mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-03 18:20:25 +02:00 
			
		
		
		
	A lot of system calls that pass a time_t somewhere have an implementation using a COMPAT_SYSCALL_DEFINEx() on 64-bit architectures, and have been reworked so that this implementation can now be used on 32-bit architectures as well. The missing step is to redefine them using the regular SYSCALL_DEFINEx() to get them out of the compat namespace and make it possible to build them on 32-bit architectures. Any system call that ends in 'time' gets a '32' suffix on its name for that version, while the others get a '_time32' suffix, to distinguish them from the normal version, which takes a 64-bit time argument in the future. In this step, only 64-bit architectures are changed, doing this rename first lets us avoid touching the 32-bit architectures twice. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
		
			
				
	
	
		
			1338 lines
		
	
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1338 lines
		
	
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0+
 | 
						|
/*
 | 
						|
 * 2002-10-15  Posix Clocks & timers
 | 
						|
 *                           by George Anzinger george@mvista.com
 | 
						|
 *			     Copyright (C) 2002 2003 by MontaVista Software.
 | 
						|
 *
 | 
						|
 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
 | 
						|
 *			     Copyright (C) 2004 Boris Hu
 | 
						|
 *
 | 
						|
 * These are all the functions necessary to implement POSIX clocks & timers
 | 
						|
 */
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/time.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
#include <linux/sched/task.h>
 | 
						|
 | 
						|
#include <linux/uaccess.h>
 | 
						|
#include <linux/list.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/compiler.h>
 | 
						|
#include <linux/hash.h>
 | 
						|
#include <linux/posix-clock.h>
 | 
						|
#include <linux/posix-timers.h>
 | 
						|
#include <linux/syscalls.h>
 | 
						|
#include <linux/wait.h>
 | 
						|
#include <linux/workqueue.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/hashtable.h>
 | 
						|
#include <linux/compat.h>
 | 
						|
#include <linux/nospec.h>
 | 
						|
 | 
						|
#include "timekeeping.h"
 | 
						|
#include "posix-timers.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * Management arrays for POSIX timers. Timers are now kept in static hash table
 | 
						|
 * with 512 entries.
 | 
						|
 * Timer ids are allocated by local routine, which selects proper hash head by
 | 
						|
 * key, constructed from current->signal address and per signal struct counter.
 | 
						|
 * This keeps timer ids unique per process, but now they can intersect between
 | 
						|
 * processes.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Lets keep our timers in a slab cache :-)
 | 
						|
 */
 | 
						|
static struct kmem_cache *posix_timers_cache;
 | 
						|
 | 
						|
static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
 | 
						|
static DEFINE_SPINLOCK(hash_lock);
 | 
						|
 | 
						|
static const struct k_clock * const posix_clocks[];
 | 
						|
static const struct k_clock *clockid_to_kclock(const clockid_t id);
 | 
						|
static const struct k_clock clock_realtime, clock_monotonic;
 | 
						|
 | 
						|
/*
 | 
						|
 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
 | 
						|
 * SIGEV values.  Here we put out an error if this assumption fails.
 | 
						|
 */
 | 
						|
#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
 | 
						|
                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
 | 
						|
#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * The timer ID is turned into a timer address by idr_find().
 | 
						|
 * Verifying a valid ID consists of:
 | 
						|
 *
 | 
						|
 * a) checking that idr_find() returns other than -1.
 | 
						|
 * b) checking that the timer id matches the one in the timer itself.
 | 
						|
 * c) that the timer owner is in the callers thread group.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
 | 
						|
 *	    to implement others.  This structure defines the various
 | 
						|
 *	    clocks.
 | 
						|
 *
 | 
						|
 * RESOLUTION: Clock resolution is used to round up timer and interval
 | 
						|
 *	    times, NOT to report clock times, which are reported with as
 | 
						|
 *	    much resolution as the system can muster.  In some cases this
 | 
						|
 *	    resolution may depend on the underlying clock hardware and
 | 
						|
 *	    may not be quantifiable until run time, and only then is the
 | 
						|
 *	    necessary code is written.	The standard says we should say
 | 
						|
 *	    something about this issue in the documentation...
 | 
						|
 *
 | 
						|
 * FUNCTIONS: The CLOCKs structure defines possible functions to
 | 
						|
 *	    handle various clock functions.
 | 
						|
 *
 | 
						|
 *	    The standard POSIX timer management code assumes the
 | 
						|
 *	    following: 1.) The k_itimer struct (sched.h) is used for
 | 
						|
 *	    the timer.  2.) The list, it_lock, it_clock, it_id and
 | 
						|
 *	    it_pid fields are not modified by timer code.
 | 
						|
 *
 | 
						|
 * Permissions: It is assumed that the clock_settime() function defined
 | 
						|
 *	    for each clock will take care of permission checks.	 Some
 | 
						|
 *	    clocks may be set able by any user (i.e. local process
 | 
						|
 *	    clocks) others not.	 Currently the only set able clock we
 | 
						|
 *	    have is CLOCK_REALTIME and its high res counter part, both of
 | 
						|
 *	    which we beg off on and pass to do_sys_settimeofday().
 | 
						|
 */
 | 
						|
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
 | 
						|
 | 
						|
#define lock_timer(tid, flags)						   \
 | 
						|
({	struct k_itimer *__timr;					   \
 | 
						|
	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
 | 
						|
	__timr;								   \
 | 
						|
})
 | 
						|
 | 
						|
static int hash(struct signal_struct *sig, unsigned int nr)
 | 
						|
{
 | 
						|
	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
 | 
						|
}
 | 
						|
 | 
						|
static struct k_itimer *__posix_timers_find(struct hlist_head *head,
 | 
						|
					    struct signal_struct *sig,
 | 
						|
					    timer_t id)
 | 
						|
{
 | 
						|
	struct k_itimer *timer;
 | 
						|
 | 
						|
	hlist_for_each_entry_rcu(timer, head, t_hash) {
 | 
						|
		if ((timer->it_signal == sig) && (timer->it_id == id))
 | 
						|
			return timer;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static struct k_itimer *posix_timer_by_id(timer_t id)
 | 
						|
{
 | 
						|
	struct signal_struct *sig = current->signal;
 | 
						|
	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
 | 
						|
 | 
						|
	return __posix_timers_find(head, sig, id);
 | 
						|
}
 | 
						|
 | 
						|
static int posix_timer_add(struct k_itimer *timer)
 | 
						|
{
 | 
						|
	struct signal_struct *sig = current->signal;
 | 
						|
	int first_free_id = sig->posix_timer_id;
 | 
						|
	struct hlist_head *head;
 | 
						|
	int ret = -ENOENT;
 | 
						|
 | 
						|
	do {
 | 
						|
		spin_lock(&hash_lock);
 | 
						|
		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
 | 
						|
		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
 | 
						|
			hlist_add_head_rcu(&timer->t_hash, head);
 | 
						|
			ret = sig->posix_timer_id;
 | 
						|
		}
 | 
						|
		if (++sig->posix_timer_id < 0)
 | 
						|
			sig->posix_timer_id = 0;
 | 
						|
		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
 | 
						|
			/* Loop over all possible ids completed */
 | 
						|
			ret = -EAGAIN;
 | 
						|
		spin_unlock(&hash_lock);
 | 
						|
	} while (ret == -ENOENT);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
 | 
						|
{
 | 
						|
	spin_unlock_irqrestore(&timr->it_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
/* Get clock_realtime */
 | 
						|
static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
 | 
						|
{
 | 
						|
	ktime_get_real_ts64(tp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Set clock_realtime */
 | 
						|
static int posix_clock_realtime_set(const clockid_t which_clock,
 | 
						|
				    const struct timespec64 *tp)
 | 
						|
{
 | 
						|
	return do_sys_settimeofday64(tp, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static int posix_clock_realtime_adj(const clockid_t which_clock,
 | 
						|
				    struct __kernel_timex *t)
 | 
						|
{
 | 
						|
	return do_adjtimex(t);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get monotonic time for posix timers
 | 
						|
 */
 | 
						|
static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
 | 
						|
{
 | 
						|
	ktime_get_ts64(tp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get monotonic-raw time for posix timers
 | 
						|
 */
 | 
						|
static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
 | 
						|
{
 | 
						|
	ktime_get_raw_ts64(tp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
 | 
						|
{
 | 
						|
	ktime_get_coarse_real_ts64(tp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int posix_get_monotonic_coarse(clockid_t which_clock,
 | 
						|
						struct timespec64 *tp)
 | 
						|
{
 | 
						|
	ktime_get_coarse_ts64(tp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
 | 
						|
{
 | 
						|
	*tp = ktime_to_timespec64(KTIME_LOW_RES);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
 | 
						|
{
 | 
						|
	ktime_get_boottime_ts64(tp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
 | 
						|
{
 | 
						|
	ktime_get_clocktai_ts64(tp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
 | 
						|
{
 | 
						|
	tp->tv_sec = 0;
 | 
						|
	tp->tv_nsec = hrtimer_resolution;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize everything, well, just everything in Posix clocks/timers ;)
 | 
						|
 */
 | 
						|
static __init int init_posix_timers(void)
 | 
						|
{
 | 
						|
	posix_timers_cache = kmem_cache_create("posix_timers_cache",
 | 
						|
					sizeof (struct k_itimer), 0, SLAB_PANIC,
 | 
						|
					NULL);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
__initcall(init_posix_timers);
 | 
						|
 | 
						|
/*
 | 
						|
 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
 | 
						|
 * are of type int. Clamp the overrun value to INT_MAX
 | 
						|
 */
 | 
						|
static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
 | 
						|
{
 | 
						|
	s64 sum = timr->it_overrun_last + (s64)baseval;
 | 
						|
 | 
						|
	return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
 | 
						|
}
 | 
						|
 | 
						|
static void common_hrtimer_rearm(struct k_itimer *timr)
 | 
						|
{
 | 
						|
	struct hrtimer *timer = &timr->it.real.timer;
 | 
						|
 | 
						|
	timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
 | 
						|
					    timr->it_interval);
 | 
						|
	hrtimer_restart(timer);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function is exported for use by the signal deliver code.  It is
 | 
						|
 * called just prior to the info block being released and passes that
 | 
						|
 * block to us.  It's function is to update the overrun entry AND to
 | 
						|
 * restart the timer.  It should only be called if the timer is to be
 | 
						|
 * restarted (i.e. we have flagged this in the sys_private entry of the
 | 
						|
 * info block).
 | 
						|
 *
 | 
						|
 * To protect against the timer going away while the interrupt is queued,
 | 
						|
 * we require that the it_requeue_pending flag be set.
 | 
						|
 */
 | 
						|
void posixtimer_rearm(struct kernel_siginfo *info)
 | 
						|
{
 | 
						|
	struct k_itimer *timr;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	timr = lock_timer(info->si_tid, &flags);
 | 
						|
	if (!timr)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
 | 
						|
		timr->kclock->timer_rearm(timr);
 | 
						|
 | 
						|
		timr->it_active = 1;
 | 
						|
		timr->it_overrun_last = timr->it_overrun;
 | 
						|
		timr->it_overrun = -1LL;
 | 
						|
		++timr->it_requeue_pending;
 | 
						|
 | 
						|
		info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
 | 
						|
	}
 | 
						|
 | 
						|
	unlock_timer(timr, flags);
 | 
						|
}
 | 
						|
 | 
						|
int posix_timer_event(struct k_itimer *timr, int si_private)
 | 
						|
{
 | 
						|
	enum pid_type type;
 | 
						|
	int ret = -1;
 | 
						|
	/*
 | 
						|
	 * FIXME: if ->sigq is queued we can race with
 | 
						|
	 * dequeue_signal()->posixtimer_rearm().
 | 
						|
	 *
 | 
						|
	 * If dequeue_signal() sees the "right" value of
 | 
						|
	 * si_sys_private it calls posixtimer_rearm().
 | 
						|
	 * We re-queue ->sigq and drop ->it_lock().
 | 
						|
	 * posixtimer_rearm() locks the timer
 | 
						|
	 * and re-schedules it while ->sigq is pending.
 | 
						|
	 * Not really bad, but not that we want.
 | 
						|
	 */
 | 
						|
	timr->sigq->info.si_sys_private = si_private;
 | 
						|
 | 
						|
	type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
 | 
						|
	ret = send_sigqueue(timr->sigq, timr->it_pid, type);
 | 
						|
	/* If we failed to send the signal the timer stops. */
 | 
						|
	return ret > 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function gets called when a POSIX.1b interval timer expires.  It
 | 
						|
 * is used as a callback from the kernel internal timer.  The
 | 
						|
 * run_timer_list code ALWAYS calls with interrupts on.
 | 
						|
 | 
						|
 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 | 
						|
 */
 | 
						|
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
 | 
						|
{
 | 
						|
	struct k_itimer *timr;
 | 
						|
	unsigned long flags;
 | 
						|
	int si_private = 0;
 | 
						|
	enum hrtimer_restart ret = HRTIMER_NORESTART;
 | 
						|
 | 
						|
	timr = container_of(timer, struct k_itimer, it.real.timer);
 | 
						|
	spin_lock_irqsave(&timr->it_lock, flags);
 | 
						|
 | 
						|
	timr->it_active = 0;
 | 
						|
	if (timr->it_interval != 0)
 | 
						|
		si_private = ++timr->it_requeue_pending;
 | 
						|
 | 
						|
	if (posix_timer_event(timr, si_private)) {
 | 
						|
		/*
 | 
						|
		 * signal was not sent because of sig_ignor
 | 
						|
		 * we will not get a call back to restart it AND
 | 
						|
		 * it should be restarted.
 | 
						|
		 */
 | 
						|
		if (timr->it_interval != 0) {
 | 
						|
			ktime_t now = hrtimer_cb_get_time(timer);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * FIXME: What we really want, is to stop this
 | 
						|
			 * timer completely and restart it in case the
 | 
						|
			 * SIG_IGN is removed. This is a non trivial
 | 
						|
			 * change which involves sighand locking
 | 
						|
			 * (sigh !), which we don't want to do late in
 | 
						|
			 * the release cycle.
 | 
						|
			 *
 | 
						|
			 * For now we just let timers with an interval
 | 
						|
			 * less than a jiffie expire every jiffie to
 | 
						|
			 * avoid softirq starvation in case of SIG_IGN
 | 
						|
			 * and a very small interval, which would put
 | 
						|
			 * the timer right back on the softirq pending
 | 
						|
			 * list. By moving now ahead of time we trick
 | 
						|
			 * hrtimer_forward() to expire the timer
 | 
						|
			 * later, while we still maintain the overrun
 | 
						|
			 * accuracy, but have some inconsistency in
 | 
						|
			 * the timer_gettime() case. This is at least
 | 
						|
			 * better than a starved softirq. A more
 | 
						|
			 * complex fix which solves also another related
 | 
						|
			 * inconsistency is already in the pipeline.
 | 
						|
			 */
 | 
						|
#ifdef CONFIG_HIGH_RES_TIMERS
 | 
						|
			{
 | 
						|
				ktime_t kj = NSEC_PER_SEC / HZ;
 | 
						|
 | 
						|
				if (timr->it_interval < kj)
 | 
						|
					now = ktime_add(now, kj);
 | 
						|
			}
 | 
						|
#endif
 | 
						|
			timr->it_overrun += hrtimer_forward(timer, now,
 | 
						|
							    timr->it_interval);
 | 
						|
			ret = HRTIMER_RESTART;
 | 
						|
			++timr->it_requeue_pending;
 | 
						|
			timr->it_active = 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	unlock_timer(timr, flags);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static struct pid *good_sigevent(sigevent_t * event)
 | 
						|
{
 | 
						|
	struct pid *pid = task_tgid(current);
 | 
						|
	struct task_struct *rtn;
 | 
						|
 | 
						|
	switch (event->sigev_notify) {
 | 
						|
	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
 | 
						|
		pid = find_vpid(event->sigev_notify_thread_id);
 | 
						|
		rtn = pid_task(pid, PIDTYPE_PID);
 | 
						|
		if (!rtn || !same_thread_group(rtn, current))
 | 
						|
			return NULL;
 | 
						|
		/* FALLTHRU */
 | 
						|
	case SIGEV_SIGNAL:
 | 
						|
	case SIGEV_THREAD:
 | 
						|
		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
 | 
						|
			return NULL;
 | 
						|
		/* FALLTHRU */
 | 
						|
	case SIGEV_NONE:
 | 
						|
		return pid;
 | 
						|
	default:
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static struct k_itimer * alloc_posix_timer(void)
 | 
						|
{
 | 
						|
	struct k_itimer *tmr;
 | 
						|
	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
 | 
						|
	if (!tmr)
 | 
						|
		return tmr;
 | 
						|
	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
 | 
						|
		kmem_cache_free(posix_timers_cache, tmr);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	clear_siginfo(&tmr->sigq->info);
 | 
						|
	return tmr;
 | 
						|
}
 | 
						|
 | 
						|
static void k_itimer_rcu_free(struct rcu_head *head)
 | 
						|
{
 | 
						|
	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
 | 
						|
 | 
						|
	kmem_cache_free(posix_timers_cache, tmr);
 | 
						|
}
 | 
						|
 | 
						|
#define IT_ID_SET	1
 | 
						|
#define IT_ID_NOT_SET	0
 | 
						|
static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
 | 
						|
{
 | 
						|
	if (it_id_set) {
 | 
						|
		unsigned long flags;
 | 
						|
		spin_lock_irqsave(&hash_lock, flags);
 | 
						|
		hlist_del_rcu(&tmr->t_hash);
 | 
						|
		spin_unlock_irqrestore(&hash_lock, flags);
 | 
						|
	}
 | 
						|
	put_pid(tmr->it_pid);
 | 
						|
	sigqueue_free(tmr->sigq);
 | 
						|
	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
 | 
						|
}
 | 
						|
 | 
						|
static int common_timer_create(struct k_itimer *new_timer)
 | 
						|
{
 | 
						|
	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Create a POSIX.1b interval timer. */
 | 
						|
static int do_timer_create(clockid_t which_clock, struct sigevent *event,
 | 
						|
			   timer_t __user *created_timer_id)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | 
						|
	struct k_itimer *new_timer;
 | 
						|
	int error, new_timer_id;
 | 
						|
	int it_id_set = IT_ID_NOT_SET;
 | 
						|
 | 
						|
	if (!kc)
 | 
						|
		return -EINVAL;
 | 
						|
	if (!kc->timer_create)
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	new_timer = alloc_posix_timer();
 | 
						|
	if (unlikely(!new_timer))
 | 
						|
		return -EAGAIN;
 | 
						|
 | 
						|
	spin_lock_init(&new_timer->it_lock);
 | 
						|
	new_timer_id = posix_timer_add(new_timer);
 | 
						|
	if (new_timer_id < 0) {
 | 
						|
		error = new_timer_id;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	it_id_set = IT_ID_SET;
 | 
						|
	new_timer->it_id = (timer_t) new_timer_id;
 | 
						|
	new_timer->it_clock = which_clock;
 | 
						|
	new_timer->kclock = kc;
 | 
						|
	new_timer->it_overrun = -1LL;
 | 
						|
 | 
						|
	if (event) {
 | 
						|
		rcu_read_lock();
 | 
						|
		new_timer->it_pid = get_pid(good_sigevent(event));
 | 
						|
		rcu_read_unlock();
 | 
						|
		if (!new_timer->it_pid) {
 | 
						|
			error = -EINVAL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		new_timer->it_sigev_notify     = event->sigev_notify;
 | 
						|
		new_timer->sigq->info.si_signo = event->sigev_signo;
 | 
						|
		new_timer->sigq->info.si_value = event->sigev_value;
 | 
						|
	} else {
 | 
						|
		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
 | 
						|
		new_timer->sigq->info.si_signo = SIGALRM;
 | 
						|
		memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
 | 
						|
		new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
 | 
						|
		new_timer->it_pid = get_pid(task_tgid(current));
 | 
						|
	}
 | 
						|
 | 
						|
	new_timer->sigq->info.si_tid   = new_timer->it_id;
 | 
						|
	new_timer->sigq->info.si_code  = SI_TIMER;
 | 
						|
 | 
						|
	if (copy_to_user(created_timer_id,
 | 
						|
			 &new_timer_id, sizeof (new_timer_id))) {
 | 
						|
		error = -EFAULT;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	error = kc->timer_create(new_timer);
 | 
						|
	if (error)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	spin_lock_irq(¤t->sighand->siglock);
 | 
						|
	new_timer->it_signal = current->signal;
 | 
						|
	list_add(&new_timer->list, ¤t->signal->posix_timers);
 | 
						|
	spin_unlock_irq(¤t->sighand->siglock);
 | 
						|
 | 
						|
	return 0;
 | 
						|
	/*
 | 
						|
	 * In the case of the timer belonging to another task, after
 | 
						|
	 * the task is unlocked, the timer is owned by the other task
 | 
						|
	 * and may cease to exist at any time.  Don't use or modify
 | 
						|
	 * new_timer after the unlock call.
 | 
						|
	 */
 | 
						|
out:
 | 
						|
	release_posix_timer(new_timer, it_id_set);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
 | 
						|
		struct sigevent __user *, timer_event_spec,
 | 
						|
		timer_t __user *, created_timer_id)
 | 
						|
{
 | 
						|
	if (timer_event_spec) {
 | 
						|
		sigevent_t event;
 | 
						|
 | 
						|
		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
 | 
						|
			return -EFAULT;
 | 
						|
		return do_timer_create(which_clock, &event, created_timer_id);
 | 
						|
	}
 | 
						|
	return do_timer_create(which_clock, NULL, created_timer_id);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_COMPAT
 | 
						|
COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
 | 
						|
		       struct compat_sigevent __user *, timer_event_spec,
 | 
						|
		       timer_t __user *, created_timer_id)
 | 
						|
{
 | 
						|
	if (timer_event_spec) {
 | 
						|
		sigevent_t event;
 | 
						|
 | 
						|
		if (get_compat_sigevent(&event, timer_event_spec))
 | 
						|
			return -EFAULT;
 | 
						|
		return do_timer_create(which_clock, &event, created_timer_id);
 | 
						|
	}
 | 
						|
	return do_timer_create(which_clock, NULL, created_timer_id);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Locking issues: We need to protect the result of the id look up until
 | 
						|
 * we get the timer locked down so it is not deleted under us.  The
 | 
						|
 * removal is done under the idr spinlock so we use that here to bridge
 | 
						|
 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 | 
						|
 * be release with out holding the timer lock.
 | 
						|
 */
 | 
						|
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
 | 
						|
{
 | 
						|
	struct k_itimer *timr;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * timer_t could be any type >= int and we want to make sure any
 | 
						|
	 * @timer_id outside positive int range fails lookup.
 | 
						|
	 */
 | 
						|
	if ((unsigned long long)timer_id > INT_MAX)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	timr = posix_timer_by_id(timer_id);
 | 
						|
	if (timr) {
 | 
						|
		spin_lock_irqsave(&timr->it_lock, *flags);
 | 
						|
		if (timr->it_signal == current->signal) {
 | 
						|
			rcu_read_unlock();
 | 
						|
			return timr;
 | 
						|
		}
 | 
						|
		spin_unlock_irqrestore(&timr->it_lock, *flags);
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
 | 
						|
{
 | 
						|
	struct hrtimer *timer = &timr->it.real.timer;
 | 
						|
 | 
						|
	return __hrtimer_expires_remaining_adjusted(timer, now);
 | 
						|
}
 | 
						|
 | 
						|
static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
 | 
						|
{
 | 
						|
	struct hrtimer *timer = &timr->it.real.timer;
 | 
						|
 | 
						|
	return hrtimer_forward(timer, now, timr->it_interval);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get the time remaining on a POSIX.1b interval timer.  This function
 | 
						|
 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 | 
						|
 * mess with irq.
 | 
						|
 *
 | 
						|
 * We have a couple of messes to clean up here.  First there is the case
 | 
						|
 * of a timer that has a requeue pending.  These timers should appear to
 | 
						|
 * be in the timer list with an expiry as if we were to requeue them
 | 
						|
 * now.
 | 
						|
 *
 | 
						|
 * The second issue is the SIGEV_NONE timer which may be active but is
 | 
						|
 * not really ever put in the timer list (to save system resources).
 | 
						|
 * This timer may be expired, and if so, we will do it here.  Otherwise
 | 
						|
 * it is the same as a requeue pending timer WRT to what we should
 | 
						|
 * report.
 | 
						|
 */
 | 
						|
void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = timr->kclock;
 | 
						|
	ktime_t now, remaining, iv;
 | 
						|
	struct timespec64 ts64;
 | 
						|
	bool sig_none;
 | 
						|
 | 
						|
	sig_none = timr->it_sigev_notify == SIGEV_NONE;
 | 
						|
	iv = timr->it_interval;
 | 
						|
 | 
						|
	/* interval timer ? */
 | 
						|
	if (iv) {
 | 
						|
		cur_setting->it_interval = ktime_to_timespec64(iv);
 | 
						|
	} else if (!timr->it_active) {
 | 
						|
		/*
 | 
						|
		 * SIGEV_NONE oneshot timers are never queued. Check them
 | 
						|
		 * below.
 | 
						|
		 */
 | 
						|
		if (!sig_none)
 | 
						|
			return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The timespec64 based conversion is suboptimal, but it's not
 | 
						|
	 * worth to implement yet another callback.
 | 
						|
	 */
 | 
						|
	kc->clock_get(timr->it_clock, &ts64);
 | 
						|
	now = timespec64_to_ktime(ts64);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When a requeue is pending or this is a SIGEV_NONE timer move the
 | 
						|
	 * expiry time forward by intervals, so expiry is > now.
 | 
						|
	 */
 | 
						|
	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
 | 
						|
		timr->it_overrun += kc->timer_forward(timr, now);
 | 
						|
 | 
						|
	remaining = kc->timer_remaining(timr, now);
 | 
						|
	/* Return 0 only, when the timer is expired and not pending */
 | 
						|
	if (remaining <= 0) {
 | 
						|
		/*
 | 
						|
		 * A single shot SIGEV_NONE timer must return 0, when
 | 
						|
		 * it is expired !
 | 
						|
		 */
 | 
						|
		if (!sig_none)
 | 
						|
			cur_setting->it_value.tv_nsec = 1;
 | 
						|
	} else {
 | 
						|
		cur_setting->it_value = ktime_to_timespec64(remaining);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Get the time remaining on a POSIX.1b interval timer. */
 | 
						|
static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
 | 
						|
{
 | 
						|
	struct k_itimer *timr;
 | 
						|
	const struct k_clock *kc;
 | 
						|
	unsigned long flags;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	timr = lock_timer(timer_id, &flags);
 | 
						|
	if (!timr)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	memset(setting, 0, sizeof(*setting));
 | 
						|
	kc = timr->kclock;
 | 
						|
	if (WARN_ON_ONCE(!kc || !kc->timer_get))
 | 
						|
		ret = -EINVAL;
 | 
						|
	else
 | 
						|
		kc->timer_get(timr, setting);
 | 
						|
 | 
						|
	unlock_timer(timr, flags);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Get the time remaining on a POSIX.1b interval timer. */
 | 
						|
SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
 | 
						|
		struct __kernel_itimerspec __user *, setting)
 | 
						|
{
 | 
						|
	struct itimerspec64 cur_setting;
 | 
						|
 | 
						|
	int ret = do_timer_gettime(timer_id, &cur_setting);
 | 
						|
	if (!ret) {
 | 
						|
		if (put_itimerspec64(&cur_setting, setting))
 | 
						|
			ret = -EFAULT;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_COMPAT_32BIT_TIME
 | 
						|
 | 
						|
SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
 | 
						|
		struct old_itimerspec32 __user *, setting)
 | 
						|
{
 | 
						|
	struct itimerspec64 cur_setting;
 | 
						|
 | 
						|
	int ret = do_timer_gettime(timer_id, &cur_setting);
 | 
						|
	if (!ret) {
 | 
						|
		if (put_old_itimerspec32(&cur_setting, setting))
 | 
						|
			ret = -EFAULT;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Get the number of overruns of a POSIX.1b interval timer.  This is to
 | 
						|
 * be the overrun of the timer last delivered.  At the same time we are
 | 
						|
 * accumulating overruns on the next timer.  The overrun is frozen when
 | 
						|
 * the signal is delivered, either at the notify time (if the info block
 | 
						|
 * is not queued) or at the actual delivery time (as we are informed by
 | 
						|
 * the call back to posixtimer_rearm().  So all we need to do is
 | 
						|
 * to pick up the frozen overrun.
 | 
						|
 */
 | 
						|
SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
 | 
						|
{
 | 
						|
	struct k_itimer *timr;
 | 
						|
	int overrun;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	timr = lock_timer(timer_id, &flags);
 | 
						|
	if (!timr)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	overrun = timer_overrun_to_int(timr, 0);
 | 
						|
	unlock_timer(timr, flags);
 | 
						|
 | 
						|
	return overrun;
 | 
						|
}
 | 
						|
 | 
						|
static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
 | 
						|
			       bool absolute, bool sigev_none)
 | 
						|
{
 | 
						|
	struct hrtimer *timer = &timr->it.real.timer;
 | 
						|
	enum hrtimer_mode mode;
 | 
						|
 | 
						|
	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
 | 
						|
	/*
 | 
						|
	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
 | 
						|
	 * clock modifications, so they become CLOCK_MONOTONIC based under the
 | 
						|
	 * hood. See hrtimer_init(). Update timr->kclock, so the generic
 | 
						|
	 * functions which use timr->kclock->clock_get() work.
 | 
						|
	 *
 | 
						|
	 * Note: it_clock stays unmodified, because the next timer_set() might
 | 
						|
	 * use ABSTIME, so it needs to switch back.
 | 
						|
	 */
 | 
						|
	if (timr->it_clock == CLOCK_REALTIME)
 | 
						|
		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
 | 
						|
 | 
						|
	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
 | 
						|
	timr->it.real.timer.function = posix_timer_fn;
 | 
						|
 | 
						|
	if (!absolute)
 | 
						|
		expires = ktime_add_safe(expires, timer->base->get_time());
 | 
						|
	hrtimer_set_expires(timer, expires);
 | 
						|
 | 
						|
	if (!sigev_none)
 | 
						|
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
 | 
						|
}
 | 
						|
 | 
						|
static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
 | 
						|
{
 | 
						|
	return hrtimer_try_to_cancel(&timr->it.real.timer);
 | 
						|
}
 | 
						|
 | 
						|
/* Set a POSIX.1b interval timer. */
 | 
						|
int common_timer_set(struct k_itimer *timr, int flags,
 | 
						|
		     struct itimerspec64 *new_setting,
 | 
						|
		     struct itimerspec64 *old_setting)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = timr->kclock;
 | 
						|
	bool sigev_none;
 | 
						|
	ktime_t expires;
 | 
						|
 | 
						|
	if (old_setting)
 | 
						|
		common_timer_get(timr, old_setting);
 | 
						|
 | 
						|
	/* Prevent rearming by clearing the interval */
 | 
						|
	timr->it_interval = 0;
 | 
						|
	/*
 | 
						|
	 * Careful here. On SMP systems the timer expiry function could be
 | 
						|
	 * active and spinning on timr->it_lock.
 | 
						|
	 */
 | 
						|
	if (kc->timer_try_to_cancel(timr) < 0)
 | 
						|
		return TIMER_RETRY;
 | 
						|
 | 
						|
	timr->it_active = 0;
 | 
						|
	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
 | 
						|
		~REQUEUE_PENDING;
 | 
						|
	timr->it_overrun_last = 0;
 | 
						|
 | 
						|
	/* Switch off the timer when it_value is zero */
 | 
						|
	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
 | 
						|
	expires = timespec64_to_ktime(new_setting->it_value);
 | 
						|
	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
 | 
						|
 | 
						|
	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
 | 
						|
	timr->it_active = !sigev_none;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int do_timer_settime(timer_t timer_id, int flags,
 | 
						|
			    struct itimerspec64 *new_spec64,
 | 
						|
			    struct itimerspec64 *old_spec64)
 | 
						|
{
 | 
						|
	const struct k_clock *kc;
 | 
						|
	struct k_itimer *timr;
 | 
						|
	unsigned long flag;
 | 
						|
	int error = 0;
 | 
						|
 | 
						|
	if (!timespec64_valid(&new_spec64->it_interval) ||
 | 
						|
	    !timespec64_valid(&new_spec64->it_value))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (old_spec64)
 | 
						|
		memset(old_spec64, 0, sizeof(*old_spec64));
 | 
						|
retry:
 | 
						|
	timr = lock_timer(timer_id, &flag);
 | 
						|
	if (!timr)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	kc = timr->kclock;
 | 
						|
	if (WARN_ON_ONCE(!kc || !kc->timer_set))
 | 
						|
		error = -EINVAL;
 | 
						|
	else
 | 
						|
		error = kc->timer_set(timr, flags, new_spec64, old_spec64);
 | 
						|
 | 
						|
	unlock_timer(timr, flag);
 | 
						|
	if (error == TIMER_RETRY) {
 | 
						|
		old_spec64 = NULL;	// We already got the old time...
 | 
						|
		goto retry;
 | 
						|
	}
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/* Set a POSIX.1b interval timer */
 | 
						|
SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
 | 
						|
		const struct __kernel_itimerspec __user *, new_setting,
 | 
						|
		struct __kernel_itimerspec __user *, old_setting)
 | 
						|
{
 | 
						|
	struct itimerspec64 new_spec, old_spec;
 | 
						|
	struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
 | 
						|
	int error = 0;
 | 
						|
 | 
						|
	if (!new_setting)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (get_itimerspec64(&new_spec, new_setting))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
 | 
						|
	if (!error && old_setting) {
 | 
						|
		if (put_itimerspec64(&old_spec, old_setting))
 | 
						|
			error = -EFAULT;
 | 
						|
	}
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_COMPAT_32BIT_TIME
 | 
						|
SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
 | 
						|
		struct old_itimerspec32 __user *, new,
 | 
						|
		struct old_itimerspec32 __user *, old)
 | 
						|
{
 | 
						|
	struct itimerspec64 new_spec, old_spec;
 | 
						|
	struct itimerspec64 *rtn = old ? &old_spec : NULL;
 | 
						|
	int error = 0;
 | 
						|
 | 
						|
	if (!new)
 | 
						|
		return -EINVAL;
 | 
						|
	if (get_old_itimerspec32(&new_spec, new))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
 | 
						|
	if (!error && old) {
 | 
						|
		if (put_old_itimerspec32(&old_spec, old))
 | 
						|
			error = -EFAULT;
 | 
						|
	}
 | 
						|
	return error;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
int common_timer_del(struct k_itimer *timer)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = timer->kclock;
 | 
						|
 | 
						|
	timer->it_interval = 0;
 | 
						|
	if (kc->timer_try_to_cancel(timer) < 0)
 | 
						|
		return TIMER_RETRY;
 | 
						|
	timer->it_active = 0;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int timer_delete_hook(struct k_itimer *timer)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = timer->kclock;
 | 
						|
 | 
						|
	if (WARN_ON_ONCE(!kc || !kc->timer_del))
 | 
						|
		return -EINVAL;
 | 
						|
	return kc->timer_del(timer);
 | 
						|
}
 | 
						|
 | 
						|
/* Delete a POSIX.1b interval timer. */
 | 
						|
SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
 | 
						|
{
 | 
						|
	struct k_itimer *timer;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
retry_delete:
 | 
						|
	timer = lock_timer(timer_id, &flags);
 | 
						|
	if (!timer)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (timer_delete_hook(timer) == TIMER_RETRY) {
 | 
						|
		unlock_timer(timer, flags);
 | 
						|
		goto retry_delete;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(¤t->sighand->siglock);
 | 
						|
	list_del(&timer->list);
 | 
						|
	spin_unlock(¤t->sighand->siglock);
 | 
						|
	/*
 | 
						|
	 * This keeps any tasks waiting on the spin lock from thinking
 | 
						|
	 * they got something (see the lock code above).
 | 
						|
	 */
 | 
						|
	timer->it_signal = NULL;
 | 
						|
 | 
						|
	unlock_timer(timer, flags);
 | 
						|
	release_posix_timer(timer, IT_ID_SET);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * return timer owned by the process, used by exit_itimers
 | 
						|
 */
 | 
						|
static void itimer_delete(struct k_itimer *timer)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
retry_delete:
 | 
						|
	spin_lock_irqsave(&timer->it_lock, flags);
 | 
						|
 | 
						|
	if (timer_delete_hook(timer) == TIMER_RETRY) {
 | 
						|
		unlock_timer(timer, flags);
 | 
						|
		goto retry_delete;
 | 
						|
	}
 | 
						|
	list_del(&timer->list);
 | 
						|
	/*
 | 
						|
	 * This keeps any tasks waiting on the spin lock from thinking
 | 
						|
	 * they got something (see the lock code above).
 | 
						|
	 */
 | 
						|
	timer->it_signal = NULL;
 | 
						|
 | 
						|
	unlock_timer(timer, flags);
 | 
						|
	release_posix_timer(timer, IT_ID_SET);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is called by do_exit or de_thread, only when there are no more
 | 
						|
 * references to the shared signal_struct.
 | 
						|
 */
 | 
						|
void exit_itimers(struct signal_struct *sig)
 | 
						|
{
 | 
						|
	struct k_itimer *tmr;
 | 
						|
 | 
						|
	while (!list_empty(&sig->posix_timers)) {
 | 
						|
		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
 | 
						|
		itimer_delete(tmr);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
 | 
						|
		const struct __kernel_timespec __user *, tp)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | 
						|
	struct timespec64 new_tp;
 | 
						|
 | 
						|
	if (!kc || !kc->clock_set)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (get_timespec64(&new_tp, tp))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	return kc->clock_set(which_clock, &new_tp);
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
 | 
						|
		struct __kernel_timespec __user *, tp)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | 
						|
	struct timespec64 kernel_tp;
 | 
						|
	int error;
 | 
						|
 | 
						|
	if (!kc)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	error = kc->clock_get(which_clock, &kernel_tp);
 | 
						|
 | 
						|
	if (!error && put_timespec64(&kernel_tp, tp))
 | 
						|
		error = -EFAULT;
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | 
						|
 | 
						|
	if (!kc)
 | 
						|
		return -EINVAL;
 | 
						|
	if (!kc->clock_adj)
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	return kc->clock_adj(which_clock, ktx);
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
 | 
						|
		struct __kernel_timex __user *, utx)
 | 
						|
{
 | 
						|
	struct __kernel_timex ktx;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (copy_from_user(&ktx, utx, sizeof(ktx)))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	err = do_clock_adjtime(which_clock, &ktx);
 | 
						|
 | 
						|
	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
 | 
						|
		struct __kernel_timespec __user *, tp)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | 
						|
	struct timespec64 rtn_tp;
 | 
						|
	int error;
 | 
						|
 | 
						|
	if (!kc)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	error = kc->clock_getres(which_clock, &rtn_tp);
 | 
						|
 | 
						|
	if (!error && tp && put_timespec64(&rtn_tp, tp))
 | 
						|
		error = -EFAULT;
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_COMPAT_32BIT_TIME
 | 
						|
 | 
						|
SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
 | 
						|
		struct old_timespec32 __user *, tp)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | 
						|
	struct timespec64 ts;
 | 
						|
 | 
						|
	if (!kc || !kc->clock_set)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (get_old_timespec32(&ts, tp))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	return kc->clock_set(which_clock, &ts);
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
 | 
						|
		struct old_timespec32 __user *, tp)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | 
						|
	struct timespec64 ts;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (!kc)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	err = kc->clock_get(which_clock, &ts);
 | 
						|
 | 
						|
	if (!err && put_old_timespec32(&ts, tp))
 | 
						|
		err = -EFAULT;
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
 | 
						|
		struct old_timex32 __user *, utp)
 | 
						|
{
 | 
						|
	struct __kernel_timex ktx;
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = get_old_timex32(&ktx, utp);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	err = do_clock_adjtime(which_clock, &ktx);
 | 
						|
 | 
						|
	if (err >= 0)
 | 
						|
		err = put_old_timex32(utp, &ktx);
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
 | 
						|
		struct old_timespec32 __user *, tp)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | 
						|
	struct timespec64 ts;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (!kc)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	err = kc->clock_getres(which_clock, &ts);
 | 
						|
	if (!err && tp && put_old_timespec32(&ts, tp))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * nanosleep for monotonic and realtime clocks
 | 
						|
 */
 | 
						|
static int common_nsleep(const clockid_t which_clock, int flags,
 | 
						|
			 const struct timespec64 *rqtp)
 | 
						|
{
 | 
						|
	return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
 | 
						|
				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
 | 
						|
				 which_clock);
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
 | 
						|
		const struct __kernel_timespec __user *, rqtp,
 | 
						|
		struct __kernel_timespec __user *, rmtp)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | 
						|
	struct timespec64 t;
 | 
						|
 | 
						|
	if (!kc)
 | 
						|
		return -EINVAL;
 | 
						|
	if (!kc->nsleep)
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	if (get_timespec64(&t, rqtp))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	if (!timespec64_valid(&t))
 | 
						|
		return -EINVAL;
 | 
						|
	if (flags & TIMER_ABSTIME)
 | 
						|
		rmtp = NULL;
 | 
						|
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
 | 
						|
	current->restart_block.nanosleep.rmtp = rmtp;
 | 
						|
 | 
						|
	return kc->nsleep(which_clock, flags, &t);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_COMPAT_32BIT_TIME
 | 
						|
 | 
						|
SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
 | 
						|
		struct old_timespec32 __user *, rqtp,
 | 
						|
		struct old_timespec32 __user *, rmtp)
 | 
						|
{
 | 
						|
	const struct k_clock *kc = clockid_to_kclock(which_clock);
 | 
						|
	struct timespec64 t;
 | 
						|
 | 
						|
	if (!kc)
 | 
						|
		return -EINVAL;
 | 
						|
	if (!kc->nsleep)
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	if (get_old_timespec32(&t, rqtp))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	if (!timespec64_valid(&t))
 | 
						|
		return -EINVAL;
 | 
						|
	if (flags & TIMER_ABSTIME)
 | 
						|
		rmtp = NULL;
 | 
						|
	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
 | 
						|
	current->restart_block.nanosleep.compat_rmtp = rmtp;
 | 
						|
 | 
						|
	return kc->nsleep(which_clock, flags, &t);
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
static const struct k_clock clock_realtime = {
 | 
						|
	.clock_getres		= posix_get_hrtimer_res,
 | 
						|
	.clock_get		= posix_clock_realtime_get,
 | 
						|
	.clock_set		= posix_clock_realtime_set,
 | 
						|
	.clock_adj		= posix_clock_realtime_adj,
 | 
						|
	.nsleep			= common_nsleep,
 | 
						|
	.timer_create		= common_timer_create,
 | 
						|
	.timer_set		= common_timer_set,
 | 
						|
	.timer_get		= common_timer_get,
 | 
						|
	.timer_del		= common_timer_del,
 | 
						|
	.timer_rearm		= common_hrtimer_rearm,
 | 
						|
	.timer_forward		= common_hrtimer_forward,
 | 
						|
	.timer_remaining	= common_hrtimer_remaining,
 | 
						|
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
 | 
						|
	.timer_arm		= common_hrtimer_arm,
 | 
						|
};
 | 
						|
 | 
						|
static const struct k_clock clock_monotonic = {
 | 
						|
	.clock_getres		= posix_get_hrtimer_res,
 | 
						|
	.clock_get		= posix_ktime_get_ts,
 | 
						|
	.nsleep			= common_nsleep,
 | 
						|
	.timer_create		= common_timer_create,
 | 
						|
	.timer_set		= common_timer_set,
 | 
						|
	.timer_get		= common_timer_get,
 | 
						|
	.timer_del		= common_timer_del,
 | 
						|
	.timer_rearm		= common_hrtimer_rearm,
 | 
						|
	.timer_forward		= common_hrtimer_forward,
 | 
						|
	.timer_remaining	= common_hrtimer_remaining,
 | 
						|
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
 | 
						|
	.timer_arm		= common_hrtimer_arm,
 | 
						|
};
 | 
						|
 | 
						|
static const struct k_clock clock_monotonic_raw = {
 | 
						|
	.clock_getres		= posix_get_hrtimer_res,
 | 
						|
	.clock_get		= posix_get_monotonic_raw,
 | 
						|
};
 | 
						|
 | 
						|
static const struct k_clock clock_realtime_coarse = {
 | 
						|
	.clock_getres		= posix_get_coarse_res,
 | 
						|
	.clock_get		= posix_get_realtime_coarse,
 | 
						|
};
 | 
						|
 | 
						|
static const struct k_clock clock_monotonic_coarse = {
 | 
						|
	.clock_getres		= posix_get_coarse_res,
 | 
						|
	.clock_get		= posix_get_monotonic_coarse,
 | 
						|
};
 | 
						|
 | 
						|
static const struct k_clock clock_tai = {
 | 
						|
	.clock_getres		= posix_get_hrtimer_res,
 | 
						|
	.clock_get		= posix_get_tai,
 | 
						|
	.nsleep			= common_nsleep,
 | 
						|
	.timer_create		= common_timer_create,
 | 
						|
	.timer_set		= common_timer_set,
 | 
						|
	.timer_get		= common_timer_get,
 | 
						|
	.timer_del		= common_timer_del,
 | 
						|
	.timer_rearm		= common_hrtimer_rearm,
 | 
						|
	.timer_forward		= common_hrtimer_forward,
 | 
						|
	.timer_remaining	= common_hrtimer_remaining,
 | 
						|
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
 | 
						|
	.timer_arm		= common_hrtimer_arm,
 | 
						|
};
 | 
						|
 | 
						|
static const struct k_clock clock_boottime = {
 | 
						|
	.clock_getres		= posix_get_hrtimer_res,
 | 
						|
	.clock_get		= posix_get_boottime,
 | 
						|
	.nsleep			= common_nsleep,
 | 
						|
	.timer_create		= common_timer_create,
 | 
						|
	.timer_set		= common_timer_set,
 | 
						|
	.timer_get		= common_timer_get,
 | 
						|
	.timer_del		= common_timer_del,
 | 
						|
	.timer_rearm		= common_hrtimer_rearm,
 | 
						|
	.timer_forward		= common_hrtimer_forward,
 | 
						|
	.timer_remaining	= common_hrtimer_remaining,
 | 
						|
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
 | 
						|
	.timer_arm		= common_hrtimer_arm,
 | 
						|
};
 | 
						|
 | 
						|
static const struct k_clock * const posix_clocks[] = {
 | 
						|
	[CLOCK_REALTIME]		= &clock_realtime,
 | 
						|
	[CLOCK_MONOTONIC]		= &clock_monotonic,
 | 
						|
	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
 | 
						|
	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
 | 
						|
	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
 | 
						|
	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
 | 
						|
	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
 | 
						|
	[CLOCK_BOOTTIME]		= &clock_boottime,
 | 
						|
	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
 | 
						|
	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
 | 
						|
	[CLOCK_TAI]			= &clock_tai,
 | 
						|
};
 | 
						|
 | 
						|
static const struct k_clock *clockid_to_kclock(const clockid_t id)
 | 
						|
{
 | 
						|
	clockid_t idx = id;
 | 
						|
 | 
						|
	if (id < 0) {
 | 
						|
		return (id & CLOCKFD_MASK) == CLOCKFD ?
 | 
						|
			&clock_posix_dynamic : &clock_posix_cpu;
 | 
						|
	}
 | 
						|
 | 
						|
	if (id >= ARRAY_SIZE(posix_clocks))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
 | 
						|
}
 |