mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	Now that the NVME driver is converted over to the calc_set() callback, the workarounds of the original set support can be removed. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ming Lei <ming.lei@redhat.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Bjorn Helgaas <helgaas@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: linux-block@vger.kernel.org Cc: Sagi Grimberg <sagi@grimberg.me> Cc: linux-nvme@lists.infradead.org Cc: linux-pci@vger.kernel.org Cc: Keith Busch <keith.busch@intel.com> Cc: Sumit Saxena <sumit.saxena@broadcom.com> Cc: Kashyap Desai <kashyap.desai@broadcom.com> Cc: Shivasharan Srikanteshwara <shivasharan.srikanteshwara@broadcom.com> Link: https://lkml.kernel.org/r/20190216172228.689834224@linutronix.de
		
			
				
	
	
		
			347 lines
		
	
	
	
		
			8.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			347 lines
		
	
	
	
		
			8.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Copyright (C) 2016 Thomas Gleixner.
 | 
						|
 * Copyright (C) 2016-2017 Christoph Hellwig.
 | 
						|
 */
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
 | 
						|
static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
 | 
						|
				unsigned int cpus_per_vec)
 | 
						|
{
 | 
						|
	const struct cpumask *siblmsk;
 | 
						|
	int cpu, sibl;
 | 
						|
 | 
						|
	for ( ; cpus_per_vec > 0; ) {
 | 
						|
		cpu = cpumask_first(nmsk);
 | 
						|
 | 
						|
		/* Should not happen, but I'm too lazy to think about it */
 | 
						|
		if (cpu >= nr_cpu_ids)
 | 
						|
			return;
 | 
						|
 | 
						|
		cpumask_clear_cpu(cpu, nmsk);
 | 
						|
		cpumask_set_cpu(cpu, irqmsk);
 | 
						|
		cpus_per_vec--;
 | 
						|
 | 
						|
		/* If the cpu has siblings, use them first */
 | 
						|
		siblmsk = topology_sibling_cpumask(cpu);
 | 
						|
		for (sibl = -1; cpus_per_vec > 0; ) {
 | 
						|
			sibl = cpumask_next(sibl, siblmsk);
 | 
						|
			if (sibl >= nr_cpu_ids)
 | 
						|
				break;
 | 
						|
			if (!cpumask_test_and_clear_cpu(sibl, nmsk))
 | 
						|
				continue;
 | 
						|
			cpumask_set_cpu(sibl, irqmsk);
 | 
						|
			cpus_per_vec--;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static cpumask_var_t *alloc_node_to_cpumask(void)
 | 
						|
{
 | 
						|
	cpumask_var_t *masks;
 | 
						|
	int node;
 | 
						|
 | 
						|
	masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
 | 
						|
	if (!masks)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	for (node = 0; node < nr_node_ids; node++) {
 | 
						|
		if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
 | 
						|
			goto out_unwind;
 | 
						|
	}
 | 
						|
 | 
						|
	return masks;
 | 
						|
 | 
						|
out_unwind:
 | 
						|
	while (--node >= 0)
 | 
						|
		free_cpumask_var(masks[node]);
 | 
						|
	kfree(masks);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void free_node_to_cpumask(cpumask_var_t *masks)
 | 
						|
{
 | 
						|
	int node;
 | 
						|
 | 
						|
	for (node = 0; node < nr_node_ids; node++)
 | 
						|
		free_cpumask_var(masks[node]);
 | 
						|
	kfree(masks);
 | 
						|
}
 | 
						|
 | 
						|
static void build_node_to_cpumask(cpumask_var_t *masks)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	for_each_possible_cpu(cpu)
 | 
						|
		cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
 | 
						|
}
 | 
						|
 | 
						|
static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
 | 
						|
				const struct cpumask *mask, nodemask_t *nodemsk)
 | 
						|
{
 | 
						|
	int n, nodes = 0;
 | 
						|
 | 
						|
	/* Calculate the number of nodes in the supplied affinity mask */
 | 
						|
	for_each_node(n) {
 | 
						|
		if (cpumask_intersects(mask, node_to_cpumask[n])) {
 | 
						|
			node_set(n, *nodemsk);
 | 
						|
			nodes++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return nodes;
 | 
						|
}
 | 
						|
 | 
						|
static int __irq_build_affinity_masks(const struct irq_affinity *affd,
 | 
						|
				      unsigned int startvec,
 | 
						|
				      unsigned int numvecs,
 | 
						|
				      unsigned int firstvec,
 | 
						|
				      cpumask_var_t *node_to_cpumask,
 | 
						|
				      const struct cpumask *cpu_mask,
 | 
						|
				      struct cpumask *nmsk,
 | 
						|
				      struct irq_affinity_desc *masks)
 | 
						|
{
 | 
						|
	unsigned int n, nodes, cpus_per_vec, extra_vecs, done = 0;
 | 
						|
	unsigned int last_affv = firstvec + numvecs;
 | 
						|
	unsigned int curvec = startvec;
 | 
						|
	nodemask_t nodemsk = NODE_MASK_NONE;
 | 
						|
 | 
						|
	if (!cpumask_weight(cpu_mask))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the number of nodes in the mask is greater than or equal the
 | 
						|
	 * number of vectors we just spread the vectors across the nodes.
 | 
						|
	 */
 | 
						|
	if (numvecs <= nodes) {
 | 
						|
		for_each_node_mask(n, nodemsk) {
 | 
						|
			cpumask_or(&masks[curvec].mask, &masks[curvec].mask,
 | 
						|
				   node_to_cpumask[n]);
 | 
						|
			if (++curvec == last_affv)
 | 
						|
				curvec = firstvec;
 | 
						|
		}
 | 
						|
		return numvecs;
 | 
						|
	}
 | 
						|
 | 
						|
	for_each_node_mask(n, nodemsk) {
 | 
						|
		unsigned int ncpus, v, vecs_to_assign, vecs_per_node;
 | 
						|
 | 
						|
		/* Spread the vectors per node */
 | 
						|
		vecs_per_node = (numvecs - (curvec - firstvec)) / nodes;
 | 
						|
 | 
						|
		/* Get the cpus on this node which are in the mask */
 | 
						|
		cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
 | 
						|
 | 
						|
		/* Calculate the number of cpus per vector */
 | 
						|
		ncpus = cpumask_weight(nmsk);
 | 
						|
		vecs_to_assign = min(vecs_per_node, ncpus);
 | 
						|
 | 
						|
		/* Account for rounding errors */
 | 
						|
		extra_vecs = ncpus - vecs_to_assign * (ncpus / vecs_to_assign);
 | 
						|
 | 
						|
		for (v = 0; curvec < last_affv && v < vecs_to_assign;
 | 
						|
		     curvec++, v++) {
 | 
						|
			cpus_per_vec = ncpus / vecs_to_assign;
 | 
						|
 | 
						|
			/* Account for extra vectors to compensate rounding errors */
 | 
						|
			if (extra_vecs) {
 | 
						|
				cpus_per_vec++;
 | 
						|
				--extra_vecs;
 | 
						|
			}
 | 
						|
			irq_spread_init_one(&masks[curvec].mask, nmsk,
 | 
						|
						cpus_per_vec);
 | 
						|
		}
 | 
						|
 | 
						|
		done += v;
 | 
						|
		if (done >= numvecs)
 | 
						|
			break;
 | 
						|
		if (curvec >= last_affv)
 | 
						|
			curvec = firstvec;
 | 
						|
		--nodes;
 | 
						|
	}
 | 
						|
	return done;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * build affinity in two stages:
 | 
						|
 *	1) spread present CPU on these vectors
 | 
						|
 *	2) spread other possible CPUs on these vectors
 | 
						|
 */
 | 
						|
static int irq_build_affinity_masks(const struct irq_affinity *affd,
 | 
						|
				    unsigned int startvec, unsigned int numvecs,
 | 
						|
				    unsigned int firstvec,
 | 
						|
				    struct irq_affinity_desc *masks)
 | 
						|
{
 | 
						|
	unsigned int curvec = startvec, nr_present, nr_others;
 | 
						|
	cpumask_var_t *node_to_cpumask;
 | 
						|
	cpumask_var_t nmsk, npresmsk;
 | 
						|
	int ret = -ENOMEM;
 | 
						|
 | 
						|
	if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
 | 
						|
		goto fail_nmsk;
 | 
						|
 | 
						|
	node_to_cpumask = alloc_node_to_cpumask();
 | 
						|
	if (!node_to_cpumask)
 | 
						|
		goto fail_npresmsk;
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
	/* Stabilize the cpumasks */
 | 
						|
	get_online_cpus();
 | 
						|
	build_node_to_cpumask(node_to_cpumask);
 | 
						|
 | 
						|
	/* Spread on present CPUs starting from affd->pre_vectors */
 | 
						|
	nr_present = __irq_build_affinity_masks(affd, curvec, numvecs,
 | 
						|
						firstvec, node_to_cpumask,
 | 
						|
						cpu_present_mask, nmsk, masks);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Spread on non present CPUs starting from the next vector to be
 | 
						|
	 * handled. If the spreading of present CPUs already exhausted the
 | 
						|
	 * vector space, assign the non present CPUs to the already spread
 | 
						|
	 * out vectors.
 | 
						|
	 */
 | 
						|
	if (nr_present >= numvecs)
 | 
						|
		curvec = firstvec;
 | 
						|
	else
 | 
						|
		curvec = firstvec + nr_present;
 | 
						|
	cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
 | 
						|
	nr_others = __irq_build_affinity_masks(affd, curvec, numvecs,
 | 
						|
					       firstvec, node_to_cpumask,
 | 
						|
					       npresmsk, nmsk, masks);
 | 
						|
	put_online_cpus();
 | 
						|
 | 
						|
	if (nr_present < numvecs)
 | 
						|
		WARN_ON(nr_present + nr_others < numvecs);
 | 
						|
 | 
						|
	free_node_to_cpumask(node_to_cpumask);
 | 
						|
 | 
						|
 fail_npresmsk:
 | 
						|
	free_cpumask_var(npresmsk);
 | 
						|
 | 
						|
 fail_nmsk:
 | 
						|
	free_cpumask_var(nmsk);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs)
 | 
						|
{
 | 
						|
	affd->nr_sets = 1;
 | 
						|
	affd->set_size[0] = affvecs;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * irq_create_affinity_masks - Create affinity masks for multiqueue spreading
 | 
						|
 * @nvecs:	The total number of vectors
 | 
						|
 * @affd:	Description of the affinity requirements
 | 
						|
 *
 | 
						|
 * Returns the irq_affinity_desc pointer or NULL if allocation failed.
 | 
						|
 */
 | 
						|
struct irq_affinity_desc *
 | 
						|
irq_create_affinity_masks(unsigned int nvecs, struct irq_affinity *affd)
 | 
						|
{
 | 
						|
	unsigned int affvecs, curvec, usedvecs, i;
 | 
						|
	struct irq_affinity_desc *masks = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Determine the number of vectors which need interrupt affinities
 | 
						|
	 * assigned. If the pre/post request exhausts the available vectors
 | 
						|
	 * then nothing to do here except for invoking the calc_sets()
 | 
						|
	 * callback so the device driver can adjust to the situation. If there
 | 
						|
	 * is only a single vector, then managing the queue is pointless as
 | 
						|
	 * well.
 | 
						|
	 */
 | 
						|
	if (nvecs > 1 && nvecs > affd->pre_vectors + affd->post_vectors)
 | 
						|
		affvecs = nvecs - affd->pre_vectors - affd->post_vectors;
 | 
						|
	else
 | 
						|
		affvecs = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Simple invocations do not provide a calc_sets() callback. Install
 | 
						|
	 * the generic one.
 | 
						|
	 */
 | 
						|
	if (!affd->calc_sets)
 | 
						|
		affd->calc_sets = default_calc_sets;
 | 
						|
 | 
						|
	/* Recalculate the sets */
 | 
						|
	affd->calc_sets(affd, affvecs);
 | 
						|
 | 
						|
	if (WARN_ON_ONCE(affd->nr_sets > IRQ_AFFINITY_MAX_SETS))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/* Nothing to assign? */
 | 
						|
	if (!affvecs)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	masks = kcalloc(nvecs, sizeof(*masks), GFP_KERNEL);
 | 
						|
	if (!masks)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/* Fill out vectors at the beginning that don't need affinity */
 | 
						|
	for (curvec = 0; curvec < affd->pre_vectors; curvec++)
 | 
						|
		cpumask_copy(&masks[curvec].mask, irq_default_affinity);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Spread on present CPUs starting from affd->pre_vectors. If we
 | 
						|
	 * have multiple sets, build each sets affinity mask separately.
 | 
						|
	 */
 | 
						|
	for (i = 0, usedvecs = 0; i < affd->nr_sets; i++) {
 | 
						|
		unsigned int this_vecs = affd->set_size[i];
 | 
						|
		int ret;
 | 
						|
 | 
						|
		ret = irq_build_affinity_masks(affd, curvec, this_vecs,
 | 
						|
					       curvec, masks);
 | 
						|
		if (ret) {
 | 
						|
			kfree(masks);
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
		curvec += this_vecs;
 | 
						|
		usedvecs += this_vecs;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Fill out vectors at the end that don't need affinity */
 | 
						|
	if (usedvecs >= affvecs)
 | 
						|
		curvec = affd->pre_vectors + affvecs;
 | 
						|
	else
 | 
						|
		curvec = affd->pre_vectors + usedvecs;
 | 
						|
	for (; curvec < nvecs; curvec++)
 | 
						|
		cpumask_copy(&masks[curvec].mask, irq_default_affinity);
 | 
						|
 | 
						|
	/* Mark the managed interrupts */
 | 
						|
	for (i = affd->pre_vectors; i < nvecs - affd->post_vectors; i++)
 | 
						|
		masks[i].is_managed = 1;
 | 
						|
 | 
						|
	return masks;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * irq_calc_affinity_vectors - Calculate the optimal number of vectors
 | 
						|
 * @minvec:	The minimum number of vectors available
 | 
						|
 * @maxvec:	The maximum number of vectors available
 | 
						|
 * @affd:	Description of the affinity requirements
 | 
						|
 */
 | 
						|
unsigned int irq_calc_affinity_vectors(unsigned int minvec, unsigned int maxvec,
 | 
						|
				       const struct irq_affinity *affd)
 | 
						|
{
 | 
						|
	unsigned int resv = affd->pre_vectors + affd->post_vectors;
 | 
						|
	unsigned int set_vecs;
 | 
						|
 | 
						|
	if (resv > minvec)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (affd->calc_sets) {
 | 
						|
		set_vecs = maxvec - resv;
 | 
						|
	} else {
 | 
						|
		get_online_cpus();
 | 
						|
		set_vecs = cpumask_weight(cpu_possible_mask);
 | 
						|
		put_online_cpus();
 | 
						|
	}
 | 
						|
 | 
						|
	return resv + min(set_vecs, maxvec - resv);
 | 
						|
}
 |