mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	While looking into optimizations for the RT scheduler IPI logic, I realized that the comments are lacking to describe it efficiently. It deserves a lengthy description describing its design. Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Clark Williams <williams@redhat.com> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170228155030.30c69068@gandalf.local.home [ Small typographical edits. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
		
			
				
	
	
		
			2454 lines
		
	
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2454 lines
		
	
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 | 
						|
 * policies)
 | 
						|
 */
 | 
						|
 | 
						|
#include "sched.h"
 | 
						|
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/irq_work.h>
 | 
						|
 | 
						|
int sched_rr_timeslice = RR_TIMESLICE;
 | 
						|
int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
 | 
						|
 | 
						|
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
 | 
						|
 | 
						|
struct rt_bandwidth def_rt_bandwidth;
 | 
						|
 | 
						|
static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
 | 
						|
{
 | 
						|
	struct rt_bandwidth *rt_b =
 | 
						|
		container_of(timer, struct rt_bandwidth, rt_period_timer);
 | 
						|
	int idle = 0;
 | 
						|
	int overrun;
 | 
						|
 | 
						|
	raw_spin_lock(&rt_b->rt_runtime_lock);
 | 
						|
	for (;;) {
 | 
						|
		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
 | 
						|
		if (!overrun)
 | 
						|
			break;
 | 
						|
 | 
						|
		raw_spin_unlock(&rt_b->rt_runtime_lock);
 | 
						|
		idle = do_sched_rt_period_timer(rt_b, overrun);
 | 
						|
		raw_spin_lock(&rt_b->rt_runtime_lock);
 | 
						|
	}
 | 
						|
	if (idle)
 | 
						|
		rt_b->rt_period_active = 0;
 | 
						|
	raw_spin_unlock(&rt_b->rt_runtime_lock);
 | 
						|
 | 
						|
	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
 | 
						|
}
 | 
						|
 | 
						|
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
 | 
						|
{
 | 
						|
	rt_b->rt_period = ns_to_ktime(period);
 | 
						|
	rt_b->rt_runtime = runtime;
 | 
						|
 | 
						|
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
 | 
						|
 | 
						|
	hrtimer_init(&rt_b->rt_period_timer,
 | 
						|
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 | 
						|
	rt_b->rt_period_timer.function = sched_rt_period_timer;
 | 
						|
}
 | 
						|
 | 
						|
static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
 | 
						|
{
 | 
						|
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
 | 
						|
		return;
 | 
						|
 | 
						|
	raw_spin_lock(&rt_b->rt_runtime_lock);
 | 
						|
	if (!rt_b->rt_period_active) {
 | 
						|
		rt_b->rt_period_active = 1;
 | 
						|
		/*
 | 
						|
		 * SCHED_DEADLINE updates the bandwidth, as a run away
 | 
						|
		 * RT task with a DL task could hog a CPU. But DL does
 | 
						|
		 * not reset the period. If a deadline task was running
 | 
						|
		 * without an RT task running, it can cause RT tasks to
 | 
						|
		 * throttle when they start up. Kick the timer right away
 | 
						|
		 * to update the period.
 | 
						|
		 */
 | 
						|
		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
 | 
						|
		hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
 | 
						|
	}
 | 
						|
	raw_spin_unlock(&rt_b->rt_runtime_lock);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
 | 
						|
static void push_irq_work_func(struct irq_work *work);
 | 
						|
#endif
 | 
						|
 | 
						|
void init_rt_rq(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	struct rt_prio_array *array;
 | 
						|
	int i;
 | 
						|
 | 
						|
	array = &rt_rq->active;
 | 
						|
	for (i = 0; i < MAX_RT_PRIO; i++) {
 | 
						|
		INIT_LIST_HEAD(array->queue + i);
 | 
						|
		__clear_bit(i, array->bitmap);
 | 
						|
	}
 | 
						|
	/* delimiter for bitsearch: */
 | 
						|
	__set_bit(MAX_RT_PRIO, array->bitmap);
 | 
						|
 | 
						|
#if defined CONFIG_SMP
 | 
						|
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
 | 
						|
	rt_rq->highest_prio.next = MAX_RT_PRIO;
 | 
						|
	rt_rq->rt_nr_migratory = 0;
 | 
						|
	rt_rq->overloaded = 0;
 | 
						|
	plist_head_init(&rt_rq->pushable_tasks);
 | 
						|
 | 
						|
#ifdef HAVE_RT_PUSH_IPI
 | 
						|
	rt_rq->push_flags = 0;
 | 
						|
	rt_rq->push_cpu = nr_cpu_ids;
 | 
						|
	raw_spin_lock_init(&rt_rq->push_lock);
 | 
						|
	init_irq_work(&rt_rq->push_work, push_irq_work_func);
 | 
						|
#endif
 | 
						|
#endif /* CONFIG_SMP */
 | 
						|
	/* We start is dequeued state, because no RT tasks are queued */
 | 
						|
	rt_rq->rt_queued = 0;
 | 
						|
 | 
						|
	rt_rq->rt_time = 0;
 | 
						|
	rt_rq->rt_throttled = 0;
 | 
						|
	rt_rq->rt_runtime = 0;
 | 
						|
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_RT_GROUP_SCHED
 | 
						|
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 | 
						|
{
 | 
						|
	hrtimer_cancel(&rt_b->rt_period_timer);
 | 
						|
}
 | 
						|
 | 
						|
#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 | 
						|
 | 
						|
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
#ifdef CONFIG_SCHED_DEBUG
 | 
						|
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 | 
						|
#endif
 | 
						|
	return container_of(rt_se, struct task_struct, rt);
 | 
						|
}
 | 
						|
 | 
						|
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	return rt_rq->rq;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
	return rt_se->rt_rq;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
	struct rt_rq *rt_rq = rt_se->rt_rq;
 | 
						|
 | 
						|
	return rt_rq->rq;
 | 
						|
}
 | 
						|
 | 
						|
void free_rt_sched_group(struct task_group *tg)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (tg->rt_se)
 | 
						|
		destroy_rt_bandwidth(&tg->rt_bandwidth);
 | 
						|
 | 
						|
	for_each_possible_cpu(i) {
 | 
						|
		if (tg->rt_rq)
 | 
						|
			kfree(tg->rt_rq[i]);
 | 
						|
		if (tg->rt_se)
 | 
						|
			kfree(tg->rt_se[i]);
 | 
						|
	}
 | 
						|
 | 
						|
	kfree(tg->rt_rq);
 | 
						|
	kfree(tg->rt_se);
 | 
						|
}
 | 
						|
 | 
						|
void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 | 
						|
		struct sched_rt_entity *rt_se, int cpu,
 | 
						|
		struct sched_rt_entity *parent)
 | 
						|
{
 | 
						|
	struct rq *rq = cpu_rq(cpu);
 | 
						|
 | 
						|
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
 | 
						|
	rt_rq->rt_nr_boosted = 0;
 | 
						|
	rt_rq->rq = rq;
 | 
						|
	rt_rq->tg = tg;
 | 
						|
 | 
						|
	tg->rt_rq[cpu] = rt_rq;
 | 
						|
	tg->rt_se[cpu] = rt_se;
 | 
						|
 | 
						|
	if (!rt_se)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!parent)
 | 
						|
		rt_se->rt_rq = &rq->rt;
 | 
						|
	else
 | 
						|
		rt_se->rt_rq = parent->my_q;
 | 
						|
 | 
						|
	rt_se->my_q = rt_rq;
 | 
						|
	rt_se->parent = parent;
 | 
						|
	INIT_LIST_HEAD(&rt_se->run_list);
 | 
						|
}
 | 
						|
 | 
						|
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 | 
						|
{
 | 
						|
	struct rt_rq *rt_rq;
 | 
						|
	struct sched_rt_entity *rt_se;
 | 
						|
	int i;
 | 
						|
 | 
						|
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
 | 
						|
	if (!tg->rt_rq)
 | 
						|
		goto err;
 | 
						|
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
 | 
						|
	if (!tg->rt_se)
 | 
						|
		goto err;
 | 
						|
 | 
						|
	init_rt_bandwidth(&tg->rt_bandwidth,
 | 
						|
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 | 
						|
 | 
						|
	for_each_possible_cpu(i) {
 | 
						|
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
 | 
						|
				     GFP_KERNEL, cpu_to_node(i));
 | 
						|
		if (!rt_rq)
 | 
						|
			goto err;
 | 
						|
 | 
						|
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 | 
						|
				     GFP_KERNEL, cpu_to_node(i));
 | 
						|
		if (!rt_se)
 | 
						|
			goto err_free_rq;
 | 
						|
 | 
						|
		init_rt_rq(rt_rq);
 | 
						|
		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 | 
						|
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 | 
						|
	}
 | 
						|
 | 
						|
	return 1;
 | 
						|
 | 
						|
err_free_rq:
 | 
						|
	kfree(rt_rq);
 | 
						|
err:
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#else /* CONFIG_RT_GROUP_SCHED */
 | 
						|
 | 
						|
#define rt_entity_is_task(rt_se) (1)
 | 
						|
 | 
						|
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
	return container_of(rt_se, struct task_struct, rt);
 | 
						|
}
 | 
						|
 | 
						|
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	return container_of(rt_rq, struct rq, rt);
 | 
						|
}
 | 
						|
 | 
						|
static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
	struct task_struct *p = rt_task_of(rt_se);
 | 
						|
 | 
						|
	return task_rq(p);
 | 
						|
}
 | 
						|
 | 
						|
static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
	struct rq *rq = rq_of_rt_se(rt_se);
 | 
						|
 | 
						|
	return &rq->rt;
 | 
						|
}
 | 
						|
 | 
						|
void free_rt_sched_group(struct task_group *tg) { }
 | 
						|
 | 
						|
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 | 
						|
{
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
#endif /* CONFIG_RT_GROUP_SCHED */
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
 | 
						|
static void pull_rt_task(struct rq *this_rq);
 | 
						|
 | 
						|
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 | 
						|
{
 | 
						|
	/* Try to pull RT tasks here if we lower this rq's prio */
 | 
						|
	return rq->rt.highest_prio.curr > prev->prio;
 | 
						|
}
 | 
						|
 | 
						|
static inline int rt_overloaded(struct rq *rq)
 | 
						|
{
 | 
						|
	return atomic_read(&rq->rd->rto_count);
 | 
						|
}
 | 
						|
 | 
						|
static inline void rt_set_overload(struct rq *rq)
 | 
						|
{
 | 
						|
	if (!rq->online)
 | 
						|
		return;
 | 
						|
 | 
						|
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 | 
						|
	/*
 | 
						|
	 * Make sure the mask is visible before we set
 | 
						|
	 * the overload count. That is checked to determine
 | 
						|
	 * if we should look at the mask. It would be a shame
 | 
						|
	 * if we looked at the mask, but the mask was not
 | 
						|
	 * updated yet.
 | 
						|
	 *
 | 
						|
	 * Matched by the barrier in pull_rt_task().
 | 
						|
	 */
 | 
						|
	smp_wmb();
 | 
						|
	atomic_inc(&rq->rd->rto_count);
 | 
						|
}
 | 
						|
 | 
						|
static inline void rt_clear_overload(struct rq *rq)
 | 
						|
{
 | 
						|
	if (!rq->online)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* the order here really doesn't matter */
 | 
						|
	atomic_dec(&rq->rd->rto_count);
 | 
						|
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 | 
						|
}
 | 
						|
 | 
						|
static void update_rt_migration(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
 | 
						|
		if (!rt_rq->overloaded) {
 | 
						|
			rt_set_overload(rq_of_rt_rq(rt_rq));
 | 
						|
			rt_rq->overloaded = 1;
 | 
						|
		}
 | 
						|
	} else if (rt_rq->overloaded) {
 | 
						|
		rt_clear_overload(rq_of_rt_rq(rt_rq));
 | 
						|
		rt_rq->overloaded = 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	struct task_struct *p;
 | 
						|
 | 
						|
	if (!rt_entity_is_task(rt_se))
 | 
						|
		return;
 | 
						|
 | 
						|
	p = rt_task_of(rt_se);
 | 
						|
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 | 
						|
 | 
						|
	rt_rq->rt_nr_total++;
 | 
						|
	if (p->nr_cpus_allowed > 1)
 | 
						|
		rt_rq->rt_nr_migratory++;
 | 
						|
 | 
						|
	update_rt_migration(rt_rq);
 | 
						|
}
 | 
						|
 | 
						|
static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	struct task_struct *p;
 | 
						|
 | 
						|
	if (!rt_entity_is_task(rt_se))
 | 
						|
		return;
 | 
						|
 | 
						|
	p = rt_task_of(rt_se);
 | 
						|
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 | 
						|
 | 
						|
	rt_rq->rt_nr_total--;
 | 
						|
	if (p->nr_cpus_allowed > 1)
 | 
						|
		rt_rq->rt_nr_migratory--;
 | 
						|
 | 
						|
	update_rt_migration(rt_rq);
 | 
						|
}
 | 
						|
 | 
						|
static inline int has_pushable_tasks(struct rq *rq)
 | 
						|
{
 | 
						|
	return !plist_head_empty(&rq->rt.pushable_tasks);
 | 
						|
}
 | 
						|
 | 
						|
static DEFINE_PER_CPU(struct callback_head, rt_push_head);
 | 
						|
static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
 | 
						|
 | 
						|
static void push_rt_tasks(struct rq *);
 | 
						|
static void pull_rt_task(struct rq *);
 | 
						|
 | 
						|
static inline void queue_push_tasks(struct rq *rq)
 | 
						|
{
 | 
						|
	if (!has_pushable_tasks(rq))
 | 
						|
		return;
 | 
						|
 | 
						|
	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
 | 
						|
}
 | 
						|
 | 
						|
static inline void queue_pull_task(struct rq *rq)
 | 
						|
{
 | 
						|
	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
 | 
						|
}
 | 
						|
 | 
						|
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 | 
						|
	plist_node_init(&p->pushable_tasks, p->prio);
 | 
						|
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 | 
						|
 | 
						|
	/* Update the highest prio pushable task */
 | 
						|
	if (p->prio < rq->rt.highest_prio.next)
 | 
						|
		rq->rt.highest_prio.next = p->prio;
 | 
						|
}
 | 
						|
 | 
						|
static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 | 
						|
 | 
						|
	/* Update the new highest prio pushable task */
 | 
						|
	if (has_pushable_tasks(rq)) {
 | 
						|
		p = plist_first_entry(&rq->rt.pushable_tasks,
 | 
						|
				      struct task_struct, pushable_tasks);
 | 
						|
		rq->rt.highest_prio.next = p->prio;
 | 
						|
	} else
 | 
						|
		rq->rt.highest_prio.next = MAX_RT_PRIO;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline
 | 
						|
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline
 | 
						|
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 | 
						|
{
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static inline void pull_rt_task(struct rq *this_rq)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline void queue_push_tasks(struct rq *rq)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif /* CONFIG_SMP */
 | 
						|
 | 
						|
static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
 | 
						|
static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
 | 
						|
 | 
						|
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
	return rt_se->on_rq;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_RT_GROUP_SCHED
 | 
						|
 | 
						|
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	if (!rt_rq->tg)
 | 
						|
		return RUNTIME_INF;
 | 
						|
 | 
						|
	return rt_rq->rt_runtime;
 | 
						|
}
 | 
						|
 | 
						|
static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 | 
						|
}
 | 
						|
 | 
						|
typedef struct task_group *rt_rq_iter_t;
 | 
						|
 | 
						|
static inline struct task_group *next_task_group(struct task_group *tg)
 | 
						|
{
 | 
						|
	do {
 | 
						|
		tg = list_entry_rcu(tg->list.next,
 | 
						|
			typeof(struct task_group), list);
 | 
						|
	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 | 
						|
 | 
						|
	if (&tg->list == &task_groups)
 | 
						|
		tg = NULL;
 | 
						|
 | 
						|
	return tg;
 | 
						|
}
 | 
						|
 | 
						|
#define for_each_rt_rq(rt_rq, iter, rq)					\
 | 
						|
	for (iter = container_of(&task_groups, typeof(*iter), list);	\
 | 
						|
		(iter = next_task_group(iter)) &&			\
 | 
						|
		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
 | 
						|
 | 
						|
#define for_each_sched_rt_entity(rt_se) \
 | 
						|
	for (; rt_se; rt_se = rt_se->parent)
 | 
						|
 | 
						|
static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
	return rt_se->my_q;
 | 
						|
}
 | 
						|
 | 
						|
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 | 
						|
static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 | 
						|
 | 
						|
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 | 
						|
	struct rq *rq = rq_of_rt_rq(rt_rq);
 | 
						|
	struct sched_rt_entity *rt_se;
 | 
						|
 | 
						|
	int cpu = cpu_of(rq);
 | 
						|
 | 
						|
	rt_se = rt_rq->tg->rt_se[cpu];
 | 
						|
 | 
						|
	if (rt_rq->rt_nr_running) {
 | 
						|
		if (!rt_se)
 | 
						|
			enqueue_top_rt_rq(rt_rq);
 | 
						|
		else if (!on_rt_rq(rt_se))
 | 
						|
			enqueue_rt_entity(rt_se, 0);
 | 
						|
 | 
						|
		if (rt_rq->highest_prio.curr < curr->prio)
 | 
						|
			resched_curr(rq);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	struct sched_rt_entity *rt_se;
 | 
						|
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 | 
						|
 | 
						|
	rt_se = rt_rq->tg->rt_se[cpu];
 | 
						|
 | 
						|
	if (!rt_se)
 | 
						|
		dequeue_top_rt_rq(rt_rq);
 | 
						|
	else if (on_rt_rq(rt_se))
 | 
						|
		dequeue_rt_entity(rt_se, 0);
 | 
						|
}
 | 
						|
 | 
						|
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 | 
						|
}
 | 
						|
 | 
						|
static int rt_se_boosted(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 | 
						|
	struct task_struct *p;
 | 
						|
 | 
						|
	if (rt_rq)
 | 
						|
		return !!rt_rq->rt_nr_boosted;
 | 
						|
 | 
						|
	p = rt_task_of(rt_se);
 | 
						|
	return p->prio != p->normal_prio;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
static inline const struct cpumask *sched_rt_period_mask(void)
 | 
						|
{
 | 
						|
	return this_rq()->rd->span;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline const struct cpumask *sched_rt_period_mask(void)
 | 
						|
{
 | 
						|
	return cpu_online_mask;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static inline
 | 
						|
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 | 
						|
{
 | 
						|
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 | 
						|
}
 | 
						|
 | 
						|
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	return &rt_rq->tg->rt_bandwidth;
 | 
						|
}
 | 
						|
 | 
						|
#else /* !CONFIG_RT_GROUP_SCHED */
 | 
						|
 | 
						|
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	return rt_rq->rt_runtime;
 | 
						|
}
 | 
						|
 | 
						|
static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	return ktime_to_ns(def_rt_bandwidth.rt_period);
 | 
						|
}
 | 
						|
 | 
						|
typedef struct rt_rq *rt_rq_iter_t;
 | 
						|
 | 
						|
#define for_each_rt_rq(rt_rq, iter, rq) \
 | 
						|
	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 | 
						|
 | 
						|
#define for_each_sched_rt_entity(rt_se) \
 | 
						|
	for (; rt_se; rt_se = NULL)
 | 
						|
 | 
						|
static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	struct rq *rq = rq_of_rt_rq(rt_rq);
 | 
						|
 | 
						|
	if (!rt_rq->rt_nr_running)
 | 
						|
		return;
 | 
						|
 | 
						|
	enqueue_top_rt_rq(rt_rq);
 | 
						|
	resched_curr(rq);
 | 
						|
}
 | 
						|
 | 
						|
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	dequeue_top_rt_rq(rt_rq);
 | 
						|
}
 | 
						|
 | 
						|
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	return rt_rq->rt_throttled;
 | 
						|
}
 | 
						|
 | 
						|
static inline const struct cpumask *sched_rt_period_mask(void)
 | 
						|
{
 | 
						|
	return cpu_online_mask;
 | 
						|
}
 | 
						|
 | 
						|
static inline
 | 
						|
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 | 
						|
{
 | 
						|
	return &cpu_rq(cpu)->rt;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	return &def_rt_bandwidth;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_RT_GROUP_SCHED */
 | 
						|
 | 
						|
bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 | 
						|
 | 
						|
	return (hrtimer_active(&rt_b->rt_period_timer) ||
 | 
						|
		rt_rq->rt_time < rt_b->rt_runtime);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
/*
 | 
						|
 * We ran out of runtime, see if we can borrow some from our neighbours.
 | 
						|
 */
 | 
						|
static void do_balance_runtime(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 | 
						|
	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 | 
						|
	int i, weight;
 | 
						|
	u64 rt_period;
 | 
						|
 | 
						|
	weight = cpumask_weight(rd->span);
 | 
						|
 | 
						|
	raw_spin_lock(&rt_b->rt_runtime_lock);
 | 
						|
	rt_period = ktime_to_ns(rt_b->rt_period);
 | 
						|
	for_each_cpu(i, rd->span) {
 | 
						|
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 | 
						|
		s64 diff;
 | 
						|
 | 
						|
		if (iter == rt_rq)
 | 
						|
			continue;
 | 
						|
 | 
						|
		raw_spin_lock(&iter->rt_runtime_lock);
 | 
						|
		/*
 | 
						|
		 * Either all rqs have inf runtime and there's nothing to steal
 | 
						|
		 * or __disable_runtime() below sets a specific rq to inf to
 | 
						|
		 * indicate its been disabled and disalow stealing.
 | 
						|
		 */
 | 
						|
		if (iter->rt_runtime == RUNTIME_INF)
 | 
						|
			goto next;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * From runqueues with spare time, take 1/n part of their
 | 
						|
		 * spare time, but no more than our period.
 | 
						|
		 */
 | 
						|
		diff = iter->rt_runtime - iter->rt_time;
 | 
						|
		if (diff > 0) {
 | 
						|
			diff = div_u64((u64)diff, weight);
 | 
						|
			if (rt_rq->rt_runtime + diff > rt_period)
 | 
						|
				diff = rt_period - rt_rq->rt_runtime;
 | 
						|
			iter->rt_runtime -= diff;
 | 
						|
			rt_rq->rt_runtime += diff;
 | 
						|
			if (rt_rq->rt_runtime == rt_period) {
 | 
						|
				raw_spin_unlock(&iter->rt_runtime_lock);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
next:
 | 
						|
		raw_spin_unlock(&iter->rt_runtime_lock);
 | 
						|
	}
 | 
						|
	raw_spin_unlock(&rt_b->rt_runtime_lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 | 
						|
 */
 | 
						|
static void __disable_runtime(struct rq *rq)
 | 
						|
{
 | 
						|
	struct root_domain *rd = rq->rd;
 | 
						|
	rt_rq_iter_t iter;
 | 
						|
	struct rt_rq *rt_rq;
 | 
						|
 | 
						|
	if (unlikely(!scheduler_running))
 | 
						|
		return;
 | 
						|
 | 
						|
	for_each_rt_rq(rt_rq, iter, rq) {
 | 
						|
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 | 
						|
		s64 want;
 | 
						|
		int i;
 | 
						|
 | 
						|
		raw_spin_lock(&rt_b->rt_runtime_lock);
 | 
						|
		raw_spin_lock(&rt_rq->rt_runtime_lock);
 | 
						|
		/*
 | 
						|
		 * Either we're all inf and nobody needs to borrow, or we're
 | 
						|
		 * already disabled and thus have nothing to do, or we have
 | 
						|
		 * exactly the right amount of runtime to take out.
 | 
						|
		 */
 | 
						|
		if (rt_rq->rt_runtime == RUNTIME_INF ||
 | 
						|
				rt_rq->rt_runtime == rt_b->rt_runtime)
 | 
						|
			goto balanced;
 | 
						|
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Calculate the difference between what we started out with
 | 
						|
		 * and what we current have, that's the amount of runtime
 | 
						|
		 * we lend and now have to reclaim.
 | 
						|
		 */
 | 
						|
		want = rt_b->rt_runtime - rt_rq->rt_runtime;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Greedy reclaim, take back as much as we can.
 | 
						|
		 */
 | 
						|
		for_each_cpu(i, rd->span) {
 | 
						|
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 | 
						|
			s64 diff;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Can't reclaim from ourselves or disabled runqueues.
 | 
						|
			 */
 | 
						|
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 | 
						|
				continue;
 | 
						|
 | 
						|
			raw_spin_lock(&iter->rt_runtime_lock);
 | 
						|
			if (want > 0) {
 | 
						|
				diff = min_t(s64, iter->rt_runtime, want);
 | 
						|
				iter->rt_runtime -= diff;
 | 
						|
				want -= diff;
 | 
						|
			} else {
 | 
						|
				iter->rt_runtime -= want;
 | 
						|
				want -= want;
 | 
						|
			}
 | 
						|
			raw_spin_unlock(&iter->rt_runtime_lock);
 | 
						|
 | 
						|
			if (!want)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
 | 
						|
		raw_spin_lock(&rt_rq->rt_runtime_lock);
 | 
						|
		/*
 | 
						|
		 * We cannot be left wanting - that would mean some runtime
 | 
						|
		 * leaked out of the system.
 | 
						|
		 */
 | 
						|
		BUG_ON(want);
 | 
						|
balanced:
 | 
						|
		/*
 | 
						|
		 * Disable all the borrow logic by pretending we have inf
 | 
						|
		 * runtime - in which case borrowing doesn't make sense.
 | 
						|
		 */
 | 
						|
		rt_rq->rt_runtime = RUNTIME_INF;
 | 
						|
		rt_rq->rt_throttled = 0;
 | 
						|
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | 
						|
		raw_spin_unlock(&rt_b->rt_runtime_lock);
 | 
						|
 | 
						|
		/* Make rt_rq available for pick_next_task() */
 | 
						|
		sched_rt_rq_enqueue(rt_rq);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void __enable_runtime(struct rq *rq)
 | 
						|
{
 | 
						|
	rt_rq_iter_t iter;
 | 
						|
	struct rt_rq *rt_rq;
 | 
						|
 | 
						|
	if (unlikely(!scheduler_running))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Reset each runqueue's bandwidth settings
 | 
						|
	 */
 | 
						|
	for_each_rt_rq(rt_rq, iter, rq) {
 | 
						|
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 | 
						|
 | 
						|
		raw_spin_lock(&rt_b->rt_runtime_lock);
 | 
						|
		raw_spin_lock(&rt_rq->rt_runtime_lock);
 | 
						|
		rt_rq->rt_runtime = rt_b->rt_runtime;
 | 
						|
		rt_rq->rt_time = 0;
 | 
						|
		rt_rq->rt_throttled = 0;
 | 
						|
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | 
						|
		raw_spin_unlock(&rt_b->rt_runtime_lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void balance_runtime(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	if (!sched_feat(RT_RUNTIME_SHARE))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (rt_rq->rt_time > rt_rq->rt_runtime) {
 | 
						|
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | 
						|
		do_balance_runtime(rt_rq);
 | 
						|
		raw_spin_lock(&rt_rq->rt_runtime_lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
#else /* !CONFIG_SMP */
 | 
						|
static inline void balance_runtime(struct rt_rq *rt_rq) {}
 | 
						|
#endif /* CONFIG_SMP */
 | 
						|
 | 
						|
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 | 
						|
{
 | 
						|
	int i, idle = 1, throttled = 0;
 | 
						|
	const struct cpumask *span;
 | 
						|
 | 
						|
	span = sched_rt_period_mask();
 | 
						|
#ifdef CONFIG_RT_GROUP_SCHED
 | 
						|
	/*
 | 
						|
	 * FIXME: isolated CPUs should really leave the root task group,
 | 
						|
	 * whether they are isolcpus or were isolated via cpusets, lest
 | 
						|
	 * the timer run on a CPU which does not service all runqueues,
 | 
						|
	 * potentially leaving other CPUs indefinitely throttled.  If
 | 
						|
	 * isolation is really required, the user will turn the throttle
 | 
						|
	 * off to kill the perturbations it causes anyway.  Meanwhile,
 | 
						|
	 * this maintains functionality for boot and/or troubleshooting.
 | 
						|
	 */
 | 
						|
	if (rt_b == &root_task_group.rt_bandwidth)
 | 
						|
		span = cpu_online_mask;
 | 
						|
#endif
 | 
						|
	for_each_cpu(i, span) {
 | 
						|
		int enqueue = 0;
 | 
						|
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 | 
						|
		struct rq *rq = rq_of_rt_rq(rt_rq);
 | 
						|
 | 
						|
		raw_spin_lock(&rq->lock);
 | 
						|
		if (rt_rq->rt_time) {
 | 
						|
			u64 runtime;
 | 
						|
 | 
						|
			raw_spin_lock(&rt_rq->rt_runtime_lock);
 | 
						|
			if (rt_rq->rt_throttled)
 | 
						|
				balance_runtime(rt_rq);
 | 
						|
			runtime = rt_rq->rt_runtime;
 | 
						|
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 | 
						|
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 | 
						|
				rt_rq->rt_throttled = 0;
 | 
						|
				enqueue = 1;
 | 
						|
 | 
						|
				/*
 | 
						|
				 * When we're idle and a woken (rt) task is
 | 
						|
				 * throttled check_preempt_curr() will set
 | 
						|
				 * skip_update and the time between the wakeup
 | 
						|
				 * and this unthrottle will get accounted as
 | 
						|
				 * 'runtime'.
 | 
						|
				 */
 | 
						|
				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 | 
						|
					rq_clock_skip_update(rq, false);
 | 
						|
			}
 | 
						|
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
 | 
						|
				idle = 0;
 | 
						|
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | 
						|
		} else if (rt_rq->rt_nr_running) {
 | 
						|
			idle = 0;
 | 
						|
			if (!rt_rq_throttled(rt_rq))
 | 
						|
				enqueue = 1;
 | 
						|
		}
 | 
						|
		if (rt_rq->rt_throttled)
 | 
						|
			throttled = 1;
 | 
						|
 | 
						|
		if (enqueue)
 | 
						|
			sched_rt_rq_enqueue(rt_rq);
 | 
						|
		raw_spin_unlock(&rq->lock);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	return idle;
 | 
						|
}
 | 
						|
 | 
						|
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
#ifdef CONFIG_RT_GROUP_SCHED
 | 
						|
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 | 
						|
 | 
						|
	if (rt_rq)
 | 
						|
		return rt_rq->highest_prio.curr;
 | 
						|
#endif
 | 
						|
 | 
						|
	return rt_task_of(rt_se)->prio;
 | 
						|
}
 | 
						|
 | 
						|
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	u64 runtime = sched_rt_runtime(rt_rq);
 | 
						|
 | 
						|
	if (rt_rq->rt_throttled)
 | 
						|
		return rt_rq_throttled(rt_rq);
 | 
						|
 | 
						|
	if (runtime >= sched_rt_period(rt_rq))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	balance_runtime(rt_rq);
 | 
						|
	runtime = sched_rt_runtime(rt_rq);
 | 
						|
	if (runtime == RUNTIME_INF)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (rt_rq->rt_time > runtime) {
 | 
						|
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Don't actually throttle groups that have no runtime assigned
 | 
						|
		 * but accrue some time due to boosting.
 | 
						|
		 */
 | 
						|
		if (likely(rt_b->rt_runtime)) {
 | 
						|
			rt_rq->rt_throttled = 1;
 | 
						|
			printk_deferred_once("sched: RT throttling activated\n");
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * In case we did anyway, make it go away,
 | 
						|
			 * replenishment is a joke, since it will replenish us
 | 
						|
			 * with exactly 0 ns.
 | 
						|
			 */
 | 
						|
			rt_rq->rt_time = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		if (rt_rq_throttled(rt_rq)) {
 | 
						|
			sched_rt_rq_dequeue(rt_rq);
 | 
						|
			return 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Update the current task's runtime statistics. Skip current tasks that
 | 
						|
 * are not in our scheduling class.
 | 
						|
 */
 | 
						|
static void update_curr_rt(struct rq *rq)
 | 
						|
{
 | 
						|
	struct task_struct *curr = rq->curr;
 | 
						|
	struct sched_rt_entity *rt_se = &curr->rt;
 | 
						|
	u64 delta_exec;
 | 
						|
 | 
						|
	if (curr->sched_class != &rt_sched_class)
 | 
						|
		return;
 | 
						|
 | 
						|
	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
 | 
						|
	if (unlikely((s64)delta_exec <= 0))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
 | 
						|
	cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_RT);
 | 
						|
 | 
						|
	schedstat_set(curr->se.statistics.exec_max,
 | 
						|
		      max(curr->se.statistics.exec_max, delta_exec));
 | 
						|
 | 
						|
	curr->se.sum_exec_runtime += delta_exec;
 | 
						|
	account_group_exec_runtime(curr, delta_exec);
 | 
						|
 | 
						|
	curr->se.exec_start = rq_clock_task(rq);
 | 
						|
	cpuacct_charge(curr, delta_exec);
 | 
						|
 | 
						|
	sched_rt_avg_update(rq, delta_exec);
 | 
						|
 | 
						|
	if (!rt_bandwidth_enabled())
 | 
						|
		return;
 | 
						|
 | 
						|
	for_each_sched_rt_entity(rt_se) {
 | 
						|
		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 | 
						|
 | 
						|
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
 | 
						|
			raw_spin_lock(&rt_rq->rt_runtime_lock);
 | 
						|
			rt_rq->rt_time += delta_exec;
 | 
						|
			if (sched_rt_runtime_exceeded(rt_rq))
 | 
						|
				resched_curr(rq);
 | 
						|
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
dequeue_top_rt_rq(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	struct rq *rq = rq_of_rt_rq(rt_rq);
 | 
						|
 | 
						|
	BUG_ON(&rq->rt != rt_rq);
 | 
						|
 | 
						|
	if (!rt_rq->rt_queued)
 | 
						|
		return;
 | 
						|
 | 
						|
	BUG_ON(!rq->nr_running);
 | 
						|
 | 
						|
	sub_nr_running(rq, rt_rq->rt_nr_running);
 | 
						|
	rt_rq->rt_queued = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
enqueue_top_rt_rq(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	struct rq *rq = rq_of_rt_rq(rt_rq);
 | 
						|
 | 
						|
	BUG_ON(&rq->rt != rt_rq);
 | 
						|
 | 
						|
	if (rt_rq->rt_queued)
 | 
						|
		return;
 | 
						|
	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
 | 
						|
		return;
 | 
						|
 | 
						|
	add_nr_running(rq, rt_rq->rt_nr_running);
 | 
						|
	rt_rq->rt_queued = 1;
 | 
						|
}
 | 
						|
 | 
						|
#if defined CONFIG_SMP
 | 
						|
 | 
						|
static void
 | 
						|
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
 | 
						|
{
 | 
						|
	struct rq *rq = rq_of_rt_rq(rt_rq);
 | 
						|
 | 
						|
#ifdef CONFIG_RT_GROUP_SCHED
 | 
						|
	/*
 | 
						|
	 * Change rq's cpupri only if rt_rq is the top queue.
 | 
						|
	 */
 | 
						|
	if (&rq->rt != rt_rq)
 | 
						|
		return;
 | 
						|
#endif
 | 
						|
	if (rq->online && prio < prev_prio)
 | 
						|
		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
 | 
						|
{
 | 
						|
	struct rq *rq = rq_of_rt_rq(rt_rq);
 | 
						|
 | 
						|
#ifdef CONFIG_RT_GROUP_SCHED
 | 
						|
	/*
 | 
						|
	 * Change rq's cpupri only if rt_rq is the top queue.
 | 
						|
	 */
 | 
						|
	if (&rq->rt != rt_rq)
 | 
						|
		return;
 | 
						|
#endif
 | 
						|
	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
 | 
						|
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
 | 
						|
}
 | 
						|
 | 
						|
#else /* CONFIG_SMP */
 | 
						|
 | 
						|
static inline
 | 
						|
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
 | 
						|
static inline
 | 
						|
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
 | 
						|
 | 
						|
#endif /* CONFIG_SMP */
 | 
						|
 | 
						|
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 | 
						|
static void
 | 
						|
inc_rt_prio(struct rt_rq *rt_rq, int prio)
 | 
						|
{
 | 
						|
	int prev_prio = rt_rq->highest_prio.curr;
 | 
						|
 | 
						|
	if (prio < prev_prio)
 | 
						|
		rt_rq->highest_prio.curr = prio;
 | 
						|
 | 
						|
	inc_rt_prio_smp(rt_rq, prio, prev_prio);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
dec_rt_prio(struct rt_rq *rt_rq, int prio)
 | 
						|
{
 | 
						|
	int prev_prio = rt_rq->highest_prio.curr;
 | 
						|
 | 
						|
	if (rt_rq->rt_nr_running) {
 | 
						|
 | 
						|
		WARN_ON(prio < prev_prio);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * This may have been our highest task, and therefore
 | 
						|
		 * we may have some recomputation to do
 | 
						|
		 */
 | 
						|
		if (prio == prev_prio) {
 | 
						|
			struct rt_prio_array *array = &rt_rq->active;
 | 
						|
 | 
						|
			rt_rq->highest_prio.curr =
 | 
						|
				sched_find_first_bit(array->bitmap);
 | 
						|
		}
 | 
						|
 | 
						|
	} else
 | 
						|
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
 | 
						|
 | 
						|
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
 | 
						|
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
 | 
						|
 | 
						|
#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
 | 
						|
 | 
						|
#ifdef CONFIG_RT_GROUP_SCHED
 | 
						|
 | 
						|
static void
 | 
						|
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	if (rt_se_boosted(rt_se))
 | 
						|
		rt_rq->rt_nr_boosted++;
 | 
						|
 | 
						|
	if (rt_rq->tg)
 | 
						|
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	if (rt_se_boosted(rt_se))
 | 
						|
		rt_rq->rt_nr_boosted--;
 | 
						|
 | 
						|
	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
 | 
						|
}
 | 
						|
 | 
						|
#else /* CONFIG_RT_GROUP_SCHED */
 | 
						|
 | 
						|
static void
 | 
						|
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	start_rt_bandwidth(&def_rt_bandwidth);
 | 
						|
}
 | 
						|
 | 
						|
static inline
 | 
						|
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
 | 
						|
 | 
						|
#endif /* CONFIG_RT_GROUP_SCHED */
 | 
						|
 | 
						|
static inline
 | 
						|
unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
	struct rt_rq *group_rq = group_rt_rq(rt_se);
 | 
						|
 | 
						|
	if (group_rq)
 | 
						|
		return group_rq->rt_nr_running;
 | 
						|
	else
 | 
						|
		return 1;
 | 
						|
}
 | 
						|
 | 
						|
static inline
 | 
						|
unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
	struct rt_rq *group_rq = group_rt_rq(rt_se);
 | 
						|
	struct task_struct *tsk;
 | 
						|
 | 
						|
	if (group_rq)
 | 
						|
		return group_rq->rr_nr_running;
 | 
						|
 | 
						|
	tsk = rt_task_of(rt_se);
 | 
						|
 | 
						|
	return (tsk->policy == SCHED_RR) ? 1 : 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline
 | 
						|
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	int prio = rt_se_prio(rt_se);
 | 
						|
 | 
						|
	WARN_ON(!rt_prio(prio));
 | 
						|
	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
 | 
						|
	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
 | 
						|
 | 
						|
	inc_rt_prio(rt_rq, prio);
 | 
						|
	inc_rt_migration(rt_se, rt_rq);
 | 
						|
	inc_rt_group(rt_se, rt_rq);
 | 
						|
}
 | 
						|
 | 
						|
static inline
 | 
						|
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
 | 
						|
	WARN_ON(!rt_rq->rt_nr_running);
 | 
						|
	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
 | 
						|
	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
 | 
						|
 | 
						|
	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
 | 
						|
	dec_rt_migration(rt_se, rt_rq);
 | 
						|
	dec_rt_group(rt_se, rt_rq);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Change rt_se->run_list location unless SAVE && !MOVE
 | 
						|
 *
 | 
						|
 * assumes ENQUEUE/DEQUEUE flags match
 | 
						|
 */
 | 
						|
static inline bool move_entity(unsigned int flags)
 | 
						|
{
 | 
						|
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
 | 
						|
		return false;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
 | 
						|
{
 | 
						|
	list_del_init(&rt_se->run_list);
 | 
						|
 | 
						|
	if (list_empty(array->queue + rt_se_prio(rt_se)))
 | 
						|
		__clear_bit(rt_se_prio(rt_se), array->bitmap);
 | 
						|
 | 
						|
	rt_se->on_list = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
 | 
						|
{
 | 
						|
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 | 
						|
	struct rt_prio_array *array = &rt_rq->active;
 | 
						|
	struct rt_rq *group_rq = group_rt_rq(rt_se);
 | 
						|
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Don't enqueue the group if its throttled, or when empty.
 | 
						|
	 * The latter is a consequence of the former when a child group
 | 
						|
	 * get throttled and the current group doesn't have any other
 | 
						|
	 * active members.
 | 
						|
	 */
 | 
						|
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
 | 
						|
		if (rt_se->on_list)
 | 
						|
			__delist_rt_entity(rt_se, array);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (move_entity(flags)) {
 | 
						|
		WARN_ON_ONCE(rt_se->on_list);
 | 
						|
		if (flags & ENQUEUE_HEAD)
 | 
						|
			list_add(&rt_se->run_list, queue);
 | 
						|
		else
 | 
						|
			list_add_tail(&rt_se->run_list, queue);
 | 
						|
 | 
						|
		__set_bit(rt_se_prio(rt_se), array->bitmap);
 | 
						|
		rt_se->on_list = 1;
 | 
						|
	}
 | 
						|
	rt_se->on_rq = 1;
 | 
						|
 | 
						|
	inc_rt_tasks(rt_se, rt_rq);
 | 
						|
}
 | 
						|
 | 
						|
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
 | 
						|
{
 | 
						|
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 | 
						|
	struct rt_prio_array *array = &rt_rq->active;
 | 
						|
 | 
						|
	if (move_entity(flags)) {
 | 
						|
		WARN_ON_ONCE(!rt_se->on_list);
 | 
						|
		__delist_rt_entity(rt_se, array);
 | 
						|
	}
 | 
						|
	rt_se->on_rq = 0;
 | 
						|
 | 
						|
	dec_rt_tasks(rt_se, rt_rq);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Because the prio of an upper entry depends on the lower
 | 
						|
 * entries, we must remove entries top - down.
 | 
						|
 */
 | 
						|
static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
 | 
						|
{
 | 
						|
	struct sched_rt_entity *back = NULL;
 | 
						|
 | 
						|
	for_each_sched_rt_entity(rt_se) {
 | 
						|
		rt_se->back = back;
 | 
						|
		back = rt_se;
 | 
						|
	}
 | 
						|
 | 
						|
	dequeue_top_rt_rq(rt_rq_of_se(back));
 | 
						|
 | 
						|
	for (rt_se = back; rt_se; rt_se = rt_se->back) {
 | 
						|
		if (on_rt_rq(rt_se))
 | 
						|
			__dequeue_rt_entity(rt_se, flags);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
 | 
						|
{
 | 
						|
	struct rq *rq = rq_of_rt_se(rt_se);
 | 
						|
 | 
						|
	dequeue_rt_stack(rt_se, flags);
 | 
						|
	for_each_sched_rt_entity(rt_se)
 | 
						|
		__enqueue_rt_entity(rt_se, flags);
 | 
						|
	enqueue_top_rt_rq(&rq->rt);
 | 
						|
}
 | 
						|
 | 
						|
static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
 | 
						|
{
 | 
						|
	struct rq *rq = rq_of_rt_se(rt_se);
 | 
						|
 | 
						|
	dequeue_rt_stack(rt_se, flags);
 | 
						|
 | 
						|
	for_each_sched_rt_entity(rt_se) {
 | 
						|
		struct rt_rq *rt_rq = group_rt_rq(rt_se);
 | 
						|
 | 
						|
		if (rt_rq && rt_rq->rt_nr_running)
 | 
						|
			__enqueue_rt_entity(rt_se, flags);
 | 
						|
	}
 | 
						|
	enqueue_top_rt_rq(&rq->rt);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Adding/removing a task to/from a priority array:
 | 
						|
 */
 | 
						|
static void
 | 
						|
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
 | 
						|
{
 | 
						|
	struct sched_rt_entity *rt_se = &p->rt;
 | 
						|
 | 
						|
	if (flags & ENQUEUE_WAKEUP)
 | 
						|
		rt_se->timeout = 0;
 | 
						|
 | 
						|
	enqueue_rt_entity(rt_se, flags);
 | 
						|
 | 
						|
	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
 | 
						|
		enqueue_pushable_task(rq, p);
 | 
						|
}
 | 
						|
 | 
						|
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
 | 
						|
{
 | 
						|
	struct sched_rt_entity *rt_se = &p->rt;
 | 
						|
 | 
						|
	update_curr_rt(rq);
 | 
						|
	dequeue_rt_entity(rt_se, flags);
 | 
						|
 | 
						|
	dequeue_pushable_task(rq, p);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Put task to the head or the end of the run list without the overhead of
 | 
						|
 * dequeue followed by enqueue.
 | 
						|
 */
 | 
						|
static void
 | 
						|
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
 | 
						|
{
 | 
						|
	if (on_rt_rq(rt_se)) {
 | 
						|
		struct rt_prio_array *array = &rt_rq->active;
 | 
						|
		struct list_head *queue = array->queue + rt_se_prio(rt_se);
 | 
						|
 | 
						|
		if (head)
 | 
						|
			list_move(&rt_se->run_list, queue);
 | 
						|
		else
 | 
						|
			list_move_tail(&rt_se->run_list, queue);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
 | 
						|
{
 | 
						|
	struct sched_rt_entity *rt_se = &p->rt;
 | 
						|
	struct rt_rq *rt_rq;
 | 
						|
 | 
						|
	for_each_sched_rt_entity(rt_se) {
 | 
						|
		rt_rq = rt_rq_of_se(rt_se);
 | 
						|
		requeue_rt_entity(rt_rq, rt_se, head);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void yield_task_rt(struct rq *rq)
 | 
						|
{
 | 
						|
	requeue_task_rt(rq, rq->curr, 0);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
static int find_lowest_rq(struct task_struct *task);
 | 
						|
 | 
						|
static int
 | 
						|
select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
 | 
						|
{
 | 
						|
	struct task_struct *curr;
 | 
						|
	struct rq *rq;
 | 
						|
 | 
						|
	/* For anything but wake ups, just return the task_cpu */
 | 
						|
	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	rq = cpu_rq(cpu);
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	curr = READ_ONCE(rq->curr); /* unlocked access */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the current task on @p's runqueue is an RT task, then
 | 
						|
	 * try to see if we can wake this RT task up on another
 | 
						|
	 * runqueue. Otherwise simply start this RT task
 | 
						|
	 * on its current runqueue.
 | 
						|
	 *
 | 
						|
	 * We want to avoid overloading runqueues. If the woken
 | 
						|
	 * task is a higher priority, then it will stay on this CPU
 | 
						|
	 * and the lower prio task should be moved to another CPU.
 | 
						|
	 * Even though this will probably make the lower prio task
 | 
						|
	 * lose its cache, we do not want to bounce a higher task
 | 
						|
	 * around just because it gave up its CPU, perhaps for a
 | 
						|
	 * lock?
 | 
						|
	 *
 | 
						|
	 * For equal prio tasks, we just let the scheduler sort it out.
 | 
						|
	 *
 | 
						|
	 * Otherwise, just let it ride on the affined RQ and the
 | 
						|
	 * post-schedule router will push the preempted task away
 | 
						|
	 *
 | 
						|
	 * This test is optimistic, if we get it wrong the load-balancer
 | 
						|
	 * will have to sort it out.
 | 
						|
	 */
 | 
						|
	if (curr && unlikely(rt_task(curr)) &&
 | 
						|
	    (curr->nr_cpus_allowed < 2 ||
 | 
						|
	     curr->prio <= p->prio)) {
 | 
						|
		int target = find_lowest_rq(p);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Don't bother moving it if the destination CPU is
 | 
						|
		 * not running a lower priority task.
 | 
						|
		 */
 | 
						|
		if (target != -1 &&
 | 
						|
		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
 | 
						|
			cpu = target;
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
out:
 | 
						|
	return cpu;
 | 
						|
}
 | 
						|
 | 
						|
static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Current can't be migrated, useless to reschedule,
 | 
						|
	 * let's hope p can move out.
 | 
						|
	 */
 | 
						|
	if (rq->curr->nr_cpus_allowed == 1 ||
 | 
						|
	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * p is migratable, so let's not schedule it and
 | 
						|
	 * see if it is pushed or pulled somewhere else.
 | 
						|
	 */
 | 
						|
	if (p->nr_cpus_allowed != 1
 | 
						|
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * There appears to be other cpus that can accept
 | 
						|
	 * current and none to run 'p', so lets reschedule
 | 
						|
	 * to try and push current away:
 | 
						|
	 */
 | 
						|
	requeue_task_rt(rq, p, 1);
 | 
						|
	resched_curr(rq);
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_SMP */
 | 
						|
 | 
						|
/*
 | 
						|
 * Preempt the current task with a newly woken task if needed:
 | 
						|
 */
 | 
						|
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
 | 
						|
{
 | 
						|
	if (p->prio < rq->curr->prio) {
 | 
						|
		resched_curr(rq);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	/*
 | 
						|
	 * If:
 | 
						|
	 *
 | 
						|
	 * - the newly woken task is of equal priority to the current task
 | 
						|
	 * - the newly woken task is non-migratable while current is migratable
 | 
						|
	 * - current will be preempted on the next reschedule
 | 
						|
	 *
 | 
						|
	 * we should check to see if current can readily move to a different
 | 
						|
	 * cpu.  If so, we will reschedule to allow the push logic to try
 | 
						|
	 * to move current somewhere else, making room for our non-migratable
 | 
						|
	 * task.
 | 
						|
	 */
 | 
						|
	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
 | 
						|
		check_preempt_equal_prio(rq, p);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
 | 
						|
						   struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	struct rt_prio_array *array = &rt_rq->active;
 | 
						|
	struct sched_rt_entity *next = NULL;
 | 
						|
	struct list_head *queue;
 | 
						|
	int idx;
 | 
						|
 | 
						|
	idx = sched_find_first_bit(array->bitmap);
 | 
						|
	BUG_ON(idx >= MAX_RT_PRIO);
 | 
						|
 | 
						|
	queue = array->queue + idx;
 | 
						|
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
 | 
						|
 | 
						|
	return next;
 | 
						|
}
 | 
						|
 | 
						|
static struct task_struct *_pick_next_task_rt(struct rq *rq)
 | 
						|
{
 | 
						|
	struct sched_rt_entity *rt_se;
 | 
						|
	struct task_struct *p;
 | 
						|
	struct rt_rq *rt_rq  = &rq->rt;
 | 
						|
 | 
						|
	do {
 | 
						|
		rt_se = pick_next_rt_entity(rq, rt_rq);
 | 
						|
		BUG_ON(!rt_se);
 | 
						|
		rt_rq = group_rt_rq(rt_se);
 | 
						|
	} while (rt_rq);
 | 
						|
 | 
						|
	p = rt_task_of(rt_se);
 | 
						|
	p->se.exec_start = rq_clock_task(rq);
 | 
						|
 | 
						|
	return p;
 | 
						|
}
 | 
						|
 | 
						|
static struct task_struct *
 | 
						|
pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 | 
						|
{
 | 
						|
	struct task_struct *p;
 | 
						|
	struct rt_rq *rt_rq = &rq->rt;
 | 
						|
 | 
						|
	if (need_pull_rt_task(rq, prev)) {
 | 
						|
		/*
 | 
						|
		 * This is OK, because current is on_cpu, which avoids it being
 | 
						|
		 * picked for load-balance and preemption/IRQs are still
 | 
						|
		 * disabled avoiding further scheduler activity on it and we're
 | 
						|
		 * being very careful to re-start the picking loop.
 | 
						|
		 */
 | 
						|
		rq_unpin_lock(rq, rf);
 | 
						|
		pull_rt_task(rq);
 | 
						|
		rq_repin_lock(rq, rf);
 | 
						|
		/*
 | 
						|
		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
 | 
						|
		 * means a dl or stop task can slip in, in which case we need
 | 
						|
		 * to re-start task selection.
 | 
						|
		 */
 | 
						|
		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
 | 
						|
			     rq->dl.dl_nr_running))
 | 
						|
			return RETRY_TASK;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We may dequeue prev's rt_rq in put_prev_task().
 | 
						|
	 * So, we update time before rt_nr_running check.
 | 
						|
	 */
 | 
						|
	if (prev->sched_class == &rt_sched_class)
 | 
						|
		update_curr_rt(rq);
 | 
						|
 | 
						|
	if (!rt_rq->rt_queued)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	put_prev_task(rq, prev);
 | 
						|
 | 
						|
	p = _pick_next_task_rt(rq);
 | 
						|
 | 
						|
	/* The running task is never eligible for pushing */
 | 
						|
	dequeue_pushable_task(rq, p);
 | 
						|
 | 
						|
	queue_push_tasks(rq);
 | 
						|
 | 
						|
	return p;
 | 
						|
}
 | 
						|
 | 
						|
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	update_curr_rt(rq);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The previous task needs to be made eligible for pushing
 | 
						|
	 * if it is still active
 | 
						|
	 */
 | 
						|
	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
 | 
						|
		enqueue_pushable_task(rq, p);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
 | 
						|
/* Only try algorithms three times */
 | 
						|
#define RT_MAX_TRIES 3
 | 
						|
 | 
						|
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
 | 
						|
{
 | 
						|
	if (!task_running(rq, p) &&
 | 
						|
	    cpumask_test_cpu(cpu, &p->cpus_allowed))
 | 
						|
		return 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the highest pushable rq's task, which is suitable to be executed
 | 
						|
 * on the cpu, NULL otherwise
 | 
						|
 */
 | 
						|
static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
 | 
						|
{
 | 
						|
	struct plist_head *head = &rq->rt.pushable_tasks;
 | 
						|
	struct task_struct *p;
 | 
						|
 | 
						|
	if (!has_pushable_tasks(rq))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	plist_for_each_entry(p, head, pushable_tasks) {
 | 
						|
		if (pick_rt_task(rq, p, cpu))
 | 
						|
			return p;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
 | 
						|
 | 
						|
static int find_lowest_rq(struct task_struct *task)
 | 
						|
{
 | 
						|
	struct sched_domain *sd;
 | 
						|
	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
 | 
						|
	int this_cpu = smp_processor_id();
 | 
						|
	int cpu      = task_cpu(task);
 | 
						|
 | 
						|
	/* Make sure the mask is initialized first */
 | 
						|
	if (unlikely(!lowest_mask))
 | 
						|
		return -1;
 | 
						|
 | 
						|
	if (task->nr_cpus_allowed == 1)
 | 
						|
		return -1; /* No other targets possible */
 | 
						|
 | 
						|
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
 | 
						|
		return -1; /* No targets found */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * At this point we have built a mask of cpus representing the
 | 
						|
	 * lowest priority tasks in the system.  Now we want to elect
 | 
						|
	 * the best one based on our affinity and topology.
 | 
						|
	 *
 | 
						|
	 * We prioritize the last cpu that the task executed on since
 | 
						|
	 * it is most likely cache-hot in that location.
 | 
						|
	 */
 | 
						|
	if (cpumask_test_cpu(cpu, lowest_mask))
 | 
						|
		return cpu;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Otherwise, we consult the sched_domains span maps to figure
 | 
						|
	 * out which cpu is logically closest to our hot cache data.
 | 
						|
	 */
 | 
						|
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
 | 
						|
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	for_each_domain(cpu, sd) {
 | 
						|
		if (sd->flags & SD_WAKE_AFFINE) {
 | 
						|
			int best_cpu;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * "this_cpu" is cheaper to preempt than a
 | 
						|
			 * remote processor.
 | 
						|
			 */
 | 
						|
			if (this_cpu != -1 &&
 | 
						|
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
 | 
						|
				rcu_read_unlock();
 | 
						|
				return this_cpu;
 | 
						|
			}
 | 
						|
 | 
						|
			best_cpu = cpumask_first_and(lowest_mask,
 | 
						|
						     sched_domain_span(sd));
 | 
						|
			if (best_cpu < nr_cpu_ids) {
 | 
						|
				rcu_read_unlock();
 | 
						|
				return best_cpu;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * And finally, if there were no matches within the domains
 | 
						|
	 * just give the caller *something* to work with from the compatible
 | 
						|
	 * locations.
 | 
						|
	 */
 | 
						|
	if (this_cpu != -1)
 | 
						|
		return this_cpu;
 | 
						|
 | 
						|
	cpu = cpumask_any(lowest_mask);
 | 
						|
	if (cpu < nr_cpu_ids)
 | 
						|
		return cpu;
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
/* Will lock the rq it finds */
 | 
						|
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
 | 
						|
{
 | 
						|
	struct rq *lowest_rq = NULL;
 | 
						|
	int tries;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
 | 
						|
		cpu = find_lowest_rq(task);
 | 
						|
 | 
						|
		if ((cpu == -1) || (cpu == rq->cpu))
 | 
						|
			break;
 | 
						|
 | 
						|
		lowest_rq = cpu_rq(cpu);
 | 
						|
 | 
						|
		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
 | 
						|
			/*
 | 
						|
			 * Target rq has tasks of equal or higher priority,
 | 
						|
			 * retrying does not release any lock and is unlikely
 | 
						|
			 * to yield a different result.
 | 
						|
			 */
 | 
						|
			lowest_rq = NULL;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/* if the prio of this runqueue changed, try again */
 | 
						|
		if (double_lock_balance(rq, lowest_rq)) {
 | 
						|
			/*
 | 
						|
			 * We had to unlock the run queue. In
 | 
						|
			 * the mean time, task could have
 | 
						|
			 * migrated already or had its affinity changed.
 | 
						|
			 * Also make sure that it wasn't scheduled on its rq.
 | 
						|
			 */
 | 
						|
			if (unlikely(task_rq(task) != rq ||
 | 
						|
				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
 | 
						|
				     task_running(rq, task) ||
 | 
						|
				     !rt_task(task) ||
 | 
						|
				     !task_on_rq_queued(task))) {
 | 
						|
 | 
						|
				double_unlock_balance(rq, lowest_rq);
 | 
						|
				lowest_rq = NULL;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* If this rq is still suitable use it. */
 | 
						|
		if (lowest_rq->rt.highest_prio.curr > task->prio)
 | 
						|
			break;
 | 
						|
 | 
						|
		/* try again */
 | 
						|
		double_unlock_balance(rq, lowest_rq);
 | 
						|
		lowest_rq = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	return lowest_rq;
 | 
						|
}
 | 
						|
 | 
						|
static struct task_struct *pick_next_pushable_task(struct rq *rq)
 | 
						|
{
 | 
						|
	struct task_struct *p;
 | 
						|
 | 
						|
	if (!has_pushable_tasks(rq))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	p = plist_first_entry(&rq->rt.pushable_tasks,
 | 
						|
			      struct task_struct, pushable_tasks);
 | 
						|
 | 
						|
	BUG_ON(rq->cpu != task_cpu(p));
 | 
						|
	BUG_ON(task_current(rq, p));
 | 
						|
	BUG_ON(p->nr_cpus_allowed <= 1);
 | 
						|
 | 
						|
	BUG_ON(!task_on_rq_queued(p));
 | 
						|
	BUG_ON(!rt_task(p));
 | 
						|
 | 
						|
	return p;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If the current CPU has more than one RT task, see if the non
 | 
						|
 * running task can migrate over to a CPU that is running a task
 | 
						|
 * of lesser priority.
 | 
						|
 */
 | 
						|
static int push_rt_task(struct rq *rq)
 | 
						|
{
 | 
						|
	struct task_struct *next_task;
 | 
						|
	struct rq *lowest_rq;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (!rq->rt.overloaded)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	next_task = pick_next_pushable_task(rq);
 | 
						|
	if (!next_task)
 | 
						|
		return 0;
 | 
						|
 | 
						|
retry:
 | 
						|
	if (unlikely(next_task == rq->curr)) {
 | 
						|
		WARN_ON(1);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It's possible that the next_task slipped in of
 | 
						|
	 * higher priority than current. If that's the case
 | 
						|
	 * just reschedule current.
 | 
						|
	 */
 | 
						|
	if (unlikely(next_task->prio < rq->curr->prio)) {
 | 
						|
		resched_curr(rq);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* We might release rq lock */
 | 
						|
	get_task_struct(next_task);
 | 
						|
 | 
						|
	/* find_lock_lowest_rq locks the rq if found */
 | 
						|
	lowest_rq = find_lock_lowest_rq(next_task, rq);
 | 
						|
	if (!lowest_rq) {
 | 
						|
		struct task_struct *task;
 | 
						|
		/*
 | 
						|
		 * find_lock_lowest_rq releases rq->lock
 | 
						|
		 * so it is possible that next_task has migrated.
 | 
						|
		 *
 | 
						|
		 * We need to make sure that the task is still on the same
 | 
						|
		 * run-queue and is also still the next task eligible for
 | 
						|
		 * pushing.
 | 
						|
		 */
 | 
						|
		task = pick_next_pushable_task(rq);
 | 
						|
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
 | 
						|
			/*
 | 
						|
			 * The task hasn't migrated, and is still the next
 | 
						|
			 * eligible task, but we failed to find a run-queue
 | 
						|
			 * to push it to.  Do not retry in this case, since
 | 
						|
			 * other cpus will pull from us when ready.
 | 
						|
			 */
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!task)
 | 
						|
			/* No more tasks, just exit */
 | 
						|
			goto out;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Something has shifted, try again.
 | 
						|
		 */
 | 
						|
		put_task_struct(next_task);
 | 
						|
		next_task = task;
 | 
						|
		goto retry;
 | 
						|
	}
 | 
						|
 | 
						|
	deactivate_task(rq, next_task, 0);
 | 
						|
	set_task_cpu(next_task, lowest_rq->cpu);
 | 
						|
	activate_task(lowest_rq, next_task, 0);
 | 
						|
	ret = 1;
 | 
						|
 | 
						|
	resched_curr(lowest_rq);
 | 
						|
 | 
						|
	double_unlock_balance(rq, lowest_rq);
 | 
						|
 | 
						|
out:
 | 
						|
	put_task_struct(next_task);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void push_rt_tasks(struct rq *rq)
 | 
						|
{
 | 
						|
	/* push_rt_task will return true if it moved an RT */
 | 
						|
	while (push_rt_task(rq))
 | 
						|
		;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef HAVE_RT_PUSH_IPI
 | 
						|
/*
 | 
						|
 * The search for the next cpu always starts at rq->cpu and ends
 | 
						|
 * when we reach rq->cpu again. It will never return rq->cpu.
 | 
						|
 * This returns the next cpu to check, or nr_cpu_ids if the loop
 | 
						|
 * is complete.
 | 
						|
 *
 | 
						|
 * rq->rt.push_cpu holds the last cpu returned by this function,
 | 
						|
 * or if this is the first instance, it must hold rq->cpu.
 | 
						|
 */
 | 
						|
static int rto_next_cpu(struct rq *rq)
 | 
						|
{
 | 
						|
	int prev_cpu = rq->rt.push_cpu;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the previous cpu is less than the rq's CPU, then it already
 | 
						|
	 * passed the end of the mask, and has started from the beginning.
 | 
						|
	 * We end if the next CPU is greater or equal to rq's CPU.
 | 
						|
	 */
 | 
						|
	if (prev_cpu < rq->cpu) {
 | 
						|
		if (cpu >= rq->cpu)
 | 
						|
			return nr_cpu_ids;
 | 
						|
 | 
						|
	} else if (cpu >= nr_cpu_ids) {
 | 
						|
		/*
 | 
						|
		 * We passed the end of the mask, start at the beginning.
 | 
						|
		 * If the result is greater or equal to the rq's CPU, then
 | 
						|
		 * the loop is finished.
 | 
						|
		 */
 | 
						|
		cpu = cpumask_first(rq->rd->rto_mask);
 | 
						|
		if (cpu >= rq->cpu)
 | 
						|
			return nr_cpu_ids;
 | 
						|
	}
 | 
						|
	rq->rt.push_cpu = cpu;
 | 
						|
 | 
						|
	/* Return cpu to let the caller know if the loop is finished or not */
 | 
						|
	return cpu;
 | 
						|
}
 | 
						|
 | 
						|
static int find_next_push_cpu(struct rq *rq)
 | 
						|
{
 | 
						|
	struct rq *next_rq;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		cpu = rto_next_cpu(rq);
 | 
						|
		if (cpu >= nr_cpu_ids)
 | 
						|
			break;
 | 
						|
		next_rq = cpu_rq(cpu);
 | 
						|
 | 
						|
		/* Make sure the next rq can push to this rq */
 | 
						|
		if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	return cpu;
 | 
						|
}
 | 
						|
 | 
						|
#define RT_PUSH_IPI_EXECUTING		1
 | 
						|
#define RT_PUSH_IPI_RESTART		2
 | 
						|
 | 
						|
/*
 | 
						|
 * When a high priority task schedules out from a CPU and a lower priority
 | 
						|
 * task is scheduled in, a check is made to see if there's any RT tasks
 | 
						|
 * on other CPUs that are waiting to run because a higher priority RT task
 | 
						|
 * is currently running on its CPU. In this case, the CPU with multiple RT
 | 
						|
 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
 | 
						|
 * up that may be able to run one of its non-running queued RT tasks.
 | 
						|
 *
 | 
						|
 * On large CPU boxes, there's the case that several CPUs could schedule
 | 
						|
 * a lower priority task at the same time, in which case it will look for
 | 
						|
 * any overloaded CPUs that it could pull a task from. To do this, the runqueue
 | 
						|
 * lock must be taken from that overloaded CPU. Having 10s of CPUs all fighting
 | 
						|
 * for a single overloaded CPU's runqueue lock can produce a large latency.
 | 
						|
 * (This has actually been observed on large boxes running cyclictest).
 | 
						|
 * Instead of taking the runqueue lock of the overloaded CPU, each of the
 | 
						|
 * CPUs that scheduled a lower priority task simply sends an IPI to the
 | 
						|
 * overloaded CPU. An IPI is much cheaper than taking an runqueue lock with
 | 
						|
 * lots of contention. The overloaded CPU will look to push its non-running
 | 
						|
 * RT task off, and if it does, it can then ignore the other IPIs coming
 | 
						|
 * in, and just pass those IPIs off to any other overloaded CPU.
 | 
						|
 *
 | 
						|
 * When a CPU schedules a lower priority task, it only sends an IPI to
 | 
						|
 * the "next" CPU that has overloaded RT tasks. This prevents IPI storms,
 | 
						|
 * as having 10 CPUs scheduling lower priority tasks and 10 CPUs with
 | 
						|
 * RT overloaded tasks, would cause 100 IPIs to go out at once.
 | 
						|
 *
 | 
						|
 * The overloaded RT CPU, when receiving an IPI, will try to push off its
 | 
						|
 * overloaded RT tasks and then send an IPI to the next CPU that has
 | 
						|
 * overloaded RT tasks. This stops when all CPUs with overloaded RT tasks
 | 
						|
 * have completed. Just because a CPU may have pushed off its own overloaded
 | 
						|
 * RT task does not mean it should stop sending the IPI around to other
 | 
						|
 * overloaded CPUs. There may be another RT task waiting to run on one of
 | 
						|
 * those CPUs that are of higher priority than the one that was just
 | 
						|
 * pushed.
 | 
						|
 *
 | 
						|
 * An optimization that could possibly be made is to make a CPU array similar
 | 
						|
 * to the cpupri array mask of all running RT tasks, but for the overloaded
 | 
						|
 * case, then the IPI could be sent to only the CPU with the highest priority
 | 
						|
 * RT task waiting, and that CPU could send off further IPIs to the CPU with
 | 
						|
 * the next highest waiting task. Since the overloaded case is much less likely
 | 
						|
 * to happen, the complexity of this implementation may not be worth it.
 | 
						|
 * Instead, just send an IPI around to all overloaded CPUs.
 | 
						|
 *
 | 
						|
 * The rq->rt.push_flags holds the status of the IPI that is going around.
 | 
						|
 * A run queue can only send out a single IPI at a time. The possible flags
 | 
						|
 * for rq->rt.push_flags are:
 | 
						|
 *
 | 
						|
 *    (None or zero):		No IPI is going around for the current rq
 | 
						|
 *    RT_PUSH_IPI_EXECUTING:	An IPI for the rq is being passed around
 | 
						|
 *    RT_PUSH_IPI_RESTART:	The priority of the running task for the rq
 | 
						|
 *				has changed, and the IPI should restart
 | 
						|
 *				circulating the overloaded CPUs again.
 | 
						|
 *
 | 
						|
 * rq->rt.push_cpu contains the CPU that is being sent the IPI. It is updated
 | 
						|
 * before sending to the next CPU.
 | 
						|
 *
 | 
						|
 * Instead of having all CPUs that schedule a lower priority task send
 | 
						|
 * an IPI to the same "first" CPU in the RT overload mask, they send it
 | 
						|
 * to the next overloaded CPU after their own CPU. This helps distribute
 | 
						|
 * the work when there's more than one overloaded CPU and multiple CPUs
 | 
						|
 * scheduling in lower priority tasks.
 | 
						|
 *
 | 
						|
 * When a rq schedules a lower priority task than what was currently
 | 
						|
 * running, the next CPU with overloaded RT tasks is examined first.
 | 
						|
 * That is, if CPU 1 and 5 are overloaded, and CPU 3 schedules a lower
 | 
						|
 * priority task, it will send an IPI first to CPU 5, then CPU 5 will
 | 
						|
 * send to CPU 1 if it is still overloaded. CPU 1 will clear the
 | 
						|
 * rq->rt.push_flags if RT_PUSH_IPI_RESTART is not set.
 | 
						|
 *
 | 
						|
 * The first CPU to notice IPI_RESTART is set, will clear that flag and then
 | 
						|
 * send an IPI to the next overloaded CPU after the rq->cpu and not the next
 | 
						|
 * CPU after push_cpu. That is, if CPU 1, 4 and 5 are overloaded when CPU 3
 | 
						|
 * schedules a lower priority task, and the IPI_RESTART gets set while the
 | 
						|
 * handling is being done on CPU 5, it will clear the flag and send it back to
 | 
						|
 * CPU 4 instead of CPU 1.
 | 
						|
 *
 | 
						|
 * Note, the above logic can be disabled by turning off the sched_feature
 | 
						|
 * RT_PUSH_IPI. Then the rq lock of the overloaded CPU will simply be
 | 
						|
 * taken by the CPU requesting a pull and the waiting RT task will be pulled
 | 
						|
 * by that CPU. This may be fine for machines with few CPUs.
 | 
						|
 */
 | 
						|
static void tell_cpu_to_push(struct rq *rq)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
 | 
						|
		raw_spin_lock(&rq->rt.push_lock);
 | 
						|
		/* Make sure it's still executing */
 | 
						|
		if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
 | 
						|
			/*
 | 
						|
			 * Tell the IPI to restart the loop as things have
 | 
						|
			 * changed since it started.
 | 
						|
			 */
 | 
						|
			rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
 | 
						|
			raw_spin_unlock(&rq->rt.push_lock);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		raw_spin_unlock(&rq->rt.push_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	/* When here, there's no IPI going around */
 | 
						|
 | 
						|
	rq->rt.push_cpu = rq->cpu;
 | 
						|
	cpu = find_next_push_cpu(rq);
 | 
						|
	if (cpu >= nr_cpu_ids)
 | 
						|
		return;
 | 
						|
 | 
						|
	rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
 | 
						|
 | 
						|
	irq_work_queue_on(&rq->rt.push_work, cpu);
 | 
						|
}
 | 
						|
 | 
						|
/* Called from hardirq context */
 | 
						|
static void try_to_push_tasks(void *arg)
 | 
						|
{
 | 
						|
	struct rt_rq *rt_rq = arg;
 | 
						|
	struct rq *rq, *src_rq;
 | 
						|
	int this_cpu;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	this_cpu = rt_rq->push_cpu;
 | 
						|
 | 
						|
	/* Paranoid check */
 | 
						|
	BUG_ON(this_cpu != smp_processor_id());
 | 
						|
 | 
						|
	rq = cpu_rq(this_cpu);
 | 
						|
	src_rq = rq_of_rt_rq(rt_rq);
 | 
						|
 | 
						|
again:
 | 
						|
	if (has_pushable_tasks(rq)) {
 | 
						|
		raw_spin_lock(&rq->lock);
 | 
						|
		push_rt_task(rq);
 | 
						|
		raw_spin_unlock(&rq->lock);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Pass the IPI to the next rt overloaded queue */
 | 
						|
	raw_spin_lock(&rt_rq->push_lock);
 | 
						|
	/*
 | 
						|
	 * If the source queue changed since the IPI went out,
 | 
						|
	 * we need to restart the search from that CPU again.
 | 
						|
	 */
 | 
						|
	if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
 | 
						|
		rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
 | 
						|
		rt_rq->push_cpu = src_rq->cpu;
 | 
						|
	}
 | 
						|
 | 
						|
	cpu = find_next_push_cpu(src_rq);
 | 
						|
 | 
						|
	if (cpu >= nr_cpu_ids)
 | 
						|
		rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
 | 
						|
	raw_spin_unlock(&rt_rq->push_lock);
 | 
						|
 | 
						|
	if (cpu >= nr_cpu_ids)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It is possible that a restart caused this CPU to be
 | 
						|
	 * chosen again. Don't bother with an IPI, just see if we
 | 
						|
	 * have more to push.
 | 
						|
	 */
 | 
						|
	if (unlikely(cpu == rq->cpu))
 | 
						|
		goto again;
 | 
						|
 | 
						|
	/* Try the next RT overloaded CPU */
 | 
						|
	irq_work_queue_on(&rt_rq->push_work, cpu);
 | 
						|
}
 | 
						|
 | 
						|
static void push_irq_work_func(struct irq_work *work)
 | 
						|
{
 | 
						|
	struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
 | 
						|
 | 
						|
	try_to_push_tasks(rt_rq);
 | 
						|
}
 | 
						|
#endif /* HAVE_RT_PUSH_IPI */
 | 
						|
 | 
						|
static void pull_rt_task(struct rq *this_rq)
 | 
						|
{
 | 
						|
	int this_cpu = this_rq->cpu, cpu;
 | 
						|
	bool resched = false;
 | 
						|
	struct task_struct *p;
 | 
						|
	struct rq *src_rq;
 | 
						|
 | 
						|
	if (likely(!rt_overloaded(this_rq)))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Match the barrier from rt_set_overloaded; this guarantees that if we
 | 
						|
	 * see overloaded we must also see the rto_mask bit.
 | 
						|
	 */
 | 
						|
	smp_rmb();
 | 
						|
 | 
						|
#ifdef HAVE_RT_PUSH_IPI
 | 
						|
	if (sched_feat(RT_PUSH_IPI)) {
 | 
						|
		tell_cpu_to_push(this_rq);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
 | 
						|
		if (this_cpu == cpu)
 | 
						|
			continue;
 | 
						|
 | 
						|
		src_rq = cpu_rq(cpu);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Don't bother taking the src_rq->lock if the next highest
 | 
						|
		 * task is known to be lower-priority than our current task.
 | 
						|
		 * This may look racy, but if this value is about to go
 | 
						|
		 * logically higher, the src_rq will push this task away.
 | 
						|
		 * And if its going logically lower, we do not care
 | 
						|
		 */
 | 
						|
		if (src_rq->rt.highest_prio.next >=
 | 
						|
		    this_rq->rt.highest_prio.curr)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We can potentially drop this_rq's lock in
 | 
						|
		 * double_lock_balance, and another CPU could
 | 
						|
		 * alter this_rq
 | 
						|
		 */
 | 
						|
		double_lock_balance(this_rq, src_rq);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We can pull only a task, which is pushable
 | 
						|
		 * on its rq, and no others.
 | 
						|
		 */
 | 
						|
		p = pick_highest_pushable_task(src_rq, this_cpu);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Do we have an RT task that preempts
 | 
						|
		 * the to-be-scheduled task?
 | 
						|
		 */
 | 
						|
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
 | 
						|
			WARN_ON(p == src_rq->curr);
 | 
						|
			WARN_ON(!task_on_rq_queued(p));
 | 
						|
 | 
						|
			/*
 | 
						|
			 * There's a chance that p is higher in priority
 | 
						|
			 * than what's currently running on its cpu.
 | 
						|
			 * This is just that p is wakeing up and hasn't
 | 
						|
			 * had a chance to schedule. We only pull
 | 
						|
			 * p if it is lower in priority than the
 | 
						|
			 * current task on the run queue
 | 
						|
			 */
 | 
						|
			if (p->prio < src_rq->curr->prio)
 | 
						|
				goto skip;
 | 
						|
 | 
						|
			resched = true;
 | 
						|
 | 
						|
			deactivate_task(src_rq, p, 0);
 | 
						|
			set_task_cpu(p, this_cpu);
 | 
						|
			activate_task(this_rq, p, 0);
 | 
						|
			/*
 | 
						|
			 * We continue with the search, just in
 | 
						|
			 * case there's an even higher prio task
 | 
						|
			 * in another runqueue. (low likelihood
 | 
						|
			 * but possible)
 | 
						|
			 */
 | 
						|
		}
 | 
						|
skip:
 | 
						|
		double_unlock_balance(this_rq, src_rq);
 | 
						|
	}
 | 
						|
 | 
						|
	if (resched)
 | 
						|
		resched_curr(this_rq);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If we are not running and we are not going to reschedule soon, we should
 | 
						|
 * try to push tasks away now
 | 
						|
 */
 | 
						|
static void task_woken_rt(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	if (!task_running(rq, p) &&
 | 
						|
	    !test_tsk_need_resched(rq->curr) &&
 | 
						|
	    p->nr_cpus_allowed > 1 &&
 | 
						|
	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
 | 
						|
	    (rq->curr->nr_cpus_allowed < 2 ||
 | 
						|
	     rq->curr->prio <= p->prio))
 | 
						|
		push_rt_tasks(rq);
 | 
						|
}
 | 
						|
 | 
						|
/* Assumes rq->lock is held */
 | 
						|
static void rq_online_rt(struct rq *rq)
 | 
						|
{
 | 
						|
	if (rq->rt.overloaded)
 | 
						|
		rt_set_overload(rq);
 | 
						|
 | 
						|
	__enable_runtime(rq);
 | 
						|
 | 
						|
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
 | 
						|
}
 | 
						|
 | 
						|
/* Assumes rq->lock is held */
 | 
						|
static void rq_offline_rt(struct rq *rq)
 | 
						|
{
 | 
						|
	if (rq->rt.overloaded)
 | 
						|
		rt_clear_overload(rq);
 | 
						|
 | 
						|
	__disable_runtime(rq);
 | 
						|
 | 
						|
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * When switch from the rt queue, we bring ourselves to a position
 | 
						|
 * that we might want to pull RT tasks from other runqueues.
 | 
						|
 */
 | 
						|
static void switched_from_rt(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * If there are other RT tasks then we will reschedule
 | 
						|
	 * and the scheduling of the other RT tasks will handle
 | 
						|
	 * the balancing. But if we are the last RT task
 | 
						|
	 * we may need to handle the pulling of RT tasks
 | 
						|
	 * now.
 | 
						|
	 */
 | 
						|
	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
 | 
						|
		return;
 | 
						|
 | 
						|
	queue_pull_task(rq);
 | 
						|
}
 | 
						|
 | 
						|
void __init init_sched_rt_class(void)
 | 
						|
{
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	for_each_possible_cpu(i) {
 | 
						|
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
 | 
						|
					GFP_KERNEL, cpu_to_node(i));
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif /* CONFIG_SMP */
 | 
						|
 | 
						|
/*
 | 
						|
 * When switching a task to RT, we may overload the runqueue
 | 
						|
 * with RT tasks. In this case we try to push them off to
 | 
						|
 * other runqueues.
 | 
						|
 */
 | 
						|
static void switched_to_rt(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * If we are already running, then there's nothing
 | 
						|
	 * that needs to be done. But if we are not running
 | 
						|
	 * we may need to preempt the current running task.
 | 
						|
	 * If that current running task is also an RT task
 | 
						|
	 * then see if we can move to another run queue.
 | 
						|
	 */
 | 
						|
	if (task_on_rq_queued(p) && rq->curr != p) {
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
 | 
						|
			queue_push_tasks(rq);
 | 
						|
#endif /* CONFIG_SMP */
 | 
						|
		if (p->prio < rq->curr->prio)
 | 
						|
			resched_curr(rq);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Priority of the task has changed. This may cause
 | 
						|
 * us to initiate a push or pull.
 | 
						|
 */
 | 
						|
static void
 | 
						|
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
 | 
						|
{
 | 
						|
	if (!task_on_rq_queued(p))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (rq->curr == p) {
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
		/*
 | 
						|
		 * If our priority decreases while running, we
 | 
						|
		 * may need to pull tasks to this runqueue.
 | 
						|
		 */
 | 
						|
		if (oldprio < p->prio)
 | 
						|
			queue_pull_task(rq);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If there's a higher priority task waiting to run
 | 
						|
		 * then reschedule.
 | 
						|
		 */
 | 
						|
		if (p->prio > rq->rt.highest_prio.curr)
 | 
						|
			resched_curr(rq);
 | 
						|
#else
 | 
						|
		/* For UP simply resched on drop of prio */
 | 
						|
		if (oldprio < p->prio)
 | 
						|
			resched_curr(rq);
 | 
						|
#endif /* CONFIG_SMP */
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * This task is not running, but if it is
 | 
						|
		 * greater than the current running task
 | 
						|
		 * then reschedule.
 | 
						|
		 */
 | 
						|
		if (p->prio < rq->curr->prio)
 | 
						|
			resched_curr(rq);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_POSIX_TIMERS
 | 
						|
static void watchdog(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	unsigned long soft, hard;
 | 
						|
 | 
						|
	/* max may change after cur was read, this will be fixed next tick */
 | 
						|
	soft = task_rlimit(p, RLIMIT_RTTIME);
 | 
						|
	hard = task_rlimit_max(p, RLIMIT_RTTIME);
 | 
						|
 | 
						|
	if (soft != RLIM_INFINITY) {
 | 
						|
		unsigned long next;
 | 
						|
 | 
						|
		if (p->rt.watchdog_stamp != jiffies) {
 | 
						|
			p->rt.timeout++;
 | 
						|
			p->rt.watchdog_stamp = jiffies;
 | 
						|
		}
 | 
						|
 | 
						|
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
 | 
						|
		if (p->rt.timeout > next)
 | 
						|
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
 | 
						|
	}
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void watchdog(struct rq *rq, struct task_struct *p) { }
 | 
						|
#endif
 | 
						|
 | 
						|
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
 | 
						|
{
 | 
						|
	struct sched_rt_entity *rt_se = &p->rt;
 | 
						|
 | 
						|
	update_curr_rt(rq);
 | 
						|
 | 
						|
	watchdog(rq, p);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * RR tasks need a special form of timeslice management.
 | 
						|
	 * FIFO tasks have no timeslices.
 | 
						|
	 */
 | 
						|
	if (p->policy != SCHED_RR)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (--p->rt.time_slice)
 | 
						|
		return;
 | 
						|
 | 
						|
	p->rt.time_slice = sched_rr_timeslice;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Requeue to the end of queue if we (and all of our ancestors) are not
 | 
						|
	 * the only element on the queue
 | 
						|
	 */
 | 
						|
	for_each_sched_rt_entity(rt_se) {
 | 
						|
		if (rt_se->run_list.prev != rt_se->run_list.next) {
 | 
						|
			requeue_task_rt(rq, p, 0);
 | 
						|
			resched_curr(rq);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void set_curr_task_rt(struct rq *rq)
 | 
						|
{
 | 
						|
	struct task_struct *p = rq->curr;
 | 
						|
 | 
						|
	p->se.exec_start = rq_clock_task(rq);
 | 
						|
 | 
						|
	/* The running task is never eligible for pushing */
 | 
						|
	dequeue_pushable_task(rq, p);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Time slice is 0 for SCHED_FIFO tasks
 | 
						|
	 */
 | 
						|
	if (task->policy == SCHED_RR)
 | 
						|
		return sched_rr_timeslice;
 | 
						|
	else
 | 
						|
		return 0;
 | 
						|
}
 | 
						|
 | 
						|
const struct sched_class rt_sched_class = {
 | 
						|
	.next			= &fair_sched_class,
 | 
						|
	.enqueue_task		= enqueue_task_rt,
 | 
						|
	.dequeue_task		= dequeue_task_rt,
 | 
						|
	.yield_task		= yield_task_rt,
 | 
						|
 | 
						|
	.check_preempt_curr	= check_preempt_curr_rt,
 | 
						|
 | 
						|
	.pick_next_task		= pick_next_task_rt,
 | 
						|
	.put_prev_task		= put_prev_task_rt,
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	.select_task_rq		= select_task_rq_rt,
 | 
						|
 | 
						|
	.set_cpus_allowed       = set_cpus_allowed_common,
 | 
						|
	.rq_online              = rq_online_rt,
 | 
						|
	.rq_offline             = rq_offline_rt,
 | 
						|
	.task_woken		= task_woken_rt,
 | 
						|
	.switched_from		= switched_from_rt,
 | 
						|
#endif
 | 
						|
 | 
						|
	.set_curr_task          = set_curr_task_rt,
 | 
						|
	.task_tick		= task_tick_rt,
 | 
						|
 | 
						|
	.get_rr_interval	= get_rr_interval_rt,
 | 
						|
 | 
						|
	.prio_changed		= prio_changed_rt,
 | 
						|
	.switched_to		= switched_to_rt,
 | 
						|
 | 
						|
	.update_curr		= update_curr_rt,
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_SCHED_DEBUG
 | 
						|
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
 | 
						|
 | 
						|
void print_rt_stats(struct seq_file *m, int cpu)
 | 
						|
{
 | 
						|
	rt_rq_iter_t iter;
 | 
						|
	struct rt_rq *rt_rq;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
 | 
						|
		print_rt_rq(m, cpu, rt_rq);
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
#endif /* CONFIG_SCHED_DEBUG */
 |