mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	Three LSMs register the implementations for the "capget" hook: AppArmor, SELinux, and the normal capability code. Looking at the function implementations we may observe that the first parameter "target" is not changing. Mark the first argument "target" of LSM hook security_capget() as "const" since it will not be changing in the LSM hook. cap_capget() LSM hook declaration exceeds the 80 characters per line limit. Split the function declaration to multiple lines to decrease the line length. Signed-off-by: Khadija Kamran <kamrankhadijadj@gmail.com> Acked-by: John Johansen <john.johansen@canonical.com> [PM: align the cap_capget() declaration, spelling fixes] Signed-off-by: Paul Moore <paul@paul-moore.com>
		
			
				
	
	
		
			523 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			523 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * linux/kernel/capability.c
 | 
						|
 *
 | 
						|
 * Copyright (C) 1997  Andrew Main <zefram@fysh.org>
 | 
						|
 *
 | 
						|
 * Integrated into 2.1.97+,  Andrew G. Morgan <morgan@kernel.org>
 | 
						|
 * 30 May 2002:	Cleanup, Robert M. Love <rml@tech9.net>
 | 
						|
 */
 | 
						|
 | 
						|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | 
						|
 | 
						|
#include <linux/audit.h>
 | 
						|
#include <linux/capability.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/security.h>
 | 
						|
#include <linux/syscalls.h>
 | 
						|
#include <linux/pid_namespace.h>
 | 
						|
#include <linux/user_namespace.h>
 | 
						|
#include <linux/uaccess.h>
 | 
						|
 | 
						|
int file_caps_enabled = 1;
 | 
						|
 | 
						|
static int __init file_caps_disable(char *str)
 | 
						|
{
 | 
						|
	file_caps_enabled = 0;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("no_file_caps", file_caps_disable);
 | 
						|
 | 
						|
#ifdef CONFIG_MULTIUSER
 | 
						|
/*
 | 
						|
 * More recent versions of libcap are available from:
 | 
						|
 *
 | 
						|
 *   http://www.kernel.org/pub/linux/libs/security/linux-privs/
 | 
						|
 */
 | 
						|
 | 
						|
static void warn_legacy_capability_use(void)
 | 
						|
{
 | 
						|
	char name[sizeof(current->comm)];
 | 
						|
 | 
						|
	pr_info_once("warning: `%s' uses 32-bit capabilities (legacy support in use)\n",
 | 
						|
		     get_task_comm(name, current));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Version 2 capabilities worked fine, but the linux/capability.h file
 | 
						|
 * that accompanied their introduction encouraged their use without
 | 
						|
 * the necessary user-space source code changes. As such, we have
 | 
						|
 * created a version 3 with equivalent functionality to version 2, but
 | 
						|
 * with a header change to protect legacy source code from using
 | 
						|
 * version 2 when it wanted to use version 1. If your system has code
 | 
						|
 * that trips the following warning, it is using version 2 specific
 | 
						|
 * capabilities and may be doing so insecurely.
 | 
						|
 *
 | 
						|
 * The remedy is to either upgrade your version of libcap (to 2.10+,
 | 
						|
 * if the application is linked against it), or recompile your
 | 
						|
 * application with modern kernel headers and this warning will go
 | 
						|
 * away.
 | 
						|
 */
 | 
						|
 | 
						|
static void warn_deprecated_v2(void)
 | 
						|
{
 | 
						|
	char name[sizeof(current->comm)];
 | 
						|
 | 
						|
	pr_info_once("warning: `%s' uses deprecated v2 capabilities in a way that may be insecure\n",
 | 
						|
		     get_task_comm(name, current));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Version check. Return the number of u32s in each capability flag
 | 
						|
 * array, or a negative value on error.
 | 
						|
 */
 | 
						|
static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy)
 | 
						|
{
 | 
						|
	__u32 version;
 | 
						|
 | 
						|
	if (get_user(version, &header->version))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	switch (version) {
 | 
						|
	case _LINUX_CAPABILITY_VERSION_1:
 | 
						|
		warn_legacy_capability_use();
 | 
						|
		*tocopy = _LINUX_CAPABILITY_U32S_1;
 | 
						|
		break;
 | 
						|
	case _LINUX_CAPABILITY_VERSION_2:
 | 
						|
		warn_deprecated_v2();
 | 
						|
		fallthrough;	/* v3 is otherwise equivalent to v2 */
 | 
						|
	case _LINUX_CAPABILITY_VERSION_3:
 | 
						|
		*tocopy = _LINUX_CAPABILITY_U32S_3;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version))
 | 
						|
			return -EFAULT;
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The only thing that can change the capabilities of the current
 | 
						|
 * process is the current process. As such, we can't be in this code
 | 
						|
 * at the same time as we are in the process of setting capabilities
 | 
						|
 * in this process. The net result is that we can limit our use of
 | 
						|
 * locks to when we are reading the caps of another process.
 | 
						|
 */
 | 
						|
static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
 | 
						|
				     kernel_cap_t *pIp, kernel_cap_t *pPp)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (pid && (pid != task_pid_vnr(current))) {
 | 
						|
		const struct task_struct *target;
 | 
						|
 | 
						|
		rcu_read_lock();
 | 
						|
 | 
						|
		target = find_task_by_vpid(pid);
 | 
						|
		if (!target)
 | 
						|
			ret = -ESRCH;
 | 
						|
		else
 | 
						|
			ret = security_capget(target, pEp, pIp, pPp);
 | 
						|
 | 
						|
		rcu_read_unlock();
 | 
						|
	} else
 | 
						|
		ret = security_capget(current, pEp, pIp, pPp);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * sys_capget - get the capabilities of a given process.
 | 
						|
 * @header: pointer to struct that contains capability version and
 | 
						|
 *	target pid data
 | 
						|
 * @dataptr: pointer to struct that contains the effective, permitted,
 | 
						|
 *	and inheritable capabilities that are returned
 | 
						|
 *
 | 
						|
 * Returns 0 on success and < 0 on error.
 | 
						|
 */
 | 
						|
SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	pid_t pid;
 | 
						|
	unsigned tocopy;
 | 
						|
	kernel_cap_t pE, pI, pP;
 | 
						|
	struct __user_cap_data_struct kdata[2];
 | 
						|
 | 
						|
	ret = cap_validate_magic(header, &tocopy);
 | 
						|
	if ((dataptr == NULL) || (ret != 0))
 | 
						|
		return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret;
 | 
						|
 | 
						|
	if (get_user(pid, &header->pid))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	if (pid < 0)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	ret = cap_get_target_pid(pid, &pE, &pI, &pP);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Annoying legacy format with 64-bit capabilities exposed
 | 
						|
	 * as two sets of 32-bit fields, so we need to split the
 | 
						|
	 * capability values up.
 | 
						|
	 */
 | 
						|
	kdata[0].effective   = pE.val; kdata[1].effective   = pE.val >> 32;
 | 
						|
	kdata[0].permitted   = pP.val; kdata[1].permitted   = pP.val >> 32;
 | 
						|
	kdata[0].inheritable = pI.val; kdata[1].inheritable = pI.val >> 32;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S,
 | 
						|
	 * we silently drop the upper capabilities here. This
 | 
						|
	 * has the effect of making older libcap
 | 
						|
	 * implementations implicitly drop upper capability
 | 
						|
	 * bits when they perform a: capget/modify/capset
 | 
						|
	 * sequence.
 | 
						|
	 *
 | 
						|
	 * This behavior is considered fail-safe
 | 
						|
	 * behavior. Upgrading the application to a newer
 | 
						|
	 * version of libcap will enable access to the newer
 | 
						|
	 * capabilities.
 | 
						|
	 *
 | 
						|
	 * An alternative would be to return an error here
 | 
						|
	 * (-ERANGE), but that causes legacy applications to
 | 
						|
	 * unexpectedly fail; the capget/modify/capset aborts
 | 
						|
	 * before modification is attempted and the application
 | 
						|
	 * fails.
 | 
						|
	 */
 | 
						|
	if (copy_to_user(dataptr, kdata, tocopy * sizeof(kdata[0])))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static kernel_cap_t mk_kernel_cap(u32 low, u32 high)
 | 
						|
{
 | 
						|
	return (kernel_cap_t) { (low | ((u64)high << 32)) & CAP_VALID_MASK };
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * sys_capset - set capabilities for a process or (*) a group of processes
 | 
						|
 * @header: pointer to struct that contains capability version and
 | 
						|
 *	target pid data
 | 
						|
 * @data: pointer to struct that contains the effective, permitted,
 | 
						|
 *	and inheritable capabilities
 | 
						|
 *
 | 
						|
 * Set capabilities for the current process only.  The ability to any other
 | 
						|
 * process(es) has been deprecated and removed.
 | 
						|
 *
 | 
						|
 * The restrictions on setting capabilities are specified as:
 | 
						|
 *
 | 
						|
 * I: any raised capabilities must be a subset of the old permitted
 | 
						|
 * P: any raised capabilities must be a subset of the old permitted
 | 
						|
 * E: must be set to a subset of new permitted
 | 
						|
 *
 | 
						|
 * Returns 0 on success and < 0 on error.
 | 
						|
 */
 | 
						|
SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data)
 | 
						|
{
 | 
						|
	struct __user_cap_data_struct kdata[2] = { { 0, }, };
 | 
						|
	unsigned tocopy, copybytes;
 | 
						|
	kernel_cap_t inheritable, permitted, effective;
 | 
						|
	struct cred *new;
 | 
						|
	int ret;
 | 
						|
	pid_t pid;
 | 
						|
 | 
						|
	ret = cap_validate_magic(header, &tocopy);
 | 
						|
	if (ret != 0)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (get_user(pid, &header->pid))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	/* may only affect current now */
 | 
						|
	if (pid != 0 && pid != task_pid_vnr(current))
 | 
						|
		return -EPERM;
 | 
						|
 | 
						|
	copybytes = tocopy * sizeof(struct __user_cap_data_struct);
 | 
						|
	if (copybytes > sizeof(kdata))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	if (copy_from_user(&kdata, data, copybytes))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	effective   = mk_kernel_cap(kdata[0].effective,   kdata[1].effective);
 | 
						|
	permitted   = mk_kernel_cap(kdata[0].permitted,   kdata[1].permitted);
 | 
						|
	inheritable = mk_kernel_cap(kdata[0].inheritable, kdata[1].inheritable);
 | 
						|
 | 
						|
	new = prepare_creds();
 | 
						|
	if (!new)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	ret = security_capset(new, current_cred(),
 | 
						|
			      &effective, &inheritable, &permitted);
 | 
						|
	if (ret < 0)
 | 
						|
		goto error;
 | 
						|
 | 
						|
	audit_log_capset(new, current_cred());
 | 
						|
 | 
						|
	return commit_creds(new);
 | 
						|
 | 
						|
error:
 | 
						|
	abort_creds(new);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * has_ns_capability - Does a task have a capability in a specific user ns
 | 
						|
 * @t: The task in question
 | 
						|
 * @ns: target user namespace
 | 
						|
 * @cap: The capability to be tested for
 | 
						|
 *
 | 
						|
 * Return true if the specified task has the given superior capability
 | 
						|
 * currently in effect to the specified user namespace, false if not.
 | 
						|
 *
 | 
						|
 * Note that this does not set PF_SUPERPRIV on the task.
 | 
						|
 */
 | 
						|
bool has_ns_capability(struct task_struct *t,
 | 
						|
		       struct user_namespace *ns, int cap)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	ret = security_capable(__task_cred(t), ns, cap, CAP_OPT_NONE);
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return (ret == 0);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * has_capability - Does a task have a capability in init_user_ns
 | 
						|
 * @t: The task in question
 | 
						|
 * @cap: The capability to be tested for
 | 
						|
 *
 | 
						|
 * Return true if the specified task has the given superior capability
 | 
						|
 * currently in effect to the initial user namespace, false if not.
 | 
						|
 *
 | 
						|
 * Note that this does not set PF_SUPERPRIV on the task.
 | 
						|
 */
 | 
						|
bool has_capability(struct task_struct *t, int cap)
 | 
						|
{
 | 
						|
	return has_ns_capability(t, &init_user_ns, cap);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(has_capability);
 | 
						|
 | 
						|
/**
 | 
						|
 * has_ns_capability_noaudit - Does a task have a capability (unaudited)
 | 
						|
 * in a specific user ns.
 | 
						|
 * @t: The task in question
 | 
						|
 * @ns: target user namespace
 | 
						|
 * @cap: The capability to be tested for
 | 
						|
 *
 | 
						|
 * Return true if the specified task has the given superior capability
 | 
						|
 * currently in effect to the specified user namespace, false if not.
 | 
						|
 * Do not write an audit message for the check.
 | 
						|
 *
 | 
						|
 * Note that this does not set PF_SUPERPRIV on the task.
 | 
						|
 */
 | 
						|
bool has_ns_capability_noaudit(struct task_struct *t,
 | 
						|
			       struct user_namespace *ns, int cap)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	ret = security_capable(__task_cred(t), ns, cap, CAP_OPT_NOAUDIT);
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return (ret == 0);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * has_capability_noaudit - Does a task have a capability (unaudited) in the
 | 
						|
 * initial user ns
 | 
						|
 * @t: The task in question
 | 
						|
 * @cap: The capability to be tested for
 | 
						|
 *
 | 
						|
 * Return true if the specified task has the given superior capability
 | 
						|
 * currently in effect to init_user_ns, false if not.  Don't write an
 | 
						|
 * audit message for the check.
 | 
						|
 *
 | 
						|
 * Note that this does not set PF_SUPERPRIV on the task.
 | 
						|
 */
 | 
						|
bool has_capability_noaudit(struct task_struct *t, int cap)
 | 
						|
{
 | 
						|
	return has_ns_capability_noaudit(t, &init_user_ns, cap);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(has_capability_noaudit);
 | 
						|
 | 
						|
static bool ns_capable_common(struct user_namespace *ns,
 | 
						|
			      int cap,
 | 
						|
			      unsigned int opts)
 | 
						|
{
 | 
						|
	int capable;
 | 
						|
 | 
						|
	if (unlikely(!cap_valid(cap))) {
 | 
						|
		pr_crit("capable() called with invalid cap=%u\n", cap);
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
 | 
						|
	capable = security_capable(current_cred(), ns, cap, opts);
 | 
						|
	if (capable == 0) {
 | 
						|
		current->flags |= PF_SUPERPRIV;
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ns_capable - Determine if the current task has a superior capability in effect
 | 
						|
 * @ns:  The usernamespace we want the capability in
 | 
						|
 * @cap: The capability to be tested for
 | 
						|
 *
 | 
						|
 * Return true if the current task has the given superior capability currently
 | 
						|
 * available for use, false if not.
 | 
						|
 *
 | 
						|
 * This sets PF_SUPERPRIV on the task if the capability is available on the
 | 
						|
 * assumption that it's about to be used.
 | 
						|
 */
 | 
						|
bool ns_capable(struct user_namespace *ns, int cap)
 | 
						|
{
 | 
						|
	return ns_capable_common(ns, cap, CAP_OPT_NONE);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(ns_capable);
 | 
						|
 | 
						|
/**
 | 
						|
 * ns_capable_noaudit - Determine if the current task has a superior capability
 | 
						|
 * (unaudited) in effect
 | 
						|
 * @ns:  The usernamespace we want the capability in
 | 
						|
 * @cap: The capability to be tested for
 | 
						|
 *
 | 
						|
 * Return true if the current task has the given superior capability currently
 | 
						|
 * available for use, false if not.
 | 
						|
 *
 | 
						|
 * This sets PF_SUPERPRIV on the task if the capability is available on the
 | 
						|
 * assumption that it's about to be used.
 | 
						|
 */
 | 
						|
bool ns_capable_noaudit(struct user_namespace *ns, int cap)
 | 
						|
{
 | 
						|
	return ns_capable_common(ns, cap, CAP_OPT_NOAUDIT);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(ns_capable_noaudit);
 | 
						|
 | 
						|
/**
 | 
						|
 * ns_capable_setid - Determine if the current task has a superior capability
 | 
						|
 * in effect, while signalling that this check is being done from within a
 | 
						|
 * setid or setgroups syscall.
 | 
						|
 * @ns:  The usernamespace we want the capability in
 | 
						|
 * @cap: The capability to be tested for
 | 
						|
 *
 | 
						|
 * Return true if the current task has the given superior capability currently
 | 
						|
 * available for use, false if not.
 | 
						|
 *
 | 
						|
 * This sets PF_SUPERPRIV on the task if the capability is available on the
 | 
						|
 * assumption that it's about to be used.
 | 
						|
 */
 | 
						|
bool ns_capable_setid(struct user_namespace *ns, int cap)
 | 
						|
{
 | 
						|
	return ns_capable_common(ns, cap, CAP_OPT_INSETID);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(ns_capable_setid);
 | 
						|
 | 
						|
/**
 | 
						|
 * capable - Determine if the current task has a superior capability in effect
 | 
						|
 * @cap: The capability to be tested for
 | 
						|
 *
 | 
						|
 * Return true if the current task has the given superior capability currently
 | 
						|
 * available for use, false if not.
 | 
						|
 *
 | 
						|
 * This sets PF_SUPERPRIV on the task if the capability is available on the
 | 
						|
 * assumption that it's about to be used.
 | 
						|
 */
 | 
						|
bool capable(int cap)
 | 
						|
{
 | 
						|
	return ns_capable(&init_user_ns, cap);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(capable);
 | 
						|
#endif /* CONFIG_MULTIUSER */
 | 
						|
 | 
						|
/**
 | 
						|
 * file_ns_capable - Determine if the file's opener had a capability in effect
 | 
						|
 * @file:  The file we want to check
 | 
						|
 * @ns:  The usernamespace we want the capability in
 | 
						|
 * @cap: The capability to be tested for
 | 
						|
 *
 | 
						|
 * Return true if task that opened the file had a capability in effect
 | 
						|
 * when the file was opened.
 | 
						|
 *
 | 
						|
 * This does not set PF_SUPERPRIV because the caller may not
 | 
						|
 * actually be privileged.
 | 
						|
 */
 | 
						|
bool file_ns_capable(const struct file *file, struct user_namespace *ns,
 | 
						|
		     int cap)
 | 
						|
{
 | 
						|
 | 
						|
	if (WARN_ON_ONCE(!cap_valid(cap)))
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (security_capable(file->f_cred, ns, cap, CAP_OPT_NONE) == 0)
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(file_ns_capable);
 | 
						|
 | 
						|
/**
 | 
						|
 * privileged_wrt_inode_uidgid - Do capabilities in the namespace work over the inode?
 | 
						|
 * @ns: The user namespace in question
 | 
						|
 * @idmap: idmap of the mount @inode was found from
 | 
						|
 * @inode: The inode in question
 | 
						|
 *
 | 
						|
 * Return true if the inode uid and gid are within the namespace.
 | 
						|
 */
 | 
						|
bool privileged_wrt_inode_uidgid(struct user_namespace *ns,
 | 
						|
				 struct mnt_idmap *idmap,
 | 
						|
				 const struct inode *inode)
 | 
						|
{
 | 
						|
	return vfsuid_has_mapping(ns, i_uid_into_vfsuid(idmap, inode)) &&
 | 
						|
	       vfsgid_has_mapping(ns, i_gid_into_vfsgid(idmap, inode));
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * capable_wrt_inode_uidgid - Check nsown_capable and uid and gid mapped
 | 
						|
 * @idmap: idmap of the mount @inode was found from
 | 
						|
 * @inode: The inode in question
 | 
						|
 * @cap: The capability in question
 | 
						|
 *
 | 
						|
 * Return true if the current task has the given capability targeted at
 | 
						|
 * its own user namespace and that the given inode's uid and gid are
 | 
						|
 * mapped into the current user namespace.
 | 
						|
 */
 | 
						|
bool capable_wrt_inode_uidgid(struct mnt_idmap *idmap,
 | 
						|
			      const struct inode *inode, int cap)
 | 
						|
{
 | 
						|
	struct user_namespace *ns = current_user_ns();
 | 
						|
 | 
						|
	return ns_capable(ns, cap) &&
 | 
						|
	       privileged_wrt_inode_uidgid(ns, idmap, inode);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(capable_wrt_inode_uidgid);
 | 
						|
 | 
						|
/**
 | 
						|
 * ptracer_capable - Determine if the ptracer holds CAP_SYS_PTRACE in the namespace
 | 
						|
 * @tsk: The task that may be ptraced
 | 
						|
 * @ns: The user namespace to search for CAP_SYS_PTRACE in
 | 
						|
 *
 | 
						|
 * Return true if the task that is ptracing the current task had CAP_SYS_PTRACE
 | 
						|
 * in the specified user namespace.
 | 
						|
 */
 | 
						|
bool ptracer_capable(struct task_struct *tsk, struct user_namespace *ns)
 | 
						|
{
 | 
						|
	int ret = 0;  /* An absent tracer adds no restrictions */
 | 
						|
	const struct cred *cred;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	cred = rcu_dereference(tsk->ptracer_cred);
 | 
						|
	if (cred)
 | 
						|
		ret = security_capable(cred, ns, CAP_SYS_PTRACE,
 | 
						|
				       CAP_OPT_NOAUDIT);
 | 
						|
	rcu_read_unlock();
 | 
						|
	return (ret == 0);
 | 
						|
}
 |