags & WEXITED))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(wo->wo_flags & WNOWAIT)) {
 | |
| 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
 | |
| 			? p->signal->group_exit_code : p->exit_code;
 | |
| 		get_task_struct(p);
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 		sched_annotate_sleep();
 | |
| 		if (wo->wo_rusage)
 | |
| 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
 | |
| 		put_task_struct(p);
 | |
| 		goto out_info;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
 | |
| 	 */
 | |
| 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
 | |
| 		EXIT_TRACE : EXIT_DEAD;
 | |
| 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * We own this thread, nobody else can reap it.
 | |
| 	 */
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	sched_annotate_sleep();
 | |
| 
 | |
| 	/*
 | |
| 	 * Check thread_group_leader() to exclude the traced sub-threads.
 | |
| 	 */
 | |
| 	if (state == EXIT_DEAD && thread_group_leader(p)) {
 | |
| 		struct signal_struct *sig = p->signal;
 | |
| 		struct signal_struct *psig = current->signal;
 | |
| 		unsigned long maxrss;
 | |
| 		u64 tgutime, tgstime;
 | |
| 
 | |
| 		/*
 | |
| 		 * The resource counters for the group leader are in its
 | |
| 		 * own task_struct.  Those for dead threads in the group
 | |
| 		 * are in its signal_struct, as are those for the child
 | |
| 		 * processes it has previously reaped.  All these
 | |
| 		 * accumulate in the parent's signal_struct c* fields.
 | |
| 		 *
 | |
| 		 * We don't bother to take a lock here to protect these
 | |
| 		 * p->signal fields because the whole thread group is dead
 | |
| 		 * and nobody can change them.
 | |
| 		 *
 | |
| 		 * psig->stats_lock also protects us from our sub-threads
 | |
| 		 * which can reap other children at the same time.
 | |
| 		 *
 | |
| 		 * We use thread_group_cputime_adjusted() to get times for
 | |
| 		 * the thread group, which consolidates times for all threads
 | |
| 		 * in the group including the group leader.
 | |
| 		 */
 | |
| 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
 | |
| 		write_seqlock_irq(&psig->stats_lock);
 | |
| 		psig->cutime += tgutime + sig->cutime;
 | |
| 		psig->cstime += tgstime + sig->cstime;
 | |
| 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
 | |
| 		psig->cmin_flt +=
 | |
| 			p->min_flt + sig->min_flt + sig->cmin_flt;
 | |
| 		psig->cmaj_flt +=
 | |
| 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
 | |
| 		psig->cnvcsw +=
 | |
| 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
 | |
| 		psig->cnivcsw +=
 | |
| 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
 | |
| 		psig->cinblock +=
 | |
| 			task_io_get_inblock(p) +
 | |
| 			sig->inblock + sig->cinblock;
 | |
| 		psig->coublock +=
 | |
| 			task_io_get_oublock(p) +
 | |
| 			sig->oublock + sig->coublock;
 | |
| 		maxrss = max(sig->maxrss, sig->cmaxrss);
 | |
| 		if (psig->cmaxrss < maxrss)
 | |
| 			psig->cmaxrss = maxrss;
 | |
| 		task_io_accounting_add(&psig->ioac, &p->ioac);
 | |
| 		task_io_accounting_add(&psig->ioac, &sig->ioac);
 | |
| 		write_sequnlock_irq(&psig->stats_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (wo->wo_rusage)
 | |
| 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
 | |
| 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
 | |
| 		? p->signal->group_exit_code : p->exit_code;
 | |
| 	wo->wo_stat = status;
 | |
| 
 | |
| 	if (state == EXIT_TRACE) {
 | |
| 		write_lock_irq(&tasklist_lock);
 | |
| 		/* We dropped tasklist, ptracer could die and untrace */
 | |
| 		ptrace_unlink(p);
 | |
| 
 | |
| 		/* If parent wants a zombie, don't release it now */
 | |
| 		state = EXIT_ZOMBIE;
 | |
| 		if (do_notify_parent(p, p->exit_signal))
 | |
| 			state = EXIT_DEAD;
 | |
| 		p->exit_state = state;
 | |
| 		write_unlock_irq(&tasklist_lock);
 | |
| 	}
 | |
| 	if (state == EXIT_DEAD)
 | |
| 		release_task(p);
 | |
| 
 | |
| out_info:
 | |
| 	infop = wo->wo_info;
 | |
| 	if (infop) {
 | |
| 		if ((status & 0x7f) == 0) {
 | |
| 			infop->cause = CLD_EXITED;
 | |
| 			infop->status = status >> 8;
 | |
| 		} else {
 | |
| 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
 | |
| 			infop->status = status & 0x7f;
 | |
| 		}
 | |
| 		infop->pid = pid;
 | |
| 		infop->uid = uid;
 | |
| 	}
 | |
| 
 | |
| 	return pid;
 | |
| }
 | |
| 
 | |
| static int *task_stopped_code(struct task_struct *p, bool ptrace)
 | |
| {
 | |
| 	if (ptrace) {
 | |
| 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
 | |
| 			return &p->exit_code;
 | |
| 	} else {
 | |
| 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
 | |
| 			return &p->signal->group_exit_code;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
 | |
|  * @wo: wait options
 | |
|  * @ptrace: is the wait for ptrace
 | |
|  * @p: task to wait for
 | |
|  *
 | |
|  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * read_lock(&tasklist_lock), which is released if return value is
 | |
|  * non-zero.  Also, grabs and releases @p->sighand->siglock.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * 0 if wait condition didn't exist and search for other wait conditions
 | |
|  * should continue.  Non-zero return, -errno on failure and @p's pid on
 | |
|  * success, implies that tasklist_lock is released and wait condition
 | |
|  * search should terminate.
 | |
|  */
 | |
| static int wait_task_stopped(struct wait_opts *wo,
 | |
| 				int ptrace, struct task_struct *p)
 | |
| {
 | |
| 	struct waitid_info *infop;
 | |
| 	int exit_code, *p_code, why;
 | |
| 	uid_t uid = 0; /* unneeded, required by compiler */
 | |
| 	pid_t pid;
 | |
| 
 | |
| 	/*
 | |
| 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
 | |
| 	 */
 | |
| 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!task_stopped_code(p, ptrace))
 | |
| 		return 0;
 | |
| 
 | |
| 	exit_code = 0;
 | |
| 	spin_lock_irq(&p->sighand->siglock);
 | |
| 
 | |
| 	p_code = task_stopped_code(p, ptrace);
 | |
| 	if (unlikely(!p_code))
 | |
| 		goto unlock_sig;
 | |
| 
 | |
| 	exit_code = *p_code;
 | |
| 	if (!exit_code)
 | |
| 		goto unlock_sig;
 | |
| 
 | |
| 	if (!unlikely(wo->wo_flags & WNOWAIT))
 | |
| 		*p_code = 0;
 | |
| 
 | |
| 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
 | |
| unlock_sig:
 | |
| 	spin_unlock_irq(&p->sighand->siglock);
 | |
| 	if (!exit_code)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we are pretty sure this task is interesting.
 | |
| 	 * Make sure it doesn't get reaped out from under us while we
 | |
| 	 * give up the lock and then examine it below.  We don't want to
 | |
| 	 * keep holding onto the tasklist_lock while we call getrusage and
 | |
| 	 * possibly take page faults for user memory.
 | |
| 	 */
 | |
| 	get_task_struct(p);
 | |
| 	pid = task_pid_vnr(p);
 | |
| 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	sched_annotate_sleep();
 | |
| 	if (wo->wo_rusage)
 | |
| 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
 | |
| 	put_task_struct(p);
 | |
| 
 | |
| 	if (likely(!(wo->wo_flags & WNOWAIT)))
 | |
| 		wo->wo_stat = (exit_code << 8) | 0x7f;
 | |
| 
 | |
| 	infop = wo->wo_info;
 | |
| 	if (infop) {
 | |
| 		infop->cause = why;
 | |
| 		infop->status = exit_code;
 | |
| 		infop->pid = pid;
 | |
| 		infop->uid = uid;
 | |
| 	}
 | |
| 	return pid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle do_wait work for one task in a live, non-stopped state.
 | |
|  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 | |
|  * the lock and this task is uninteresting.  If we return nonzero, we have
 | |
|  * released the lock and the system call should return.
 | |
|  */
 | |
| static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
 | |
| {
 | |
| 	struct waitid_info *infop;
 | |
| 	pid_t pid;
 | |
| 	uid_t uid;
 | |
| 
 | |
| 	if (!unlikely(wo->wo_flags & WCONTINUED))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
 | |
| 		return 0;
 | |
| 
 | |
| 	spin_lock_irq(&p->sighand->siglock);
 | |
| 	/* Re-check with the lock held.  */
 | |
| 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
 | |
| 		spin_unlock_irq(&p->sighand->siglock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (!unlikely(wo->wo_flags & WNOWAIT))
 | |
| 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
 | |
| 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
 | |
| 	spin_unlock_irq(&p->sighand->siglock);
 | |
| 
 | |
| 	pid = task_pid_vnr(p);
 | |
| 	get_task_struct(p);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	sched_annotate_sleep();
 | |
| 	if (wo->wo_rusage)
 | |
| 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
 | |
| 	put_task_struct(p);
 | |
| 
 | |
| 	infop = wo->wo_info;
 | |
| 	if (!infop) {
 | |
| 		wo->wo_stat = 0xffff;
 | |
| 	} else {
 | |
| 		infop->cause = CLD_CONTINUED;
 | |
| 		infop->pid = pid;
 | |
| 		infop->uid = uid;
 | |
| 		infop->status = SIGCONT;
 | |
| 	}
 | |
| 	return pid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Consider @p for a wait by @parent.
 | |
|  *
 | |
|  * -ECHILD should be in ->notask_error before the first call.
 | |
|  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
 | |
|  * Returns zero if the search for a child should continue;
 | |
|  * then ->notask_error is 0 if @p is an eligible child,
 | |
|  * or still -ECHILD.
 | |
|  */
 | |
| static int wait_consider_task(struct wait_opts *wo, int ptrace,
 | |
| 				struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * We can race with wait_task_zombie() from another thread.
 | |
| 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
 | |
| 	 * can't confuse the checks below.
 | |
| 	 */
 | |
| 	int exit_state = READ_ONCE(p->exit_state);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (unlikely(exit_state == EXIT_DEAD))
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = eligible_child(wo, ptrace, p);
 | |
| 	if (!ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (unlikely(exit_state == EXIT_TRACE)) {
 | |
| 		/*
 | |
| 		 * ptrace == 0 means we are the natural parent. In this case
 | |
| 		 * we should clear notask_error, debugger will notify us.
 | |
| 		 */
 | |
| 		if (likely(!ptrace))
 | |
| 			wo->notask_error = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(!ptrace) && unlikely(p->ptrace)) {
 | |
| 		/*
 | |
| 		 * If it is traced by its real parent's group, just pretend
 | |
| 		 * the caller is ptrace_do_wait() and reap this child if it
 | |
| 		 * is zombie.
 | |
| 		 *
 | |
| 		 * This also hides group stop state from real parent; otherwise
 | |
| 		 * a single stop can be reported twice as group and ptrace stop.
 | |
| 		 * If a ptracer wants to distinguish these two events for its
 | |
| 		 * own children it should create a separate process which takes
 | |
| 		 * the role of real parent.
 | |
| 		 */
 | |
| 		if (!ptrace_reparented(p))
 | |
| 			ptrace = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* slay zombie? */
 | |
| 	if (exit_state == EXIT_ZOMBIE) {
 | |
| 		/* we don't reap group leaders with subthreads */
 | |
| 		if (!delay_group_leader(p)) {
 | |
| 			/*
 | |
| 			 * A zombie ptracee is only visible to its ptracer.
 | |
| 			 * Notification and reaping will be cascaded to the
 | |
| 			 * real parent when the ptracer detaches.
 | |
| 			 */
 | |
| 			if (unlikely(ptrace) || likely(!p->ptrace))
 | |
| 				return wait_task_zombie(wo, p);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Allow access to stopped/continued state via zombie by
 | |
| 		 * falling through.  Clearing of notask_error is complex.
 | |
| 		 *
 | |
| 		 * When !@ptrace:
 | |
| 		 *
 | |
| 		 * If WEXITED is set, notask_error should naturally be
 | |
| 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
 | |
| 		 * so, if there are live subthreads, there are events to
 | |
| 		 * wait for.  If all subthreads are dead, it's still safe
 | |
| 		 * to clear - this function will be called again in finite
 | |
| 		 * amount time once all the subthreads are released and
 | |
| 		 * will then return without clearing.
 | |
| 		 *
 | |
| 		 * When @ptrace:
 | |
| 		 *
 | |
| 		 * Stopped state is per-task and thus can't change once the
 | |
| 		 * target task dies.  Only continued and exited can happen.
 | |
| 		 * Clear notask_error if WCONTINUED | WEXITED.
 | |
| 		 */
 | |
| 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
 | |
| 			wo->notask_error = 0;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * @p is alive and it's gonna stop, continue or exit, so
 | |
| 		 * there always is something to wait for.
 | |
| 		 */
 | |
| 		wo->notask_error = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for stopped.  Depending on @ptrace, different stopped state
 | |
| 	 * is used and the two don't interact with each other.
 | |
| 	 */
 | |
| 	ret = wait_task_stopped(wo, ptrace, p);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for continued.  There's only one continued state and the
 | |
| 	 * ptracer can consume it which can confuse the real parent.  Don't
 | |
| 	 * use WCONTINUED from ptracer.  You don't need or want it.
 | |
| 	 */
 | |
| 	return wait_task_continued(wo, p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do the work of do_wait() for one thread in the group, @tsk.
 | |
|  *
 | |
|  * -ECHILD should be in ->notask_error before the first call.
 | |
|  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
 | |
|  * Returns zero if the search for a child should continue; then
 | |
|  * ->notask_error is 0 if there were any eligible children,
 | |
|  * or still -ECHILD.
 | |
|  */
 | |
| static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	list_for_each_entry(p, &tsk->children, sibling) {
 | |
| 		int ret = wait_consider_task(wo, 0, p);
 | |
| 
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
 | |
| 		int ret = wait_consider_task(wo, 1, p);
 | |
| 
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
 | |
| {
 | |
| 	if (!eligible_pid(wo, p))
 | |
| 		return false;
 | |
| 
 | |
| 	if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
 | |
| 				int sync, void *key)
 | |
| {
 | |
| 	struct wait_opts *wo = container_of(wait, struct wait_opts,
 | |
| 						child_wait);
 | |
| 	struct task_struct *p = key;
 | |
| 
 | |
| 	if (pid_child_should_wake(wo, p))
 | |
| 		return default_wake_function(wait, mode, sync, key);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
 | |
| {
 | |
| 	__wake_up_sync_key(&parent->signal->wait_chldexit,
 | |
| 			   TASK_INTERRUPTIBLE, p);
 | |
| }
 | |
| 
 | |
| static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
 | |
| 				 struct task_struct *target)
 | |
| {
 | |
| 	struct task_struct *parent =
 | |
| 		!ptrace ? target->real_parent : target->parent;
 | |
| 
 | |
| 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
 | |
| 				     same_thread_group(current, parent));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
 | |
|  * and tracee lists to find the target task.
 | |
|  */
 | |
| static int do_wait_pid(struct wait_opts *wo)
 | |
| {
 | |
| 	bool ptrace;
 | |
| 	struct task_struct *target;
 | |
| 	int retval;
 | |
| 
 | |
| 	ptrace = false;
 | |
| 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
 | |
| 	if (target && is_effectively_child(wo, ptrace, target)) {
 | |
| 		retval = wait_consider_task(wo, ptrace, target);
 | |
| 		if (retval)
 | |
| 			return retval;
 | |
| 	}
 | |
| 
 | |
| 	ptrace = true;
 | |
| 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
 | |
| 	if (target && target->ptrace &&
 | |
| 	    is_effectively_child(wo, ptrace, target)) {
 | |
| 		retval = wait_consider_task(wo, ptrace, target);
 | |
| 		if (retval)
 | |
| 			return retval;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| long __do_wait(struct wait_opts *wo)
 | |
| {
 | |
| 	long retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is nothing that can match our criteria, just get out.
 | |
| 	 * We will clear ->notask_error to zero if we see any child that
 | |
| 	 * might later match our criteria, even if we are not able to reap
 | |
| 	 * it yet.
 | |
| 	 */
 | |
| 	wo->notask_error = -ECHILD;
 | |
| 	if ((wo->wo_type < PIDTYPE_MAX) &&
 | |
| 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
 | |
| 		goto notask;
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 
 | |
| 	if (wo->wo_type == PIDTYPE_PID) {
 | |
| 		retval = do_wait_pid(wo);
 | |
| 		if (retval)
 | |
| 			return retval;
 | |
| 	} else {
 | |
| 		struct task_struct *tsk = current;
 | |
| 
 | |
| 		do {
 | |
| 			retval = do_wait_thread(wo, tsk);
 | |
| 			if (retval)
 | |
| 				return retval;
 | |
| 
 | |
| 			retval = ptrace_do_wait(wo, tsk);
 | |
| 			if (retval)
 | |
| 				return retval;
 | |
| 
 | |
| 			if (wo->wo_flags & __WNOTHREAD)
 | |
| 				break;
 | |
| 		} while_each_thread(current, tsk);
 | |
| 	}
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| notask:
 | |
| 	retval = wo->notask_error;
 | |
| 	if (!retval && !(wo->wo_flags & WNOHANG))
 | |
| 		return -ERESTARTSYS;
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static long do_wait(struct wait_opts *wo)
 | |
| {
 | |
| 	int retval;
 | |
| 
 | |
| 	trace_sched_process_wait(wo->wo_pid);
 | |
| 
 | |
| 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
 | |
| 	wo->child_wait.private = current;
 | |
| 	add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
 | |
| 
 | |
| 	do {
 | |
| 		set_current_state(TASK_INTERRUPTIBLE);
 | |
| 		retval = __do_wait(wo);
 | |
| 		if (retval != -ERESTARTSYS)
 | |
| 			break;
 | |
| 		if (signal_pending(current))
 | |
| 			break;
 | |
| 		schedule();
 | |
| 	} while (1);
 | |
| 
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 	remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
 | |
| 			  struct waitid_info *infop, int options,
 | |
| 			  struct rusage *ru)
 | |
| {
 | |
| 	unsigned int f_flags = 0;
 | |
| 	struct pid *pid = NULL;
 | |
| 	enum pid_type type;
 | |
| 
 | |
| 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
 | |
| 			__WNOTHREAD|__WCLONE|__WALL))
 | |
| 		return -EINVAL;
 | |
| 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	switch (which) {
 | |
| 	case P_ALL:
 | |
| 		type = PIDTYPE_MAX;
 | |
| 		break;
 | |
| 	case P_PID:
 | |
| 		type = PIDTYPE_PID;
 | |
| 		if (upid <= 0)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		pid = find_get_pid(upid);
 | |
| 		break;
 | |
| 	case P_PGID:
 | |
| 		type = PIDTYPE_PGID;
 | |
| 		if (upid < 0)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (upid)
 | |
| 			pid = find_get_pid(upid);
 | |
| 		else
 | |
| 			pid = get_task_pid(current, PIDTYPE_PGID);
 | |
| 		break;
 | |
| 	case P_PIDFD:
 | |
| 		type = PIDTYPE_PID;
 | |
| 		if (upid < 0)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		pid = pidfd_get_pid(upid, &f_flags);
 | |
| 		if (IS_ERR(pid))
 | |
| 			return PTR_ERR(pid);
 | |
| 
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	wo->wo_type	= type;
 | |
| 	wo->wo_pid	= pid;
 | |
| 	wo->wo_flags	= options;
 | |
| 	wo->wo_info	= infop;
 | |
| 	wo->wo_rusage	= ru;
 | |
| 	if (f_flags & O_NONBLOCK)
 | |
| 		wo->wo_flags |= WNOHANG;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
 | |
| 			  int options, struct rusage *ru)
 | |
| {
 | |
| 	struct wait_opts wo;
 | |
| 	long ret;
 | |
| 
 | |
| 	ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = do_wait(&wo);
 | |
| 	if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
 | |
| 		ret = -EAGAIN;
 | |
| 
 | |
| 	put_pid(wo.wo_pid);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
 | |
| 		infop, int, options, struct rusage __user *, ru)
 | |
| {
 | |
| 	struct rusage r;
 | |
| 	struct waitid_info info = {.status = 0};
 | |
| 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
 | |
| 	int signo = 0;
 | |
| 
 | |
| 	if (err > 0) {
 | |
| 		signo = SIGCHLD;
 | |
| 		err = 0;
 | |
| 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	if (!infop)
 | |
| 		return err;
 | |
| 
 | |
| 	if (!user_write_access_begin(infop, sizeof(*infop)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	unsafe_put_user(signo, &infop->si_signo, Efault);
 | |
| 	unsafe_put_user(0, &infop->si_errno, Efault);
 | |
| 	unsafe_put_user(info.cause, &infop->si_code, Efault);
 | |
| 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
 | |
| 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
 | |
| 	unsafe_put_user(info.status, &infop->si_status, Efault);
 | |
| 	user_write_access_end();
 | |
| 	return err;
 | |
| Efault:
 | |
| 	user_write_access_end();
 | |
| 	return -EFAULT;
 | |
| }
 | |
| 
 | |
| long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
 | |
| 		  struct rusage *ru)
 | |
| {
 | |
| 	struct wait_opts wo;
 | |
| 	struct pid *pid = NULL;
 | |
| 	enum pid_type type;
 | |
| 	long ret;
 | |
| 
 | |
| 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
 | |
| 			__WNOTHREAD|__WCLONE|__WALL))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* -INT_MIN is not defined */
 | |
| 	if (upid == INT_MIN)
 | |
| 		return -ESRCH;
 | |
| 
 | |
| 	if (upid == -1)
 | |
| 		type = PIDTYPE_MAX;
 | |
| 	else if (upid < 0) {
 | |
| 		type = PIDTYPE_PGID;
 | |
| 		pid = find_get_pid(-upid);
 | |
| 	} else if (upid == 0) {
 | |
| 		type = PIDTYPE_PGID;
 | |
| 		pid = get_task_pid(current, PIDTYPE_PGID);
 | |
| 	} else /* upid > 0 */ {
 | |
| 		type = PIDTYPE_PID;
 | |
| 		pid = find_get_pid(upid);
 | |
| 	}
 | |
| 
 | |
| 	wo.wo_type	= type;
 | |
| 	wo.wo_pid	= pid;
 | |
| 	wo.wo_flags	= options | WEXITED;
 | |
| 	wo.wo_info	= NULL;
 | |
| 	wo.wo_stat	= 0;
 | |
| 	wo.wo_rusage	= ru;
 | |
| 	ret = do_wait(&wo);
 | |
| 	put_pid(pid);
 | |
| 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
 | |
| 		ret = -EFAULT;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int kernel_wait(pid_t pid, int *stat)
 | |
| {
 | |
| 	struct wait_opts wo = {
 | |
| 		.wo_type	= PIDTYPE_PID,
 | |
| 		.wo_pid		= find_get_pid(pid),
 | |
| 		.wo_flags	= WEXITED,
 | |
| 	};
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = do_wait(&wo);
 | |
| 	if (ret > 0 && wo.wo_stat)
 | |
| 		*stat = wo.wo_stat;
 | |
| 	put_pid(wo.wo_pid);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
 | |
| 		int, options, struct rusage __user *, ru)
 | |
| {
 | |
| 	struct rusage r;
 | |
| 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
 | |
| 
 | |
| 	if (err > 0) {
 | |
| 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_WAITPID
 | |
| 
 | |
| /*
 | |
|  * sys_waitpid() remains for compatibility. waitpid() should be
 | |
|  * implemented by calling sys_wait4() from libc.a.
 | |
|  */
 | |
| SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
 | |
| {
 | |
| 	return kernel_wait4(pid, stat_addr, options, NULL);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| COMPAT_SYSCALL_DEFINE4(wait4,
 | |
| 	compat_pid_t, pid,
 | |
| 	compat_uint_t __user *, stat_addr,
 | |
| 	int, options,
 | |
| 	struct compat_rusage __user *, ru)
 | |
| {
 | |
| 	struct rusage r;
 | |
| 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
 | |
| 	if (err > 0) {
 | |
| 		if (ru && put_compat_rusage(&r, ru))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| COMPAT_SYSCALL_DEFINE5(waitid,
 | |
| 		int, which, compat_pid_t, pid,
 | |
| 		struct compat_siginfo __user *, infop, int, options,
 | |
| 		struct compat_rusage __user *, uru)
 | |
| {
 | |
| 	struct rusage ru;
 | |
| 	struct waitid_info info = {.status = 0};
 | |
| 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
 | |
| 	int signo = 0;
 | |
| 	if (err > 0) {
 | |
| 		signo = SIGCHLD;
 | |
| 		err = 0;
 | |
| 		if (uru) {
 | |
| 			/* kernel_waitid() overwrites everything in ru */
 | |
| 			if (COMPAT_USE_64BIT_TIME)
 | |
| 				err = copy_to_user(uru, &ru, sizeof(ru));
 | |
| 			else
 | |
| 				err = put_compat_rusage(&ru, uru);
 | |
| 			if (err)
 | |
| 				return -EFAULT;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!infop)
 | |
| 		return err;
 | |
| 
 | |
| 	if (!user_write_access_begin(infop, sizeof(*infop)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	unsafe_put_user(signo, &infop->si_signo, Efault);
 | |
| 	unsafe_put_user(0, &infop->si_errno, Efault);
 | |
| 	unsafe_put_user(info.cause, &infop->si_code, Efault);
 | |
| 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
 | |
| 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
 | |
| 	unsafe_put_user(info.status, &infop->si_status, Efault);
 | |
| 	user_write_access_end();
 | |
| 	return err;
 | |
| Efault:
 | |
| 	user_write_access_end();
 | |
| 	return -EFAULT;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This needs to be __function_aligned as GCC implicitly makes any
 | |
|  * implementation of abort() cold and drops alignment specified by
 | |
|  * -falign-functions=N.
 | |
|  *
 | |
|  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
 | |
|  */
 | |
| __weak __function_aligned void abort(void)
 | |
| {
 | |
| 	BUG();
 | |
| 
 | |
| 	/* if that doesn't kill us, halt */
 | |
| 	panic("Oops failed to kill thread");
 | |
| }
 | |
| EXPORT_SYMBOL(abort);
 |