mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	Both data and metadata delayed ref structures have fields named root/ref_root respectively. Those are somewhat cryptic and don't really convey the real meaning. In fact those roots are really the original owners of the respective block (i.e in case of a snapshot a data delayed ref will contain the original root that owns the given block). Rename those fields accordingly and adjust comments. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
		
			
				
	
	
		
			1019 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1019 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Copyright (C) 2014 Facebook.  All rights reserved.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/stacktrace.h>
 | 
						|
#include "ctree.h"
 | 
						|
#include "disk-io.h"
 | 
						|
#include "locking.h"
 | 
						|
#include "delayed-ref.h"
 | 
						|
#include "ref-verify.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * Used to keep track the roots and number of refs each root has for a given
 | 
						|
 * bytenr.  This just tracks the number of direct references, no shared
 | 
						|
 * references.
 | 
						|
 */
 | 
						|
struct root_entry {
 | 
						|
	u64 root_objectid;
 | 
						|
	u64 num_refs;
 | 
						|
	struct rb_node node;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * These are meant to represent what should exist in the extent tree, these can
 | 
						|
 * be used to verify the extent tree is consistent as these should all match
 | 
						|
 * what the extent tree says.
 | 
						|
 */
 | 
						|
struct ref_entry {
 | 
						|
	u64 root_objectid;
 | 
						|
	u64 parent;
 | 
						|
	u64 owner;
 | 
						|
	u64 offset;
 | 
						|
	u64 num_refs;
 | 
						|
	struct rb_node node;
 | 
						|
};
 | 
						|
 | 
						|
#define MAX_TRACE	16
 | 
						|
 | 
						|
/*
 | 
						|
 * Whenever we add/remove a reference we record the action.  The action maps
 | 
						|
 * back to the delayed ref action.  We hold the ref we are changing in the
 | 
						|
 * action so we can account for the history properly, and we record the root we
 | 
						|
 * were called with since it could be different from ref_root.  We also store
 | 
						|
 * stack traces because that's how I roll.
 | 
						|
 */
 | 
						|
struct ref_action {
 | 
						|
	int action;
 | 
						|
	u64 root;
 | 
						|
	struct ref_entry ref;
 | 
						|
	struct list_head list;
 | 
						|
	unsigned long trace[MAX_TRACE];
 | 
						|
	unsigned int trace_len;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * One of these for every block we reference, it holds the roots and references
 | 
						|
 * to it as well as all of the ref actions that have occurred to it.  We never
 | 
						|
 * free it until we unmount the file system in order to make sure re-allocations
 | 
						|
 * are happening properly.
 | 
						|
 */
 | 
						|
struct block_entry {
 | 
						|
	u64 bytenr;
 | 
						|
	u64 len;
 | 
						|
	u64 num_refs;
 | 
						|
	int metadata;
 | 
						|
	int from_disk;
 | 
						|
	struct rb_root roots;
 | 
						|
	struct rb_root refs;
 | 
						|
	struct rb_node node;
 | 
						|
	struct list_head actions;
 | 
						|
};
 | 
						|
 | 
						|
static struct block_entry *insert_block_entry(struct rb_root *root,
 | 
						|
					      struct block_entry *be)
 | 
						|
{
 | 
						|
	struct rb_node **p = &root->rb_node;
 | 
						|
	struct rb_node *parent_node = NULL;
 | 
						|
	struct block_entry *entry;
 | 
						|
 | 
						|
	while (*p) {
 | 
						|
		parent_node = *p;
 | 
						|
		entry = rb_entry(parent_node, struct block_entry, node);
 | 
						|
		if (entry->bytenr > be->bytenr)
 | 
						|
			p = &(*p)->rb_left;
 | 
						|
		else if (entry->bytenr < be->bytenr)
 | 
						|
			p = &(*p)->rb_right;
 | 
						|
		else
 | 
						|
			return entry;
 | 
						|
	}
 | 
						|
 | 
						|
	rb_link_node(&be->node, parent_node, p);
 | 
						|
	rb_insert_color(&be->node, root);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr)
 | 
						|
{
 | 
						|
	struct rb_node *n;
 | 
						|
	struct block_entry *entry = NULL;
 | 
						|
 | 
						|
	n = root->rb_node;
 | 
						|
	while (n) {
 | 
						|
		entry = rb_entry(n, struct block_entry, node);
 | 
						|
		if (entry->bytenr < bytenr)
 | 
						|
			n = n->rb_right;
 | 
						|
		else if (entry->bytenr > bytenr)
 | 
						|
			n = n->rb_left;
 | 
						|
		else
 | 
						|
			return entry;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static struct root_entry *insert_root_entry(struct rb_root *root,
 | 
						|
					    struct root_entry *re)
 | 
						|
{
 | 
						|
	struct rb_node **p = &root->rb_node;
 | 
						|
	struct rb_node *parent_node = NULL;
 | 
						|
	struct root_entry *entry;
 | 
						|
 | 
						|
	while (*p) {
 | 
						|
		parent_node = *p;
 | 
						|
		entry = rb_entry(parent_node, struct root_entry, node);
 | 
						|
		if (entry->root_objectid > re->root_objectid)
 | 
						|
			p = &(*p)->rb_left;
 | 
						|
		else if (entry->root_objectid < re->root_objectid)
 | 
						|
			p = &(*p)->rb_right;
 | 
						|
		else
 | 
						|
			return entry;
 | 
						|
	}
 | 
						|
 | 
						|
	rb_link_node(&re->node, parent_node, p);
 | 
						|
	rb_insert_color(&re->node, root);
 | 
						|
	return NULL;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2)
 | 
						|
{
 | 
						|
	if (ref1->root_objectid < ref2->root_objectid)
 | 
						|
		return -1;
 | 
						|
	if (ref1->root_objectid > ref2->root_objectid)
 | 
						|
		return 1;
 | 
						|
	if (ref1->parent < ref2->parent)
 | 
						|
		return -1;
 | 
						|
	if (ref1->parent > ref2->parent)
 | 
						|
		return 1;
 | 
						|
	if (ref1->owner < ref2->owner)
 | 
						|
		return -1;
 | 
						|
	if (ref1->owner > ref2->owner)
 | 
						|
		return 1;
 | 
						|
	if (ref1->offset < ref2->offset)
 | 
						|
		return -1;
 | 
						|
	if (ref1->offset > ref2->offset)
 | 
						|
		return 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static struct ref_entry *insert_ref_entry(struct rb_root *root,
 | 
						|
					  struct ref_entry *ref)
 | 
						|
{
 | 
						|
	struct rb_node **p = &root->rb_node;
 | 
						|
	struct rb_node *parent_node = NULL;
 | 
						|
	struct ref_entry *entry;
 | 
						|
	int cmp;
 | 
						|
 | 
						|
	while (*p) {
 | 
						|
		parent_node = *p;
 | 
						|
		entry = rb_entry(parent_node, struct ref_entry, node);
 | 
						|
		cmp = comp_refs(entry, ref);
 | 
						|
		if (cmp > 0)
 | 
						|
			p = &(*p)->rb_left;
 | 
						|
		else if (cmp < 0)
 | 
						|
			p = &(*p)->rb_right;
 | 
						|
		else
 | 
						|
			return entry;
 | 
						|
	}
 | 
						|
 | 
						|
	rb_link_node(&ref->node, parent_node, p);
 | 
						|
	rb_insert_color(&ref->node, root);
 | 
						|
	return NULL;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid)
 | 
						|
{
 | 
						|
	struct rb_node *n;
 | 
						|
	struct root_entry *entry = NULL;
 | 
						|
 | 
						|
	n = root->rb_node;
 | 
						|
	while (n) {
 | 
						|
		entry = rb_entry(n, struct root_entry, node);
 | 
						|
		if (entry->root_objectid < objectid)
 | 
						|
			n = n->rb_right;
 | 
						|
		else if (entry->root_objectid > objectid)
 | 
						|
			n = n->rb_left;
 | 
						|
		else
 | 
						|
			return entry;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_STACKTRACE
 | 
						|
static void __save_stack_trace(struct ref_action *ra)
 | 
						|
{
 | 
						|
	ra->trace_len = stack_trace_save(ra->trace, MAX_TRACE, 2);
 | 
						|
}
 | 
						|
 | 
						|
static void __print_stack_trace(struct btrfs_fs_info *fs_info,
 | 
						|
				struct ref_action *ra)
 | 
						|
{
 | 
						|
	if (ra->trace_len == 0) {
 | 
						|
		btrfs_err(fs_info, "  ref-verify: no stacktrace");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	stack_trace_print(ra->trace, ra->trace_len, 2);
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void __save_stack_trace(struct ref_action *ra)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline void __print_stack_trace(struct btrfs_fs_info *fs_info,
 | 
						|
				       struct ref_action *ra)
 | 
						|
{
 | 
						|
	btrfs_err(fs_info, "  ref-verify: no stacktrace support");
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void free_block_entry(struct block_entry *be)
 | 
						|
{
 | 
						|
	struct root_entry *re;
 | 
						|
	struct ref_entry *ref;
 | 
						|
	struct ref_action *ra;
 | 
						|
	struct rb_node *n;
 | 
						|
 | 
						|
	while ((n = rb_first(&be->roots))) {
 | 
						|
		re = rb_entry(n, struct root_entry, node);
 | 
						|
		rb_erase(&re->node, &be->roots);
 | 
						|
		kfree(re);
 | 
						|
	}
 | 
						|
 | 
						|
	while((n = rb_first(&be->refs))) {
 | 
						|
		ref = rb_entry(n, struct ref_entry, node);
 | 
						|
		rb_erase(&ref->node, &be->refs);
 | 
						|
		kfree(ref);
 | 
						|
	}
 | 
						|
 | 
						|
	while (!list_empty(&be->actions)) {
 | 
						|
		ra = list_first_entry(&be->actions, struct ref_action,
 | 
						|
				      list);
 | 
						|
		list_del(&ra->list);
 | 
						|
		kfree(ra);
 | 
						|
	}
 | 
						|
	kfree(be);
 | 
						|
}
 | 
						|
 | 
						|
static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info,
 | 
						|
					   u64 bytenr, u64 len,
 | 
						|
					   u64 root_objectid)
 | 
						|
{
 | 
						|
	struct block_entry *be = NULL, *exist;
 | 
						|
	struct root_entry *re = NULL;
 | 
						|
 | 
						|
	re = kzalloc(sizeof(struct root_entry), GFP_NOFS);
 | 
						|
	be = kzalloc(sizeof(struct block_entry), GFP_NOFS);
 | 
						|
	if (!be || !re) {
 | 
						|
		kfree(re);
 | 
						|
		kfree(be);
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
	}
 | 
						|
	be->bytenr = bytenr;
 | 
						|
	be->len = len;
 | 
						|
 | 
						|
	re->root_objectid = root_objectid;
 | 
						|
	re->num_refs = 0;
 | 
						|
 | 
						|
	spin_lock(&fs_info->ref_verify_lock);
 | 
						|
	exist = insert_block_entry(&fs_info->block_tree, be);
 | 
						|
	if (exist) {
 | 
						|
		if (root_objectid) {
 | 
						|
			struct root_entry *exist_re;
 | 
						|
 | 
						|
			exist_re = insert_root_entry(&exist->roots, re);
 | 
						|
			if (exist_re)
 | 
						|
				kfree(re);
 | 
						|
		} else {
 | 
						|
			kfree(re);
 | 
						|
		}
 | 
						|
		kfree(be);
 | 
						|
		return exist;
 | 
						|
	}
 | 
						|
 | 
						|
	be->num_refs = 0;
 | 
						|
	be->metadata = 0;
 | 
						|
	be->from_disk = 0;
 | 
						|
	be->roots = RB_ROOT;
 | 
						|
	be->refs = RB_ROOT;
 | 
						|
	INIT_LIST_HEAD(&be->actions);
 | 
						|
	if (root_objectid)
 | 
						|
		insert_root_entry(&be->roots, re);
 | 
						|
	else
 | 
						|
		kfree(re);
 | 
						|
	return be;
 | 
						|
}
 | 
						|
 | 
						|
static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root,
 | 
						|
			  u64 parent, u64 bytenr, int level)
 | 
						|
{
 | 
						|
	struct block_entry *be;
 | 
						|
	struct root_entry *re;
 | 
						|
	struct ref_entry *ref = NULL, *exist;
 | 
						|
 | 
						|
	ref = kmalloc(sizeof(struct ref_entry), GFP_NOFS);
 | 
						|
	if (!ref)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	if (parent)
 | 
						|
		ref->root_objectid = 0;
 | 
						|
	else
 | 
						|
		ref->root_objectid = ref_root;
 | 
						|
	ref->parent = parent;
 | 
						|
	ref->owner = level;
 | 
						|
	ref->offset = 0;
 | 
						|
	ref->num_refs = 1;
 | 
						|
 | 
						|
	be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root);
 | 
						|
	if (IS_ERR(be)) {
 | 
						|
		kfree(ref);
 | 
						|
		return PTR_ERR(be);
 | 
						|
	}
 | 
						|
	be->num_refs++;
 | 
						|
	be->from_disk = 1;
 | 
						|
	be->metadata = 1;
 | 
						|
 | 
						|
	if (!parent) {
 | 
						|
		ASSERT(ref_root);
 | 
						|
		re = lookup_root_entry(&be->roots, ref_root);
 | 
						|
		ASSERT(re);
 | 
						|
		re->num_refs++;
 | 
						|
	}
 | 
						|
	exist = insert_ref_entry(&be->refs, ref);
 | 
						|
	if (exist) {
 | 
						|
		exist->num_refs++;
 | 
						|
		kfree(ref);
 | 
						|
	}
 | 
						|
	spin_unlock(&fs_info->ref_verify_lock);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int add_shared_data_ref(struct btrfs_fs_info *fs_info,
 | 
						|
			       u64 parent, u32 num_refs, u64 bytenr,
 | 
						|
			       u64 num_bytes)
 | 
						|
{
 | 
						|
	struct block_entry *be;
 | 
						|
	struct ref_entry *ref;
 | 
						|
 | 
						|
	ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
 | 
						|
	if (!ref)
 | 
						|
		return -ENOMEM;
 | 
						|
	be = add_block_entry(fs_info, bytenr, num_bytes, 0);
 | 
						|
	if (IS_ERR(be)) {
 | 
						|
		kfree(ref);
 | 
						|
		return PTR_ERR(be);
 | 
						|
	}
 | 
						|
	be->num_refs += num_refs;
 | 
						|
 | 
						|
	ref->parent = parent;
 | 
						|
	ref->num_refs = num_refs;
 | 
						|
	if (insert_ref_entry(&be->refs, ref)) {
 | 
						|
		spin_unlock(&fs_info->ref_verify_lock);
 | 
						|
		btrfs_err(fs_info, "existing shared ref when reading from disk?");
 | 
						|
		kfree(ref);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	spin_unlock(&fs_info->ref_verify_lock);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int add_extent_data_ref(struct btrfs_fs_info *fs_info,
 | 
						|
			       struct extent_buffer *leaf,
 | 
						|
			       struct btrfs_extent_data_ref *dref,
 | 
						|
			       u64 bytenr, u64 num_bytes)
 | 
						|
{
 | 
						|
	struct block_entry *be;
 | 
						|
	struct ref_entry *ref;
 | 
						|
	struct root_entry *re;
 | 
						|
	u64 ref_root = btrfs_extent_data_ref_root(leaf, dref);
 | 
						|
	u64 owner = btrfs_extent_data_ref_objectid(leaf, dref);
 | 
						|
	u64 offset = btrfs_extent_data_ref_offset(leaf, dref);
 | 
						|
	u32 num_refs = btrfs_extent_data_ref_count(leaf, dref);
 | 
						|
 | 
						|
	ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
 | 
						|
	if (!ref)
 | 
						|
		return -ENOMEM;
 | 
						|
	be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
 | 
						|
	if (IS_ERR(be)) {
 | 
						|
		kfree(ref);
 | 
						|
		return PTR_ERR(be);
 | 
						|
	}
 | 
						|
	be->num_refs += num_refs;
 | 
						|
 | 
						|
	ref->parent = 0;
 | 
						|
	ref->owner = owner;
 | 
						|
	ref->root_objectid = ref_root;
 | 
						|
	ref->offset = offset;
 | 
						|
	ref->num_refs = num_refs;
 | 
						|
	if (insert_ref_entry(&be->refs, ref)) {
 | 
						|
		spin_unlock(&fs_info->ref_verify_lock);
 | 
						|
		btrfs_err(fs_info, "existing ref when reading from disk?");
 | 
						|
		kfree(ref);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	re = lookup_root_entry(&be->roots, ref_root);
 | 
						|
	if (!re) {
 | 
						|
		spin_unlock(&fs_info->ref_verify_lock);
 | 
						|
		btrfs_err(fs_info, "missing root in new block entry?");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	re->num_refs += num_refs;
 | 
						|
	spin_unlock(&fs_info->ref_verify_lock);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int process_extent_item(struct btrfs_fs_info *fs_info,
 | 
						|
			       struct btrfs_path *path, struct btrfs_key *key,
 | 
						|
			       int slot, int *tree_block_level)
 | 
						|
{
 | 
						|
	struct btrfs_extent_item *ei;
 | 
						|
	struct btrfs_extent_inline_ref *iref;
 | 
						|
	struct btrfs_extent_data_ref *dref;
 | 
						|
	struct btrfs_shared_data_ref *sref;
 | 
						|
	struct extent_buffer *leaf = path->nodes[0];
 | 
						|
	u32 item_size = btrfs_item_size_nr(leaf, slot);
 | 
						|
	unsigned long end, ptr;
 | 
						|
	u64 offset, flags, count;
 | 
						|
	int type, ret;
 | 
						|
 | 
						|
	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 | 
						|
	flags = btrfs_extent_flags(leaf, ei);
 | 
						|
 | 
						|
	if ((key->type == BTRFS_EXTENT_ITEM_KEY) &&
 | 
						|
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 | 
						|
		struct btrfs_tree_block_info *info;
 | 
						|
 | 
						|
		info = (struct btrfs_tree_block_info *)(ei + 1);
 | 
						|
		*tree_block_level = btrfs_tree_block_level(leaf, info);
 | 
						|
		iref = (struct btrfs_extent_inline_ref *)(info + 1);
 | 
						|
	} else {
 | 
						|
		if (key->type == BTRFS_METADATA_ITEM_KEY)
 | 
						|
			*tree_block_level = key->offset;
 | 
						|
		iref = (struct btrfs_extent_inline_ref *)(ei + 1);
 | 
						|
	}
 | 
						|
 | 
						|
	ptr = (unsigned long)iref;
 | 
						|
	end = (unsigned long)ei + item_size;
 | 
						|
	while (ptr < end) {
 | 
						|
		iref = (struct btrfs_extent_inline_ref *)ptr;
 | 
						|
		type = btrfs_extent_inline_ref_type(leaf, iref);
 | 
						|
		offset = btrfs_extent_inline_ref_offset(leaf, iref);
 | 
						|
		switch (type) {
 | 
						|
		case BTRFS_TREE_BLOCK_REF_KEY:
 | 
						|
			ret = add_tree_block(fs_info, offset, 0, key->objectid,
 | 
						|
					     *tree_block_level);
 | 
						|
			break;
 | 
						|
		case BTRFS_SHARED_BLOCK_REF_KEY:
 | 
						|
			ret = add_tree_block(fs_info, 0, offset, key->objectid,
 | 
						|
					     *tree_block_level);
 | 
						|
			break;
 | 
						|
		case BTRFS_EXTENT_DATA_REF_KEY:
 | 
						|
			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 | 
						|
			ret = add_extent_data_ref(fs_info, leaf, dref,
 | 
						|
						  key->objectid, key->offset);
 | 
						|
			break;
 | 
						|
		case BTRFS_SHARED_DATA_REF_KEY:
 | 
						|
			sref = (struct btrfs_shared_data_ref *)(iref + 1);
 | 
						|
			count = btrfs_shared_data_ref_count(leaf, sref);
 | 
						|
			ret = add_shared_data_ref(fs_info, offset, count,
 | 
						|
						  key->objectid, key->offset);
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			btrfs_err(fs_info, "invalid key type in iref");
 | 
						|
			ret = -EINVAL;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
		ptr += btrfs_extent_inline_ref_size(type);
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int process_leaf(struct btrfs_root *root,
 | 
						|
			struct btrfs_path *path, u64 *bytenr, u64 *num_bytes,
 | 
						|
			int *tree_block_level)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct extent_buffer *leaf = path->nodes[0];
 | 
						|
	struct btrfs_extent_data_ref *dref;
 | 
						|
	struct btrfs_shared_data_ref *sref;
 | 
						|
	u32 count;
 | 
						|
	int i = 0, ret = 0;
 | 
						|
	struct btrfs_key key;
 | 
						|
	int nritems = btrfs_header_nritems(leaf);
 | 
						|
 | 
						|
	for (i = 0; i < nritems; i++) {
 | 
						|
		btrfs_item_key_to_cpu(leaf, &key, i);
 | 
						|
		switch (key.type) {
 | 
						|
		case BTRFS_EXTENT_ITEM_KEY:
 | 
						|
			*num_bytes = key.offset;
 | 
						|
			fallthrough;
 | 
						|
		case BTRFS_METADATA_ITEM_KEY:
 | 
						|
			*bytenr = key.objectid;
 | 
						|
			ret = process_extent_item(fs_info, path, &key, i,
 | 
						|
						  tree_block_level);
 | 
						|
			break;
 | 
						|
		case BTRFS_TREE_BLOCK_REF_KEY:
 | 
						|
			ret = add_tree_block(fs_info, key.offset, 0,
 | 
						|
					     key.objectid, *tree_block_level);
 | 
						|
			break;
 | 
						|
		case BTRFS_SHARED_BLOCK_REF_KEY:
 | 
						|
			ret = add_tree_block(fs_info, 0, key.offset,
 | 
						|
					     key.objectid, *tree_block_level);
 | 
						|
			break;
 | 
						|
		case BTRFS_EXTENT_DATA_REF_KEY:
 | 
						|
			dref = btrfs_item_ptr(leaf, i,
 | 
						|
					      struct btrfs_extent_data_ref);
 | 
						|
			ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr,
 | 
						|
						  *num_bytes);
 | 
						|
			break;
 | 
						|
		case BTRFS_SHARED_DATA_REF_KEY:
 | 
						|
			sref = btrfs_item_ptr(leaf, i,
 | 
						|
					      struct btrfs_shared_data_ref);
 | 
						|
			count = btrfs_shared_data_ref_count(leaf, sref);
 | 
						|
			ret = add_shared_data_ref(fs_info, key.offset, count,
 | 
						|
						  *bytenr, *num_bytes);
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Walk down to the leaf from the given level */
 | 
						|
static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path,
 | 
						|
			  int level, u64 *bytenr, u64 *num_bytes,
 | 
						|
			  int *tree_block_level)
 | 
						|
{
 | 
						|
	struct extent_buffer *eb;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	while (level >= 0) {
 | 
						|
		if (level) {
 | 
						|
			eb = btrfs_read_node_slot(path->nodes[level],
 | 
						|
						  path->slots[level]);
 | 
						|
			if (IS_ERR(eb))
 | 
						|
				return PTR_ERR(eb);
 | 
						|
			btrfs_tree_read_lock(eb);
 | 
						|
			path->nodes[level-1] = eb;
 | 
						|
			path->slots[level-1] = 0;
 | 
						|
			path->locks[level-1] = BTRFS_READ_LOCK;
 | 
						|
		} else {
 | 
						|
			ret = process_leaf(root, path, bytenr, num_bytes,
 | 
						|
					   tree_block_level);
 | 
						|
			if (ret)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		level--;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Walk up to the next node that needs to be processed */
 | 
						|
static int walk_up_tree(struct btrfs_path *path, int *level)
 | 
						|
{
 | 
						|
	int l;
 | 
						|
 | 
						|
	for (l = 0; l < BTRFS_MAX_LEVEL; l++) {
 | 
						|
		if (!path->nodes[l])
 | 
						|
			continue;
 | 
						|
		if (l) {
 | 
						|
			path->slots[l]++;
 | 
						|
			if (path->slots[l] <
 | 
						|
			    btrfs_header_nritems(path->nodes[l])) {
 | 
						|
				*level = l;
 | 
						|
				return 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]);
 | 
						|
		free_extent_buffer(path->nodes[l]);
 | 
						|
		path->nodes[l] = NULL;
 | 
						|
		path->slots[l] = 0;
 | 
						|
		path->locks[l] = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static void dump_ref_action(struct btrfs_fs_info *fs_info,
 | 
						|
			    struct ref_action *ra)
 | 
						|
{
 | 
						|
	btrfs_err(fs_info,
 | 
						|
"  Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
 | 
						|
		  ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent,
 | 
						|
		  ra->ref.owner, ra->ref.offset, ra->ref.num_refs);
 | 
						|
	__print_stack_trace(fs_info, ra);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Dumps all the information from the block entry to printk, it's going to be
 | 
						|
 * awesome.
 | 
						|
 */
 | 
						|
static void dump_block_entry(struct btrfs_fs_info *fs_info,
 | 
						|
			     struct block_entry *be)
 | 
						|
{
 | 
						|
	struct ref_entry *ref;
 | 
						|
	struct root_entry *re;
 | 
						|
	struct ref_action *ra;
 | 
						|
	struct rb_node *n;
 | 
						|
 | 
						|
	btrfs_err(fs_info,
 | 
						|
"dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d",
 | 
						|
		  be->bytenr, be->len, be->num_refs, be->metadata,
 | 
						|
		  be->from_disk);
 | 
						|
 | 
						|
	for (n = rb_first(&be->refs); n; n = rb_next(n)) {
 | 
						|
		ref = rb_entry(n, struct ref_entry, node);
 | 
						|
		btrfs_err(fs_info,
 | 
						|
"  ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
 | 
						|
			  ref->root_objectid, ref->parent, ref->owner,
 | 
						|
			  ref->offset, ref->num_refs);
 | 
						|
	}
 | 
						|
 | 
						|
	for (n = rb_first(&be->roots); n; n = rb_next(n)) {
 | 
						|
		re = rb_entry(n, struct root_entry, node);
 | 
						|
		btrfs_err(fs_info, "  root entry %llu, num_refs %llu",
 | 
						|
			  re->root_objectid, re->num_refs);
 | 
						|
	}
 | 
						|
 | 
						|
	list_for_each_entry(ra, &be->actions, list)
 | 
						|
		dump_ref_action(fs_info, ra);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * btrfs_ref_tree_mod: called when we modify a ref for a bytenr
 | 
						|
 *
 | 
						|
 * This will add an action item to the given bytenr and do sanity checks to make
 | 
						|
 * sure we haven't messed something up.  If we are making a new allocation and
 | 
						|
 * this block entry has history we will delete all previous actions as long as
 | 
						|
 * our sanity checks pass as they are no longer needed.
 | 
						|
 */
 | 
						|
int btrfs_ref_tree_mod(struct btrfs_fs_info *fs_info,
 | 
						|
		       struct btrfs_ref *generic_ref)
 | 
						|
{
 | 
						|
	struct ref_entry *ref = NULL, *exist;
 | 
						|
	struct ref_action *ra = NULL;
 | 
						|
	struct block_entry *be = NULL;
 | 
						|
	struct root_entry *re = NULL;
 | 
						|
	int action = generic_ref->action;
 | 
						|
	int ret = 0;
 | 
						|
	bool metadata;
 | 
						|
	u64 bytenr = generic_ref->bytenr;
 | 
						|
	u64 num_bytes = generic_ref->len;
 | 
						|
	u64 parent = generic_ref->parent;
 | 
						|
	u64 ref_root = 0;
 | 
						|
	u64 owner = 0;
 | 
						|
	u64 offset = 0;
 | 
						|
 | 
						|
	if (!btrfs_test_opt(fs_info, REF_VERIFY))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (generic_ref->type == BTRFS_REF_METADATA) {
 | 
						|
		if (!parent)
 | 
						|
			ref_root = generic_ref->tree_ref.owning_root;
 | 
						|
		owner = generic_ref->tree_ref.level;
 | 
						|
	} else if (!parent) {
 | 
						|
		ref_root = generic_ref->data_ref.owning_root;
 | 
						|
		owner = generic_ref->data_ref.ino;
 | 
						|
		offset = generic_ref->data_ref.offset;
 | 
						|
	}
 | 
						|
	metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
 | 
						|
 | 
						|
	ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
 | 
						|
	ra = kmalloc(sizeof(struct ref_action), GFP_NOFS);
 | 
						|
	if (!ra || !ref) {
 | 
						|
		kfree(ref);
 | 
						|
		kfree(ra);
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	ref->parent = parent;
 | 
						|
	ref->owner = owner;
 | 
						|
	ref->root_objectid = ref_root;
 | 
						|
	ref->offset = offset;
 | 
						|
	ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1;
 | 
						|
 | 
						|
	memcpy(&ra->ref, ref, sizeof(struct ref_entry));
 | 
						|
	/*
 | 
						|
	 * Save the extra info from the delayed ref in the ref action to make it
 | 
						|
	 * easier to figure out what is happening.  The real ref's we add to the
 | 
						|
	 * ref tree need to reflect what we save on disk so it matches any
 | 
						|
	 * on-disk refs we pre-loaded.
 | 
						|
	 */
 | 
						|
	ra->ref.owner = owner;
 | 
						|
	ra->ref.offset = offset;
 | 
						|
	ra->ref.root_objectid = ref_root;
 | 
						|
	__save_stack_trace(ra);
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&ra->list);
 | 
						|
	ra->action = action;
 | 
						|
	ra->root = generic_ref->real_root;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This is an allocation, preallocate the block_entry in case we haven't
 | 
						|
	 * used it before.
 | 
						|
	 */
 | 
						|
	ret = -EINVAL;
 | 
						|
	if (action == BTRFS_ADD_DELAYED_EXTENT) {
 | 
						|
		/*
 | 
						|
		 * For subvol_create we'll just pass in whatever the parent root
 | 
						|
		 * is and the new root objectid, so let's not treat the passed
 | 
						|
		 * in root as if it really has a ref for this bytenr.
 | 
						|
		 */
 | 
						|
		be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
 | 
						|
		if (IS_ERR(be)) {
 | 
						|
			kfree(ref);
 | 
						|
			kfree(ra);
 | 
						|
			ret = PTR_ERR(be);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		be->num_refs++;
 | 
						|
		if (metadata)
 | 
						|
			be->metadata = 1;
 | 
						|
 | 
						|
		if (be->num_refs != 1) {
 | 
						|
			btrfs_err(fs_info,
 | 
						|
			"re-allocated a block that still has references to it!");
 | 
						|
			dump_block_entry(fs_info, be);
 | 
						|
			dump_ref_action(fs_info, ra);
 | 
						|
			kfree(ref);
 | 
						|
			kfree(ra);
 | 
						|
			goto out_unlock;
 | 
						|
		}
 | 
						|
 | 
						|
		while (!list_empty(&be->actions)) {
 | 
						|
			struct ref_action *tmp;
 | 
						|
 | 
						|
			tmp = list_first_entry(&be->actions, struct ref_action,
 | 
						|
					       list);
 | 
						|
			list_del(&tmp->list);
 | 
						|
			kfree(tmp);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		struct root_entry *tmp;
 | 
						|
 | 
						|
		if (!parent) {
 | 
						|
			re = kmalloc(sizeof(struct root_entry), GFP_NOFS);
 | 
						|
			if (!re) {
 | 
						|
				kfree(ref);
 | 
						|
				kfree(ra);
 | 
						|
				ret = -ENOMEM;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			/*
 | 
						|
			 * This is the root that is modifying us, so it's the
 | 
						|
			 * one we want to lookup below when we modify the
 | 
						|
			 * re->num_refs.
 | 
						|
			 */
 | 
						|
			ref_root = generic_ref->real_root;
 | 
						|
			re->root_objectid = generic_ref->real_root;
 | 
						|
			re->num_refs = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		spin_lock(&fs_info->ref_verify_lock);
 | 
						|
		be = lookup_block_entry(&fs_info->block_tree, bytenr);
 | 
						|
		if (!be) {
 | 
						|
			btrfs_err(fs_info,
 | 
						|
"trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!",
 | 
						|
				  action, bytenr, num_bytes);
 | 
						|
			dump_ref_action(fs_info, ra);
 | 
						|
			kfree(ref);
 | 
						|
			kfree(ra);
 | 
						|
			goto out_unlock;
 | 
						|
		} else if (be->num_refs == 0) {
 | 
						|
			btrfs_err(fs_info,
 | 
						|
		"trying to do action %d for a bytenr that has 0 total references",
 | 
						|
				action);
 | 
						|
			dump_block_entry(fs_info, be);
 | 
						|
			dump_ref_action(fs_info, ra);
 | 
						|
			kfree(ref);
 | 
						|
			kfree(ra);
 | 
						|
			goto out_unlock;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!parent) {
 | 
						|
			tmp = insert_root_entry(&be->roots, re);
 | 
						|
			if (tmp) {
 | 
						|
				kfree(re);
 | 
						|
				re = tmp;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	exist = insert_ref_entry(&be->refs, ref);
 | 
						|
	if (exist) {
 | 
						|
		if (action == BTRFS_DROP_DELAYED_REF) {
 | 
						|
			if (exist->num_refs == 0) {
 | 
						|
				btrfs_err(fs_info,
 | 
						|
"dropping a ref for a existing root that doesn't have a ref on the block");
 | 
						|
				dump_block_entry(fs_info, be);
 | 
						|
				dump_ref_action(fs_info, ra);
 | 
						|
				kfree(ref);
 | 
						|
				kfree(ra);
 | 
						|
				goto out_unlock;
 | 
						|
			}
 | 
						|
			exist->num_refs--;
 | 
						|
			if (exist->num_refs == 0) {
 | 
						|
				rb_erase(&exist->node, &be->refs);
 | 
						|
				kfree(exist);
 | 
						|
			}
 | 
						|
		} else if (!be->metadata) {
 | 
						|
			exist->num_refs++;
 | 
						|
		} else {
 | 
						|
			btrfs_err(fs_info,
 | 
						|
"attempting to add another ref for an existing ref on a tree block");
 | 
						|
			dump_block_entry(fs_info, be);
 | 
						|
			dump_ref_action(fs_info, ra);
 | 
						|
			kfree(ref);
 | 
						|
			kfree(ra);
 | 
						|
			goto out_unlock;
 | 
						|
		}
 | 
						|
		kfree(ref);
 | 
						|
	} else {
 | 
						|
		if (action == BTRFS_DROP_DELAYED_REF) {
 | 
						|
			btrfs_err(fs_info,
 | 
						|
"dropping a ref for a root that doesn't have a ref on the block");
 | 
						|
			dump_block_entry(fs_info, be);
 | 
						|
			dump_ref_action(fs_info, ra);
 | 
						|
			kfree(ref);
 | 
						|
			kfree(ra);
 | 
						|
			goto out_unlock;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (!parent && !re) {
 | 
						|
		re = lookup_root_entry(&be->roots, ref_root);
 | 
						|
		if (!re) {
 | 
						|
			/*
 | 
						|
			 * This shouldn't happen because we will add our re
 | 
						|
			 * above when we lookup the be with !parent, but just in
 | 
						|
			 * case catch this case so we don't panic because I
 | 
						|
			 * didn't think of some other corner case.
 | 
						|
			 */
 | 
						|
			btrfs_err(fs_info, "failed to find root %llu for %llu",
 | 
						|
				  generic_ref->real_root, be->bytenr);
 | 
						|
			dump_block_entry(fs_info, be);
 | 
						|
			dump_ref_action(fs_info, ra);
 | 
						|
			kfree(ra);
 | 
						|
			goto out_unlock;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (action == BTRFS_DROP_DELAYED_REF) {
 | 
						|
		if (re)
 | 
						|
			re->num_refs--;
 | 
						|
		be->num_refs--;
 | 
						|
	} else if (action == BTRFS_ADD_DELAYED_REF) {
 | 
						|
		be->num_refs++;
 | 
						|
		if (re)
 | 
						|
			re->num_refs++;
 | 
						|
	}
 | 
						|
	list_add_tail(&ra->list, &be->actions);
 | 
						|
	ret = 0;
 | 
						|
out_unlock:
 | 
						|
	spin_unlock(&fs_info->ref_verify_lock);
 | 
						|
out:
 | 
						|
	if (ret)
 | 
						|
		btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Free up the ref cache */
 | 
						|
void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info)
 | 
						|
{
 | 
						|
	struct block_entry *be;
 | 
						|
	struct rb_node *n;
 | 
						|
 | 
						|
	if (!btrfs_test_opt(fs_info, REF_VERIFY))
 | 
						|
		return;
 | 
						|
 | 
						|
	spin_lock(&fs_info->ref_verify_lock);
 | 
						|
	while ((n = rb_first(&fs_info->block_tree))) {
 | 
						|
		be = rb_entry(n, struct block_entry, node);
 | 
						|
		rb_erase(&be->node, &fs_info->block_tree);
 | 
						|
		free_block_entry(be);
 | 
						|
		cond_resched_lock(&fs_info->ref_verify_lock);
 | 
						|
	}
 | 
						|
	spin_unlock(&fs_info->ref_verify_lock);
 | 
						|
}
 | 
						|
 | 
						|
void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start,
 | 
						|
			       u64 len)
 | 
						|
{
 | 
						|
	struct block_entry *be = NULL, *entry;
 | 
						|
	struct rb_node *n;
 | 
						|
 | 
						|
	if (!btrfs_test_opt(fs_info, REF_VERIFY))
 | 
						|
		return;
 | 
						|
 | 
						|
	spin_lock(&fs_info->ref_verify_lock);
 | 
						|
	n = fs_info->block_tree.rb_node;
 | 
						|
	while (n) {
 | 
						|
		entry = rb_entry(n, struct block_entry, node);
 | 
						|
		if (entry->bytenr < start) {
 | 
						|
			n = n->rb_right;
 | 
						|
		} else if (entry->bytenr > start) {
 | 
						|
			n = n->rb_left;
 | 
						|
		} else {
 | 
						|
			be = entry;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		/* We want to get as close to start as possible */
 | 
						|
		if (be == NULL ||
 | 
						|
		    (entry->bytenr < start && be->bytenr > start) ||
 | 
						|
		    (entry->bytenr < start && entry->bytenr > be->bytenr))
 | 
						|
			be = entry;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Could have an empty block group, maybe have something to check for
 | 
						|
	 * this case to verify we were actually empty?
 | 
						|
	 */
 | 
						|
	if (!be) {
 | 
						|
		spin_unlock(&fs_info->ref_verify_lock);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	n = &be->node;
 | 
						|
	while (n) {
 | 
						|
		be = rb_entry(n, struct block_entry, node);
 | 
						|
		n = rb_next(n);
 | 
						|
		if (be->bytenr < start && be->bytenr + be->len > start) {
 | 
						|
			btrfs_err(fs_info,
 | 
						|
				"block entry overlaps a block group [%llu,%llu]!",
 | 
						|
				start, len);
 | 
						|
			dump_block_entry(fs_info, be);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		if (be->bytenr < start)
 | 
						|
			continue;
 | 
						|
		if (be->bytenr >= start + len)
 | 
						|
			break;
 | 
						|
		if (be->bytenr + be->len > start + len) {
 | 
						|
			btrfs_err(fs_info,
 | 
						|
				"block entry overlaps a block group [%llu,%llu]!",
 | 
						|
				start, len);
 | 
						|
			dump_block_entry(fs_info, be);
 | 
						|
		}
 | 
						|
		rb_erase(&be->node, &fs_info->block_tree);
 | 
						|
		free_block_entry(be);
 | 
						|
	}
 | 
						|
	spin_unlock(&fs_info->ref_verify_lock);
 | 
						|
}
 | 
						|
 | 
						|
/* Walk down all roots and build the ref tree, meant to be called at mount */
 | 
						|
int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info)
 | 
						|
{
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct extent_buffer *eb;
 | 
						|
	int tree_block_level = 0;
 | 
						|
	u64 bytenr = 0, num_bytes = 0;
 | 
						|
	int ret, level;
 | 
						|
 | 
						|
	if (!btrfs_test_opt(fs_info, REF_VERIFY))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	eb = btrfs_read_lock_root_node(fs_info->extent_root);
 | 
						|
	level = btrfs_header_level(eb);
 | 
						|
	path->nodes[level] = eb;
 | 
						|
	path->slots[level] = 0;
 | 
						|
	path->locks[level] = BTRFS_READ_LOCK;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		/*
 | 
						|
		 * We have to keep track of the bytenr/num_bytes we last hit
 | 
						|
		 * because we could have run out of space for an inline ref, and
 | 
						|
		 * would have had to added a ref key item which may appear on a
 | 
						|
		 * different leaf from the original extent item.
 | 
						|
		 */
 | 
						|
		ret = walk_down_tree(fs_info->extent_root, path, level,
 | 
						|
				     &bytenr, &num_bytes, &tree_block_level);
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
		ret = walk_up_tree(path, &level);
 | 
						|
		if (ret < 0)
 | 
						|
			break;
 | 
						|
		if (ret > 0) {
 | 
						|
			ret = 0;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (ret) {
 | 
						|
		btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
 | 
						|
		btrfs_free_ref_cache(fs_info);
 | 
						|
	}
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 |