mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	A comment from Filipe on one of my previous cleanups brought my attention to a new helper we have for getting the root id of a root, which makes it easier to read in the code. The changes where made with the following Coccinelle semantic patch: // <smpl> @@ expression E,E1; @@ ( E->root_key.objectid = E1 | - E->root_key.objectid + btrfs_root_id(E) ) // </smpl> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor style fixups ] Signed-off-by: David Sterba <dsterba@suse.com>
		
			
				
	
	
		
			1113 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1113 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
 | 
						|
#include "messages.h"
 | 
						|
#include "tree-mod-log.h"
 | 
						|
#include "disk-io.h"
 | 
						|
#include "fs.h"
 | 
						|
#include "accessors.h"
 | 
						|
#include "tree-checker.h"
 | 
						|
 | 
						|
struct tree_mod_root {
 | 
						|
	u64 logical;
 | 
						|
	u8 level;
 | 
						|
};
 | 
						|
 | 
						|
struct tree_mod_elem {
 | 
						|
	struct rb_node node;
 | 
						|
	u64 logical;
 | 
						|
	u64 seq;
 | 
						|
	enum btrfs_mod_log_op op;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This is used for BTRFS_MOD_LOG_KEY_* and BTRFS_MOD_LOG_MOVE_KEYS
 | 
						|
	 * operations.
 | 
						|
	 */
 | 
						|
	int slot;
 | 
						|
 | 
						|
	/* This is used for BTRFS_MOD_LOG_KEY* and BTRFS_MOD_LOG_ROOT_REPLACE. */
 | 
						|
	u64 generation;
 | 
						|
 | 
						|
	/* Those are used for op == BTRFS_MOD_LOG_KEY_{REPLACE,REMOVE}. */
 | 
						|
	struct btrfs_disk_key key;
 | 
						|
	u64 blockptr;
 | 
						|
 | 
						|
	/* This is used for op == BTRFS_MOD_LOG_MOVE_KEYS. */
 | 
						|
	struct {
 | 
						|
		int dst_slot;
 | 
						|
		int nr_items;
 | 
						|
	} move;
 | 
						|
 | 
						|
	/* This is used for op == BTRFS_MOD_LOG_ROOT_REPLACE. */
 | 
						|
	struct tree_mod_root old_root;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Pull a new tree mod seq number for our operation.
 | 
						|
 */
 | 
						|
static u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 | 
						|
{
 | 
						|
	return atomic64_inc_return(&fs_info->tree_mod_seq);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 | 
						|
 * passed does not already have a sequence number set. So when a caller expects
 | 
						|
 * to record tree modifications, it should ensure to set elem->seq to zero
 | 
						|
 * before calling btrfs_get_tree_mod_seq.
 | 
						|
 * Returns a fresh, unused tree log modification sequence number, even if no new
 | 
						|
 * blocker was added.
 | 
						|
 */
 | 
						|
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 | 
						|
			   struct btrfs_seq_list *elem)
 | 
						|
{
 | 
						|
	write_lock(&fs_info->tree_mod_log_lock);
 | 
						|
	if (!elem->seq) {
 | 
						|
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 | 
						|
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 | 
						|
		set_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
 | 
						|
	}
 | 
						|
	write_unlock(&fs_info->tree_mod_log_lock);
 | 
						|
 | 
						|
	return elem->seq;
 | 
						|
}
 | 
						|
 | 
						|
void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 | 
						|
			    struct btrfs_seq_list *elem)
 | 
						|
{
 | 
						|
	struct rb_root *tm_root;
 | 
						|
	struct rb_node *node;
 | 
						|
	struct rb_node *next;
 | 
						|
	struct tree_mod_elem *tm;
 | 
						|
	u64 min_seq = BTRFS_SEQ_LAST;
 | 
						|
	u64 seq_putting = elem->seq;
 | 
						|
 | 
						|
	if (!seq_putting)
 | 
						|
		return;
 | 
						|
 | 
						|
	write_lock(&fs_info->tree_mod_log_lock);
 | 
						|
	list_del(&elem->list);
 | 
						|
	elem->seq = 0;
 | 
						|
 | 
						|
	if (list_empty(&fs_info->tree_mod_seq_list)) {
 | 
						|
		clear_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
 | 
						|
	} else {
 | 
						|
		struct btrfs_seq_list *first;
 | 
						|
 | 
						|
		first = list_first_entry(&fs_info->tree_mod_seq_list,
 | 
						|
					 struct btrfs_seq_list, list);
 | 
						|
		if (seq_putting > first->seq) {
 | 
						|
			/*
 | 
						|
			 * Blocker with lower sequence number exists, we cannot
 | 
						|
			 * remove anything from the log.
 | 
						|
			 */
 | 
						|
			write_unlock(&fs_info->tree_mod_log_lock);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		min_seq = first->seq;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Anything that's lower than the lowest existing (read: blocked)
 | 
						|
	 * sequence number can be removed from the tree.
 | 
						|
	 */
 | 
						|
	tm_root = &fs_info->tree_mod_log;
 | 
						|
	for (node = rb_first(tm_root); node; node = next) {
 | 
						|
		next = rb_next(node);
 | 
						|
		tm = rb_entry(node, struct tree_mod_elem, node);
 | 
						|
		if (tm->seq >= min_seq)
 | 
						|
			continue;
 | 
						|
		rb_erase(node, tm_root);
 | 
						|
		kfree(tm);
 | 
						|
	}
 | 
						|
	write_unlock(&fs_info->tree_mod_log_lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Key order of the log:
 | 
						|
 *       node/leaf start address -> sequence
 | 
						|
 *
 | 
						|
 * The 'start address' is the logical address of the *new* root node for root
 | 
						|
 * replace operations, or the logical address of the affected block for all
 | 
						|
 * other operations.
 | 
						|
 */
 | 
						|
static noinline int tree_mod_log_insert(struct btrfs_fs_info *fs_info,
 | 
						|
					struct tree_mod_elem *tm)
 | 
						|
{
 | 
						|
	struct rb_root *tm_root;
 | 
						|
	struct rb_node **new;
 | 
						|
	struct rb_node *parent = NULL;
 | 
						|
	struct tree_mod_elem *cur;
 | 
						|
 | 
						|
	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
 | 
						|
 | 
						|
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 | 
						|
 | 
						|
	tm_root = &fs_info->tree_mod_log;
 | 
						|
	new = &tm_root->rb_node;
 | 
						|
	while (*new) {
 | 
						|
		cur = rb_entry(*new, struct tree_mod_elem, node);
 | 
						|
		parent = *new;
 | 
						|
		if (cur->logical < tm->logical)
 | 
						|
			new = &((*new)->rb_left);
 | 
						|
		else if (cur->logical > tm->logical)
 | 
						|
			new = &((*new)->rb_right);
 | 
						|
		else if (cur->seq < tm->seq)
 | 
						|
			new = &((*new)->rb_left);
 | 
						|
		else if (cur->seq > tm->seq)
 | 
						|
			new = &((*new)->rb_right);
 | 
						|
		else
 | 
						|
			return -EEXIST;
 | 
						|
	}
 | 
						|
 | 
						|
	rb_link_node(&tm->node, parent, new);
 | 
						|
	rb_insert_color(&tm->node, tm_root);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Determines if logging can be omitted. Returns true if it can. Otherwise, it
 | 
						|
 * returns false with the tree_mod_log_lock acquired. The caller must hold
 | 
						|
 * this until all tree mod log insertions are recorded in the rb tree and then
 | 
						|
 * write unlock fs_info::tree_mod_log_lock.
 | 
						|
 */
 | 
						|
static bool tree_mod_dont_log(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
 | 
						|
{
 | 
						|
	if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
 | 
						|
		return true;
 | 
						|
	if (eb && btrfs_header_level(eb) == 0)
 | 
						|
		return true;
 | 
						|
 | 
						|
	write_lock(&fs_info->tree_mod_log_lock);
 | 
						|
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 | 
						|
		write_unlock(&fs_info->tree_mod_log_lock);
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 | 
						|
static bool tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 | 
						|
				    struct extent_buffer *eb)
 | 
						|
{
 | 
						|
	if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
 | 
						|
		return false;
 | 
						|
	if (eb && btrfs_header_level(eb) == 0)
 | 
						|
		return false;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static struct tree_mod_elem *alloc_tree_mod_elem(struct extent_buffer *eb,
 | 
						|
						 int slot,
 | 
						|
						 enum btrfs_mod_log_op op)
 | 
						|
{
 | 
						|
	struct tree_mod_elem *tm;
 | 
						|
 | 
						|
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 | 
						|
	if (!tm)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	tm->logical = eb->start;
 | 
						|
	if (op != BTRFS_MOD_LOG_KEY_ADD) {
 | 
						|
		btrfs_node_key(eb, &tm->key, slot);
 | 
						|
		tm->blockptr = btrfs_node_blockptr(eb, slot);
 | 
						|
	}
 | 
						|
	tm->op = op;
 | 
						|
	tm->slot = slot;
 | 
						|
	tm->generation = btrfs_node_ptr_generation(eb, slot);
 | 
						|
	RB_CLEAR_NODE(&tm->node);
 | 
						|
 | 
						|
	return tm;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
 | 
						|
				  enum btrfs_mod_log_op op)
 | 
						|
{
 | 
						|
	struct tree_mod_elem *tm;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (!tree_mod_need_log(eb->fs_info, eb))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	tm = alloc_tree_mod_elem(eb, slot, op);
 | 
						|
	if (!tm)
 | 
						|
		ret = -ENOMEM;
 | 
						|
 | 
						|
	if (tree_mod_dont_log(eb->fs_info, eb)) {
 | 
						|
		kfree(tm);
 | 
						|
		/*
 | 
						|
		 * Don't error if we failed to allocate memory because we don't
 | 
						|
		 * need to log.
 | 
						|
		 */
 | 
						|
		return 0;
 | 
						|
	} else if (ret != 0) {
 | 
						|
		/*
 | 
						|
		 * We previously failed to allocate memory and we need to log,
 | 
						|
		 * so we have to fail.
 | 
						|
		 */
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = tree_mod_log_insert(eb->fs_info, tm);
 | 
						|
out_unlock:
 | 
						|
	write_unlock(&eb->fs_info->tree_mod_log_lock);
 | 
						|
	if (ret)
 | 
						|
		kfree(tm);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static struct tree_mod_elem *tree_mod_log_alloc_move(struct extent_buffer *eb,
 | 
						|
						     int dst_slot, int src_slot,
 | 
						|
						     int nr_items)
 | 
						|
{
 | 
						|
	struct tree_mod_elem *tm;
 | 
						|
 | 
						|
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 | 
						|
	if (!tm)
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
	tm->logical = eb->start;
 | 
						|
	tm->slot = src_slot;
 | 
						|
	tm->move.dst_slot = dst_slot;
 | 
						|
	tm->move.nr_items = nr_items;
 | 
						|
	tm->op = BTRFS_MOD_LOG_MOVE_KEYS;
 | 
						|
	RB_CLEAR_NODE(&tm->node);
 | 
						|
 | 
						|
	return tm;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_tree_mod_log_insert_move(struct extent_buffer *eb,
 | 
						|
				   int dst_slot, int src_slot,
 | 
						|
				   int nr_items)
 | 
						|
{
 | 
						|
	struct tree_mod_elem *tm = NULL;
 | 
						|
	struct tree_mod_elem **tm_list = NULL;
 | 
						|
	int ret = 0;
 | 
						|
	int i;
 | 
						|
	bool locked = false;
 | 
						|
 | 
						|
	if (!tree_mod_need_log(eb->fs_info, eb))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
 | 
						|
	if (!tm_list) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto lock;
 | 
						|
	}
 | 
						|
 | 
						|
	tm = tree_mod_log_alloc_move(eb, dst_slot, src_slot, nr_items);
 | 
						|
	if (IS_ERR(tm)) {
 | 
						|
		ret = PTR_ERR(tm);
 | 
						|
		tm = NULL;
 | 
						|
		goto lock;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 | 
						|
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 | 
						|
				BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING);
 | 
						|
		if (!tm_list[i]) {
 | 
						|
			ret = -ENOMEM;
 | 
						|
			goto lock;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
lock:
 | 
						|
	if (tree_mod_dont_log(eb->fs_info, eb)) {
 | 
						|
		/*
 | 
						|
		 * Don't error if we failed to allocate memory because we don't
 | 
						|
		 * need to log.
 | 
						|
		 */
 | 
						|
		ret = 0;
 | 
						|
		goto free_tms;
 | 
						|
	}
 | 
						|
	locked = true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We previously failed to allocate memory and we need to log, so we
 | 
						|
	 * have to fail.
 | 
						|
	 */
 | 
						|
	if (ret != 0)
 | 
						|
		goto free_tms;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When we override something during the move, we log these removals.
 | 
						|
	 * This can only happen when we move towards the beginning of the
 | 
						|
	 * buffer, i.e. dst_slot < src_slot.
 | 
						|
	 */
 | 
						|
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 | 
						|
		ret = tree_mod_log_insert(eb->fs_info, tm_list[i]);
 | 
						|
		if (ret)
 | 
						|
			goto free_tms;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = tree_mod_log_insert(eb->fs_info, tm);
 | 
						|
	if (ret)
 | 
						|
		goto free_tms;
 | 
						|
	write_unlock(&eb->fs_info->tree_mod_log_lock);
 | 
						|
	kfree(tm_list);
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
free_tms:
 | 
						|
	if (tm_list) {
 | 
						|
		for (i = 0; i < nr_items; i++) {
 | 
						|
			if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 | 
						|
				rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
 | 
						|
			kfree(tm_list[i]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (locked)
 | 
						|
		write_unlock(&eb->fs_info->tree_mod_log_lock);
 | 
						|
	kfree(tm_list);
 | 
						|
	kfree(tm);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 | 
						|
				struct tree_mod_elem **tm_list,
 | 
						|
				int nritems)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	for (i = nritems - 1; i >= 0; i--) {
 | 
						|
		ret = tree_mod_log_insert(fs_info, tm_list[i]);
 | 
						|
		if (ret) {
 | 
						|
			for (j = nritems - 1; j > i; j--)
 | 
						|
				rb_erase(&tm_list[j]->node,
 | 
						|
					 &fs_info->tree_mod_log);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_tree_mod_log_insert_root(struct extent_buffer *old_root,
 | 
						|
				   struct extent_buffer *new_root,
 | 
						|
				   bool log_removal)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = old_root->fs_info;
 | 
						|
	struct tree_mod_elem *tm = NULL;
 | 
						|
	struct tree_mod_elem **tm_list = NULL;
 | 
						|
	int nritems = 0;
 | 
						|
	int ret = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (!tree_mod_need_log(fs_info, NULL))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (log_removal && btrfs_header_level(old_root) > 0) {
 | 
						|
		nritems = btrfs_header_nritems(old_root);
 | 
						|
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 | 
						|
				  GFP_NOFS);
 | 
						|
		if (!tm_list) {
 | 
						|
			ret = -ENOMEM;
 | 
						|
			goto lock;
 | 
						|
		}
 | 
						|
		for (i = 0; i < nritems; i++) {
 | 
						|
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 | 
						|
			    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING);
 | 
						|
			if (!tm_list[i]) {
 | 
						|
				ret = -ENOMEM;
 | 
						|
				goto lock;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 | 
						|
	if (!tm) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto lock;
 | 
						|
	}
 | 
						|
 | 
						|
	tm->logical = new_root->start;
 | 
						|
	tm->old_root.logical = old_root->start;
 | 
						|
	tm->old_root.level = btrfs_header_level(old_root);
 | 
						|
	tm->generation = btrfs_header_generation(old_root);
 | 
						|
	tm->op = BTRFS_MOD_LOG_ROOT_REPLACE;
 | 
						|
 | 
						|
lock:
 | 
						|
	if (tree_mod_dont_log(fs_info, NULL)) {
 | 
						|
		/*
 | 
						|
		 * Don't error if we failed to allocate memory because we don't
 | 
						|
		 * need to log.
 | 
						|
		 */
 | 
						|
		ret = 0;
 | 
						|
		goto free_tms;
 | 
						|
	} else if (ret != 0) {
 | 
						|
		/*
 | 
						|
		 * We previously failed to allocate memory and we need to log,
 | 
						|
		 * so we have to fail.
 | 
						|
		 */
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	if (tm_list)
 | 
						|
		ret = tree_mod_log_free_eb(fs_info, tm_list, nritems);
 | 
						|
	if (!ret)
 | 
						|
		ret = tree_mod_log_insert(fs_info, tm);
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	write_unlock(&fs_info->tree_mod_log_lock);
 | 
						|
	if (ret)
 | 
						|
		goto free_tms;
 | 
						|
	kfree(tm_list);
 | 
						|
 | 
						|
	return ret;
 | 
						|
 | 
						|
free_tms:
 | 
						|
	if (tm_list) {
 | 
						|
		for (i = 0; i < nritems; i++)
 | 
						|
			kfree(tm_list[i]);
 | 
						|
		kfree(tm_list);
 | 
						|
	}
 | 
						|
	kfree(tm);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static struct tree_mod_elem *__tree_mod_log_search(struct btrfs_fs_info *fs_info,
 | 
						|
						   u64 start, u64 min_seq,
 | 
						|
						   bool smallest)
 | 
						|
{
 | 
						|
	struct rb_root *tm_root;
 | 
						|
	struct rb_node *node;
 | 
						|
	struct tree_mod_elem *cur = NULL;
 | 
						|
	struct tree_mod_elem *found = NULL;
 | 
						|
 | 
						|
	read_lock(&fs_info->tree_mod_log_lock);
 | 
						|
	tm_root = &fs_info->tree_mod_log;
 | 
						|
	node = tm_root->rb_node;
 | 
						|
	while (node) {
 | 
						|
		cur = rb_entry(node, struct tree_mod_elem, node);
 | 
						|
		if (cur->logical < start) {
 | 
						|
			node = node->rb_left;
 | 
						|
		} else if (cur->logical > start) {
 | 
						|
			node = node->rb_right;
 | 
						|
		} else if (cur->seq < min_seq) {
 | 
						|
			node = node->rb_left;
 | 
						|
		} else if (!smallest) {
 | 
						|
			/* We want the node with the highest seq */
 | 
						|
			if (found)
 | 
						|
				BUG_ON(found->seq > cur->seq);
 | 
						|
			found = cur;
 | 
						|
			node = node->rb_left;
 | 
						|
		} else if (cur->seq > min_seq) {
 | 
						|
			/* We want the node with the smallest seq */
 | 
						|
			if (found)
 | 
						|
				BUG_ON(found->seq < cur->seq);
 | 
						|
			found = cur;
 | 
						|
			node = node->rb_right;
 | 
						|
		} else {
 | 
						|
			found = cur;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	read_unlock(&fs_info->tree_mod_log_lock);
 | 
						|
 | 
						|
	return found;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This returns the element from the log with the smallest time sequence
 | 
						|
 * value that's in the log (the oldest log item). Any element with a time
 | 
						|
 * sequence lower than min_seq will be ignored.
 | 
						|
 */
 | 
						|
static struct tree_mod_elem *tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info,
 | 
						|
							u64 start, u64 min_seq)
 | 
						|
{
 | 
						|
	return __tree_mod_log_search(fs_info, start, min_seq, true);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This returns the element from the log with the largest time sequence
 | 
						|
 * value that's in the log (the most recent log item). Any element with
 | 
						|
 * a time sequence lower than min_seq will be ignored.
 | 
						|
 */
 | 
						|
static struct tree_mod_elem *tree_mod_log_search(struct btrfs_fs_info *fs_info,
 | 
						|
						 u64 start, u64 min_seq)
 | 
						|
{
 | 
						|
	return __tree_mod_log_search(fs_info, start, min_seq, false);
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_tree_mod_log_eb_copy(struct extent_buffer *dst,
 | 
						|
			       struct extent_buffer *src,
 | 
						|
			       unsigned long dst_offset,
 | 
						|
			       unsigned long src_offset,
 | 
						|
			       int nr_items)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = dst->fs_info;
 | 
						|
	int ret = 0;
 | 
						|
	struct tree_mod_elem **tm_list = NULL;
 | 
						|
	struct tree_mod_elem **tm_list_add = NULL;
 | 
						|
	struct tree_mod_elem **tm_list_rem = NULL;
 | 
						|
	int i;
 | 
						|
	bool locked = false;
 | 
						|
	struct tree_mod_elem *dst_move_tm = NULL;
 | 
						|
	struct tree_mod_elem *src_move_tm = NULL;
 | 
						|
	u32 dst_move_nr_items = btrfs_header_nritems(dst) - dst_offset;
 | 
						|
	u32 src_move_nr_items = btrfs_header_nritems(src) - (src_offset + nr_items);
 | 
						|
 | 
						|
	if (!tree_mod_need_log(fs_info, NULL))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 | 
						|
			  GFP_NOFS);
 | 
						|
	if (!tm_list) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto lock;
 | 
						|
	}
 | 
						|
 | 
						|
	if (dst_move_nr_items) {
 | 
						|
		dst_move_tm = tree_mod_log_alloc_move(dst, dst_offset + nr_items,
 | 
						|
						      dst_offset, dst_move_nr_items);
 | 
						|
		if (IS_ERR(dst_move_tm)) {
 | 
						|
			ret = PTR_ERR(dst_move_tm);
 | 
						|
			dst_move_tm = NULL;
 | 
						|
			goto lock;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (src_move_nr_items) {
 | 
						|
		src_move_tm = tree_mod_log_alloc_move(src, src_offset,
 | 
						|
						      src_offset + nr_items,
 | 
						|
						      src_move_nr_items);
 | 
						|
		if (IS_ERR(src_move_tm)) {
 | 
						|
			ret = PTR_ERR(src_move_tm);
 | 
						|
			src_move_tm = NULL;
 | 
						|
			goto lock;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	tm_list_add = tm_list;
 | 
						|
	tm_list_rem = tm_list + nr_items;
 | 
						|
	for (i = 0; i < nr_items; i++) {
 | 
						|
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 | 
						|
						     BTRFS_MOD_LOG_KEY_REMOVE);
 | 
						|
		if (!tm_list_rem[i]) {
 | 
						|
			ret = -ENOMEM;
 | 
						|
			goto lock;
 | 
						|
		}
 | 
						|
 | 
						|
		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 | 
						|
						     BTRFS_MOD_LOG_KEY_ADD);
 | 
						|
		if (!tm_list_add[i]) {
 | 
						|
			ret = -ENOMEM;
 | 
						|
			goto lock;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
lock:
 | 
						|
	if (tree_mod_dont_log(fs_info, NULL)) {
 | 
						|
		/*
 | 
						|
		 * Don't error if we failed to allocate memory because we don't
 | 
						|
		 * need to log.
 | 
						|
		 */
 | 
						|
		ret = 0;
 | 
						|
		goto free_tms;
 | 
						|
	}
 | 
						|
	locked = true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We previously failed to allocate memory and we need to log, so we
 | 
						|
	 * have to fail.
 | 
						|
	 */
 | 
						|
	if (ret != 0)
 | 
						|
		goto free_tms;
 | 
						|
 | 
						|
	if (dst_move_tm) {
 | 
						|
		ret = tree_mod_log_insert(fs_info, dst_move_tm);
 | 
						|
		if (ret)
 | 
						|
			goto free_tms;
 | 
						|
	}
 | 
						|
	for (i = 0; i < nr_items; i++) {
 | 
						|
		ret = tree_mod_log_insert(fs_info, tm_list_rem[i]);
 | 
						|
		if (ret)
 | 
						|
			goto free_tms;
 | 
						|
		ret = tree_mod_log_insert(fs_info, tm_list_add[i]);
 | 
						|
		if (ret)
 | 
						|
			goto free_tms;
 | 
						|
	}
 | 
						|
	if (src_move_tm) {
 | 
						|
		ret = tree_mod_log_insert(fs_info, src_move_tm);
 | 
						|
		if (ret)
 | 
						|
			goto free_tms;
 | 
						|
	}
 | 
						|
 | 
						|
	write_unlock(&fs_info->tree_mod_log_lock);
 | 
						|
	kfree(tm_list);
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
free_tms:
 | 
						|
	if (dst_move_tm && !RB_EMPTY_NODE(&dst_move_tm->node))
 | 
						|
		rb_erase(&dst_move_tm->node, &fs_info->tree_mod_log);
 | 
						|
	kfree(dst_move_tm);
 | 
						|
	if (src_move_tm && !RB_EMPTY_NODE(&src_move_tm->node))
 | 
						|
		rb_erase(&src_move_tm->node, &fs_info->tree_mod_log);
 | 
						|
	kfree(src_move_tm);
 | 
						|
	if (tm_list) {
 | 
						|
		for (i = 0; i < nr_items * 2; i++) {
 | 
						|
			if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 | 
						|
				rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 | 
						|
			kfree(tm_list[i]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (locked)
 | 
						|
		write_unlock(&fs_info->tree_mod_log_lock);
 | 
						|
	kfree(tm_list);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_tree_mod_log_free_eb(struct extent_buffer *eb)
 | 
						|
{
 | 
						|
	struct tree_mod_elem **tm_list = NULL;
 | 
						|
	int nritems = 0;
 | 
						|
	int i;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (!tree_mod_need_log(eb->fs_info, eb))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	nritems = btrfs_header_nritems(eb);
 | 
						|
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 | 
						|
	if (!tm_list) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto lock;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < nritems; i++) {
 | 
						|
		tm_list[i] = alloc_tree_mod_elem(eb, i,
 | 
						|
				    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING);
 | 
						|
		if (!tm_list[i]) {
 | 
						|
			ret = -ENOMEM;
 | 
						|
			goto lock;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
lock:
 | 
						|
	if (tree_mod_dont_log(eb->fs_info, eb)) {
 | 
						|
		/*
 | 
						|
		 * Don't error if we failed to allocate memory because we don't
 | 
						|
		 * need to log.
 | 
						|
		 */
 | 
						|
		ret = 0;
 | 
						|
		goto free_tms;
 | 
						|
	} else if (ret != 0) {
 | 
						|
		/*
 | 
						|
		 * We previously failed to allocate memory and we need to log,
 | 
						|
		 * so we have to fail.
 | 
						|
		 */
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
 | 
						|
out_unlock:
 | 
						|
	write_unlock(&eb->fs_info->tree_mod_log_lock);
 | 
						|
	if (ret)
 | 
						|
		goto free_tms;
 | 
						|
	kfree(tm_list);
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
free_tms:
 | 
						|
	if (tm_list) {
 | 
						|
		for (i = 0; i < nritems; i++)
 | 
						|
			kfree(tm_list[i]);
 | 
						|
		kfree(tm_list);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the logical address of the oldest predecessor of the given root.
 | 
						|
 * Entries older than time_seq are ignored.
 | 
						|
 */
 | 
						|
static struct tree_mod_elem *tree_mod_log_oldest_root(struct extent_buffer *eb_root,
 | 
						|
						      u64 time_seq)
 | 
						|
{
 | 
						|
	struct tree_mod_elem *tm;
 | 
						|
	struct tree_mod_elem *found = NULL;
 | 
						|
	u64 root_logical = eb_root->start;
 | 
						|
	bool looped = false;
 | 
						|
 | 
						|
	if (!time_seq)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The very last operation that's logged for a root is the replacement
 | 
						|
	 * operation (if it is replaced at all). This has the logical address
 | 
						|
	 * of the *new* root, making it the very first operation that's logged
 | 
						|
	 * for this root.
 | 
						|
	 */
 | 
						|
	while (1) {
 | 
						|
		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
 | 
						|
						time_seq);
 | 
						|
		if (!looped && !tm)
 | 
						|
			return NULL;
 | 
						|
		/*
 | 
						|
		 * If there are no tree operation for the oldest root, we simply
 | 
						|
		 * return it. This should only happen if that (old) root is at
 | 
						|
		 * level 0.
 | 
						|
		 */
 | 
						|
		if (!tm)
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If there's an operation that's not a root replacement, we
 | 
						|
		 * found the oldest version of our root. Normally, we'll find a
 | 
						|
		 * BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
 | 
						|
		 */
 | 
						|
		if (tm->op != BTRFS_MOD_LOG_ROOT_REPLACE)
 | 
						|
			break;
 | 
						|
 | 
						|
		found = tm;
 | 
						|
		root_logical = tm->old_root.logical;
 | 
						|
		looped = true;
 | 
						|
	}
 | 
						|
 | 
						|
	/* If there's no old root to return, return what we found instead */
 | 
						|
	if (!found)
 | 
						|
		found = tm;
 | 
						|
 | 
						|
	return found;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * tm is a pointer to the first operation to rewind within eb. Then, all
 | 
						|
 * previous operations will be rewound (until we reach something older than
 | 
						|
 * time_seq).
 | 
						|
 */
 | 
						|
static void tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
 | 
						|
				struct extent_buffer *eb,
 | 
						|
				u64 time_seq,
 | 
						|
				struct tree_mod_elem *first_tm)
 | 
						|
{
 | 
						|
	u32 n;
 | 
						|
	struct rb_node *next;
 | 
						|
	struct tree_mod_elem *tm = first_tm;
 | 
						|
	unsigned long o_dst;
 | 
						|
	unsigned long o_src;
 | 
						|
	unsigned long p_size = sizeof(struct btrfs_key_ptr);
 | 
						|
	/*
 | 
						|
	 * max_slot tracks the maximum valid slot of the rewind eb at every
 | 
						|
	 * step of the rewind. This is in contrast with 'n' which eventually
 | 
						|
	 * matches the number of items, but can be wrong during moves or if
 | 
						|
	 * removes overlap on already valid slots (which is probably separately
 | 
						|
	 * a bug). We do this to validate the offsets of memmoves for rewinding
 | 
						|
	 * moves and detect invalid memmoves.
 | 
						|
	 *
 | 
						|
	 * Since a rewind eb can start empty, max_slot is a signed integer with
 | 
						|
	 * a special meaning for -1, which is that no slot is valid to move out
 | 
						|
	 * of. Any other negative value is invalid.
 | 
						|
	 */
 | 
						|
	int max_slot;
 | 
						|
	int move_src_end_slot;
 | 
						|
	int move_dst_end_slot;
 | 
						|
 | 
						|
	n = btrfs_header_nritems(eb);
 | 
						|
	max_slot = n - 1;
 | 
						|
	read_lock(&fs_info->tree_mod_log_lock);
 | 
						|
	while (tm && tm->seq >= time_seq) {
 | 
						|
		ASSERT(max_slot >= -1);
 | 
						|
		/*
 | 
						|
		 * All the operations are recorded with the operator used for
 | 
						|
		 * the modification. As we're going backwards, we do the
 | 
						|
		 * opposite of each operation here.
 | 
						|
		 */
 | 
						|
		switch (tm->op) {
 | 
						|
		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
 | 
						|
			BUG_ON(tm->slot < n);
 | 
						|
			fallthrough;
 | 
						|
		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING:
 | 
						|
		case BTRFS_MOD_LOG_KEY_REMOVE:
 | 
						|
			btrfs_set_node_key(eb, &tm->key, tm->slot);
 | 
						|
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
 | 
						|
			btrfs_set_node_ptr_generation(eb, tm->slot,
 | 
						|
						      tm->generation);
 | 
						|
			n++;
 | 
						|
			if (tm->slot > max_slot)
 | 
						|
				max_slot = tm->slot;
 | 
						|
			break;
 | 
						|
		case BTRFS_MOD_LOG_KEY_REPLACE:
 | 
						|
			BUG_ON(tm->slot >= n);
 | 
						|
			btrfs_set_node_key(eb, &tm->key, tm->slot);
 | 
						|
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
 | 
						|
			btrfs_set_node_ptr_generation(eb, tm->slot,
 | 
						|
						      tm->generation);
 | 
						|
			break;
 | 
						|
		case BTRFS_MOD_LOG_KEY_ADD:
 | 
						|
			/*
 | 
						|
			 * It is possible we could have already removed keys
 | 
						|
			 * behind the known max slot, so this will be an
 | 
						|
			 * overestimate. In practice, the copy operation
 | 
						|
			 * inserts them in increasing order, and overestimating
 | 
						|
			 * just means we miss some warnings, so it's OK. It
 | 
						|
			 * isn't worth carefully tracking the full array of
 | 
						|
			 * valid slots to check against when moving.
 | 
						|
			 */
 | 
						|
			if (tm->slot == max_slot)
 | 
						|
				max_slot--;
 | 
						|
			/* if a move operation is needed it's in the log */
 | 
						|
			n--;
 | 
						|
			break;
 | 
						|
		case BTRFS_MOD_LOG_MOVE_KEYS:
 | 
						|
			ASSERT(tm->move.nr_items > 0);
 | 
						|
			move_src_end_slot = tm->move.dst_slot + tm->move.nr_items - 1;
 | 
						|
			move_dst_end_slot = tm->slot + tm->move.nr_items - 1;
 | 
						|
			o_dst = btrfs_node_key_ptr_offset(eb, tm->slot);
 | 
						|
			o_src = btrfs_node_key_ptr_offset(eb, tm->move.dst_slot);
 | 
						|
			if (WARN_ON(move_src_end_slot > max_slot ||
 | 
						|
				    tm->move.nr_items <= 0)) {
 | 
						|
				btrfs_warn(fs_info,
 | 
						|
"move from invalid tree mod log slot eb %llu slot %d dst_slot %d nr_items %d seq %llu n %u max_slot %d",
 | 
						|
					   eb->start, tm->slot,
 | 
						|
					   tm->move.dst_slot, tm->move.nr_items,
 | 
						|
					   tm->seq, n, max_slot);
 | 
						|
			}
 | 
						|
			memmove_extent_buffer(eb, o_dst, o_src,
 | 
						|
					      tm->move.nr_items * p_size);
 | 
						|
			max_slot = move_dst_end_slot;
 | 
						|
			break;
 | 
						|
		case BTRFS_MOD_LOG_ROOT_REPLACE:
 | 
						|
			/*
 | 
						|
			 * This operation is special. For roots, this must be
 | 
						|
			 * handled explicitly before rewinding.
 | 
						|
			 * For non-roots, this operation may exist if the node
 | 
						|
			 * was a root: root A -> child B; then A gets empty and
 | 
						|
			 * B is promoted to the new root. In the mod log, we'll
 | 
						|
			 * have a root-replace operation for B, a tree block
 | 
						|
			 * that is no root. We simply ignore that operation.
 | 
						|
			 */
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		next = rb_next(&tm->node);
 | 
						|
		if (!next)
 | 
						|
			break;
 | 
						|
		tm = rb_entry(next, struct tree_mod_elem, node);
 | 
						|
		if (tm->logical != first_tm->logical)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	read_unlock(&fs_info->tree_mod_log_lock);
 | 
						|
	btrfs_set_header_nritems(eb, n);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
 | 
						|
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 | 
						|
 * returned buffer is always read-locked. If the returned buffer is not the
 | 
						|
 * input buffer, the lock on the input buffer is released and the input buffer
 | 
						|
 * is freed (its refcount is decremented).
 | 
						|
 */
 | 
						|
struct extent_buffer *btrfs_tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
 | 
						|
						struct btrfs_path *path,
 | 
						|
						struct extent_buffer *eb,
 | 
						|
						u64 time_seq)
 | 
						|
{
 | 
						|
	struct extent_buffer *eb_rewin;
 | 
						|
	struct tree_mod_elem *tm;
 | 
						|
 | 
						|
	if (!time_seq)
 | 
						|
		return eb;
 | 
						|
 | 
						|
	if (btrfs_header_level(eb) == 0)
 | 
						|
		return eb;
 | 
						|
 | 
						|
	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
 | 
						|
	if (!tm)
 | 
						|
		return eb;
 | 
						|
 | 
						|
	if (tm->op == BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
 | 
						|
		BUG_ON(tm->slot != 0);
 | 
						|
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
 | 
						|
		if (!eb_rewin) {
 | 
						|
			btrfs_tree_read_unlock(eb);
 | 
						|
			free_extent_buffer(eb);
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
		btrfs_set_header_bytenr(eb_rewin, eb->start);
 | 
						|
		btrfs_set_header_backref_rev(eb_rewin,
 | 
						|
					     btrfs_header_backref_rev(eb));
 | 
						|
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
 | 
						|
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
 | 
						|
	} else {
 | 
						|
		eb_rewin = btrfs_clone_extent_buffer(eb);
 | 
						|
		if (!eb_rewin) {
 | 
						|
			btrfs_tree_read_unlock(eb);
 | 
						|
			free_extent_buffer(eb);
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_tree_read_unlock(eb);
 | 
						|
	free_extent_buffer(eb);
 | 
						|
 | 
						|
	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
 | 
						|
				       eb_rewin, btrfs_header_level(eb_rewin));
 | 
						|
	btrfs_tree_read_lock(eb_rewin);
 | 
						|
	tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
 | 
						|
	WARN_ON(btrfs_header_nritems(eb_rewin) >
 | 
						|
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
 | 
						|
 | 
						|
	return eb_rewin;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Rewind the state of @root's root node to the given @time_seq value.
 | 
						|
 * If there are no changes, the current root->root_node is returned. If anything
 | 
						|
 * changed in between, there's a fresh buffer allocated on which the rewind
 | 
						|
 * operations are done. In any case, the returned buffer is read locked.
 | 
						|
 * Returns NULL on error (with no locks held).
 | 
						|
 */
 | 
						|
struct extent_buffer *btrfs_get_old_root(struct btrfs_root *root, u64 time_seq)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct tree_mod_elem *tm;
 | 
						|
	struct extent_buffer *eb = NULL;
 | 
						|
	struct extent_buffer *eb_root;
 | 
						|
	u64 eb_root_owner = 0;
 | 
						|
	struct extent_buffer *old;
 | 
						|
	struct tree_mod_root *old_root = NULL;
 | 
						|
	u64 old_generation = 0;
 | 
						|
	u64 logical;
 | 
						|
	int level;
 | 
						|
 | 
						|
	eb_root = btrfs_read_lock_root_node(root);
 | 
						|
	tm = tree_mod_log_oldest_root(eb_root, time_seq);
 | 
						|
	if (!tm)
 | 
						|
		return eb_root;
 | 
						|
 | 
						|
	if (tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) {
 | 
						|
		old_root = &tm->old_root;
 | 
						|
		old_generation = tm->generation;
 | 
						|
		logical = old_root->logical;
 | 
						|
		level = old_root->level;
 | 
						|
	} else {
 | 
						|
		logical = eb_root->start;
 | 
						|
		level = btrfs_header_level(eb_root);
 | 
						|
	}
 | 
						|
 | 
						|
	tm = tree_mod_log_search(fs_info, logical, time_seq);
 | 
						|
	if (old_root && tm && tm->op != BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
 | 
						|
		struct btrfs_tree_parent_check check = { 0 };
 | 
						|
 | 
						|
		btrfs_tree_read_unlock(eb_root);
 | 
						|
		free_extent_buffer(eb_root);
 | 
						|
 | 
						|
		check.level = level;
 | 
						|
		check.owner_root = btrfs_root_id(root);
 | 
						|
 | 
						|
		old = read_tree_block(fs_info, logical, &check);
 | 
						|
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
 | 
						|
			if (!IS_ERR(old))
 | 
						|
				free_extent_buffer(old);
 | 
						|
			btrfs_warn(fs_info,
 | 
						|
				   "failed to read tree block %llu from get_old_root",
 | 
						|
				   logical);
 | 
						|
		} else {
 | 
						|
			struct tree_mod_elem *tm2;
 | 
						|
 | 
						|
			btrfs_tree_read_lock(old);
 | 
						|
			eb = btrfs_clone_extent_buffer(old);
 | 
						|
			/*
 | 
						|
			 * After the lookup for the most recent tree mod operation
 | 
						|
			 * above and before we locked and cloned the extent buffer
 | 
						|
			 * 'old', a new tree mod log operation may have been added.
 | 
						|
			 * So lookup for a more recent one to make sure the number
 | 
						|
			 * of mod log operations we replay is consistent with the
 | 
						|
			 * number of items we have in the cloned extent buffer,
 | 
						|
			 * otherwise we can hit a BUG_ON when rewinding the extent
 | 
						|
			 * buffer.
 | 
						|
			 */
 | 
						|
			tm2 = tree_mod_log_search(fs_info, logical, time_seq);
 | 
						|
			btrfs_tree_read_unlock(old);
 | 
						|
			free_extent_buffer(old);
 | 
						|
			ASSERT(tm2);
 | 
						|
			ASSERT(tm2 == tm || tm2->seq > tm->seq);
 | 
						|
			if (!tm2 || tm2->seq < tm->seq) {
 | 
						|
				free_extent_buffer(eb);
 | 
						|
				return NULL;
 | 
						|
			}
 | 
						|
			tm = tm2;
 | 
						|
		}
 | 
						|
	} else if (old_root) {
 | 
						|
		eb_root_owner = btrfs_header_owner(eb_root);
 | 
						|
		btrfs_tree_read_unlock(eb_root);
 | 
						|
		free_extent_buffer(eb_root);
 | 
						|
		eb = alloc_dummy_extent_buffer(fs_info, logical);
 | 
						|
	} else {
 | 
						|
		eb = btrfs_clone_extent_buffer(eb_root);
 | 
						|
		btrfs_tree_read_unlock(eb_root);
 | 
						|
		free_extent_buffer(eb_root);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!eb)
 | 
						|
		return NULL;
 | 
						|
	if (old_root) {
 | 
						|
		btrfs_set_header_bytenr(eb, eb->start);
 | 
						|
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
 | 
						|
		btrfs_set_header_owner(eb, eb_root_owner);
 | 
						|
		btrfs_set_header_level(eb, old_root->level);
 | 
						|
		btrfs_set_header_generation(eb, old_generation);
 | 
						|
	}
 | 
						|
	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
 | 
						|
				       btrfs_header_level(eb));
 | 
						|
	btrfs_tree_read_lock(eb);
 | 
						|
	if (tm)
 | 
						|
		tree_mod_log_rewind(fs_info, eb, time_seq, tm);
 | 
						|
	else
 | 
						|
		WARN_ON(btrfs_header_level(eb) != 0);
 | 
						|
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
 | 
						|
 | 
						|
	return eb;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
 | 
						|
{
 | 
						|
	struct tree_mod_elem *tm;
 | 
						|
	int level;
 | 
						|
	struct extent_buffer *eb_root = btrfs_root_node(root);
 | 
						|
 | 
						|
	tm = tree_mod_log_oldest_root(eb_root, time_seq);
 | 
						|
	if (tm && tm->op == BTRFS_MOD_LOG_ROOT_REPLACE)
 | 
						|
		level = tm->old_root.level;
 | 
						|
	else
 | 
						|
		level = btrfs_header_level(eb_root);
 | 
						|
 | 
						|
	free_extent_buffer(eb_root);
 | 
						|
 | 
						|
	return level;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the lowest sequence number in the tree modification log.
 | 
						|
 *
 | 
						|
 * Return the sequence number of the oldest tree modification log user, which
 | 
						|
 * corresponds to the lowest sequence number of all existing users. If there are
 | 
						|
 * no users it returns 0.
 | 
						|
 */
 | 
						|
u64 btrfs_tree_mod_log_lowest_seq(struct btrfs_fs_info *fs_info)
 | 
						|
{
 | 
						|
	u64 ret = 0;
 | 
						|
 | 
						|
	read_lock(&fs_info->tree_mod_log_lock);
 | 
						|
	if (!list_empty(&fs_info->tree_mod_seq_list)) {
 | 
						|
		struct btrfs_seq_list *elem;
 | 
						|
 | 
						|
		elem = list_first_entry(&fs_info->tree_mod_seq_list,
 | 
						|
					struct btrfs_seq_list, list);
 | 
						|
		ret = elem->seq;
 | 
						|
	}
 | 
						|
	read_unlock(&fs_info->tree_mod_log_lock);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 |