mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 2d6f107ea6
			
		
	
	
		2d6f107ea6
		
	
	
	
	
		
			
			Factor out a helper to queue up an ordered_extent completion in a work queue. This new helper will later be used complete an ordered_extent without first doing a lookup. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
		
			
				
	
	
		
			1240 lines
		
	
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1240 lines
		
	
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2007 Oracle.  All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include "messages.h"
 | |
| #include "misc.h"
 | |
| #include "ctree.h"
 | |
| #include "transaction.h"
 | |
| #include "btrfs_inode.h"
 | |
| #include "extent_io.h"
 | |
| #include "disk-io.h"
 | |
| #include "compression.h"
 | |
| #include "delalloc-space.h"
 | |
| #include "qgroup.h"
 | |
| #include "subpage.h"
 | |
| #include "file.h"
 | |
| #include "super.h"
 | |
| 
 | |
| static struct kmem_cache *btrfs_ordered_extent_cache;
 | |
| 
 | |
| static u64 entry_end(struct btrfs_ordered_extent *entry)
 | |
| {
 | |
| 	if (entry->file_offset + entry->num_bytes < entry->file_offset)
 | |
| 		return (u64)-1;
 | |
| 	return entry->file_offset + entry->num_bytes;
 | |
| }
 | |
| 
 | |
| /* returns NULL if the insertion worked, or it returns the node it did find
 | |
|  * in the tree
 | |
|  */
 | |
| static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
 | |
| 				   struct rb_node *node)
 | |
| {
 | |
| 	struct rb_node **p = &root->rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct btrfs_ordered_extent *entry;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
 | |
| 
 | |
| 		if (file_offset < entry->file_offset)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (file_offset >= entry_end(entry))
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else
 | |
| 			return parent;
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(node, parent, p);
 | |
| 	rb_insert_color(node, root);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * look for a given offset in the tree, and if it can't be found return the
 | |
|  * first lesser offset
 | |
|  */
 | |
| static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
 | |
| 				     struct rb_node **prev_ret)
 | |
| {
 | |
| 	struct rb_node *n = root->rb_node;
 | |
| 	struct rb_node *prev = NULL;
 | |
| 	struct rb_node *test;
 | |
| 	struct btrfs_ordered_extent *entry;
 | |
| 	struct btrfs_ordered_extent *prev_entry = NULL;
 | |
| 
 | |
| 	while (n) {
 | |
| 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 | |
| 		prev = n;
 | |
| 		prev_entry = entry;
 | |
| 
 | |
| 		if (file_offset < entry->file_offset)
 | |
| 			n = n->rb_left;
 | |
| 		else if (file_offset >= entry_end(entry))
 | |
| 			n = n->rb_right;
 | |
| 		else
 | |
| 			return n;
 | |
| 	}
 | |
| 	if (!prev_ret)
 | |
| 		return NULL;
 | |
| 
 | |
| 	while (prev && file_offset >= entry_end(prev_entry)) {
 | |
| 		test = rb_next(prev);
 | |
| 		if (!test)
 | |
| 			break;
 | |
| 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 | |
| 				      rb_node);
 | |
| 		if (file_offset < entry_end(prev_entry))
 | |
| 			break;
 | |
| 
 | |
| 		prev = test;
 | |
| 	}
 | |
| 	if (prev)
 | |
| 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 | |
| 				      rb_node);
 | |
| 	while (prev && file_offset < entry_end(prev_entry)) {
 | |
| 		test = rb_prev(prev);
 | |
| 		if (!test)
 | |
| 			break;
 | |
| 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 | |
| 				      rb_node);
 | |
| 		prev = test;
 | |
| 	}
 | |
| 	*prev_ret = prev;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 | |
| 			  u64 len)
 | |
| {
 | |
| 	if (file_offset + len <= entry->file_offset ||
 | |
| 	    entry->file_offset + entry->num_bytes <= file_offset)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * look find the first ordered struct that has this offset, otherwise
 | |
|  * the first one less than this offset
 | |
|  */
 | |
| static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 | |
| 					  u64 file_offset)
 | |
| {
 | |
| 	struct rb_root *root = &tree->tree;
 | |
| 	struct rb_node *prev = NULL;
 | |
| 	struct rb_node *ret;
 | |
| 	struct btrfs_ordered_extent *entry;
 | |
| 
 | |
| 	if (tree->last) {
 | |
| 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 | |
| 				 rb_node);
 | |
| 		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
 | |
| 			return tree->last;
 | |
| 	}
 | |
| 	ret = __tree_search(root, file_offset, &prev);
 | |
| 	if (!ret)
 | |
| 		ret = prev;
 | |
| 	if (ret)
 | |
| 		tree->last = ret;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct btrfs_ordered_extent *alloc_ordered_extent(
 | |
| 			struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
 | |
| 			u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
 | |
| 			u64 offset, unsigned long flags, int compress_type)
 | |
| {
 | |
| 	struct btrfs_ordered_extent *entry;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (flags &
 | |
| 	    ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
 | |
| 		/* For nocow write, we can release the qgroup rsv right now */
 | |
| 		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
 | |
| 		if (ret < 0)
 | |
| 			return ERR_PTR(ret);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The ordered extent has reserved qgroup space, release now
 | |
| 		 * and pass the reserved number for qgroup_record to free.
 | |
| 		 */
 | |
| 		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
 | |
| 		if (ret < 0)
 | |
| 			return ERR_PTR(ret);
 | |
| 	}
 | |
| 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 | |
| 	if (!entry)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	entry->file_offset = file_offset;
 | |
| 	entry->num_bytes = num_bytes;
 | |
| 	entry->ram_bytes = ram_bytes;
 | |
| 	entry->disk_bytenr = disk_bytenr;
 | |
| 	entry->disk_num_bytes = disk_num_bytes;
 | |
| 	entry->offset = offset;
 | |
| 	entry->bytes_left = num_bytes;
 | |
| 	entry->inode = igrab(&inode->vfs_inode);
 | |
| 	entry->compress_type = compress_type;
 | |
| 	entry->truncated_len = (u64)-1;
 | |
| 	entry->qgroup_rsv = ret;
 | |
| 	entry->flags = flags;
 | |
| 	refcount_set(&entry->refs, 1);
 | |
| 	init_waitqueue_head(&entry->wait);
 | |
| 	INIT_LIST_HEAD(&entry->list);
 | |
| 	INIT_LIST_HEAD(&entry->log_list);
 | |
| 	INIT_LIST_HEAD(&entry->root_extent_list);
 | |
| 	INIT_LIST_HEAD(&entry->work_list);
 | |
| 	init_completion(&entry->completion);
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't need the count_max_extents here, we can assume that all of
 | |
| 	 * that work has been done at higher layers, so this is truly the
 | |
| 	 * smallest the extent is going to get.
 | |
| 	 */
 | |
| 	spin_lock(&inode->lock);
 | |
| 	btrfs_mod_outstanding_extents(inode, 1);
 | |
| 	spin_unlock(&inode->lock);
 | |
| 
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
 | |
| {
 | |
| 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
 | |
| 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 | |
| 	struct btrfs_root *root = inode->root;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	trace_btrfs_ordered_extent_add(inode, entry);
 | |
| 
 | |
| 	percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
 | |
| 				 fs_info->delalloc_batch);
 | |
| 
 | |
| 	/* One ref for the tree. */
 | |
| 	refcount_inc(&entry->refs);
 | |
| 
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	node = tree_insert(&tree->tree, entry->file_offset, &entry->rb_node);
 | |
| 	if (node)
 | |
| 		btrfs_panic(fs_info, -EEXIST,
 | |
| 				"inconsistency in ordered tree at offset %llu",
 | |
| 				entry->file_offset);
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| 
 | |
| 	spin_lock(&root->ordered_extent_lock);
 | |
| 	list_add_tail(&entry->root_extent_list,
 | |
| 		      &root->ordered_extents);
 | |
| 	root->nr_ordered_extents++;
 | |
| 	if (root->nr_ordered_extents == 1) {
 | |
| 		spin_lock(&fs_info->ordered_root_lock);
 | |
| 		BUG_ON(!list_empty(&root->ordered_root));
 | |
| 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
 | |
| 		spin_unlock(&fs_info->ordered_root_lock);
 | |
| 	}
 | |
| 	spin_unlock(&root->ordered_extent_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add an ordered extent to the per-inode tree.
 | |
|  *
 | |
|  * @inode:           Inode that this extent is for.
 | |
|  * @file_offset:     Logical offset in file where the extent starts.
 | |
|  * @num_bytes:       Logical length of extent in file.
 | |
|  * @ram_bytes:       Full length of unencoded data.
 | |
|  * @disk_bytenr:     Offset of extent on disk.
 | |
|  * @disk_num_bytes:  Size of extent on disk.
 | |
|  * @offset:          Offset into unencoded data where file data starts.
 | |
|  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
 | |
|  * @compress_type:   Compression algorithm used for data.
 | |
|  *
 | |
|  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
 | |
|  * tree is given a single reference on the ordered extent that was inserted, and
 | |
|  * the returned pointer is given a second reference.
 | |
|  *
 | |
|  * Return: the new ordered extent or error pointer.
 | |
|  */
 | |
| struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
 | |
| 			struct btrfs_inode *inode, u64 file_offset,
 | |
| 			u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
 | |
| 			u64 disk_num_bytes, u64 offset, unsigned long flags,
 | |
| 			int compress_type)
 | |
| {
 | |
| 	struct btrfs_ordered_extent *entry;
 | |
| 
 | |
| 	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
 | |
| 
 | |
| 	entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
 | |
| 				     disk_bytenr, disk_num_bytes, offset, flags,
 | |
| 				     compress_type);
 | |
| 	if (!IS_ERR(entry))
 | |
| 		insert_ordered_extent(entry);
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 | |
|  * when an ordered extent is finished.  If the list covers more than one
 | |
|  * ordered extent, it is split across multiples.
 | |
|  */
 | |
| void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
 | |
| 			   struct btrfs_ordered_sum *sum)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 
 | |
| 	tree = &BTRFS_I(entry->inode)->ordered_tree;
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	list_add_tail(&sum->list, &entry->list);
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| }
 | |
| 
 | |
| static void finish_ordered_fn(struct btrfs_work *work)
 | |
| {
 | |
| 	struct btrfs_ordered_extent *ordered_extent;
 | |
| 
 | |
| 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
 | |
| 	btrfs_finish_ordered_io(ordered_extent);
 | |
| }
 | |
| 
 | |
| static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
 | |
| 				      struct page *page, u64 file_offset,
 | |
| 				      u64 len, bool uptodate)
 | |
| {
 | |
| 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 
 | |
| 	lockdep_assert_held(&inode->ordered_tree.lock);
 | |
| 
 | |
| 	if (page) {
 | |
| 		ASSERT(page->mapping);
 | |
| 		ASSERT(page_offset(page) <= file_offset);
 | |
| 		ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
 | |
| 
 | |
| 		/*
 | |
| 		 * Ordered (Private2) bit indicates whether we still have
 | |
| 		 * pending io unfinished for the ordered extent.
 | |
| 		 *
 | |
| 		 * If there's no such bit, we need to skip to next range.
 | |
| 		 */
 | |
| 		if (!btrfs_page_test_ordered(fs_info, page, file_offset, len))
 | |
| 			return false;
 | |
| 		btrfs_page_clear_ordered(fs_info, page, file_offset, len);
 | |
| 	}
 | |
| 
 | |
| 	/* Now we're fine to update the accounting. */
 | |
| 	if (WARN_ON_ONCE(len > ordered->bytes_left)) {
 | |
| 		btrfs_crit(fs_info,
 | |
| "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
 | |
| 			   inode->root->root_key.objectid, btrfs_ino(inode),
 | |
| 			   ordered->file_offset, ordered->num_bytes,
 | |
| 			   len, ordered->bytes_left);
 | |
| 		ordered->bytes_left = 0;
 | |
| 	} else {
 | |
| 		ordered->bytes_left -= len;
 | |
| 	}
 | |
| 
 | |
| 	if (!uptodate)
 | |
| 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
 | |
| 
 | |
| 	if (ordered->bytes_left)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * All the IO of the ordered extent is finished, we need to queue
 | |
| 	 * the finish_func to be executed.
 | |
| 	 */
 | |
| 	set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
 | |
| 	cond_wake_up(&ordered->wait);
 | |
| 	refcount_inc(&ordered->refs);
 | |
| 	trace_btrfs_ordered_extent_mark_finished(inode, ordered);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
 | |
| {
 | |
| 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
 | |
| 		fs_info->endio_freespace_worker : fs_info->endio_write_workers;
 | |
| 
 | |
| 	btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL);
 | |
| 	btrfs_queue_work(wq, &ordered->work);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark all ordered extents io inside the specified range finished.
 | |
|  *
 | |
|  * @page:	 The involved page for the operation.
 | |
|  *		 For uncompressed buffered IO, the page status also needs to be
 | |
|  *		 updated to indicate whether the pending ordered io is finished.
 | |
|  *		 Can be NULL for direct IO and compressed write.
 | |
|  *		 For these cases, callers are ensured they won't execute the
 | |
|  *		 endio function twice.
 | |
|  *
 | |
|  * This function is called for endio, thus the range must have ordered
 | |
|  * extent(s) covering it.
 | |
|  */
 | |
| void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
 | |
| 				    struct page *page, u64 file_offset,
 | |
| 				    u64 num_bytes, bool uptodate)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_ordered_extent *entry = NULL;
 | |
| 	unsigned long flags;
 | |
| 	u64 cur = file_offset;
 | |
| 
 | |
| 	spin_lock_irqsave(&tree->lock, flags);
 | |
| 	while (cur < file_offset + num_bytes) {
 | |
| 		u64 entry_end;
 | |
| 		u64 end;
 | |
| 		u32 len;
 | |
| 
 | |
| 		node = tree_search(tree, cur);
 | |
| 		/* No ordered extents at all */
 | |
| 		if (!node)
 | |
| 			break;
 | |
| 
 | |
| 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | |
| 		entry_end = entry->file_offset + entry->num_bytes;
 | |
| 		/*
 | |
| 		 * |<-- OE --->|  |
 | |
| 		 *		  cur
 | |
| 		 * Go to next OE.
 | |
| 		 */
 | |
| 		if (cur >= entry_end) {
 | |
| 			node = rb_next(node);
 | |
| 			/* No more ordered extents, exit */
 | |
| 			if (!node)
 | |
| 				break;
 | |
| 			entry = rb_entry(node, struct btrfs_ordered_extent,
 | |
| 					 rb_node);
 | |
| 
 | |
| 			/* Go to next ordered extent and continue */
 | |
| 			cur = entry->file_offset;
 | |
| 			continue;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * |	|<--- OE --->|
 | |
| 		 * cur
 | |
| 		 * Go to the start of OE.
 | |
| 		 */
 | |
| 		if (cur < entry->file_offset) {
 | |
| 			cur = entry->file_offset;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Now we are definitely inside one ordered extent.
 | |
| 		 *
 | |
| 		 * |<--- OE --->|
 | |
| 		 *	|
 | |
| 		 *	cur
 | |
| 		 */
 | |
| 		end = min(entry->file_offset + entry->num_bytes,
 | |
| 			  file_offset + num_bytes) - 1;
 | |
| 		ASSERT(end + 1 - cur < U32_MAX);
 | |
| 		len = end + 1 - cur;
 | |
| 
 | |
| 		if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
 | |
| 			spin_unlock_irqrestore(&tree->lock, flags);
 | |
| 			btrfs_queue_ordered_fn(entry);
 | |
| 			spin_lock_irqsave(&tree->lock, flags);
 | |
| 		}
 | |
| 		cur += len;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&tree->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Finish IO for one ordered extent across a given range.  The range can only
 | |
|  * contain one ordered extent.
 | |
|  *
 | |
|  * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
 | |
|  *               search and use the ordered extent directly.
 | |
|  * 		 Will be also used to store the finished ordered extent.
 | |
|  * @file_offset: File offset for the finished IO
 | |
|  * @io_size:	 Length of the finish IO range
 | |
|  *
 | |
|  * Return true if the ordered extent is finished in the range, and update
 | |
|  * @cached.
 | |
|  * Return false otherwise.
 | |
|  *
 | |
|  * NOTE: The range can NOT cross multiple ordered extents.
 | |
|  * Thus caller should ensure the range doesn't cross ordered extents.
 | |
|  */
 | |
| bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
 | |
| 				    struct btrfs_ordered_extent **cached,
 | |
| 				    u64 file_offset, u64 io_size)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_ordered_extent *entry = NULL;
 | |
| 	unsigned long flags;
 | |
| 	bool finished = false;
 | |
| 
 | |
| 	spin_lock_irqsave(&tree->lock, flags);
 | |
| 	if (cached && *cached) {
 | |
| 		entry = *cached;
 | |
| 		goto have_entry;
 | |
| 	}
 | |
| 
 | |
| 	node = tree_search(tree, file_offset);
 | |
| 	if (!node)
 | |
| 		goto out;
 | |
| 
 | |
| 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | |
| have_entry:
 | |
| 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (io_size > entry->bytes_left)
 | |
| 		btrfs_crit(inode->root->fs_info,
 | |
| 			   "bad ordered accounting left %llu size %llu",
 | |
| 		       entry->bytes_left, io_size);
 | |
| 
 | |
| 	entry->bytes_left -= io_size;
 | |
| 
 | |
| 	if (entry->bytes_left == 0) {
 | |
| 		/*
 | |
| 		 * Ensure only one caller can set the flag and finished_ret
 | |
| 		 * accordingly
 | |
| 		 */
 | |
| 		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 | |
| 		/* test_and_set_bit implies a barrier */
 | |
| 		cond_wake_up_nomb(&entry->wait);
 | |
| 	}
 | |
| out:
 | |
| 	if (finished && cached && entry) {
 | |
| 		*cached = entry;
 | |
| 		refcount_inc(&entry->refs);
 | |
| 		trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&tree->lock, flags);
 | |
| 	return finished;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * used to drop a reference on an ordered extent.  This will free
 | |
|  * the extent if the last reference is dropped
 | |
|  */
 | |
| void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 | |
| {
 | |
| 	struct list_head *cur;
 | |
| 	struct btrfs_ordered_sum *sum;
 | |
| 
 | |
| 	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
 | |
| 
 | |
| 	if (refcount_dec_and_test(&entry->refs)) {
 | |
| 		ASSERT(list_empty(&entry->root_extent_list));
 | |
| 		ASSERT(list_empty(&entry->log_list));
 | |
| 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
 | |
| 		if (entry->inode)
 | |
| 			btrfs_add_delayed_iput(BTRFS_I(entry->inode));
 | |
| 		while (!list_empty(&entry->list)) {
 | |
| 			cur = entry->list.next;
 | |
| 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
 | |
| 			list_del(&sum->list);
 | |
| 			kvfree(sum);
 | |
| 		}
 | |
| 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * remove an ordered extent from the tree.  No references are dropped
 | |
|  * and waiters are woken up.
 | |
|  */
 | |
| void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
 | |
| 				 struct btrfs_ordered_extent *entry)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 	struct btrfs_root *root = btrfs_inode->root;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct rb_node *node;
 | |
| 	bool pending;
 | |
| 	bool freespace_inode;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a free space inode the thread has not acquired the ordered
 | |
| 	 * extents lockdep map.
 | |
| 	 */
 | |
| 	freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
 | |
| 
 | |
| 	btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
 | |
| 	/* This is paired with btrfs_alloc_ordered_extent. */
 | |
| 	spin_lock(&btrfs_inode->lock);
 | |
| 	btrfs_mod_outstanding_extents(btrfs_inode, -1);
 | |
| 	spin_unlock(&btrfs_inode->lock);
 | |
| 	if (root != fs_info->tree_root) {
 | |
| 		u64 release;
 | |
| 
 | |
| 		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
 | |
| 			release = entry->disk_num_bytes;
 | |
| 		else
 | |
| 			release = entry->num_bytes;
 | |
| 		btrfs_delalloc_release_metadata(btrfs_inode, release, false);
 | |
| 	}
 | |
| 
 | |
| 	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
 | |
| 				 fs_info->delalloc_batch);
 | |
| 
 | |
| 	tree = &btrfs_inode->ordered_tree;
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	node = &entry->rb_node;
 | |
| 	rb_erase(node, &tree->tree);
 | |
| 	RB_CLEAR_NODE(node);
 | |
| 	if (tree->last == node)
 | |
| 		tree->last = NULL;
 | |
| 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 | |
| 	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * The current running transaction is waiting on us, we need to let it
 | |
| 	 * know that we're complete and wake it up.
 | |
| 	 */
 | |
| 	if (pending) {
 | |
| 		struct btrfs_transaction *trans;
 | |
| 
 | |
| 		/*
 | |
| 		 * The checks for trans are just a formality, it should be set,
 | |
| 		 * but if it isn't we don't want to deref/assert under the spin
 | |
| 		 * lock, so be nice and check if trans is set, but ASSERT() so
 | |
| 		 * if it isn't set a developer will notice.
 | |
| 		 */
 | |
| 		spin_lock(&fs_info->trans_lock);
 | |
| 		trans = fs_info->running_transaction;
 | |
| 		if (trans)
 | |
| 			refcount_inc(&trans->use_count);
 | |
| 		spin_unlock(&fs_info->trans_lock);
 | |
| 
 | |
| 		ASSERT(trans);
 | |
| 		if (trans) {
 | |
| 			if (atomic_dec_and_test(&trans->pending_ordered))
 | |
| 				wake_up(&trans->pending_wait);
 | |
| 			btrfs_put_transaction(trans);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
 | |
| 
 | |
| 	spin_lock(&root->ordered_extent_lock);
 | |
| 	list_del_init(&entry->root_extent_list);
 | |
| 	root->nr_ordered_extents--;
 | |
| 
 | |
| 	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
 | |
| 
 | |
| 	if (!root->nr_ordered_extents) {
 | |
| 		spin_lock(&fs_info->ordered_root_lock);
 | |
| 		BUG_ON(list_empty(&root->ordered_root));
 | |
| 		list_del_init(&root->ordered_root);
 | |
| 		spin_unlock(&fs_info->ordered_root_lock);
 | |
| 	}
 | |
| 	spin_unlock(&root->ordered_extent_lock);
 | |
| 	wake_up(&entry->wait);
 | |
| 	if (!freespace_inode)
 | |
| 		btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
 | |
| }
 | |
| 
 | |
| static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 | |
| {
 | |
| 	struct btrfs_ordered_extent *ordered;
 | |
| 
 | |
| 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 | |
| 	btrfs_start_ordered_extent(ordered);
 | |
| 	complete(&ordered->completion);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * wait for all the ordered extents in a root.  This is done when balancing
 | |
|  * space between drives.
 | |
|  */
 | |
| u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
 | |
| 			       const u64 range_start, const u64 range_len)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	LIST_HEAD(splice);
 | |
| 	LIST_HEAD(skipped);
 | |
| 	LIST_HEAD(works);
 | |
| 	struct btrfs_ordered_extent *ordered, *next;
 | |
| 	u64 count = 0;
 | |
| 	const u64 range_end = range_start + range_len;
 | |
| 
 | |
| 	mutex_lock(&root->ordered_extent_mutex);
 | |
| 	spin_lock(&root->ordered_extent_lock);
 | |
| 	list_splice_init(&root->ordered_extents, &splice);
 | |
| 	while (!list_empty(&splice) && nr) {
 | |
| 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 | |
| 					   root_extent_list);
 | |
| 
 | |
| 		if (range_end <= ordered->disk_bytenr ||
 | |
| 		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
 | |
| 			list_move_tail(&ordered->root_extent_list, &skipped);
 | |
| 			cond_resched_lock(&root->ordered_extent_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		list_move_tail(&ordered->root_extent_list,
 | |
| 			       &root->ordered_extents);
 | |
| 		refcount_inc(&ordered->refs);
 | |
| 		spin_unlock(&root->ordered_extent_lock);
 | |
| 
 | |
| 		btrfs_init_work(&ordered->flush_work,
 | |
| 				btrfs_run_ordered_extent_work, NULL, NULL);
 | |
| 		list_add_tail(&ordered->work_list, &works);
 | |
| 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
 | |
| 
 | |
| 		cond_resched();
 | |
| 		spin_lock(&root->ordered_extent_lock);
 | |
| 		if (nr != U64_MAX)
 | |
| 			nr--;
 | |
| 		count++;
 | |
| 	}
 | |
| 	list_splice_tail(&skipped, &root->ordered_extents);
 | |
| 	list_splice_tail(&splice, &root->ordered_extents);
 | |
| 	spin_unlock(&root->ordered_extent_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(ordered, next, &works, work_list) {
 | |
| 		list_del_init(&ordered->work_list);
 | |
| 		wait_for_completion(&ordered->completion);
 | |
| 		btrfs_put_ordered_extent(ordered);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	mutex_unlock(&root->ordered_extent_mutex);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
 | |
| 			     const u64 range_start, const u64 range_len)
 | |
| {
 | |
| 	struct btrfs_root *root;
 | |
| 	struct list_head splice;
 | |
| 	u64 done;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&splice);
 | |
| 
 | |
| 	mutex_lock(&fs_info->ordered_operations_mutex);
 | |
| 	spin_lock(&fs_info->ordered_root_lock);
 | |
| 	list_splice_init(&fs_info->ordered_roots, &splice);
 | |
| 	while (!list_empty(&splice) && nr) {
 | |
| 		root = list_first_entry(&splice, struct btrfs_root,
 | |
| 					ordered_root);
 | |
| 		root = btrfs_grab_root(root);
 | |
| 		BUG_ON(!root);
 | |
| 		list_move_tail(&root->ordered_root,
 | |
| 			       &fs_info->ordered_roots);
 | |
| 		spin_unlock(&fs_info->ordered_root_lock);
 | |
| 
 | |
| 		done = btrfs_wait_ordered_extents(root, nr,
 | |
| 						  range_start, range_len);
 | |
| 		btrfs_put_root(root);
 | |
| 
 | |
| 		spin_lock(&fs_info->ordered_root_lock);
 | |
| 		if (nr != U64_MAX) {
 | |
| 			nr -= done;
 | |
| 		}
 | |
| 	}
 | |
| 	list_splice_tail(&splice, &fs_info->ordered_roots);
 | |
| 	spin_unlock(&fs_info->ordered_root_lock);
 | |
| 	mutex_unlock(&fs_info->ordered_operations_mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start IO and wait for a given ordered extent to finish.
 | |
|  *
 | |
|  * Wait on page writeback for all the pages in the extent and the IO completion
 | |
|  * code to insert metadata into the btree corresponding to the extent.
 | |
|  */
 | |
| void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
 | |
| {
 | |
| 	u64 start = entry->file_offset;
 | |
| 	u64 end = start + entry->num_bytes - 1;
 | |
| 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
 | |
| 	bool freespace_inode;
 | |
| 
 | |
| 	trace_btrfs_ordered_extent_start(inode, entry);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a free space inode do not take the ordered extents lockdep
 | |
| 	 * map.
 | |
| 	 */
 | |
| 	freespace_inode = btrfs_is_free_space_inode(inode);
 | |
| 
 | |
| 	/*
 | |
| 	 * pages in the range can be dirty, clean or writeback.  We
 | |
| 	 * start IO on any dirty ones so the wait doesn't stall waiting
 | |
| 	 * for the flusher thread to find them
 | |
| 	 */
 | |
| 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 | |
| 		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
 | |
| 
 | |
| 	if (!freespace_inode)
 | |
| 		btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
 | |
| 	wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used to wait on ordered extents across a large range of bytes.
 | |
|  */
 | |
| int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int ret_wb = 0;
 | |
| 	u64 end;
 | |
| 	u64 orig_end;
 | |
| 	struct btrfs_ordered_extent *ordered;
 | |
| 
 | |
| 	if (start + len < start) {
 | |
| 		orig_end = OFFSET_MAX;
 | |
| 	} else {
 | |
| 		orig_end = start + len - 1;
 | |
| 		if (orig_end > OFFSET_MAX)
 | |
| 			orig_end = OFFSET_MAX;
 | |
| 	}
 | |
| 
 | |
| 	/* start IO across the range first to instantiate any delalloc
 | |
| 	 * extents
 | |
| 	 */
 | |
| 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have a writeback error don't return immediately. Wait first
 | |
| 	 * for any ordered extents that haven't completed yet. This is to make
 | |
| 	 * sure no one can dirty the same page ranges and call writepages()
 | |
| 	 * before the ordered extents complete - to avoid failures (-EEXIST)
 | |
| 	 * when adding the new ordered extents to the ordered tree.
 | |
| 	 */
 | |
| 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 | |
| 
 | |
| 	end = orig_end;
 | |
| 	while (1) {
 | |
| 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
 | |
| 		if (!ordered)
 | |
| 			break;
 | |
| 		if (ordered->file_offset > orig_end) {
 | |
| 			btrfs_put_ordered_extent(ordered);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (ordered->file_offset + ordered->num_bytes <= start) {
 | |
| 			btrfs_put_ordered_extent(ordered);
 | |
| 			break;
 | |
| 		}
 | |
| 		btrfs_start_ordered_extent(ordered);
 | |
| 		end = ordered->file_offset;
 | |
| 		/*
 | |
| 		 * If the ordered extent had an error save the error but don't
 | |
| 		 * exit without waiting first for all other ordered extents in
 | |
| 		 * the range to complete.
 | |
| 		 */
 | |
| 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 | |
| 			ret = -EIO;
 | |
| 		btrfs_put_ordered_extent(ordered);
 | |
| 		if (end == 0 || end == start)
 | |
| 			break;
 | |
| 		end--;
 | |
| 	}
 | |
| 	return ret_wb ? ret_wb : ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find an ordered extent corresponding to file_offset.  return NULL if
 | |
|  * nothing is found, otherwise take a reference on the extent and return it
 | |
|  */
 | |
| struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
 | |
| 							 u64 file_offset)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_ordered_extent *entry = NULL;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	tree = &inode->ordered_tree;
 | |
| 	spin_lock_irqsave(&tree->lock, flags);
 | |
| 	node = tree_search(tree, file_offset);
 | |
| 	if (!node)
 | |
| 		goto out;
 | |
| 
 | |
| 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | |
| 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 | |
| 		entry = NULL;
 | |
| 	if (entry) {
 | |
| 		refcount_inc(&entry->refs);
 | |
| 		trace_btrfs_ordered_extent_lookup(inode, entry);
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&tree->lock, flags);
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| /* Since the DIO code tries to lock a wide area we need to look for any ordered
 | |
|  * extents that exist in the range, rather than just the start of the range.
 | |
|  */
 | |
| struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
 | |
| 		struct btrfs_inode *inode, u64 file_offset, u64 len)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_ordered_extent *entry = NULL;
 | |
| 
 | |
| 	tree = &inode->ordered_tree;
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	node = tree_search(tree, file_offset);
 | |
| 	if (!node) {
 | |
| 		node = tree_search(tree, file_offset + len);
 | |
| 		if (!node)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | |
| 		if (range_overlaps(entry, file_offset, len))
 | |
| 			break;
 | |
| 
 | |
| 		if (entry->file_offset >= file_offset + len) {
 | |
| 			entry = NULL;
 | |
| 			break;
 | |
| 		}
 | |
| 		entry = NULL;
 | |
| 		node = rb_next(node);
 | |
| 		if (!node)
 | |
| 			break;
 | |
| 	}
 | |
| out:
 | |
| 	if (entry) {
 | |
| 		refcount_inc(&entry->refs);
 | |
| 		trace_btrfs_ordered_extent_lookup_range(inode, entry);
 | |
| 	}
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adds all ordered extents to the given list. The list ends up sorted by the
 | |
|  * file_offset of the ordered extents.
 | |
|  */
 | |
| void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
 | |
| 					   struct list_head *list)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 | |
| 	struct rb_node *n;
 | |
| 
 | |
| 	ASSERT(inode_is_locked(&inode->vfs_inode));
 | |
| 
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
 | |
| 		struct btrfs_ordered_extent *ordered;
 | |
| 
 | |
| 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 | |
| 
 | |
| 		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
 | |
| 			continue;
 | |
| 
 | |
| 		ASSERT(list_empty(&ordered->log_list));
 | |
| 		list_add_tail(&ordered->log_list, list);
 | |
| 		refcount_inc(&ordered->refs);
 | |
| 		trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
 | |
| 	}
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * lookup and return any extent before 'file_offset'.  NULL is returned
 | |
|  * if none is found
 | |
|  */
 | |
| struct btrfs_ordered_extent *
 | |
| btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_ordered_extent *entry = NULL;
 | |
| 
 | |
| 	tree = &inode->ordered_tree;
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	node = tree_search(tree, file_offset);
 | |
| 	if (!node)
 | |
| 		goto out;
 | |
| 
 | |
| 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | |
| 	refcount_inc(&entry->refs);
 | |
| 	trace_btrfs_ordered_extent_lookup_first(inode, entry);
 | |
| out:
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lookup the first ordered extent that overlaps the range
 | |
|  * [@file_offset, @file_offset + @len).
 | |
|  *
 | |
|  * The difference between this and btrfs_lookup_first_ordered_extent() is
 | |
|  * that this one won't return any ordered extent that does not overlap the range.
 | |
|  * And the difference against btrfs_lookup_ordered_extent() is, this function
 | |
|  * ensures the first ordered extent gets returned.
 | |
|  */
 | |
| struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
 | |
| 			struct btrfs_inode *inode, u64 file_offset, u64 len)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 | |
| 	struct rb_node *node;
 | |
| 	struct rb_node *cur;
 | |
| 	struct rb_node *prev;
 | |
| 	struct rb_node *next;
 | |
| 	struct btrfs_ordered_extent *entry = NULL;
 | |
| 
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	node = tree->tree.rb_node;
 | |
| 	/*
 | |
| 	 * Here we don't want to use tree_search() which will use tree->last
 | |
| 	 * and screw up the search order.
 | |
| 	 * And __tree_search() can't return the adjacent ordered extents
 | |
| 	 * either, thus here we do our own search.
 | |
| 	 */
 | |
| 	while (node) {
 | |
| 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | |
| 
 | |
| 		if (file_offset < entry->file_offset) {
 | |
| 			node = node->rb_left;
 | |
| 		} else if (file_offset >= entry_end(entry)) {
 | |
| 			node = node->rb_right;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Direct hit, got an ordered extent that starts at
 | |
| 			 * @file_offset
 | |
| 			 */
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!entry) {
 | |
| 		/* Empty tree */
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	cur = &entry->rb_node;
 | |
| 	/* We got an entry around @file_offset, check adjacent entries */
 | |
| 	if (entry->file_offset < file_offset) {
 | |
| 		prev = cur;
 | |
| 		next = rb_next(cur);
 | |
| 	} else {
 | |
| 		prev = rb_prev(cur);
 | |
| 		next = cur;
 | |
| 	}
 | |
| 	if (prev) {
 | |
| 		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
 | |
| 		if (range_overlaps(entry, file_offset, len))
 | |
| 			goto out;
 | |
| 	}
 | |
| 	if (next) {
 | |
| 		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
 | |
| 		if (range_overlaps(entry, file_offset, len))
 | |
| 			goto out;
 | |
| 	}
 | |
| 	/* No ordered extent in the range */
 | |
| 	entry = NULL;
 | |
| out:
 | |
| 	if (entry) {
 | |
| 		refcount_inc(&entry->refs);
 | |
| 		trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lock the passed range and ensures all pending ordered extents in it are run
 | |
|  * to completion.
 | |
|  *
 | |
|  * @inode:        Inode whose ordered tree is to be searched
 | |
|  * @start:        Beginning of range to flush
 | |
|  * @end:          Last byte of range to lock
 | |
|  * @cached_state: If passed, will return the extent state responsible for the
 | |
|  *                locked range. It's the caller's responsibility to free the
 | |
|  *                cached state.
 | |
|  *
 | |
|  * Always return with the given range locked, ensuring after it's called no
 | |
|  * order extent can be pending.
 | |
|  */
 | |
| void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
 | |
| 					u64 end,
 | |
| 					struct extent_state **cached_state)
 | |
| {
 | |
| 	struct btrfs_ordered_extent *ordered;
 | |
| 	struct extent_state *cache = NULL;
 | |
| 	struct extent_state **cachedp = &cache;
 | |
| 
 | |
| 	if (cached_state)
 | |
| 		cachedp = cached_state;
 | |
| 
 | |
| 	while (1) {
 | |
| 		lock_extent(&inode->io_tree, start, end, cachedp);
 | |
| 		ordered = btrfs_lookup_ordered_range(inode, start,
 | |
| 						     end - start + 1);
 | |
| 		if (!ordered) {
 | |
| 			/*
 | |
| 			 * If no external cached_state has been passed then
 | |
| 			 * decrement the extra ref taken for cachedp since we
 | |
| 			 * aren't exposing it outside of this function
 | |
| 			 */
 | |
| 			if (!cached_state)
 | |
| 				refcount_dec(&cache->refs);
 | |
| 			break;
 | |
| 		}
 | |
| 		unlock_extent(&inode->io_tree, start, end, cachedp);
 | |
| 		btrfs_start_ordered_extent(ordered);
 | |
| 		btrfs_put_ordered_extent(ordered);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lock the passed range and ensure all pending ordered extents in it are run
 | |
|  * to completion in nowait mode.
 | |
|  *
 | |
|  * Return true if btrfs_lock_ordered_range does not return any extents,
 | |
|  * otherwise false.
 | |
|  */
 | |
| bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
 | |
| 				  struct extent_state **cached_state)
 | |
| {
 | |
| 	struct btrfs_ordered_extent *ordered;
 | |
| 
 | |
| 	if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
 | |
| 		return false;
 | |
| 
 | |
| 	ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
 | |
| 	if (!ordered)
 | |
| 		return true;
 | |
| 
 | |
| 	btrfs_put_ordered_extent(ordered);
 | |
| 	unlock_extent(&inode->io_tree, start, end, cached_state);
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* Split out a new ordered extent for this first @len bytes of @ordered. */
 | |
| struct btrfs_ordered_extent *btrfs_split_ordered_extent(
 | |
| 			struct btrfs_ordered_extent *ordered, u64 len)
 | |
| {
 | |
| 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
 | |
| 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 | |
| 	struct btrfs_root *root = inode->root;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	u64 file_offset = ordered->file_offset;
 | |
| 	u64 disk_bytenr = ordered->disk_bytenr;
 | |
| 	unsigned long flags = ordered->flags;
 | |
| 	struct btrfs_ordered_sum *sum, *tmpsum;
 | |
| 	struct btrfs_ordered_extent *new;
 | |
| 	struct rb_node *node;
 | |
| 	u64 offset = 0;
 | |
| 
 | |
| 	trace_btrfs_ordered_extent_split(inode, ordered);
 | |
| 
 | |
| 	ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
 | |
| 
 | |
| 	/*
 | |
| 	 * The entire bio must be covered by the ordered extent, but we can't
 | |
| 	 * reduce the original extent to a zero length either.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(len >= ordered->num_bytes))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	/* We cannot split partially completed ordered extents. */
 | |
| 	if (ordered->bytes_left) {
 | |
| 		ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
 | |
| 		if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 	/* We cannot split a compressed ordered extent. */
 | |
| 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
 | |
| 				   len, 0, flags, ordered->compress_type);
 | |
| 	if (IS_ERR(new))
 | |
| 		return new;
 | |
| 
 | |
| 	/* One ref for the tree. */
 | |
| 	refcount_inc(&new->refs);
 | |
| 
 | |
| 	spin_lock_irq(&root->ordered_extent_lock);
 | |
| 	spin_lock(&tree->lock);
 | |
| 	/* Remove from tree once */
 | |
| 	node = &ordered->rb_node;
 | |
| 	rb_erase(node, &tree->tree);
 | |
| 	RB_CLEAR_NODE(node);
 | |
| 	if (tree->last == node)
 | |
| 		tree->last = NULL;
 | |
| 
 | |
| 	ordered->file_offset += len;
 | |
| 	ordered->disk_bytenr += len;
 | |
| 	ordered->num_bytes -= len;
 | |
| 	ordered->disk_num_bytes -= len;
 | |
| 
 | |
| 	if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
 | |
| 		ASSERT(ordered->bytes_left == 0);
 | |
| 		new->bytes_left = 0;
 | |
| 	} else {
 | |
| 		ordered->bytes_left -= len;
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
 | |
| 		if (ordered->truncated_len > len) {
 | |
| 			ordered->truncated_len -= len;
 | |
| 		} else {
 | |
| 			new->truncated_len = ordered->truncated_len;
 | |
| 			ordered->truncated_len = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
 | |
| 		if (offset == len)
 | |
| 			break;
 | |
| 		list_move_tail(&sum->list, &new->list);
 | |
| 		offset += sum->len;
 | |
| 	}
 | |
| 
 | |
| 	/* Re-insert the node */
 | |
| 	node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
 | |
| 	if (node)
 | |
| 		btrfs_panic(fs_info, -EEXIST,
 | |
| 			"zoned: inconsistency in ordered tree at offset %llu",
 | |
| 			ordered->file_offset);
 | |
| 
 | |
| 	node = tree_insert(&tree->tree, new->file_offset, &new->rb_node);
 | |
| 	if (node)
 | |
| 		btrfs_panic(fs_info, -EEXIST,
 | |
| 			"zoned: inconsistency in ordered tree at offset %llu",
 | |
| 			new->file_offset);
 | |
| 	spin_unlock(&tree->lock);
 | |
| 
 | |
| 	list_add_tail(&new->root_extent_list, &root->ordered_extents);
 | |
| 	root->nr_ordered_extents++;
 | |
| 	spin_unlock_irq(&root->ordered_extent_lock);
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| int __init ordered_data_init(void)
 | |
| {
 | |
| 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
 | |
| 				     sizeof(struct btrfs_ordered_extent), 0,
 | |
| 				     SLAB_MEM_SPREAD,
 | |
| 				     NULL);
 | |
| 	if (!btrfs_ordered_extent_cache)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __cold ordered_data_exit(void)
 | |
| {
 | |
| 	kmem_cache_destroy(btrfs_ordered_extent_cache);
 | |
| }
 |