mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-02 17:49:03 +02:00 
			
		
		
		
	All this does is call btrfs_get_fs_root() with check_ref == true. Just use btrfs_get_fs_root() so we don't have a bunch of different helpers that do the same thing. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
		
			
				
	
	
		
			3536 lines
		
	
	
	
		
			93 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3536 lines
		
	
	
	
		
			93 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Copyright (C) 2007 Oracle.  All rights reserved.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/time.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/backing-dev.h>
 | 
						|
#include <linux/falloc.h>
 | 
						|
#include <linux/writeback.h>
 | 
						|
#include <linux/compat.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/btrfs.h>
 | 
						|
#include <linux/uio.h>
 | 
						|
#include <linux/iversion.h>
 | 
						|
#include "ctree.h"
 | 
						|
#include "disk-io.h"
 | 
						|
#include "transaction.h"
 | 
						|
#include "btrfs_inode.h"
 | 
						|
#include "print-tree.h"
 | 
						|
#include "tree-log.h"
 | 
						|
#include "locking.h"
 | 
						|
#include "volumes.h"
 | 
						|
#include "qgroup.h"
 | 
						|
#include "compression.h"
 | 
						|
#include "delalloc-space.h"
 | 
						|
 | 
						|
static struct kmem_cache *btrfs_inode_defrag_cachep;
 | 
						|
/*
 | 
						|
 * when auto defrag is enabled we
 | 
						|
 * queue up these defrag structs to remember which
 | 
						|
 * inodes need defragging passes
 | 
						|
 */
 | 
						|
struct inode_defrag {
 | 
						|
	struct rb_node rb_node;
 | 
						|
	/* objectid */
 | 
						|
	u64 ino;
 | 
						|
	/*
 | 
						|
	 * transid where the defrag was added, we search for
 | 
						|
	 * extents newer than this
 | 
						|
	 */
 | 
						|
	u64 transid;
 | 
						|
 | 
						|
	/* root objectid */
 | 
						|
	u64 root;
 | 
						|
 | 
						|
	/* last offset we were able to defrag */
 | 
						|
	u64 last_offset;
 | 
						|
 | 
						|
	/* if we've wrapped around back to zero once already */
 | 
						|
	int cycled;
 | 
						|
};
 | 
						|
 | 
						|
static int __compare_inode_defrag(struct inode_defrag *defrag1,
 | 
						|
				  struct inode_defrag *defrag2)
 | 
						|
{
 | 
						|
	if (defrag1->root > defrag2->root)
 | 
						|
		return 1;
 | 
						|
	else if (defrag1->root < defrag2->root)
 | 
						|
		return -1;
 | 
						|
	else if (defrag1->ino > defrag2->ino)
 | 
						|
		return 1;
 | 
						|
	else if (defrag1->ino < defrag2->ino)
 | 
						|
		return -1;
 | 
						|
	else
 | 
						|
		return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* pop a record for an inode into the defrag tree.  The lock
 | 
						|
 * must be held already
 | 
						|
 *
 | 
						|
 * If you're inserting a record for an older transid than an
 | 
						|
 * existing record, the transid already in the tree is lowered
 | 
						|
 *
 | 
						|
 * If an existing record is found the defrag item you
 | 
						|
 * pass in is freed
 | 
						|
 */
 | 
						|
static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
 | 
						|
				    struct inode_defrag *defrag)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | 
						|
	struct inode_defrag *entry;
 | 
						|
	struct rb_node **p;
 | 
						|
	struct rb_node *parent = NULL;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	p = &fs_info->defrag_inodes.rb_node;
 | 
						|
	while (*p) {
 | 
						|
		parent = *p;
 | 
						|
		entry = rb_entry(parent, struct inode_defrag, rb_node);
 | 
						|
 | 
						|
		ret = __compare_inode_defrag(defrag, entry);
 | 
						|
		if (ret < 0)
 | 
						|
			p = &parent->rb_left;
 | 
						|
		else if (ret > 0)
 | 
						|
			p = &parent->rb_right;
 | 
						|
		else {
 | 
						|
			/* if we're reinserting an entry for
 | 
						|
			 * an old defrag run, make sure to
 | 
						|
			 * lower the transid of our existing record
 | 
						|
			 */
 | 
						|
			if (defrag->transid < entry->transid)
 | 
						|
				entry->transid = defrag->transid;
 | 
						|
			if (defrag->last_offset > entry->last_offset)
 | 
						|
				entry->last_offset = defrag->last_offset;
 | 
						|
			return -EEXIST;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
 | 
						|
	rb_link_node(&defrag->rb_node, parent, p);
 | 
						|
	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
 | 
						|
{
 | 
						|
	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (btrfs_fs_closing(fs_info))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * insert a defrag record for this inode if auto defrag is
 | 
						|
 * enabled
 | 
						|
 */
 | 
						|
int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 | 
						|
			   struct btrfs_inode *inode)
 | 
						|
{
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct inode_defrag *defrag;
 | 
						|
	u64 transid;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (!__need_auto_defrag(fs_info))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (trans)
 | 
						|
		transid = trans->transid;
 | 
						|
	else
 | 
						|
		transid = inode->root->last_trans;
 | 
						|
 | 
						|
	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 | 
						|
	if (!defrag)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	defrag->ino = btrfs_ino(inode);
 | 
						|
	defrag->transid = transid;
 | 
						|
	defrag->root = root->root_key.objectid;
 | 
						|
 | 
						|
	spin_lock(&fs_info->defrag_inodes_lock);
 | 
						|
	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
 | 
						|
		/*
 | 
						|
		 * If we set IN_DEFRAG flag and evict the inode from memory,
 | 
						|
		 * and then re-read this inode, this new inode doesn't have
 | 
						|
		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 | 
						|
		 */
 | 
						|
		ret = __btrfs_add_inode_defrag(inode, defrag);
 | 
						|
		if (ret)
 | 
						|
			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 | 
						|
	} else {
 | 
						|
		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 | 
						|
	}
 | 
						|
	spin_unlock(&fs_info->defrag_inodes_lock);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Requeue the defrag object. If there is a defrag object that points to
 | 
						|
 * the same inode in the tree, we will merge them together (by
 | 
						|
 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 | 
						|
 */
 | 
						|
static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
 | 
						|
				       struct inode_defrag *defrag)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (!__need_auto_defrag(fs_info))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Here we don't check the IN_DEFRAG flag, because we need merge
 | 
						|
	 * them together.
 | 
						|
	 */
 | 
						|
	spin_lock(&fs_info->defrag_inodes_lock);
 | 
						|
	ret = __btrfs_add_inode_defrag(inode, defrag);
 | 
						|
	spin_unlock(&fs_info->defrag_inodes_lock);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
	return;
 | 
						|
out:
 | 
						|
	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * pick the defragable inode that we want, if it doesn't exist, we will get
 | 
						|
 * the next one.
 | 
						|
 */
 | 
						|
static struct inode_defrag *
 | 
						|
btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 | 
						|
{
 | 
						|
	struct inode_defrag *entry = NULL;
 | 
						|
	struct inode_defrag tmp;
 | 
						|
	struct rb_node *p;
 | 
						|
	struct rb_node *parent = NULL;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	tmp.ino = ino;
 | 
						|
	tmp.root = root;
 | 
						|
 | 
						|
	spin_lock(&fs_info->defrag_inodes_lock);
 | 
						|
	p = fs_info->defrag_inodes.rb_node;
 | 
						|
	while (p) {
 | 
						|
		parent = p;
 | 
						|
		entry = rb_entry(parent, struct inode_defrag, rb_node);
 | 
						|
 | 
						|
		ret = __compare_inode_defrag(&tmp, entry);
 | 
						|
		if (ret < 0)
 | 
						|
			p = parent->rb_left;
 | 
						|
		else if (ret > 0)
 | 
						|
			p = parent->rb_right;
 | 
						|
		else
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 | 
						|
		parent = rb_next(parent);
 | 
						|
		if (parent)
 | 
						|
			entry = rb_entry(parent, struct inode_defrag, rb_node);
 | 
						|
		else
 | 
						|
			entry = NULL;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	if (entry)
 | 
						|
		rb_erase(parent, &fs_info->defrag_inodes);
 | 
						|
	spin_unlock(&fs_info->defrag_inodes_lock);
 | 
						|
	return entry;
 | 
						|
}
 | 
						|
 | 
						|
void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 | 
						|
{
 | 
						|
	struct inode_defrag *defrag;
 | 
						|
	struct rb_node *node;
 | 
						|
 | 
						|
	spin_lock(&fs_info->defrag_inodes_lock);
 | 
						|
	node = rb_first(&fs_info->defrag_inodes);
 | 
						|
	while (node) {
 | 
						|
		rb_erase(node, &fs_info->defrag_inodes);
 | 
						|
		defrag = rb_entry(node, struct inode_defrag, rb_node);
 | 
						|
		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 | 
						|
 | 
						|
		cond_resched_lock(&fs_info->defrag_inodes_lock);
 | 
						|
 | 
						|
		node = rb_first(&fs_info->defrag_inodes);
 | 
						|
	}
 | 
						|
	spin_unlock(&fs_info->defrag_inodes_lock);
 | 
						|
}
 | 
						|
 | 
						|
#define BTRFS_DEFRAG_BATCH	1024
 | 
						|
 | 
						|
static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 | 
						|
				    struct inode_defrag *defrag)
 | 
						|
{
 | 
						|
	struct btrfs_root *inode_root;
 | 
						|
	struct inode *inode;
 | 
						|
	struct btrfs_key key;
 | 
						|
	struct btrfs_ioctl_defrag_range_args range;
 | 
						|
	int num_defrag;
 | 
						|
	int index;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* get the inode */
 | 
						|
	key.objectid = defrag->root;
 | 
						|
	key.type = BTRFS_ROOT_ITEM_KEY;
 | 
						|
	key.offset = (u64)-1;
 | 
						|
 | 
						|
	index = srcu_read_lock(&fs_info->subvol_srcu);
 | 
						|
 | 
						|
	inode_root = btrfs_get_fs_root(fs_info, &key, true);
 | 
						|
	if (IS_ERR(inode_root)) {
 | 
						|
		ret = PTR_ERR(inode_root);
 | 
						|
		goto cleanup;
 | 
						|
	}
 | 
						|
 | 
						|
	key.objectid = defrag->ino;
 | 
						|
	key.type = BTRFS_INODE_ITEM_KEY;
 | 
						|
	key.offset = 0;
 | 
						|
	inode = btrfs_iget(fs_info->sb, &key, inode_root);
 | 
						|
	if (IS_ERR(inode)) {
 | 
						|
		ret = PTR_ERR(inode);
 | 
						|
		goto cleanup;
 | 
						|
	}
 | 
						|
	srcu_read_unlock(&fs_info->subvol_srcu, index);
 | 
						|
 | 
						|
	/* do a chunk of defrag */
 | 
						|
	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 | 
						|
	memset(&range, 0, sizeof(range));
 | 
						|
	range.len = (u64)-1;
 | 
						|
	range.start = defrag->last_offset;
 | 
						|
 | 
						|
	sb_start_write(fs_info->sb);
 | 
						|
	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 | 
						|
				       BTRFS_DEFRAG_BATCH);
 | 
						|
	sb_end_write(fs_info->sb);
 | 
						|
	/*
 | 
						|
	 * if we filled the whole defrag batch, there
 | 
						|
	 * must be more work to do.  Queue this defrag
 | 
						|
	 * again
 | 
						|
	 */
 | 
						|
	if (num_defrag == BTRFS_DEFRAG_BATCH) {
 | 
						|
		defrag->last_offset = range.start;
 | 
						|
		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 | 
						|
	} else if (defrag->last_offset && !defrag->cycled) {
 | 
						|
		/*
 | 
						|
		 * we didn't fill our defrag batch, but
 | 
						|
		 * we didn't start at zero.  Make sure we loop
 | 
						|
		 * around to the start of the file.
 | 
						|
		 */
 | 
						|
		defrag->last_offset = 0;
 | 
						|
		defrag->cycled = 1;
 | 
						|
		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 | 
						|
	} else {
 | 
						|
		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 | 
						|
	}
 | 
						|
 | 
						|
	iput(inode);
 | 
						|
	return 0;
 | 
						|
cleanup:
 | 
						|
	srcu_read_unlock(&fs_info->subvol_srcu, index);
 | 
						|
	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * run through the list of inodes in the FS that need
 | 
						|
 * defragging
 | 
						|
 */
 | 
						|
int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 | 
						|
{
 | 
						|
	struct inode_defrag *defrag;
 | 
						|
	u64 first_ino = 0;
 | 
						|
	u64 root_objectid = 0;
 | 
						|
 | 
						|
	atomic_inc(&fs_info->defrag_running);
 | 
						|
	while (1) {
 | 
						|
		/* Pause the auto defragger. */
 | 
						|
		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 | 
						|
			     &fs_info->fs_state))
 | 
						|
			break;
 | 
						|
 | 
						|
		if (!__need_auto_defrag(fs_info))
 | 
						|
			break;
 | 
						|
 | 
						|
		/* find an inode to defrag */
 | 
						|
		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 | 
						|
						 first_ino);
 | 
						|
		if (!defrag) {
 | 
						|
			if (root_objectid || first_ino) {
 | 
						|
				root_objectid = 0;
 | 
						|
				first_ino = 0;
 | 
						|
				continue;
 | 
						|
			} else {
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		first_ino = defrag->ino + 1;
 | 
						|
		root_objectid = defrag->root;
 | 
						|
 | 
						|
		__btrfs_run_defrag_inode(fs_info, defrag);
 | 
						|
	}
 | 
						|
	atomic_dec(&fs_info->defrag_running);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * during unmount, we use the transaction_wait queue to
 | 
						|
	 * wait for the defragger to stop
 | 
						|
	 */
 | 
						|
	wake_up(&fs_info->transaction_wait);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* simple helper to fault in pages and copy.  This should go away
 | 
						|
 * and be replaced with calls into generic code.
 | 
						|
 */
 | 
						|
static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
 | 
						|
					 struct page **prepared_pages,
 | 
						|
					 struct iov_iter *i)
 | 
						|
{
 | 
						|
	size_t copied = 0;
 | 
						|
	size_t total_copied = 0;
 | 
						|
	int pg = 0;
 | 
						|
	int offset = offset_in_page(pos);
 | 
						|
 | 
						|
	while (write_bytes > 0) {
 | 
						|
		size_t count = min_t(size_t,
 | 
						|
				     PAGE_SIZE - offset, write_bytes);
 | 
						|
		struct page *page = prepared_pages[pg];
 | 
						|
		/*
 | 
						|
		 * Copy data from userspace to the current page
 | 
						|
		 */
 | 
						|
		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 | 
						|
 | 
						|
		/* Flush processor's dcache for this page */
 | 
						|
		flush_dcache_page(page);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * if we get a partial write, we can end up with
 | 
						|
		 * partially up to date pages.  These add
 | 
						|
		 * a lot of complexity, so make sure they don't
 | 
						|
		 * happen by forcing this copy to be retried.
 | 
						|
		 *
 | 
						|
		 * The rest of the btrfs_file_write code will fall
 | 
						|
		 * back to page at a time copies after we return 0.
 | 
						|
		 */
 | 
						|
		if (!PageUptodate(page) && copied < count)
 | 
						|
			copied = 0;
 | 
						|
 | 
						|
		iov_iter_advance(i, copied);
 | 
						|
		write_bytes -= copied;
 | 
						|
		total_copied += copied;
 | 
						|
 | 
						|
		/* Return to btrfs_file_write_iter to fault page */
 | 
						|
		if (unlikely(copied == 0))
 | 
						|
			break;
 | 
						|
 | 
						|
		if (copied < PAGE_SIZE - offset) {
 | 
						|
			offset += copied;
 | 
						|
		} else {
 | 
						|
			pg++;
 | 
						|
			offset = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return total_copied;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * unlocks pages after btrfs_file_write is done with them
 | 
						|
 */
 | 
						|
static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 | 
						|
{
 | 
						|
	size_t i;
 | 
						|
	for (i = 0; i < num_pages; i++) {
 | 
						|
		/* page checked is some magic around finding pages that
 | 
						|
		 * have been modified without going through btrfs_set_page_dirty
 | 
						|
		 * clear it here. There should be no need to mark the pages
 | 
						|
		 * accessed as prepare_pages should have marked them accessed
 | 
						|
		 * in prepare_pages via find_or_create_page()
 | 
						|
		 */
 | 
						|
		ClearPageChecked(pages[i]);
 | 
						|
		unlock_page(pages[i]);
 | 
						|
		put_page(pages[i]);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
 | 
						|
					 const u64 start,
 | 
						|
					 const u64 len,
 | 
						|
					 struct extent_state **cached_state)
 | 
						|
{
 | 
						|
	u64 search_start = start;
 | 
						|
	const u64 end = start + len - 1;
 | 
						|
 | 
						|
	while (search_start < end) {
 | 
						|
		const u64 search_len = end - search_start + 1;
 | 
						|
		struct extent_map *em;
 | 
						|
		u64 em_len;
 | 
						|
		int ret = 0;
 | 
						|
 | 
						|
		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
 | 
						|
		if (IS_ERR(em))
 | 
						|
			return PTR_ERR(em);
 | 
						|
 | 
						|
		if (em->block_start != EXTENT_MAP_HOLE)
 | 
						|
			goto next;
 | 
						|
 | 
						|
		em_len = em->len;
 | 
						|
		if (em->start < search_start)
 | 
						|
			em_len -= search_start - em->start;
 | 
						|
		if (em_len > search_len)
 | 
						|
			em_len = search_len;
 | 
						|
 | 
						|
		ret = set_extent_bit(&inode->io_tree, search_start,
 | 
						|
				     search_start + em_len - 1,
 | 
						|
				     EXTENT_DELALLOC_NEW,
 | 
						|
				     NULL, cached_state, GFP_NOFS);
 | 
						|
next:
 | 
						|
		search_start = extent_map_end(em);
 | 
						|
		free_extent_map(em);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * after copy_from_user, pages need to be dirtied and we need to make
 | 
						|
 * sure holes are created between the current EOF and the start of
 | 
						|
 * any next extents (if required).
 | 
						|
 *
 | 
						|
 * this also makes the decision about creating an inline extent vs
 | 
						|
 * doing real data extents, marking pages dirty and delalloc as required.
 | 
						|
 */
 | 
						|
int btrfs_dirty_pages(struct inode *inode, struct page **pages,
 | 
						|
		      size_t num_pages, loff_t pos, size_t write_bytes,
 | 
						|
		      struct extent_state **cached)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	int err = 0;
 | 
						|
	int i;
 | 
						|
	u64 num_bytes;
 | 
						|
	u64 start_pos;
 | 
						|
	u64 end_of_last_block;
 | 
						|
	u64 end_pos = pos + write_bytes;
 | 
						|
	loff_t isize = i_size_read(inode);
 | 
						|
	unsigned int extra_bits = 0;
 | 
						|
 | 
						|
	start_pos = pos & ~((u64) fs_info->sectorsize - 1);
 | 
						|
	num_bytes = round_up(write_bytes + pos - start_pos,
 | 
						|
			     fs_info->sectorsize);
 | 
						|
 | 
						|
	end_of_last_block = start_pos + num_bytes - 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The pages may have already been dirty, clear out old accounting so
 | 
						|
	 * we can set things up properly
 | 
						|
	 */
 | 
						|
	clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
 | 
						|
			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 | 
						|
			 0, 0, cached);
 | 
						|
 | 
						|
	if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
 | 
						|
		if (start_pos >= isize &&
 | 
						|
		    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
 | 
						|
			/*
 | 
						|
			 * There can't be any extents following eof in this case
 | 
						|
			 * so just set the delalloc new bit for the range
 | 
						|
			 * directly.
 | 
						|
			 */
 | 
						|
			extra_bits |= EXTENT_DELALLOC_NEW;
 | 
						|
		} else {
 | 
						|
			err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
 | 
						|
							    start_pos,
 | 
						|
							    num_bytes, cached);
 | 
						|
			if (err)
 | 
						|
				return err;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 | 
						|
					extra_bits, cached);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	for (i = 0; i < num_pages; i++) {
 | 
						|
		struct page *p = pages[i];
 | 
						|
		SetPageUptodate(p);
 | 
						|
		ClearPageChecked(p);
 | 
						|
		set_page_dirty(p);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * we've only changed i_size in ram, and we haven't updated
 | 
						|
	 * the disk i_size.  There is no need to log the inode
 | 
						|
	 * at this time.
 | 
						|
	 */
 | 
						|
	if (end_pos > isize)
 | 
						|
		i_size_write(inode, end_pos);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * this drops all the extents in the cache that intersect the range
 | 
						|
 * [start, end].  Existing extents are split as required.
 | 
						|
 */
 | 
						|
void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
 | 
						|
			     int skip_pinned)
 | 
						|
{
 | 
						|
	struct extent_map *em;
 | 
						|
	struct extent_map *split = NULL;
 | 
						|
	struct extent_map *split2 = NULL;
 | 
						|
	struct extent_map_tree *em_tree = &inode->extent_tree;
 | 
						|
	u64 len = end - start + 1;
 | 
						|
	u64 gen;
 | 
						|
	int ret;
 | 
						|
	int testend = 1;
 | 
						|
	unsigned long flags;
 | 
						|
	int compressed = 0;
 | 
						|
	bool modified;
 | 
						|
 | 
						|
	WARN_ON(end < start);
 | 
						|
	if (end == (u64)-1) {
 | 
						|
		len = (u64)-1;
 | 
						|
		testend = 0;
 | 
						|
	}
 | 
						|
	while (1) {
 | 
						|
		int no_splits = 0;
 | 
						|
 | 
						|
		modified = false;
 | 
						|
		if (!split)
 | 
						|
			split = alloc_extent_map();
 | 
						|
		if (!split2)
 | 
						|
			split2 = alloc_extent_map();
 | 
						|
		if (!split || !split2)
 | 
						|
			no_splits = 1;
 | 
						|
 | 
						|
		write_lock(&em_tree->lock);
 | 
						|
		em = lookup_extent_mapping(em_tree, start, len);
 | 
						|
		if (!em) {
 | 
						|
			write_unlock(&em_tree->lock);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		flags = em->flags;
 | 
						|
		gen = em->generation;
 | 
						|
		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 | 
						|
			if (testend && em->start + em->len >= start + len) {
 | 
						|
				free_extent_map(em);
 | 
						|
				write_unlock(&em_tree->lock);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			start = em->start + em->len;
 | 
						|
			if (testend)
 | 
						|
				len = start + len - (em->start + em->len);
 | 
						|
			free_extent_map(em);
 | 
						|
			write_unlock(&em_tree->lock);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 | 
						|
		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 | 
						|
		clear_bit(EXTENT_FLAG_LOGGING, &flags);
 | 
						|
		modified = !list_empty(&em->list);
 | 
						|
		if (no_splits)
 | 
						|
			goto next;
 | 
						|
 | 
						|
		if (em->start < start) {
 | 
						|
			split->start = em->start;
 | 
						|
			split->len = start - em->start;
 | 
						|
 | 
						|
			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 | 
						|
				split->orig_start = em->orig_start;
 | 
						|
				split->block_start = em->block_start;
 | 
						|
 | 
						|
				if (compressed)
 | 
						|
					split->block_len = em->block_len;
 | 
						|
				else
 | 
						|
					split->block_len = split->len;
 | 
						|
				split->orig_block_len = max(split->block_len,
 | 
						|
						em->orig_block_len);
 | 
						|
				split->ram_bytes = em->ram_bytes;
 | 
						|
			} else {
 | 
						|
				split->orig_start = split->start;
 | 
						|
				split->block_len = 0;
 | 
						|
				split->block_start = em->block_start;
 | 
						|
				split->orig_block_len = 0;
 | 
						|
				split->ram_bytes = split->len;
 | 
						|
			}
 | 
						|
 | 
						|
			split->generation = gen;
 | 
						|
			split->flags = flags;
 | 
						|
			split->compress_type = em->compress_type;
 | 
						|
			replace_extent_mapping(em_tree, em, split, modified);
 | 
						|
			free_extent_map(split);
 | 
						|
			split = split2;
 | 
						|
			split2 = NULL;
 | 
						|
		}
 | 
						|
		if (testend && em->start + em->len > start + len) {
 | 
						|
			u64 diff = start + len - em->start;
 | 
						|
 | 
						|
			split->start = start + len;
 | 
						|
			split->len = em->start + em->len - (start + len);
 | 
						|
			split->flags = flags;
 | 
						|
			split->compress_type = em->compress_type;
 | 
						|
			split->generation = gen;
 | 
						|
 | 
						|
			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 | 
						|
				split->orig_block_len = max(em->block_len,
 | 
						|
						    em->orig_block_len);
 | 
						|
 | 
						|
				split->ram_bytes = em->ram_bytes;
 | 
						|
				if (compressed) {
 | 
						|
					split->block_len = em->block_len;
 | 
						|
					split->block_start = em->block_start;
 | 
						|
					split->orig_start = em->orig_start;
 | 
						|
				} else {
 | 
						|
					split->block_len = split->len;
 | 
						|
					split->block_start = em->block_start
 | 
						|
						+ diff;
 | 
						|
					split->orig_start = em->orig_start;
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				split->ram_bytes = split->len;
 | 
						|
				split->orig_start = split->start;
 | 
						|
				split->block_len = 0;
 | 
						|
				split->block_start = em->block_start;
 | 
						|
				split->orig_block_len = 0;
 | 
						|
			}
 | 
						|
 | 
						|
			if (extent_map_in_tree(em)) {
 | 
						|
				replace_extent_mapping(em_tree, em, split,
 | 
						|
						       modified);
 | 
						|
			} else {
 | 
						|
				ret = add_extent_mapping(em_tree, split,
 | 
						|
							 modified);
 | 
						|
				ASSERT(ret == 0); /* Logic error */
 | 
						|
			}
 | 
						|
			free_extent_map(split);
 | 
						|
			split = NULL;
 | 
						|
		}
 | 
						|
next:
 | 
						|
		if (extent_map_in_tree(em))
 | 
						|
			remove_extent_mapping(em_tree, em);
 | 
						|
		write_unlock(&em_tree->lock);
 | 
						|
 | 
						|
		/* once for us */
 | 
						|
		free_extent_map(em);
 | 
						|
		/* once for the tree*/
 | 
						|
		free_extent_map(em);
 | 
						|
	}
 | 
						|
	if (split)
 | 
						|
		free_extent_map(split);
 | 
						|
	if (split2)
 | 
						|
		free_extent_map(split2);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * this is very complex, but the basic idea is to drop all extents
 | 
						|
 * in the range start - end.  hint_block is filled in with a block number
 | 
						|
 * that would be a good hint to the block allocator for this file.
 | 
						|
 *
 | 
						|
 * If an extent intersects the range but is not entirely inside the range
 | 
						|
 * it is either truncated or split.  Anything entirely inside the range
 | 
						|
 * is deleted from the tree.
 | 
						|
 */
 | 
						|
int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
 | 
						|
			 struct btrfs_root *root, struct inode *inode,
 | 
						|
			 struct btrfs_path *path, u64 start, u64 end,
 | 
						|
			 u64 *drop_end, int drop_cache,
 | 
						|
			 int replace_extent,
 | 
						|
			 u32 extent_item_size,
 | 
						|
			 int *key_inserted)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct btrfs_file_extent_item *fi;
 | 
						|
	struct btrfs_ref ref = { 0 };
 | 
						|
	struct btrfs_key key;
 | 
						|
	struct btrfs_key new_key;
 | 
						|
	u64 ino = btrfs_ino(BTRFS_I(inode));
 | 
						|
	u64 search_start = start;
 | 
						|
	u64 disk_bytenr = 0;
 | 
						|
	u64 num_bytes = 0;
 | 
						|
	u64 extent_offset = 0;
 | 
						|
	u64 extent_end = 0;
 | 
						|
	u64 last_end = start;
 | 
						|
	int del_nr = 0;
 | 
						|
	int del_slot = 0;
 | 
						|
	int extent_type;
 | 
						|
	int recow;
 | 
						|
	int ret;
 | 
						|
	int modify_tree = -1;
 | 
						|
	int update_refs;
 | 
						|
	int found = 0;
 | 
						|
	int leafs_visited = 0;
 | 
						|
 | 
						|
	if (drop_cache)
 | 
						|
		btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
 | 
						|
 | 
						|
	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
 | 
						|
		modify_tree = 0;
 | 
						|
 | 
						|
	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 | 
						|
		       root == fs_info->tree_root);
 | 
						|
	while (1) {
 | 
						|
		recow = 0;
 | 
						|
		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 | 
						|
					       search_start, modify_tree);
 | 
						|
		if (ret < 0)
 | 
						|
			break;
 | 
						|
		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 | 
						|
			leaf = path->nodes[0];
 | 
						|
			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 | 
						|
			if (key.objectid == ino &&
 | 
						|
			    key.type == BTRFS_EXTENT_DATA_KEY)
 | 
						|
				path->slots[0]--;
 | 
						|
		}
 | 
						|
		ret = 0;
 | 
						|
		leafs_visited++;
 | 
						|
next_slot:
 | 
						|
		leaf = path->nodes[0];
 | 
						|
		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 | 
						|
			BUG_ON(del_nr > 0);
 | 
						|
			ret = btrfs_next_leaf(root, path);
 | 
						|
			if (ret < 0)
 | 
						|
				break;
 | 
						|
			if (ret > 0) {
 | 
						|
				ret = 0;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			leafs_visited++;
 | 
						|
			leaf = path->nodes[0];
 | 
						|
			recow = 1;
 | 
						|
		}
 | 
						|
 | 
						|
		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | 
						|
 | 
						|
		if (key.objectid > ino)
 | 
						|
			break;
 | 
						|
		if (WARN_ON_ONCE(key.objectid < ino) ||
 | 
						|
		    key.type < BTRFS_EXTENT_DATA_KEY) {
 | 
						|
			ASSERT(del_nr == 0);
 | 
						|
			path->slots[0]++;
 | 
						|
			goto next_slot;
 | 
						|
		}
 | 
						|
		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 | 
						|
			break;
 | 
						|
 | 
						|
		fi = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
				    struct btrfs_file_extent_item);
 | 
						|
		extent_type = btrfs_file_extent_type(leaf, fi);
 | 
						|
 | 
						|
		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 | 
						|
		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 | 
						|
			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 | 
						|
			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 | 
						|
			extent_offset = btrfs_file_extent_offset(leaf, fi);
 | 
						|
			extent_end = key.offset +
 | 
						|
				btrfs_file_extent_num_bytes(leaf, fi);
 | 
						|
		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 | 
						|
			extent_end = key.offset +
 | 
						|
				btrfs_file_extent_ram_bytes(leaf, fi);
 | 
						|
		} else {
 | 
						|
			/* can't happen */
 | 
						|
			BUG();
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Don't skip extent items representing 0 byte lengths. They
 | 
						|
		 * used to be created (bug) if while punching holes we hit
 | 
						|
		 * -ENOSPC condition. So if we find one here, just ensure we
 | 
						|
		 * delete it, otherwise we would insert a new file extent item
 | 
						|
		 * with the same key (offset) as that 0 bytes length file
 | 
						|
		 * extent item in the call to setup_items_for_insert() later
 | 
						|
		 * in this function.
 | 
						|
		 */
 | 
						|
		if (extent_end == key.offset && extent_end >= search_start) {
 | 
						|
			last_end = extent_end;
 | 
						|
			goto delete_extent_item;
 | 
						|
		}
 | 
						|
 | 
						|
		if (extent_end <= search_start) {
 | 
						|
			path->slots[0]++;
 | 
						|
			goto next_slot;
 | 
						|
		}
 | 
						|
 | 
						|
		found = 1;
 | 
						|
		search_start = max(key.offset, start);
 | 
						|
		if (recow || !modify_tree) {
 | 
						|
			modify_tree = -1;
 | 
						|
			btrfs_release_path(path);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 *     | - range to drop - |
 | 
						|
		 *  | -------- extent -------- |
 | 
						|
		 */
 | 
						|
		if (start > key.offset && end < extent_end) {
 | 
						|
			BUG_ON(del_nr > 0);
 | 
						|
			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 | 
						|
				ret = -EOPNOTSUPP;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
			memcpy(&new_key, &key, sizeof(new_key));
 | 
						|
			new_key.offset = start;
 | 
						|
			ret = btrfs_duplicate_item(trans, root, path,
 | 
						|
						   &new_key);
 | 
						|
			if (ret == -EAGAIN) {
 | 
						|
				btrfs_release_path(path);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			if (ret < 0)
 | 
						|
				break;
 | 
						|
 | 
						|
			leaf = path->nodes[0];
 | 
						|
			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 | 
						|
					    struct btrfs_file_extent_item);
 | 
						|
			btrfs_set_file_extent_num_bytes(leaf, fi,
 | 
						|
							start - key.offset);
 | 
						|
 | 
						|
			fi = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
					    struct btrfs_file_extent_item);
 | 
						|
 | 
						|
			extent_offset += start - key.offset;
 | 
						|
			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 | 
						|
			btrfs_set_file_extent_num_bytes(leaf, fi,
 | 
						|
							extent_end - start);
 | 
						|
			btrfs_mark_buffer_dirty(leaf);
 | 
						|
 | 
						|
			if (update_refs && disk_bytenr > 0) {
 | 
						|
				btrfs_init_generic_ref(&ref,
 | 
						|
						BTRFS_ADD_DELAYED_REF,
 | 
						|
						disk_bytenr, num_bytes, 0);
 | 
						|
				btrfs_init_data_ref(&ref,
 | 
						|
						root->root_key.objectid,
 | 
						|
						new_key.objectid,
 | 
						|
						start - extent_offset);
 | 
						|
				ret = btrfs_inc_extent_ref(trans, &ref);
 | 
						|
				BUG_ON(ret); /* -ENOMEM */
 | 
						|
			}
 | 
						|
			key.offset = start;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * From here on out we will have actually dropped something, so
 | 
						|
		 * last_end can be updated.
 | 
						|
		 */
 | 
						|
		last_end = extent_end;
 | 
						|
 | 
						|
		/*
 | 
						|
		 *  | ---- range to drop ----- |
 | 
						|
		 *      | -------- extent -------- |
 | 
						|
		 */
 | 
						|
		if (start <= key.offset && end < extent_end) {
 | 
						|
			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 | 
						|
				ret = -EOPNOTSUPP;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
			memcpy(&new_key, &key, sizeof(new_key));
 | 
						|
			new_key.offset = end;
 | 
						|
			btrfs_set_item_key_safe(fs_info, path, &new_key);
 | 
						|
 | 
						|
			extent_offset += end - key.offset;
 | 
						|
			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 | 
						|
			btrfs_set_file_extent_num_bytes(leaf, fi,
 | 
						|
							extent_end - end);
 | 
						|
			btrfs_mark_buffer_dirty(leaf);
 | 
						|
			if (update_refs && disk_bytenr > 0)
 | 
						|
				inode_sub_bytes(inode, end - key.offset);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		search_start = extent_end;
 | 
						|
		/*
 | 
						|
		 *       | ---- range to drop ----- |
 | 
						|
		 *  | -------- extent -------- |
 | 
						|
		 */
 | 
						|
		if (start > key.offset && end >= extent_end) {
 | 
						|
			BUG_ON(del_nr > 0);
 | 
						|
			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 | 
						|
				ret = -EOPNOTSUPP;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
			btrfs_set_file_extent_num_bytes(leaf, fi,
 | 
						|
							start - key.offset);
 | 
						|
			btrfs_mark_buffer_dirty(leaf);
 | 
						|
			if (update_refs && disk_bytenr > 0)
 | 
						|
				inode_sub_bytes(inode, extent_end - start);
 | 
						|
			if (end == extent_end)
 | 
						|
				break;
 | 
						|
 | 
						|
			path->slots[0]++;
 | 
						|
			goto next_slot;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 *  | ---- range to drop ----- |
 | 
						|
		 *    | ------ extent ------ |
 | 
						|
		 */
 | 
						|
		if (start <= key.offset && end >= extent_end) {
 | 
						|
delete_extent_item:
 | 
						|
			if (del_nr == 0) {
 | 
						|
				del_slot = path->slots[0];
 | 
						|
				del_nr = 1;
 | 
						|
			} else {
 | 
						|
				BUG_ON(del_slot + del_nr != path->slots[0]);
 | 
						|
				del_nr++;
 | 
						|
			}
 | 
						|
 | 
						|
			if (update_refs &&
 | 
						|
			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 | 
						|
				inode_sub_bytes(inode,
 | 
						|
						extent_end - key.offset);
 | 
						|
				extent_end = ALIGN(extent_end,
 | 
						|
						   fs_info->sectorsize);
 | 
						|
			} else if (update_refs && disk_bytenr > 0) {
 | 
						|
				btrfs_init_generic_ref(&ref,
 | 
						|
						BTRFS_DROP_DELAYED_REF,
 | 
						|
						disk_bytenr, num_bytes, 0);
 | 
						|
				btrfs_init_data_ref(&ref,
 | 
						|
						root->root_key.objectid,
 | 
						|
						key.objectid,
 | 
						|
						key.offset - extent_offset);
 | 
						|
				ret = btrfs_free_extent(trans, &ref);
 | 
						|
				BUG_ON(ret); /* -ENOMEM */
 | 
						|
				inode_sub_bytes(inode,
 | 
						|
						extent_end - key.offset);
 | 
						|
			}
 | 
						|
 | 
						|
			if (end == extent_end)
 | 
						|
				break;
 | 
						|
 | 
						|
			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 | 
						|
				path->slots[0]++;
 | 
						|
				goto next_slot;
 | 
						|
			}
 | 
						|
 | 
						|
			ret = btrfs_del_items(trans, root, path, del_slot,
 | 
						|
					      del_nr);
 | 
						|
			if (ret) {
 | 
						|
				btrfs_abort_transaction(trans, ret);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
			del_nr = 0;
 | 
						|
			del_slot = 0;
 | 
						|
 | 
						|
			btrfs_release_path(path);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
 | 
						|
	if (!ret && del_nr > 0) {
 | 
						|
		/*
 | 
						|
		 * Set path->slots[0] to first slot, so that after the delete
 | 
						|
		 * if items are move off from our leaf to its immediate left or
 | 
						|
		 * right neighbor leafs, we end up with a correct and adjusted
 | 
						|
		 * path->slots[0] for our insertion (if replace_extent != 0).
 | 
						|
		 */
 | 
						|
		path->slots[0] = del_slot;
 | 
						|
		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 | 
						|
		if (ret)
 | 
						|
			btrfs_abort_transaction(trans, ret);
 | 
						|
	}
 | 
						|
 | 
						|
	leaf = path->nodes[0];
 | 
						|
	/*
 | 
						|
	 * If btrfs_del_items() was called, it might have deleted a leaf, in
 | 
						|
	 * which case it unlocked our path, so check path->locks[0] matches a
 | 
						|
	 * write lock.
 | 
						|
	 */
 | 
						|
	if (!ret && replace_extent && leafs_visited == 1 &&
 | 
						|
	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
 | 
						|
	     path->locks[0] == BTRFS_WRITE_LOCK) &&
 | 
						|
	    btrfs_leaf_free_space(leaf) >=
 | 
						|
	    sizeof(struct btrfs_item) + extent_item_size) {
 | 
						|
 | 
						|
		key.objectid = ino;
 | 
						|
		key.type = BTRFS_EXTENT_DATA_KEY;
 | 
						|
		key.offset = start;
 | 
						|
		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
 | 
						|
			struct btrfs_key slot_key;
 | 
						|
 | 
						|
			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
 | 
						|
			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
 | 
						|
				path->slots[0]++;
 | 
						|
		}
 | 
						|
		setup_items_for_insert(root, path, &key,
 | 
						|
				       &extent_item_size,
 | 
						|
				       extent_item_size,
 | 
						|
				       sizeof(struct btrfs_item) +
 | 
						|
				       extent_item_size, 1);
 | 
						|
		*key_inserted = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!replace_extent || !(*key_inserted))
 | 
						|
		btrfs_release_path(path);
 | 
						|
	if (drop_end)
 | 
						|
		*drop_end = found ? min(end, last_end) : end;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_drop_extents(struct btrfs_trans_handle *trans,
 | 
						|
		       struct btrfs_root *root, struct inode *inode, u64 start,
 | 
						|
		       u64 end, int drop_cache)
 | 
						|
{
 | 
						|
	struct btrfs_path *path;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
 | 
						|
				   drop_cache, 0, 0, NULL);
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int extent_mergeable(struct extent_buffer *leaf, int slot,
 | 
						|
			    u64 objectid, u64 bytenr, u64 orig_offset,
 | 
						|
			    u64 *start, u64 *end)
 | 
						|
{
 | 
						|
	struct btrfs_file_extent_item *fi;
 | 
						|
	struct btrfs_key key;
 | 
						|
	u64 extent_end;
 | 
						|
 | 
						|
	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	btrfs_item_key_to_cpu(leaf, &key, slot);
 | 
						|
	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 | 
						|
	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
 | 
						|
	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
 | 
						|
	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
 | 
						|
	    btrfs_file_extent_compression(leaf, fi) ||
 | 
						|
	    btrfs_file_extent_encryption(leaf, fi) ||
 | 
						|
	    btrfs_file_extent_other_encoding(leaf, fi))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 | 
						|
	if ((*start && *start != key.offset) || (*end && *end != extent_end))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	*start = key.offset;
 | 
						|
	*end = extent_end;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Mark extent in the range start - end as written.
 | 
						|
 *
 | 
						|
 * This changes extent type from 'pre-allocated' to 'regular'. If only
 | 
						|
 * part of extent is marked as written, the extent will be split into
 | 
						|
 * two or three.
 | 
						|
 */
 | 
						|
int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
 | 
						|
			      struct btrfs_inode *inode, u64 start, u64 end)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = trans->fs_info;
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct btrfs_file_extent_item *fi;
 | 
						|
	struct btrfs_ref ref = { 0 };
 | 
						|
	struct btrfs_key key;
 | 
						|
	struct btrfs_key new_key;
 | 
						|
	u64 bytenr;
 | 
						|
	u64 num_bytes;
 | 
						|
	u64 extent_end;
 | 
						|
	u64 orig_offset;
 | 
						|
	u64 other_start;
 | 
						|
	u64 other_end;
 | 
						|
	u64 split;
 | 
						|
	int del_nr = 0;
 | 
						|
	int del_slot = 0;
 | 
						|
	int recow;
 | 
						|
	int ret;
 | 
						|
	u64 ino = btrfs_ino(inode);
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
again:
 | 
						|
	recow = 0;
 | 
						|
	split = start;
 | 
						|
	key.objectid = ino;
 | 
						|
	key.type = BTRFS_EXTENT_DATA_KEY;
 | 
						|
	key.offset = split;
 | 
						|
 | 
						|
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out;
 | 
						|
	if (ret > 0 && path->slots[0] > 0)
 | 
						|
		path->slots[0]--;
 | 
						|
 | 
						|
	leaf = path->nodes[0];
 | 
						|
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | 
						|
	if (key.objectid != ino ||
 | 
						|
	    key.type != BTRFS_EXTENT_DATA_KEY) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	fi = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
			    struct btrfs_file_extent_item);
 | 
						|
	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 | 
						|
	if (key.offset > start || extent_end < end) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 | 
						|
	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 | 
						|
	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
 | 
						|
	memcpy(&new_key, &key, sizeof(new_key));
 | 
						|
 | 
						|
	if (start == key.offset && end < extent_end) {
 | 
						|
		other_start = 0;
 | 
						|
		other_end = start;
 | 
						|
		if (extent_mergeable(leaf, path->slots[0] - 1,
 | 
						|
				     ino, bytenr, orig_offset,
 | 
						|
				     &other_start, &other_end)) {
 | 
						|
			new_key.offset = end;
 | 
						|
			btrfs_set_item_key_safe(fs_info, path, &new_key);
 | 
						|
			fi = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
					    struct btrfs_file_extent_item);
 | 
						|
			btrfs_set_file_extent_generation(leaf, fi,
 | 
						|
							 trans->transid);
 | 
						|
			btrfs_set_file_extent_num_bytes(leaf, fi,
 | 
						|
							extent_end - end);
 | 
						|
			btrfs_set_file_extent_offset(leaf, fi,
 | 
						|
						     end - orig_offset);
 | 
						|
			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 | 
						|
					    struct btrfs_file_extent_item);
 | 
						|
			btrfs_set_file_extent_generation(leaf, fi,
 | 
						|
							 trans->transid);
 | 
						|
			btrfs_set_file_extent_num_bytes(leaf, fi,
 | 
						|
							end - other_start);
 | 
						|
			btrfs_mark_buffer_dirty(leaf);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (start > key.offset && end == extent_end) {
 | 
						|
		other_start = end;
 | 
						|
		other_end = 0;
 | 
						|
		if (extent_mergeable(leaf, path->slots[0] + 1,
 | 
						|
				     ino, bytenr, orig_offset,
 | 
						|
				     &other_start, &other_end)) {
 | 
						|
			fi = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
					    struct btrfs_file_extent_item);
 | 
						|
			btrfs_set_file_extent_num_bytes(leaf, fi,
 | 
						|
							start - key.offset);
 | 
						|
			btrfs_set_file_extent_generation(leaf, fi,
 | 
						|
							 trans->transid);
 | 
						|
			path->slots[0]++;
 | 
						|
			new_key.offset = start;
 | 
						|
			btrfs_set_item_key_safe(fs_info, path, &new_key);
 | 
						|
 | 
						|
			fi = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
					    struct btrfs_file_extent_item);
 | 
						|
			btrfs_set_file_extent_generation(leaf, fi,
 | 
						|
							 trans->transid);
 | 
						|
			btrfs_set_file_extent_num_bytes(leaf, fi,
 | 
						|
							other_end - start);
 | 
						|
			btrfs_set_file_extent_offset(leaf, fi,
 | 
						|
						     start - orig_offset);
 | 
						|
			btrfs_mark_buffer_dirty(leaf);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	while (start > key.offset || end < extent_end) {
 | 
						|
		if (key.offset == start)
 | 
						|
			split = end;
 | 
						|
 | 
						|
		new_key.offset = split;
 | 
						|
		ret = btrfs_duplicate_item(trans, root, path, &new_key);
 | 
						|
		if (ret == -EAGAIN) {
 | 
						|
			btrfs_release_path(path);
 | 
						|
			goto again;
 | 
						|
		}
 | 
						|
		if (ret < 0) {
 | 
						|
			btrfs_abort_transaction(trans, ret);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		leaf = path->nodes[0];
 | 
						|
		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 | 
						|
				    struct btrfs_file_extent_item);
 | 
						|
		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 | 
						|
		btrfs_set_file_extent_num_bytes(leaf, fi,
 | 
						|
						split - key.offset);
 | 
						|
 | 
						|
		fi = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
				    struct btrfs_file_extent_item);
 | 
						|
 | 
						|
		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 | 
						|
		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
 | 
						|
		btrfs_set_file_extent_num_bytes(leaf, fi,
 | 
						|
						extent_end - split);
 | 
						|
		btrfs_mark_buffer_dirty(leaf);
 | 
						|
 | 
						|
		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
 | 
						|
				       num_bytes, 0);
 | 
						|
		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
 | 
						|
				    orig_offset);
 | 
						|
		ret = btrfs_inc_extent_ref(trans, &ref);
 | 
						|
		if (ret) {
 | 
						|
			btrfs_abort_transaction(trans, ret);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		if (split == start) {
 | 
						|
			key.offset = start;
 | 
						|
		} else {
 | 
						|
			if (start != key.offset) {
 | 
						|
				ret = -EINVAL;
 | 
						|
				btrfs_abort_transaction(trans, ret);
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			path->slots[0]--;
 | 
						|
			extent_end = end;
 | 
						|
		}
 | 
						|
		recow = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	other_start = end;
 | 
						|
	other_end = 0;
 | 
						|
	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
 | 
						|
			       num_bytes, 0);
 | 
						|
	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
 | 
						|
	if (extent_mergeable(leaf, path->slots[0] + 1,
 | 
						|
			     ino, bytenr, orig_offset,
 | 
						|
			     &other_start, &other_end)) {
 | 
						|
		if (recow) {
 | 
						|
			btrfs_release_path(path);
 | 
						|
			goto again;
 | 
						|
		}
 | 
						|
		extent_end = other_end;
 | 
						|
		del_slot = path->slots[0] + 1;
 | 
						|
		del_nr++;
 | 
						|
		ret = btrfs_free_extent(trans, &ref);
 | 
						|
		if (ret) {
 | 
						|
			btrfs_abort_transaction(trans, ret);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	other_start = 0;
 | 
						|
	other_end = start;
 | 
						|
	if (extent_mergeable(leaf, path->slots[0] - 1,
 | 
						|
			     ino, bytenr, orig_offset,
 | 
						|
			     &other_start, &other_end)) {
 | 
						|
		if (recow) {
 | 
						|
			btrfs_release_path(path);
 | 
						|
			goto again;
 | 
						|
		}
 | 
						|
		key.offset = other_start;
 | 
						|
		del_slot = path->slots[0];
 | 
						|
		del_nr++;
 | 
						|
		ret = btrfs_free_extent(trans, &ref);
 | 
						|
		if (ret) {
 | 
						|
			btrfs_abort_transaction(trans, ret);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (del_nr == 0) {
 | 
						|
		fi = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
			   struct btrfs_file_extent_item);
 | 
						|
		btrfs_set_file_extent_type(leaf, fi,
 | 
						|
					   BTRFS_FILE_EXTENT_REG);
 | 
						|
		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 | 
						|
		btrfs_mark_buffer_dirty(leaf);
 | 
						|
	} else {
 | 
						|
		fi = btrfs_item_ptr(leaf, del_slot - 1,
 | 
						|
			   struct btrfs_file_extent_item);
 | 
						|
		btrfs_set_file_extent_type(leaf, fi,
 | 
						|
					   BTRFS_FILE_EXTENT_REG);
 | 
						|
		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 | 
						|
		btrfs_set_file_extent_num_bytes(leaf, fi,
 | 
						|
						extent_end - key.offset);
 | 
						|
		btrfs_mark_buffer_dirty(leaf);
 | 
						|
 | 
						|
		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 | 
						|
		if (ret < 0) {
 | 
						|
			btrfs_abort_transaction(trans, ret);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
out:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * on error we return an unlocked page and the error value
 | 
						|
 * on success we return a locked page and 0
 | 
						|
 */
 | 
						|
static int prepare_uptodate_page(struct inode *inode,
 | 
						|
				 struct page *page, u64 pos,
 | 
						|
				 bool force_uptodate)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
 | 
						|
	    !PageUptodate(page)) {
 | 
						|
		ret = btrfs_readpage(NULL, page);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
		lock_page(page);
 | 
						|
		if (!PageUptodate(page)) {
 | 
						|
			unlock_page(page);
 | 
						|
			return -EIO;
 | 
						|
		}
 | 
						|
		if (page->mapping != inode->i_mapping) {
 | 
						|
			unlock_page(page);
 | 
						|
			return -EAGAIN;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * this just gets pages into the page cache and locks them down.
 | 
						|
 */
 | 
						|
static noinline int prepare_pages(struct inode *inode, struct page **pages,
 | 
						|
				  size_t num_pages, loff_t pos,
 | 
						|
				  size_t write_bytes, bool force_uptodate)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	unsigned long index = pos >> PAGE_SHIFT;
 | 
						|
	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 | 
						|
	int err = 0;
 | 
						|
	int faili;
 | 
						|
 | 
						|
	for (i = 0; i < num_pages; i++) {
 | 
						|
again:
 | 
						|
		pages[i] = find_or_create_page(inode->i_mapping, index + i,
 | 
						|
					       mask | __GFP_WRITE);
 | 
						|
		if (!pages[i]) {
 | 
						|
			faili = i - 1;
 | 
						|
			err = -ENOMEM;
 | 
						|
			goto fail;
 | 
						|
		}
 | 
						|
 | 
						|
		if (i == 0)
 | 
						|
			err = prepare_uptodate_page(inode, pages[i], pos,
 | 
						|
						    force_uptodate);
 | 
						|
		if (!err && i == num_pages - 1)
 | 
						|
			err = prepare_uptodate_page(inode, pages[i],
 | 
						|
						    pos + write_bytes, false);
 | 
						|
		if (err) {
 | 
						|
			put_page(pages[i]);
 | 
						|
			if (err == -EAGAIN) {
 | 
						|
				err = 0;
 | 
						|
				goto again;
 | 
						|
			}
 | 
						|
			faili = i - 1;
 | 
						|
			goto fail;
 | 
						|
		}
 | 
						|
		wait_on_page_writeback(pages[i]);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
fail:
 | 
						|
	while (faili >= 0) {
 | 
						|
		unlock_page(pages[faili]);
 | 
						|
		put_page(pages[faili]);
 | 
						|
		faili--;
 | 
						|
	}
 | 
						|
	return err;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function locks the extent and properly waits for data=ordered extents
 | 
						|
 * to finish before allowing the pages to be modified if need.
 | 
						|
 *
 | 
						|
 * The return value:
 | 
						|
 * 1 - the extent is locked
 | 
						|
 * 0 - the extent is not locked, and everything is OK
 | 
						|
 * -EAGAIN - need re-prepare the pages
 | 
						|
 * the other < 0 number - Something wrong happens
 | 
						|
 */
 | 
						|
static noinline int
 | 
						|
lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
 | 
						|
				size_t num_pages, loff_t pos,
 | 
						|
				size_t write_bytes,
 | 
						|
				u64 *lockstart, u64 *lockend,
 | 
						|
				struct extent_state **cached_state)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | 
						|
	u64 start_pos;
 | 
						|
	u64 last_pos;
 | 
						|
	int i;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	start_pos = round_down(pos, fs_info->sectorsize);
 | 
						|
	last_pos = start_pos
 | 
						|
		+ round_up(pos + write_bytes - start_pos,
 | 
						|
			   fs_info->sectorsize) - 1;
 | 
						|
 | 
						|
	if (start_pos < inode->vfs_inode.i_size) {
 | 
						|
		struct btrfs_ordered_extent *ordered;
 | 
						|
 | 
						|
		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
 | 
						|
				cached_state);
 | 
						|
		ordered = btrfs_lookup_ordered_range(inode, start_pos,
 | 
						|
						     last_pos - start_pos + 1);
 | 
						|
		if (ordered &&
 | 
						|
		    ordered->file_offset + ordered->num_bytes > start_pos &&
 | 
						|
		    ordered->file_offset <= last_pos) {
 | 
						|
			unlock_extent_cached(&inode->io_tree, start_pos,
 | 
						|
					last_pos, cached_state);
 | 
						|
			for (i = 0; i < num_pages; i++) {
 | 
						|
				unlock_page(pages[i]);
 | 
						|
				put_page(pages[i]);
 | 
						|
			}
 | 
						|
			btrfs_start_ordered_extent(&inode->vfs_inode,
 | 
						|
					ordered, 1);
 | 
						|
			btrfs_put_ordered_extent(ordered);
 | 
						|
			return -EAGAIN;
 | 
						|
		}
 | 
						|
		if (ordered)
 | 
						|
			btrfs_put_ordered_extent(ordered);
 | 
						|
 | 
						|
		*lockstart = start_pos;
 | 
						|
		*lockend = last_pos;
 | 
						|
		ret = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It's possible the pages are dirty right now, but we don't want
 | 
						|
	 * to clean them yet because copy_from_user may catch a page fault
 | 
						|
	 * and we might have to fall back to one page at a time.  If that
 | 
						|
	 * happens, we'll unlock these pages and we'd have a window where
 | 
						|
	 * reclaim could sneak in and drop the once-dirty page on the floor
 | 
						|
	 * without writing it.
 | 
						|
	 *
 | 
						|
	 * We have the pages locked and the extent range locked, so there's
 | 
						|
	 * no way someone can start IO on any dirty pages in this range.
 | 
						|
	 *
 | 
						|
	 * We'll call btrfs_dirty_pages() later on, and that will flip around
 | 
						|
	 * delalloc bits and dirty the pages as required.
 | 
						|
	 */
 | 
						|
	for (i = 0; i < num_pages; i++) {
 | 
						|
		set_page_extent_mapped(pages[i]);
 | 
						|
		WARN_ON(!PageLocked(pages[i]));
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
 | 
						|
				    size_t *write_bytes)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	u64 lockstart, lockend;
 | 
						|
	u64 num_bytes;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = btrfs_start_write_no_snapshotting(root);
 | 
						|
	if (!ret)
 | 
						|
		return -EAGAIN;
 | 
						|
 | 
						|
	lockstart = round_down(pos, fs_info->sectorsize);
 | 
						|
	lockend = round_up(pos + *write_bytes,
 | 
						|
			   fs_info->sectorsize) - 1;
 | 
						|
 | 
						|
	btrfs_lock_and_flush_ordered_range(&inode->io_tree, inode, lockstart,
 | 
						|
					   lockend, NULL);
 | 
						|
 | 
						|
	num_bytes = lockend - lockstart + 1;
 | 
						|
	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
 | 
						|
			NULL, NULL, NULL);
 | 
						|
	if (ret <= 0) {
 | 
						|
		ret = 0;
 | 
						|
		btrfs_end_write_no_snapshotting(root);
 | 
						|
	} else {
 | 
						|
		*write_bytes = min_t(size_t, *write_bytes ,
 | 
						|
				     num_bytes - pos + lockstart);
 | 
						|
	}
 | 
						|
 | 
						|
	unlock_extent(&inode->io_tree, lockstart, lockend);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
 | 
						|
					       struct iov_iter *i)
 | 
						|
{
 | 
						|
	struct file *file = iocb->ki_filp;
 | 
						|
	loff_t pos = iocb->ki_pos;
 | 
						|
	struct inode *inode = file_inode(file);
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	struct page **pages = NULL;
 | 
						|
	struct extent_changeset *data_reserved = NULL;
 | 
						|
	u64 release_bytes = 0;
 | 
						|
	u64 lockstart;
 | 
						|
	u64 lockend;
 | 
						|
	size_t num_written = 0;
 | 
						|
	int nrptrs;
 | 
						|
	int ret = 0;
 | 
						|
	bool only_release_metadata = false;
 | 
						|
	bool force_page_uptodate = false;
 | 
						|
 | 
						|
	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
 | 
						|
			PAGE_SIZE / (sizeof(struct page *)));
 | 
						|
	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
 | 
						|
	nrptrs = max(nrptrs, 8);
 | 
						|
	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
 | 
						|
	if (!pages)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	while (iov_iter_count(i) > 0) {
 | 
						|
		struct extent_state *cached_state = NULL;
 | 
						|
		size_t offset = offset_in_page(pos);
 | 
						|
		size_t sector_offset;
 | 
						|
		size_t write_bytes = min(iov_iter_count(i),
 | 
						|
					 nrptrs * (size_t)PAGE_SIZE -
 | 
						|
					 offset);
 | 
						|
		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
 | 
						|
						PAGE_SIZE);
 | 
						|
		size_t reserve_bytes;
 | 
						|
		size_t dirty_pages;
 | 
						|
		size_t copied;
 | 
						|
		size_t dirty_sectors;
 | 
						|
		size_t num_sectors;
 | 
						|
		int extents_locked;
 | 
						|
 | 
						|
		WARN_ON(num_pages > nrptrs);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Fault pages before locking them in prepare_pages
 | 
						|
		 * to avoid recursive lock
 | 
						|
		 */
 | 
						|
		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
 | 
						|
			ret = -EFAULT;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		only_release_metadata = false;
 | 
						|
		sector_offset = pos & (fs_info->sectorsize - 1);
 | 
						|
		reserve_bytes = round_up(write_bytes + sector_offset,
 | 
						|
				fs_info->sectorsize);
 | 
						|
 | 
						|
		extent_changeset_release(data_reserved);
 | 
						|
		ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
 | 
						|
						  write_bytes);
 | 
						|
		if (ret < 0) {
 | 
						|
			if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
 | 
						|
						      BTRFS_INODE_PREALLOC)) &&
 | 
						|
			    check_can_nocow(BTRFS_I(inode), pos,
 | 
						|
					&write_bytes) > 0) {
 | 
						|
				/*
 | 
						|
				 * For nodata cow case, no need to reserve
 | 
						|
				 * data space.
 | 
						|
				 */
 | 
						|
				only_release_metadata = true;
 | 
						|
				/*
 | 
						|
				 * our prealloc extent may be smaller than
 | 
						|
				 * write_bytes, so scale down.
 | 
						|
				 */
 | 
						|
				num_pages = DIV_ROUND_UP(write_bytes + offset,
 | 
						|
							 PAGE_SIZE);
 | 
						|
				reserve_bytes = round_up(write_bytes +
 | 
						|
							 sector_offset,
 | 
						|
							 fs_info->sectorsize);
 | 
						|
			} else {
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		WARN_ON(reserve_bytes == 0);
 | 
						|
		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
 | 
						|
				reserve_bytes);
 | 
						|
		if (ret) {
 | 
						|
			if (!only_release_metadata)
 | 
						|
				btrfs_free_reserved_data_space(inode,
 | 
						|
						data_reserved, pos,
 | 
						|
						write_bytes);
 | 
						|
			else
 | 
						|
				btrfs_end_write_no_snapshotting(root);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		release_bytes = reserve_bytes;
 | 
						|
again:
 | 
						|
		/*
 | 
						|
		 * This is going to setup the pages array with the number of
 | 
						|
		 * pages we want, so we don't really need to worry about the
 | 
						|
		 * contents of pages from loop to loop
 | 
						|
		 */
 | 
						|
		ret = prepare_pages(inode, pages, num_pages,
 | 
						|
				    pos, write_bytes,
 | 
						|
				    force_page_uptodate);
 | 
						|
		if (ret) {
 | 
						|
			btrfs_delalloc_release_extents(BTRFS_I(inode),
 | 
						|
						       reserve_bytes);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		extents_locked = lock_and_cleanup_extent_if_need(
 | 
						|
				BTRFS_I(inode), pages,
 | 
						|
				num_pages, pos, write_bytes, &lockstart,
 | 
						|
				&lockend, &cached_state);
 | 
						|
		if (extents_locked < 0) {
 | 
						|
			if (extents_locked == -EAGAIN)
 | 
						|
				goto again;
 | 
						|
			btrfs_delalloc_release_extents(BTRFS_I(inode),
 | 
						|
						       reserve_bytes);
 | 
						|
			ret = extents_locked;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
 | 
						|
 | 
						|
		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
 | 
						|
		dirty_sectors = round_up(copied + sector_offset,
 | 
						|
					fs_info->sectorsize);
 | 
						|
		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * if we have trouble faulting in the pages, fall
 | 
						|
		 * back to one page at a time
 | 
						|
		 */
 | 
						|
		if (copied < write_bytes)
 | 
						|
			nrptrs = 1;
 | 
						|
 | 
						|
		if (copied == 0) {
 | 
						|
			force_page_uptodate = true;
 | 
						|
			dirty_sectors = 0;
 | 
						|
			dirty_pages = 0;
 | 
						|
		} else {
 | 
						|
			force_page_uptodate = false;
 | 
						|
			dirty_pages = DIV_ROUND_UP(copied + offset,
 | 
						|
						   PAGE_SIZE);
 | 
						|
		}
 | 
						|
 | 
						|
		if (num_sectors > dirty_sectors) {
 | 
						|
			/* release everything except the sectors we dirtied */
 | 
						|
			release_bytes -= dirty_sectors <<
 | 
						|
						fs_info->sb->s_blocksize_bits;
 | 
						|
			if (only_release_metadata) {
 | 
						|
				btrfs_delalloc_release_metadata(BTRFS_I(inode),
 | 
						|
							release_bytes, true);
 | 
						|
			} else {
 | 
						|
				u64 __pos;
 | 
						|
 | 
						|
				__pos = round_down(pos,
 | 
						|
						   fs_info->sectorsize) +
 | 
						|
					(dirty_pages << PAGE_SHIFT);
 | 
						|
				btrfs_delalloc_release_space(inode,
 | 
						|
						data_reserved, __pos,
 | 
						|
						release_bytes, true);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		release_bytes = round_up(copied + sector_offset,
 | 
						|
					fs_info->sectorsize);
 | 
						|
 | 
						|
		if (copied > 0)
 | 
						|
			ret = btrfs_dirty_pages(inode, pages, dirty_pages,
 | 
						|
						pos, copied, &cached_state);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we have not locked the extent range, because the range's
 | 
						|
		 * start offset is >= i_size, we might still have a non-NULL
 | 
						|
		 * cached extent state, acquired while marking the extent range
 | 
						|
		 * as delalloc through btrfs_dirty_pages(). Therefore free any
 | 
						|
		 * possible cached extent state to avoid a memory leak.
 | 
						|
		 */
 | 
						|
		if (extents_locked)
 | 
						|
			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
 | 
						|
					     lockstart, lockend, &cached_state);
 | 
						|
		else
 | 
						|
			free_extent_state(cached_state);
 | 
						|
 | 
						|
		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
 | 
						|
		if (ret) {
 | 
						|
			btrfs_drop_pages(pages, num_pages);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		release_bytes = 0;
 | 
						|
		if (only_release_metadata)
 | 
						|
			btrfs_end_write_no_snapshotting(root);
 | 
						|
 | 
						|
		if (only_release_metadata && copied > 0) {
 | 
						|
			lockstart = round_down(pos,
 | 
						|
					       fs_info->sectorsize);
 | 
						|
			lockend = round_up(pos + copied,
 | 
						|
					   fs_info->sectorsize) - 1;
 | 
						|
 | 
						|
			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
 | 
						|
				       lockend, EXTENT_NORESERVE, NULL,
 | 
						|
				       NULL, GFP_NOFS);
 | 
						|
		}
 | 
						|
 | 
						|
		btrfs_drop_pages(pages, num_pages);
 | 
						|
 | 
						|
		cond_resched();
 | 
						|
 | 
						|
		balance_dirty_pages_ratelimited(inode->i_mapping);
 | 
						|
		if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
 | 
						|
			btrfs_btree_balance_dirty(fs_info);
 | 
						|
 | 
						|
		pos += copied;
 | 
						|
		num_written += copied;
 | 
						|
	}
 | 
						|
 | 
						|
	kfree(pages);
 | 
						|
 | 
						|
	if (release_bytes) {
 | 
						|
		if (only_release_metadata) {
 | 
						|
			btrfs_end_write_no_snapshotting(root);
 | 
						|
			btrfs_delalloc_release_metadata(BTRFS_I(inode),
 | 
						|
					release_bytes, true);
 | 
						|
		} else {
 | 
						|
			btrfs_delalloc_release_space(inode, data_reserved,
 | 
						|
					round_down(pos, fs_info->sectorsize),
 | 
						|
					release_bytes, true);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	extent_changeset_free(data_reserved);
 | 
						|
	return num_written ? num_written : ret;
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
 | 
						|
{
 | 
						|
	struct file *file = iocb->ki_filp;
 | 
						|
	struct inode *inode = file_inode(file);
 | 
						|
	loff_t pos;
 | 
						|
	ssize_t written;
 | 
						|
	ssize_t written_buffered;
 | 
						|
	loff_t endbyte;
 | 
						|
	int err;
 | 
						|
 | 
						|
	written = generic_file_direct_write(iocb, from);
 | 
						|
 | 
						|
	if (written < 0 || !iov_iter_count(from))
 | 
						|
		return written;
 | 
						|
 | 
						|
	pos = iocb->ki_pos;
 | 
						|
	written_buffered = btrfs_buffered_write(iocb, from);
 | 
						|
	if (written_buffered < 0) {
 | 
						|
		err = written_buffered;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Ensure all data is persisted. We want the next direct IO read to be
 | 
						|
	 * able to read what was just written.
 | 
						|
	 */
 | 
						|
	endbyte = pos + written_buffered - 1;
 | 
						|
	err = btrfs_fdatawrite_range(inode, pos, endbyte);
 | 
						|
	if (err)
 | 
						|
		goto out;
 | 
						|
	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
 | 
						|
	if (err)
 | 
						|
		goto out;
 | 
						|
	written += written_buffered;
 | 
						|
	iocb->ki_pos = pos + written_buffered;
 | 
						|
	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
 | 
						|
				 endbyte >> PAGE_SHIFT);
 | 
						|
out:
 | 
						|
	return written ? written : err;
 | 
						|
}
 | 
						|
 | 
						|
static void update_time_for_write(struct inode *inode)
 | 
						|
{
 | 
						|
	struct timespec64 now;
 | 
						|
 | 
						|
	if (IS_NOCMTIME(inode))
 | 
						|
		return;
 | 
						|
 | 
						|
	now = current_time(inode);
 | 
						|
	if (!timespec64_equal(&inode->i_mtime, &now))
 | 
						|
		inode->i_mtime = now;
 | 
						|
 | 
						|
	if (!timespec64_equal(&inode->i_ctime, &now))
 | 
						|
		inode->i_ctime = now;
 | 
						|
 | 
						|
	if (IS_I_VERSION(inode))
 | 
						|
		inode_inc_iversion(inode);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
 | 
						|
				    struct iov_iter *from)
 | 
						|
{
 | 
						|
	struct file *file = iocb->ki_filp;
 | 
						|
	struct inode *inode = file_inode(file);
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	u64 start_pos;
 | 
						|
	u64 end_pos;
 | 
						|
	ssize_t num_written = 0;
 | 
						|
	const bool sync = iocb->ki_flags & IOCB_DSYNC;
 | 
						|
	ssize_t err;
 | 
						|
	loff_t pos;
 | 
						|
	size_t count;
 | 
						|
	loff_t oldsize;
 | 
						|
	int clean_page = 0;
 | 
						|
 | 
						|
	if (!(iocb->ki_flags & IOCB_DIRECT) &&
 | 
						|
	    (iocb->ki_flags & IOCB_NOWAIT))
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	if (iocb->ki_flags & IOCB_NOWAIT) {
 | 
						|
		if (!inode_trylock(inode))
 | 
						|
			return -EAGAIN;
 | 
						|
	} else {
 | 
						|
		inode_lock(inode);
 | 
						|
	}
 | 
						|
 | 
						|
	err = generic_write_checks(iocb, from);
 | 
						|
	if (err <= 0) {
 | 
						|
		inode_unlock(inode);
 | 
						|
		return err;
 | 
						|
	}
 | 
						|
 | 
						|
	pos = iocb->ki_pos;
 | 
						|
	count = iov_iter_count(from);
 | 
						|
	if (iocb->ki_flags & IOCB_NOWAIT) {
 | 
						|
		/*
 | 
						|
		 * We will allocate space in case nodatacow is not set,
 | 
						|
		 * so bail
 | 
						|
		 */
 | 
						|
		if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
 | 
						|
					      BTRFS_INODE_PREALLOC)) ||
 | 
						|
		    check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
 | 
						|
			inode_unlock(inode);
 | 
						|
			return -EAGAIN;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	current->backing_dev_info = inode_to_bdi(inode);
 | 
						|
	err = file_remove_privs(file);
 | 
						|
	if (err) {
 | 
						|
		inode_unlock(inode);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If BTRFS flips readonly due to some impossible error
 | 
						|
	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
 | 
						|
	 * although we have opened a file as writable, we have
 | 
						|
	 * to stop this write operation to ensure FS consistency.
 | 
						|
	 */
 | 
						|
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 | 
						|
		inode_unlock(inode);
 | 
						|
		err = -EROFS;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We reserve space for updating the inode when we reserve space for the
 | 
						|
	 * extent we are going to write, so we will enospc out there.  We don't
 | 
						|
	 * need to start yet another transaction to update the inode as we will
 | 
						|
	 * update the inode when we finish writing whatever data we write.
 | 
						|
	 */
 | 
						|
	update_time_for_write(inode);
 | 
						|
 | 
						|
	start_pos = round_down(pos, fs_info->sectorsize);
 | 
						|
	oldsize = i_size_read(inode);
 | 
						|
	if (start_pos > oldsize) {
 | 
						|
		/* Expand hole size to cover write data, preventing empty gap */
 | 
						|
		end_pos = round_up(pos + count,
 | 
						|
				   fs_info->sectorsize);
 | 
						|
		err = btrfs_cont_expand(inode, oldsize, end_pos);
 | 
						|
		if (err) {
 | 
						|
			inode_unlock(inode);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		if (start_pos > round_up(oldsize, fs_info->sectorsize))
 | 
						|
			clean_page = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (sync)
 | 
						|
		atomic_inc(&BTRFS_I(inode)->sync_writers);
 | 
						|
 | 
						|
	if (iocb->ki_flags & IOCB_DIRECT) {
 | 
						|
		num_written = __btrfs_direct_write(iocb, from);
 | 
						|
	} else {
 | 
						|
		num_written = btrfs_buffered_write(iocb, from);
 | 
						|
		if (num_written > 0)
 | 
						|
			iocb->ki_pos = pos + num_written;
 | 
						|
		if (clean_page)
 | 
						|
			pagecache_isize_extended(inode, oldsize,
 | 
						|
						i_size_read(inode));
 | 
						|
	}
 | 
						|
 | 
						|
	inode_unlock(inode);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We also have to set last_sub_trans to the current log transid,
 | 
						|
	 * otherwise subsequent syncs to a file that's been synced in this
 | 
						|
	 * transaction will appear to have already occurred.
 | 
						|
	 */
 | 
						|
	spin_lock(&BTRFS_I(inode)->lock);
 | 
						|
	BTRFS_I(inode)->last_sub_trans = root->log_transid;
 | 
						|
	spin_unlock(&BTRFS_I(inode)->lock);
 | 
						|
	if (num_written > 0)
 | 
						|
		num_written = generic_write_sync(iocb, num_written);
 | 
						|
 | 
						|
	if (sync)
 | 
						|
		atomic_dec(&BTRFS_I(inode)->sync_writers);
 | 
						|
out:
 | 
						|
	current->backing_dev_info = NULL;
 | 
						|
	return num_written ? num_written : err;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_release_file(struct inode *inode, struct file *filp)
 | 
						|
{
 | 
						|
	struct btrfs_file_private *private = filp->private_data;
 | 
						|
 | 
						|
	if (private && private->filldir_buf)
 | 
						|
		kfree(private->filldir_buf);
 | 
						|
	kfree(private);
 | 
						|
	filp->private_data = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * ordered_data_close is set by setattr when we are about to truncate
 | 
						|
	 * a file from a non-zero size to a zero size.  This tries to
 | 
						|
	 * flush down new bytes that may have been written if the
 | 
						|
	 * application were using truncate to replace a file in place.
 | 
						|
	 */
 | 
						|
	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
 | 
						|
			       &BTRFS_I(inode)->runtime_flags))
 | 
						|
			filemap_flush(inode->i_mapping);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct blk_plug plug;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This is only called in fsync, which would do synchronous writes, so
 | 
						|
	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
 | 
						|
	 * multiple disks using raid profile, a large IO can be split to
 | 
						|
	 * several segments of stripe length (currently 64K).
 | 
						|
	 */
 | 
						|
	blk_start_plug(&plug);
 | 
						|
	atomic_inc(&BTRFS_I(inode)->sync_writers);
 | 
						|
	ret = btrfs_fdatawrite_range(inode, start, end);
 | 
						|
	atomic_dec(&BTRFS_I(inode)->sync_writers);
 | 
						|
	blk_finish_plug(&plug);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * fsync call for both files and directories.  This logs the inode into
 | 
						|
 * the tree log instead of forcing full commits whenever possible.
 | 
						|
 *
 | 
						|
 * It needs to call filemap_fdatawait so that all ordered extent updates are
 | 
						|
 * in the metadata btree are up to date for copying to the log.
 | 
						|
 *
 | 
						|
 * It drops the inode mutex before doing the tree log commit.  This is an
 | 
						|
 * important optimization for directories because holding the mutex prevents
 | 
						|
 * new operations on the dir while we write to disk.
 | 
						|
 */
 | 
						|
int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
 | 
						|
{
 | 
						|
	struct dentry *dentry = file_dentry(file);
 | 
						|
	struct inode *inode = d_inode(dentry);
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	struct btrfs_log_ctx ctx;
 | 
						|
	int ret = 0, err;
 | 
						|
 | 
						|
	trace_btrfs_sync_file(file, datasync);
 | 
						|
 | 
						|
	btrfs_init_log_ctx(&ctx, inode);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We write the dirty pages in the range and wait until they complete
 | 
						|
	 * out of the ->i_mutex. If so, we can flush the dirty pages by
 | 
						|
	 * multi-task, and make the performance up.  See
 | 
						|
	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
 | 
						|
	 */
 | 
						|
	ret = start_ordered_ops(inode, start, end);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	inode_lock(inode);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We take the dio_sem here because the tree log stuff can race with
 | 
						|
	 * lockless dio writes and get an extent map logged for an extent we
 | 
						|
	 * never waited on.  We need it this high up for lockdep reasons.
 | 
						|
	 */
 | 
						|
	down_write(&BTRFS_I(inode)->dio_sem);
 | 
						|
 | 
						|
	atomic_inc(&root->log_batch);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the inode needs a full sync, make sure we use a full range to
 | 
						|
	 * avoid log tree corruption, due to hole detection racing with ordered
 | 
						|
	 * extent completion for adjacent ranges, and assertion failures during
 | 
						|
	 * hole detection. Do this while holding the inode lock, to avoid races
 | 
						|
	 * with other tasks.
 | 
						|
	 */
 | 
						|
	if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
 | 
						|
		     &BTRFS_I(inode)->runtime_flags)) {
 | 
						|
		start = 0;
 | 
						|
		end = LLONG_MAX;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Before we acquired the inode's lock, someone may have dirtied more
 | 
						|
	 * pages in the target range. We need to make sure that writeback for
 | 
						|
	 * any such pages does not start while we are logging the inode, because
 | 
						|
	 * if it does, any of the following might happen when we are not doing a
 | 
						|
	 * full inode sync:
 | 
						|
	 *
 | 
						|
	 * 1) We log an extent after its writeback finishes but before its
 | 
						|
	 *    checksums are added to the csum tree, leading to -EIO errors
 | 
						|
	 *    when attempting to read the extent after a log replay.
 | 
						|
	 *
 | 
						|
	 * 2) We can end up logging an extent before its writeback finishes.
 | 
						|
	 *    Therefore after the log replay we will have a file extent item
 | 
						|
	 *    pointing to an unwritten extent (and no data checksums as well).
 | 
						|
	 *
 | 
						|
	 * So trigger writeback for any eventual new dirty pages and then we
 | 
						|
	 * wait for all ordered extents to complete below.
 | 
						|
	 */
 | 
						|
	ret = start_ordered_ops(inode, start, end);
 | 
						|
	if (ret) {
 | 
						|
		inode_unlock(inode);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We have to do this here to avoid the priority inversion of waiting on
 | 
						|
	 * IO of a lower priority task while holding a transaction open.
 | 
						|
	 *
 | 
						|
	 * Also, the range length can be represented by u64, we have to do the
 | 
						|
	 * typecasts to avoid signed overflow if it's [0, LLONG_MAX].
 | 
						|
	 */
 | 
						|
	ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1);
 | 
						|
	if (ret) {
 | 
						|
		up_write(&BTRFS_I(inode)->dio_sem);
 | 
						|
		inode_unlock(inode);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	atomic_inc(&root->log_batch);
 | 
						|
 | 
						|
	smp_mb();
 | 
						|
	if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
 | 
						|
	    BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
 | 
						|
		/*
 | 
						|
		 * We've had everything committed since the last time we were
 | 
						|
		 * modified so clear this flag in case it was set for whatever
 | 
						|
		 * reason, it's no longer relevant.
 | 
						|
		 */
 | 
						|
		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
 | 
						|
			  &BTRFS_I(inode)->runtime_flags);
 | 
						|
		/*
 | 
						|
		 * An ordered extent might have started before and completed
 | 
						|
		 * already with io errors, in which case the inode was not
 | 
						|
		 * updated and we end up here. So check the inode's mapping
 | 
						|
		 * for any errors that might have happened since we last
 | 
						|
		 * checked called fsync.
 | 
						|
		 */
 | 
						|
		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
 | 
						|
		up_write(&BTRFS_I(inode)->dio_sem);
 | 
						|
		inode_unlock(inode);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We use start here because we will need to wait on the IO to complete
 | 
						|
	 * in btrfs_sync_log, which could require joining a transaction (for
 | 
						|
	 * example checking cross references in the nocow path).  If we use join
 | 
						|
	 * here we could get into a situation where we're waiting on IO to
 | 
						|
	 * happen that is blocked on a transaction trying to commit.  With start
 | 
						|
	 * we inc the extwriter counter, so we wait for all extwriters to exit
 | 
						|
	 * before we start blocking joiners.  This comment is to keep somebody
 | 
						|
	 * from thinking they are super smart and changing this to
 | 
						|
	 * btrfs_join_transaction *cough*Josef*cough*.
 | 
						|
	 */
 | 
						|
	trans = btrfs_start_transaction(root, 0);
 | 
						|
	if (IS_ERR(trans)) {
 | 
						|
		ret = PTR_ERR(trans);
 | 
						|
		up_write(&BTRFS_I(inode)->dio_sem);
 | 
						|
		inode_unlock(inode);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
 | 
						|
	if (ret < 0) {
 | 
						|
		/* Fallthrough and commit/free transaction. */
 | 
						|
		ret = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* we've logged all the items and now have a consistent
 | 
						|
	 * version of the file in the log.  It is possible that
 | 
						|
	 * someone will come in and modify the file, but that's
 | 
						|
	 * fine because the log is consistent on disk, and we
 | 
						|
	 * have references to all of the file's extents
 | 
						|
	 *
 | 
						|
	 * It is possible that someone will come in and log the
 | 
						|
	 * file again, but that will end up using the synchronization
 | 
						|
	 * inside btrfs_sync_log to keep things safe.
 | 
						|
	 */
 | 
						|
	up_write(&BTRFS_I(inode)->dio_sem);
 | 
						|
	inode_unlock(inode);
 | 
						|
 | 
						|
	if (ret != BTRFS_NO_LOG_SYNC) {
 | 
						|
		if (!ret) {
 | 
						|
			ret = btrfs_sync_log(trans, root, &ctx);
 | 
						|
			if (!ret) {
 | 
						|
				ret = btrfs_end_transaction(trans);
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		ret = btrfs_commit_transaction(trans);
 | 
						|
	} else {
 | 
						|
		ret = btrfs_end_transaction(trans);
 | 
						|
	}
 | 
						|
out:
 | 
						|
	ASSERT(list_empty(&ctx.list));
 | 
						|
	err = file_check_and_advance_wb_err(file);
 | 
						|
	if (!ret)
 | 
						|
		ret = err;
 | 
						|
	return ret > 0 ? -EIO : ret;
 | 
						|
}
 | 
						|
 | 
						|
static const struct vm_operations_struct btrfs_file_vm_ops = {
 | 
						|
	.fault		= filemap_fault,
 | 
						|
	.map_pages	= filemap_map_pages,
 | 
						|
	.page_mkwrite	= btrfs_page_mkwrite,
 | 
						|
};
 | 
						|
 | 
						|
static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	struct address_space *mapping = filp->f_mapping;
 | 
						|
 | 
						|
	if (!mapping->a_ops->readpage)
 | 
						|
		return -ENOEXEC;
 | 
						|
 | 
						|
	file_accessed(filp);
 | 
						|
	vma->vm_ops = &btrfs_file_vm_ops;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
 | 
						|
			  int slot, u64 start, u64 end)
 | 
						|
{
 | 
						|
	struct btrfs_file_extent_item *fi;
 | 
						|
	struct btrfs_key key;
 | 
						|
 | 
						|
	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	btrfs_item_key_to_cpu(leaf, &key, slot);
 | 
						|
	if (key.objectid != btrfs_ino(inode) ||
 | 
						|
	    key.type != BTRFS_EXTENT_DATA_KEY)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 | 
						|
 | 
						|
	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (btrfs_file_extent_disk_bytenr(leaf, fi))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (key.offset == end)
 | 
						|
		return 1;
 | 
						|
	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
 | 
						|
		return 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int fill_holes(struct btrfs_trans_handle *trans,
 | 
						|
		struct btrfs_inode *inode,
 | 
						|
		struct btrfs_path *path, u64 offset, u64 end)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = trans->fs_info;
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct btrfs_file_extent_item *fi;
 | 
						|
	struct extent_map *hole_em;
 | 
						|
	struct extent_map_tree *em_tree = &inode->extent_tree;
 | 
						|
	struct btrfs_key key;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (btrfs_fs_incompat(fs_info, NO_HOLES))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	key.objectid = btrfs_ino(inode);
 | 
						|
	key.type = BTRFS_EXTENT_DATA_KEY;
 | 
						|
	key.offset = offset;
 | 
						|
 | 
						|
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 | 
						|
	if (ret <= 0) {
 | 
						|
		/*
 | 
						|
		 * We should have dropped this offset, so if we find it then
 | 
						|
		 * something has gone horribly wrong.
 | 
						|
		 */
 | 
						|
		if (ret == 0)
 | 
						|
			ret = -EINVAL;
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	leaf = path->nodes[0];
 | 
						|
	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
 | 
						|
		u64 num_bytes;
 | 
						|
 | 
						|
		path->slots[0]--;
 | 
						|
		fi = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
				    struct btrfs_file_extent_item);
 | 
						|
		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
 | 
						|
			end - offset;
 | 
						|
		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
 | 
						|
		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
 | 
						|
		btrfs_set_file_extent_offset(leaf, fi, 0);
 | 
						|
		btrfs_mark_buffer_dirty(leaf);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
 | 
						|
		u64 num_bytes;
 | 
						|
 | 
						|
		key.offset = offset;
 | 
						|
		btrfs_set_item_key_safe(fs_info, path, &key);
 | 
						|
		fi = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
				    struct btrfs_file_extent_item);
 | 
						|
		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
 | 
						|
			offset;
 | 
						|
		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
 | 
						|
		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
 | 
						|
		btrfs_set_file_extent_offset(leaf, fi, 0);
 | 
						|
		btrfs_mark_buffer_dirty(leaf);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
 | 
						|
			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
out:
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	hole_em = alloc_extent_map();
 | 
						|
	if (!hole_em) {
 | 
						|
		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
 | 
						|
		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
 | 
						|
	} else {
 | 
						|
		hole_em->start = offset;
 | 
						|
		hole_em->len = end - offset;
 | 
						|
		hole_em->ram_bytes = hole_em->len;
 | 
						|
		hole_em->orig_start = offset;
 | 
						|
 | 
						|
		hole_em->block_start = EXTENT_MAP_HOLE;
 | 
						|
		hole_em->block_len = 0;
 | 
						|
		hole_em->orig_block_len = 0;
 | 
						|
		hole_em->compress_type = BTRFS_COMPRESS_NONE;
 | 
						|
		hole_em->generation = trans->transid;
 | 
						|
 | 
						|
		do {
 | 
						|
			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
 | 
						|
			write_lock(&em_tree->lock);
 | 
						|
			ret = add_extent_mapping(em_tree, hole_em, 1);
 | 
						|
			write_unlock(&em_tree->lock);
 | 
						|
		} while (ret == -EEXIST);
 | 
						|
		free_extent_map(hole_em);
 | 
						|
		if (ret)
 | 
						|
			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
 | 
						|
					&inode->runtime_flags);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find a hole extent on given inode and change start/len to the end of hole
 | 
						|
 * extent.(hole/vacuum extent whose em->start <= start &&
 | 
						|
 *	   em->start + em->len > start)
 | 
						|
 * When a hole extent is found, return 1 and modify start/len.
 | 
						|
 */
 | 
						|
static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct extent_map *em;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
 | 
						|
			      round_down(*start, fs_info->sectorsize),
 | 
						|
			      round_up(*len, fs_info->sectorsize));
 | 
						|
	if (IS_ERR(em))
 | 
						|
		return PTR_ERR(em);
 | 
						|
 | 
						|
	/* Hole or vacuum extent(only exists in no-hole mode) */
 | 
						|
	if (em->block_start == EXTENT_MAP_HOLE) {
 | 
						|
		ret = 1;
 | 
						|
		*len = em->start + em->len > *start + *len ?
 | 
						|
		       0 : *start + *len - em->start - em->len;
 | 
						|
		*start = em->start + em->len;
 | 
						|
	}
 | 
						|
	free_extent_map(em);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_punch_hole_lock_range(struct inode *inode,
 | 
						|
				       const u64 lockstart,
 | 
						|
				       const u64 lockend,
 | 
						|
				       struct extent_state **cached_state)
 | 
						|
{
 | 
						|
	while (1) {
 | 
						|
		struct btrfs_ordered_extent *ordered;
 | 
						|
		int ret;
 | 
						|
 | 
						|
		truncate_pagecache_range(inode, lockstart, lockend);
 | 
						|
 | 
						|
		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
 | 
						|
				 cached_state);
 | 
						|
		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We need to make sure we have no ordered extents in this range
 | 
						|
		 * and nobody raced in and read a page in this range, if we did
 | 
						|
		 * we need to try again.
 | 
						|
		 */
 | 
						|
		if ((!ordered ||
 | 
						|
		    (ordered->file_offset + ordered->num_bytes <= lockstart ||
 | 
						|
		     ordered->file_offset > lockend)) &&
 | 
						|
		     !filemap_range_has_page(inode->i_mapping,
 | 
						|
					     lockstart, lockend)) {
 | 
						|
			if (ordered)
 | 
						|
				btrfs_put_ordered_extent(ordered);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (ordered)
 | 
						|
			btrfs_put_ordered_extent(ordered);
 | 
						|
		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
 | 
						|
				     lockend, cached_state);
 | 
						|
		ret = btrfs_wait_ordered_range(inode, lockstart,
 | 
						|
					       lockend - lockstart + 1);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans,
 | 
						|
				     struct inode *inode,
 | 
						|
				     struct btrfs_path *path,
 | 
						|
				     struct btrfs_clone_extent_info *clone_info,
 | 
						|
				     const u64 clone_len)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	struct btrfs_file_extent_item *extent;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct btrfs_key key;
 | 
						|
	int slot;
 | 
						|
	struct btrfs_ref ref = { 0 };
 | 
						|
	u64 ref_offset;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (clone_len == 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (clone_info->disk_offset == 0 &&
 | 
						|
	    btrfs_fs_incompat(fs_info, NO_HOLES))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	key.objectid = btrfs_ino(BTRFS_I(inode));
 | 
						|
	key.type = BTRFS_EXTENT_DATA_KEY;
 | 
						|
	key.offset = clone_info->file_offset;
 | 
						|
	ret = btrfs_insert_empty_item(trans, root, path, &key,
 | 
						|
				      clone_info->item_size);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
	leaf = path->nodes[0];
 | 
						|
	slot = path->slots[0];
 | 
						|
	write_extent_buffer(leaf, clone_info->extent_buf,
 | 
						|
			    btrfs_item_ptr_offset(leaf, slot),
 | 
						|
			    clone_info->item_size);
 | 
						|
	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 | 
						|
	btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset);
 | 
						|
	btrfs_set_file_extent_num_bytes(leaf, extent, clone_len);
 | 
						|
	btrfs_mark_buffer_dirty(leaf);
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
 | 
						|
			clone_info->file_offset, clone_len);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/* If it's a hole, nothing more needs to be done. */
 | 
						|
	if (clone_info->disk_offset == 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	inode_add_bytes(inode, clone_len);
 | 
						|
	btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
 | 
						|
			       clone_info->disk_offset,
 | 
						|
			       clone_info->disk_len, 0);
 | 
						|
	ref_offset = clone_info->file_offset - clone_info->data_offset;
 | 
						|
	btrfs_init_data_ref(&ref, root->root_key.objectid,
 | 
						|
			    btrfs_ino(BTRFS_I(inode)), ref_offset);
 | 
						|
	ret = btrfs_inc_extent_ref(trans, &ref);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The respective range must have been previously locked, as well as the inode.
 | 
						|
 * The end offset is inclusive (last byte of the range).
 | 
						|
 * @clone_info is NULL for fallocate's hole punching and non-NULL for extent
 | 
						|
 * cloning.
 | 
						|
 * When cloning, we don't want to end up in a state where we dropped extents
 | 
						|
 * without inserting a new one, so we must abort the transaction to avoid a
 | 
						|
 * corruption.
 | 
						|
 */
 | 
						|
int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
 | 
						|
			   const u64 start, const u64 end,
 | 
						|
			   struct btrfs_clone_extent_info *clone_info,
 | 
						|
			   struct btrfs_trans_handle **trans_out)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
 | 
						|
	u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	struct btrfs_trans_handle *trans = NULL;
 | 
						|
	struct btrfs_block_rsv *rsv;
 | 
						|
	unsigned int rsv_count;
 | 
						|
	u64 cur_offset;
 | 
						|
	u64 drop_end;
 | 
						|
	u64 len = end - start;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (end <= start)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
 | 
						|
	if (!rsv) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
 | 
						|
	rsv->failfast = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * 1 - update the inode
 | 
						|
	 * 1 - removing the extents in the range
 | 
						|
	 * 1 - adding the hole extent if no_holes isn't set or if we are cloning
 | 
						|
	 *     an extent
 | 
						|
	 */
 | 
						|
	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info)
 | 
						|
		rsv_count = 3;
 | 
						|
	else
 | 
						|
		rsv_count = 2;
 | 
						|
 | 
						|
	trans = btrfs_start_transaction(root, rsv_count);
 | 
						|
	if (IS_ERR(trans)) {
 | 
						|
		ret = PTR_ERR(trans);
 | 
						|
		trans = NULL;
 | 
						|
		goto out_free;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
 | 
						|
				      min_size, false);
 | 
						|
	BUG_ON(ret);
 | 
						|
	trans->block_rsv = rsv;
 | 
						|
 | 
						|
	cur_offset = start;
 | 
						|
	while (cur_offset < end) {
 | 
						|
		ret = __btrfs_drop_extents(trans, root, inode, path,
 | 
						|
					   cur_offset, end + 1, &drop_end,
 | 
						|
					   1, 0, 0, NULL);
 | 
						|
		if (ret != -ENOSPC) {
 | 
						|
			/*
 | 
						|
			 * When cloning we want to avoid transaction aborts when
 | 
						|
			 * nothing was done and we are attempting to clone parts
 | 
						|
			 * of inline extents, in such cases -EOPNOTSUPP is
 | 
						|
			 * returned by __btrfs_drop_extents() without having
 | 
						|
			 * changed anything in the file.
 | 
						|
			 */
 | 
						|
			if (clone_info && ret && ret != -EOPNOTSUPP)
 | 
						|
				btrfs_abort_transaction(trans, ret);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		trans->block_rsv = &fs_info->trans_block_rsv;
 | 
						|
 | 
						|
		if (!clone_info && cur_offset < drop_end &&
 | 
						|
		    cur_offset < ino_size) {
 | 
						|
			ret = fill_holes(trans, BTRFS_I(inode), path,
 | 
						|
					cur_offset, drop_end);
 | 
						|
			if (ret) {
 | 
						|
				/*
 | 
						|
				 * If we failed then we didn't insert our hole
 | 
						|
				 * entries for the area we dropped, so now the
 | 
						|
				 * fs is corrupted, so we must abort the
 | 
						|
				 * transaction.
 | 
						|
				 */
 | 
						|
				btrfs_abort_transaction(trans, ret);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		} else if (!clone_info && cur_offset < drop_end) {
 | 
						|
			/*
 | 
						|
			 * We are past the i_size here, but since we didn't
 | 
						|
			 * insert holes we need to clear the mapped area so we
 | 
						|
			 * know to not set disk_i_size in this area until a new
 | 
						|
			 * file extent is inserted here.
 | 
						|
			 */
 | 
						|
			ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
 | 
						|
					cur_offset, drop_end - cur_offset);
 | 
						|
			if (ret) {
 | 
						|
				/*
 | 
						|
				 * We couldn't clear our area, so we could
 | 
						|
				 * presumably adjust up and corrupt the fs, so
 | 
						|
				 * we need to abort.
 | 
						|
				 */
 | 
						|
				btrfs_abort_transaction(trans, ret);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (clone_info && drop_end > clone_info->file_offset) {
 | 
						|
			u64 clone_len = drop_end - clone_info->file_offset;
 | 
						|
 | 
						|
			ret = btrfs_insert_clone_extent(trans, inode, path,
 | 
						|
							clone_info, clone_len);
 | 
						|
			if (ret) {
 | 
						|
				btrfs_abort_transaction(trans, ret);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			clone_info->data_len -= clone_len;
 | 
						|
			clone_info->data_offset += clone_len;
 | 
						|
			clone_info->file_offset += clone_len;
 | 
						|
		}
 | 
						|
 | 
						|
		cur_offset = drop_end;
 | 
						|
 | 
						|
		ret = btrfs_update_inode(trans, root, inode);
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
 | 
						|
		btrfs_end_transaction(trans);
 | 
						|
		btrfs_btree_balance_dirty(fs_info);
 | 
						|
 | 
						|
		trans = btrfs_start_transaction(root, rsv_count);
 | 
						|
		if (IS_ERR(trans)) {
 | 
						|
			ret = PTR_ERR(trans);
 | 
						|
			trans = NULL;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
 | 
						|
					      rsv, min_size, false);
 | 
						|
		BUG_ON(ret);	/* shouldn't happen */
 | 
						|
		trans->block_rsv = rsv;
 | 
						|
 | 
						|
		if (!clone_info) {
 | 
						|
			ret = find_first_non_hole(inode, &cur_offset, &len);
 | 
						|
			if (unlikely(ret < 0))
 | 
						|
				break;
 | 
						|
			if (ret && !len) {
 | 
						|
				ret = 0;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we were cloning, force the next fsync to be a full one since we
 | 
						|
	 * we replaced (or just dropped in the case of cloning holes when
 | 
						|
	 * NO_HOLES is enabled) extents and extent maps.
 | 
						|
	 * This is for the sake of simplicity, and cloning into files larger
 | 
						|
	 * than 16Mb would force the full fsync any way (when
 | 
						|
	 * try_release_extent_mapping() is invoked during page cache truncation.
 | 
						|
	 */
 | 
						|
	if (clone_info)
 | 
						|
		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
 | 
						|
			&BTRFS_I(inode)->runtime_flags);
 | 
						|
 | 
						|
	if (ret)
 | 
						|
		goto out_trans;
 | 
						|
 | 
						|
	trans->block_rsv = &fs_info->trans_block_rsv;
 | 
						|
	/*
 | 
						|
	 * If we are using the NO_HOLES feature we might have had already an
 | 
						|
	 * hole that overlaps a part of the region [lockstart, lockend] and
 | 
						|
	 * ends at (or beyond) lockend. Since we have no file extent items to
 | 
						|
	 * represent holes, drop_end can be less than lockend and so we must
 | 
						|
	 * make sure we have an extent map representing the existing hole (the
 | 
						|
	 * call to __btrfs_drop_extents() might have dropped the existing extent
 | 
						|
	 * map representing the existing hole), otherwise the fast fsync path
 | 
						|
	 * will not record the existence of the hole region
 | 
						|
	 * [existing_hole_start, lockend].
 | 
						|
	 */
 | 
						|
	if (drop_end <= end)
 | 
						|
		drop_end = end + 1;
 | 
						|
	/*
 | 
						|
	 * Don't insert file hole extent item if it's for a range beyond eof
 | 
						|
	 * (because it's useless) or if it represents a 0 bytes range (when
 | 
						|
	 * cur_offset == drop_end).
 | 
						|
	 */
 | 
						|
	if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) {
 | 
						|
		ret = fill_holes(trans, BTRFS_I(inode), path,
 | 
						|
				cur_offset, drop_end);
 | 
						|
		if (ret) {
 | 
						|
			/* Same comment as above. */
 | 
						|
			btrfs_abort_transaction(trans, ret);
 | 
						|
			goto out_trans;
 | 
						|
		}
 | 
						|
	} else if (!clone_info && cur_offset < drop_end) {
 | 
						|
		/* See the comment in the loop above for the reasoning here. */
 | 
						|
		ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
 | 
						|
					cur_offset, drop_end - cur_offset);
 | 
						|
		if (ret) {
 | 
						|
			btrfs_abort_transaction(trans, ret);
 | 
						|
			goto out_trans;
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
	if (clone_info) {
 | 
						|
		ret = btrfs_insert_clone_extent(trans, inode, path, clone_info,
 | 
						|
						clone_info->data_len);
 | 
						|
		if (ret) {
 | 
						|
			btrfs_abort_transaction(trans, ret);
 | 
						|
			goto out_trans;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
out_trans:
 | 
						|
	if (!trans)
 | 
						|
		goto out_free;
 | 
						|
 | 
						|
	trans->block_rsv = &fs_info->trans_block_rsv;
 | 
						|
	if (ret)
 | 
						|
		btrfs_end_transaction(trans);
 | 
						|
	else
 | 
						|
		*trans_out = trans;
 | 
						|
out_free:
 | 
						|
	btrfs_free_block_rsv(fs_info, rsv);
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	struct extent_state *cached_state = NULL;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct btrfs_trans_handle *trans = NULL;
 | 
						|
	u64 lockstart;
 | 
						|
	u64 lockend;
 | 
						|
	u64 tail_start;
 | 
						|
	u64 tail_len;
 | 
						|
	u64 orig_start = offset;
 | 
						|
	int ret = 0;
 | 
						|
	bool same_block;
 | 
						|
	u64 ino_size;
 | 
						|
	bool truncated_block = false;
 | 
						|
	bool updated_inode = false;
 | 
						|
 | 
						|
	ret = btrfs_wait_ordered_range(inode, offset, len);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	inode_lock(inode);
 | 
						|
	ino_size = round_up(inode->i_size, fs_info->sectorsize);
 | 
						|
	ret = find_first_non_hole(inode, &offset, &len);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out_only_mutex;
 | 
						|
	if (ret && !len) {
 | 
						|
		/* Already in a large hole */
 | 
						|
		ret = 0;
 | 
						|
		goto out_only_mutex;
 | 
						|
	}
 | 
						|
 | 
						|
	lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
 | 
						|
	lockend = round_down(offset + len,
 | 
						|
			     btrfs_inode_sectorsize(inode)) - 1;
 | 
						|
	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
 | 
						|
		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
 | 
						|
	/*
 | 
						|
	 * We needn't truncate any block which is beyond the end of the file
 | 
						|
	 * because we are sure there is no data there.
 | 
						|
	 */
 | 
						|
	/*
 | 
						|
	 * Only do this if we are in the same block and we aren't doing the
 | 
						|
	 * entire block.
 | 
						|
	 */
 | 
						|
	if (same_block && len < fs_info->sectorsize) {
 | 
						|
		if (offset < ino_size) {
 | 
						|
			truncated_block = true;
 | 
						|
			ret = btrfs_truncate_block(inode, offset, len, 0);
 | 
						|
		} else {
 | 
						|
			ret = 0;
 | 
						|
		}
 | 
						|
		goto out_only_mutex;
 | 
						|
	}
 | 
						|
 | 
						|
	/* zero back part of the first block */
 | 
						|
	if (offset < ino_size) {
 | 
						|
		truncated_block = true;
 | 
						|
		ret = btrfs_truncate_block(inode, offset, 0, 0);
 | 
						|
		if (ret) {
 | 
						|
			inode_unlock(inode);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Check the aligned pages after the first unaligned page,
 | 
						|
	 * if offset != orig_start, which means the first unaligned page
 | 
						|
	 * including several following pages are already in holes,
 | 
						|
	 * the extra check can be skipped */
 | 
						|
	if (offset == orig_start) {
 | 
						|
		/* after truncate page, check hole again */
 | 
						|
		len = offset + len - lockstart;
 | 
						|
		offset = lockstart;
 | 
						|
		ret = find_first_non_hole(inode, &offset, &len);
 | 
						|
		if (ret < 0)
 | 
						|
			goto out_only_mutex;
 | 
						|
		if (ret && !len) {
 | 
						|
			ret = 0;
 | 
						|
			goto out_only_mutex;
 | 
						|
		}
 | 
						|
		lockstart = offset;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Check the tail unaligned part is in a hole */
 | 
						|
	tail_start = lockend + 1;
 | 
						|
	tail_len = offset + len - tail_start;
 | 
						|
	if (tail_len) {
 | 
						|
		ret = find_first_non_hole(inode, &tail_start, &tail_len);
 | 
						|
		if (unlikely(ret < 0))
 | 
						|
			goto out_only_mutex;
 | 
						|
		if (!ret) {
 | 
						|
			/* zero the front end of the last page */
 | 
						|
			if (tail_start + tail_len < ino_size) {
 | 
						|
				truncated_block = true;
 | 
						|
				ret = btrfs_truncate_block(inode,
 | 
						|
							tail_start + tail_len,
 | 
						|
							0, 1);
 | 
						|
				if (ret)
 | 
						|
					goto out_only_mutex;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (lockend < lockstart) {
 | 
						|
		ret = 0;
 | 
						|
		goto out_only_mutex;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
 | 
						|
					  &cached_state);
 | 
						|
	if (ret)
 | 
						|
		goto out_only_mutex;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL,
 | 
						|
				     &trans);
 | 
						|
	btrfs_free_path(path);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	ASSERT(trans != NULL);
 | 
						|
	inode_inc_iversion(inode);
 | 
						|
	inode->i_mtime = inode->i_ctime = current_time(inode);
 | 
						|
	ret = btrfs_update_inode(trans, root, inode);
 | 
						|
	updated_inode = true;
 | 
						|
	btrfs_end_transaction(trans);
 | 
						|
	btrfs_btree_balance_dirty(fs_info);
 | 
						|
out:
 | 
						|
	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
 | 
						|
			     &cached_state);
 | 
						|
out_only_mutex:
 | 
						|
	if (!updated_inode && truncated_block && !ret) {
 | 
						|
		/*
 | 
						|
		 * If we only end up zeroing part of a page, we still need to
 | 
						|
		 * update the inode item, so that all the time fields are
 | 
						|
		 * updated as well as the necessary btrfs inode in memory fields
 | 
						|
		 * for detecting, at fsync time, if the inode isn't yet in the
 | 
						|
		 * log tree or it's there but not up to date.
 | 
						|
		 */
 | 
						|
		struct timespec64 now = current_time(inode);
 | 
						|
 | 
						|
		inode_inc_iversion(inode);
 | 
						|
		inode->i_mtime = now;
 | 
						|
		inode->i_ctime = now;
 | 
						|
		trans = btrfs_start_transaction(root, 1);
 | 
						|
		if (IS_ERR(trans)) {
 | 
						|
			ret = PTR_ERR(trans);
 | 
						|
		} else {
 | 
						|
			int ret2;
 | 
						|
 | 
						|
			ret = btrfs_update_inode(trans, root, inode);
 | 
						|
			ret2 = btrfs_end_transaction(trans);
 | 
						|
			if (!ret)
 | 
						|
				ret = ret2;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	inode_unlock(inode);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Helper structure to record which range is already reserved */
 | 
						|
struct falloc_range {
 | 
						|
	struct list_head list;
 | 
						|
	u64 start;
 | 
						|
	u64 len;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Helper function to add falloc range
 | 
						|
 *
 | 
						|
 * Caller should have locked the larger range of extent containing
 | 
						|
 * [start, len)
 | 
						|
 */
 | 
						|
static int add_falloc_range(struct list_head *head, u64 start, u64 len)
 | 
						|
{
 | 
						|
	struct falloc_range *prev = NULL;
 | 
						|
	struct falloc_range *range = NULL;
 | 
						|
 | 
						|
	if (list_empty(head))
 | 
						|
		goto insert;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * As fallocate iterate by bytenr order, we only need to check
 | 
						|
	 * the last range.
 | 
						|
	 */
 | 
						|
	prev = list_entry(head->prev, struct falloc_range, list);
 | 
						|
	if (prev->start + prev->len == start) {
 | 
						|
		prev->len += len;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
insert:
 | 
						|
	range = kmalloc(sizeof(*range), GFP_KERNEL);
 | 
						|
	if (!range)
 | 
						|
		return -ENOMEM;
 | 
						|
	range->start = start;
 | 
						|
	range->len = len;
 | 
						|
	list_add_tail(&range->list, head);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_fallocate_update_isize(struct inode *inode,
 | 
						|
					const u64 end,
 | 
						|
					const int mode)
 | 
						|
{
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	int ret;
 | 
						|
	int ret2;
 | 
						|
 | 
						|
	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	trans = btrfs_start_transaction(root, 1);
 | 
						|
	if (IS_ERR(trans))
 | 
						|
		return PTR_ERR(trans);
 | 
						|
 | 
						|
	inode->i_ctime = current_time(inode);
 | 
						|
	i_size_write(inode, end);
 | 
						|
	btrfs_inode_safe_disk_i_size_write(inode, 0);
 | 
						|
	ret = btrfs_update_inode(trans, root, inode);
 | 
						|
	ret2 = btrfs_end_transaction(trans);
 | 
						|
 | 
						|
	return ret ? ret : ret2;
 | 
						|
}
 | 
						|
 | 
						|
enum {
 | 
						|
	RANGE_BOUNDARY_WRITTEN_EXTENT,
 | 
						|
	RANGE_BOUNDARY_PREALLOC_EXTENT,
 | 
						|
	RANGE_BOUNDARY_HOLE,
 | 
						|
};
 | 
						|
 | 
						|
static int btrfs_zero_range_check_range_boundary(struct inode *inode,
 | 
						|
						 u64 offset)
 | 
						|
{
 | 
						|
	const u64 sectorsize = btrfs_inode_sectorsize(inode);
 | 
						|
	struct extent_map *em;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	offset = round_down(offset, sectorsize);
 | 
						|
	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize);
 | 
						|
	if (IS_ERR(em))
 | 
						|
		return PTR_ERR(em);
 | 
						|
 | 
						|
	if (em->block_start == EXTENT_MAP_HOLE)
 | 
						|
		ret = RANGE_BOUNDARY_HOLE;
 | 
						|
	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
 | 
						|
		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
 | 
						|
	else
 | 
						|
		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
 | 
						|
 | 
						|
	free_extent_map(em);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_zero_range(struct inode *inode,
 | 
						|
			    loff_t offset,
 | 
						|
			    loff_t len,
 | 
						|
			    const int mode)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
 | 
						|
	struct extent_map *em;
 | 
						|
	struct extent_changeset *data_reserved = NULL;
 | 
						|
	int ret;
 | 
						|
	u64 alloc_hint = 0;
 | 
						|
	const u64 sectorsize = btrfs_inode_sectorsize(inode);
 | 
						|
	u64 alloc_start = round_down(offset, sectorsize);
 | 
						|
	u64 alloc_end = round_up(offset + len, sectorsize);
 | 
						|
	u64 bytes_to_reserve = 0;
 | 
						|
	bool space_reserved = false;
 | 
						|
 | 
						|
	inode_dio_wait(inode);
 | 
						|
 | 
						|
	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
 | 
						|
			      alloc_end - alloc_start);
 | 
						|
	if (IS_ERR(em)) {
 | 
						|
		ret = PTR_ERR(em);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Avoid hole punching and extent allocation for some cases. More cases
 | 
						|
	 * could be considered, but these are unlikely common and we keep things
 | 
						|
	 * as simple as possible for now. Also, intentionally, if the target
 | 
						|
	 * range contains one or more prealloc extents together with regular
 | 
						|
	 * extents and holes, we drop all the existing extents and allocate a
 | 
						|
	 * new prealloc extent, so that we get a larger contiguous disk extent.
 | 
						|
	 */
 | 
						|
	if (em->start <= alloc_start &&
 | 
						|
	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
 | 
						|
		const u64 em_end = em->start + em->len;
 | 
						|
 | 
						|
		if (em_end >= offset + len) {
 | 
						|
			/*
 | 
						|
			 * The whole range is already a prealloc extent,
 | 
						|
			 * do nothing except updating the inode's i_size if
 | 
						|
			 * needed.
 | 
						|
			 */
 | 
						|
			free_extent_map(em);
 | 
						|
			ret = btrfs_fallocate_update_isize(inode, offset + len,
 | 
						|
							   mode);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * Part of the range is already a prealloc extent, so operate
 | 
						|
		 * only on the remaining part of the range.
 | 
						|
		 */
 | 
						|
		alloc_start = em_end;
 | 
						|
		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
 | 
						|
		len = offset + len - alloc_start;
 | 
						|
		offset = alloc_start;
 | 
						|
		alloc_hint = em->block_start + em->len;
 | 
						|
	}
 | 
						|
	free_extent_map(em);
 | 
						|
 | 
						|
	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
 | 
						|
	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
 | 
						|
		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
 | 
						|
				      sectorsize);
 | 
						|
		if (IS_ERR(em)) {
 | 
						|
			ret = PTR_ERR(em);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
 | 
						|
			free_extent_map(em);
 | 
						|
			ret = btrfs_fallocate_update_isize(inode, offset + len,
 | 
						|
							   mode);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
 | 
						|
			free_extent_map(em);
 | 
						|
			ret = btrfs_truncate_block(inode, offset, len, 0);
 | 
						|
			if (!ret)
 | 
						|
				ret = btrfs_fallocate_update_isize(inode,
 | 
						|
								   offset + len,
 | 
						|
								   mode);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
		free_extent_map(em);
 | 
						|
		alloc_start = round_down(offset, sectorsize);
 | 
						|
		alloc_end = alloc_start + sectorsize;
 | 
						|
		goto reserve_space;
 | 
						|
	}
 | 
						|
 | 
						|
	alloc_start = round_up(offset, sectorsize);
 | 
						|
	alloc_end = round_down(offset + len, sectorsize);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For unaligned ranges, check the pages at the boundaries, they might
 | 
						|
	 * map to an extent, in which case we need to partially zero them, or
 | 
						|
	 * they might map to a hole, in which case we need our allocation range
 | 
						|
	 * to cover them.
 | 
						|
	 */
 | 
						|
	if (!IS_ALIGNED(offset, sectorsize)) {
 | 
						|
		ret = btrfs_zero_range_check_range_boundary(inode, offset);
 | 
						|
		if (ret < 0)
 | 
						|
			goto out;
 | 
						|
		if (ret == RANGE_BOUNDARY_HOLE) {
 | 
						|
			alloc_start = round_down(offset, sectorsize);
 | 
						|
			ret = 0;
 | 
						|
		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
 | 
						|
			ret = btrfs_truncate_block(inode, offset, 0, 0);
 | 
						|
			if (ret)
 | 
						|
				goto out;
 | 
						|
		} else {
 | 
						|
			ret = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (!IS_ALIGNED(offset + len, sectorsize)) {
 | 
						|
		ret = btrfs_zero_range_check_range_boundary(inode,
 | 
						|
							    offset + len);
 | 
						|
		if (ret < 0)
 | 
						|
			goto out;
 | 
						|
		if (ret == RANGE_BOUNDARY_HOLE) {
 | 
						|
			alloc_end = round_up(offset + len, sectorsize);
 | 
						|
			ret = 0;
 | 
						|
		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
 | 
						|
			ret = btrfs_truncate_block(inode, offset + len, 0, 1);
 | 
						|
			if (ret)
 | 
						|
				goto out;
 | 
						|
		} else {
 | 
						|
			ret = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
reserve_space:
 | 
						|
	if (alloc_start < alloc_end) {
 | 
						|
		struct extent_state *cached_state = NULL;
 | 
						|
		const u64 lockstart = alloc_start;
 | 
						|
		const u64 lockend = alloc_end - 1;
 | 
						|
 | 
						|
		bytes_to_reserve = alloc_end - alloc_start;
 | 
						|
		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
 | 
						|
						      bytes_to_reserve);
 | 
						|
		if (ret < 0)
 | 
						|
			goto out;
 | 
						|
		space_reserved = true;
 | 
						|
		ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
 | 
						|
						alloc_start, bytes_to_reserve);
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
		ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
 | 
						|
						  &cached_state);
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
 | 
						|
						alloc_end - alloc_start,
 | 
						|
						i_blocksize(inode),
 | 
						|
						offset + len, &alloc_hint);
 | 
						|
		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
 | 
						|
				     lockend, &cached_state);
 | 
						|
		/* btrfs_prealloc_file_range releases reserved space on error */
 | 
						|
		if (ret) {
 | 
						|
			space_reserved = false;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
 | 
						|
 out:
 | 
						|
	if (ret && space_reserved)
 | 
						|
		btrfs_free_reserved_data_space(inode, data_reserved,
 | 
						|
					       alloc_start, bytes_to_reserve);
 | 
						|
	extent_changeset_free(data_reserved);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static long btrfs_fallocate(struct file *file, int mode,
 | 
						|
			    loff_t offset, loff_t len)
 | 
						|
{
 | 
						|
	struct inode *inode = file_inode(file);
 | 
						|
	struct extent_state *cached_state = NULL;
 | 
						|
	struct extent_changeset *data_reserved = NULL;
 | 
						|
	struct falloc_range *range;
 | 
						|
	struct falloc_range *tmp;
 | 
						|
	struct list_head reserve_list;
 | 
						|
	u64 cur_offset;
 | 
						|
	u64 last_byte;
 | 
						|
	u64 alloc_start;
 | 
						|
	u64 alloc_end;
 | 
						|
	u64 alloc_hint = 0;
 | 
						|
	u64 locked_end;
 | 
						|
	u64 actual_end = 0;
 | 
						|
	struct extent_map *em;
 | 
						|
	int blocksize = btrfs_inode_sectorsize(inode);
 | 
						|
	int ret;
 | 
						|
 | 
						|
	alloc_start = round_down(offset, blocksize);
 | 
						|
	alloc_end = round_up(offset + len, blocksize);
 | 
						|
	cur_offset = alloc_start;
 | 
						|
 | 
						|
	/* Make sure we aren't being give some crap mode */
 | 
						|
	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
 | 
						|
		     FALLOC_FL_ZERO_RANGE))
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	if (mode & FALLOC_FL_PUNCH_HOLE)
 | 
						|
		return btrfs_punch_hole(inode, offset, len);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Only trigger disk allocation, don't trigger qgroup reserve
 | 
						|
	 *
 | 
						|
	 * For qgroup space, it will be checked later.
 | 
						|
	 */
 | 
						|
	if (!(mode & FALLOC_FL_ZERO_RANGE)) {
 | 
						|
		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
 | 
						|
						      alloc_end - alloc_start);
 | 
						|
		if (ret < 0)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	inode_lock(inode);
 | 
						|
 | 
						|
	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
 | 
						|
		ret = inode_newsize_ok(inode, offset + len);
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * TODO: Move these two operations after we have checked
 | 
						|
	 * accurate reserved space, or fallocate can still fail but
 | 
						|
	 * with page truncated or size expanded.
 | 
						|
	 *
 | 
						|
	 * But that's a minor problem and won't do much harm BTW.
 | 
						|
	 */
 | 
						|
	if (alloc_start > inode->i_size) {
 | 
						|
		ret = btrfs_cont_expand(inode, i_size_read(inode),
 | 
						|
					alloc_start);
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
	} else if (offset + len > inode->i_size) {
 | 
						|
		/*
 | 
						|
		 * If we are fallocating from the end of the file onward we
 | 
						|
		 * need to zero out the end of the block if i_size lands in the
 | 
						|
		 * middle of a block.
 | 
						|
		 */
 | 
						|
		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * wait for ordered IO before we have any locks.  We'll loop again
 | 
						|
	 * below with the locks held.
 | 
						|
	 */
 | 
						|
	ret = btrfs_wait_ordered_range(inode, alloc_start,
 | 
						|
				       alloc_end - alloc_start);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (mode & FALLOC_FL_ZERO_RANGE) {
 | 
						|
		ret = btrfs_zero_range(inode, offset, len, mode);
 | 
						|
		inode_unlock(inode);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	locked_end = alloc_end - 1;
 | 
						|
	while (1) {
 | 
						|
		struct btrfs_ordered_extent *ordered;
 | 
						|
 | 
						|
		/* the extent lock is ordered inside the running
 | 
						|
		 * transaction
 | 
						|
		 */
 | 
						|
		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
 | 
						|
				 locked_end, &cached_state);
 | 
						|
		ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
 | 
						|
 | 
						|
		if (ordered &&
 | 
						|
		    ordered->file_offset + ordered->num_bytes > alloc_start &&
 | 
						|
		    ordered->file_offset < alloc_end) {
 | 
						|
			btrfs_put_ordered_extent(ordered);
 | 
						|
			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
 | 
						|
					     alloc_start, locked_end,
 | 
						|
					     &cached_state);
 | 
						|
			/*
 | 
						|
			 * we can't wait on the range with the transaction
 | 
						|
			 * running or with the extent lock held
 | 
						|
			 */
 | 
						|
			ret = btrfs_wait_ordered_range(inode, alloc_start,
 | 
						|
						       alloc_end - alloc_start);
 | 
						|
			if (ret)
 | 
						|
				goto out;
 | 
						|
		} else {
 | 
						|
			if (ordered)
 | 
						|
				btrfs_put_ordered_extent(ordered);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* First, check if we exceed the qgroup limit */
 | 
						|
	INIT_LIST_HEAD(&reserve_list);
 | 
						|
	while (cur_offset < alloc_end) {
 | 
						|
		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
 | 
						|
				      alloc_end - cur_offset);
 | 
						|
		if (IS_ERR(em)) {
 | 
						|
			ret = PTR_ERR(em);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		last_byte = min(extent_map_end(em), alloc_end);
 | 
						|
		actual_end = min_t(u64, extent_map_end(em), offset + len);
 | 
						|
		last_byte = ALIGN(last_byte, blocksize);
 | 
						|
		if (em->block_start == EXTENT_MAP_HOLE ||
 | 
						|
		    (cur_offset >= inode->i_size &&
 | 
						|
		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
 | 
						|
			ret = add_falloc_range(&reserve_list, cur_offset,
 | 
						|
					       last_byte - cur_offset);
 | 
						|
			if (ret < 0) {
 | 
						|
				free_extent_map(em);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
 | 
						|
					cur_offset, last_byte - cur_offset);
 | 
						|
			if (ret < 0) {
 | 
						|
				cur_offset = last_byte;
 | 
						|
				free_extent_map(em);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * Do not need to reserve unwritten extent for this
 | 
						|
			 * range, free reserved data space first, otherwise
 | 
						|
			 * it'll result in false ENOSPC error.
 | 
						|
			 */
 | 
						|
			btrfs_free_reserved_data_space(inode, data_reserved,
 | 
						|
					cur_offset, last_byte - cur_offset);
 | 
						|
		}
 | 
						|
		free_extent_map(em);
 | 
						|
		cur_offset = last_byte;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If ret is still 0, means we're OK to fallocate.
 | 
						|
	 * Or just cleanup the list and exit.
 | 
						|
	 */
 | 
						|
	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
 | 
						|
		if (!ret)
 | 
						|
			ret = btrfs_prealloc_file_range(inode, mode,
 | 
						|
					range->start,
 | 
						|
					range->len, i_blocksize(inode),
 | 
						|
					offset + len, &alloc_hint);
 | 
						|
		else
 | 
						|
			btrfs_free_reserved_data_space(inode,
 | 
						|
					data_reserved, range->start,
 | 
						|
					range->len);
 | 
						|
		list_del(&range->list);
 | 
						|
		kfree(range);
 | 
						|
	}
 | 
						|
	if (ret < 0)
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We didn't need to allocate any more space, but we still extended the
 | 
						|
	 * size of the file so we need to update i_size and the inode item.
 | 
						|
	 */
 | 
						|
	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
 | 
						|
out_unlock:
 | 
						|
	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
 | 
						|
			     &cached_state);
 | 
						|
out:
 | 
						|
	inode_unlock(inode);
 | 
						|
	/* Let go of our reservation. */
 | 
						|
	if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
 | 
						|
		btrfs_free_reserved_data_space(inode, data_reserved,
 | 
						|
				cur_offset, alloc_end - cur_offset);
 | 
						|
	extent_changeset_free(data_reserved);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static loff_t find_desired_extent(struct inode *inode, loff_t offset,
 | 
						|
				  int whence)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct extent_map *em = NULL;
 | 
						|
	struct extent_state *cached_state = NULL;
 | 
						|
	loff_t i_size = inode->i_size;
 | 
						|
	u64 lockstart;
 | 
						|
	u64 lockend;
 | 
						|
	u64 start;
 | 
						|
	u64 len;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (i_size == 0 || offset >= i_size)
 | 
						|
		return -ENXIO;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * offset can be negative, in this case we start finding DATA/HOLE from
 | 
						|
	 * the very start of the file.
 | 
						|
	 */
 | 
						|
	start = max_t(loff_t, 0, offset);
 | 
						|
 | 
						|
	lockstart = round_down(start, fs_info->sectorsize);
 | 
						|
	lockend = round_up(i_size, fs_info->sectorsize);
 | 
						|
	if (lockend <= lockstart)
 | 
						|
		lockend = lockstart + fs_info->sectorsize;
 | 
						|
	lockend--;
 | 
						|
	len = lockend - lockstart + 1;
 | 
						|
 | 
						|
	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
 | 
						|
			 &cached_state);
 | 
						|
 | 
						|
	while (start < i_size) {
 | 
						|
		em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
 | 
						|
		if (IS_ERR(em)) {
 | 
						|
			ret = PTR_ERR(em);
 | 
						|
			em = NULL;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (whence == SEEK_HOLE &&
 | 
						|
		    (em->block_start == EXTENT_MAP_HOLE ||
 | 
						|
		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
 | 
						|
			break;
 | 
						|
		else if (whence == SEEK_DATA &&
 | 
						|
			   (em->block_start != EXTENT_MAP_HOLE &&
 | 
						|
			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
 | 
						|
			break;
 | 
						|
 | 
						|
		start = em->start + em->len;
 | 
						|
		free_extent_map(em);
 | 
						|
		em = NULL;
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
	free_extent_map(em);
 | 
						|
	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
 | 
						|
			     &cached_state);
 | 
						|
	if (ret) {
 | 
						|
		offset = ret;
 | 
						|
	} else {
 | 
						|
		if (whence == SEEK_DATA && start >= i_size)
 | 
						|
			offset = -ENXIO;
 | 
						|
		else
 | 
						|
			offset = min_t(loff_t, start, i_size);
 | 
						|
	}
 | 
						|
 | 
						|
	return offset;
 | 
						|
}
 | 
						|
 | 
						|
static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
 | 
						|
{
 | 
						|
	struct inode *inode = file->f_mapping->host;
 | 
						|
 | 
						|
	switch (whence) {
 | 
						|
	default:
 | 
						|
		return generic_file_llseek(file, offset, whence);
 | 
						|
	case SEEK_DATA:
 | 
						|
	case SEEK_HOLE:
 | 
						|
		inode_lock_shared(inode);
 | 
						|
		offset = find_desired_extent(inode, offset, whence);
 | 
						|
		inode_unlock_shared(inode);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (offset < 0)
 | 
						|
		return offset;
 | 
						|
 | 
						|
	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_file_open(struct inode *inode, struct file *filp)
 | 
						|
{
 | 
						|
	filp->f_mode |= FMODE_NOWAIT;
 | 
						|
	return generic_file_open(inode, filp);
 | 
						|
}
 | 
						|
 | 
						|
const struct file_operations btrfs_file_operations = {
 | 
						|
	.llseek		= btrfs_file_llseek,
 | 
						|
	.read_iter      = generic_file_read_iter,
 | 
						|
	.splice_read	= generic_file_splice_read,
 | 
						|
	.write_iter	= btrfs_file_write_iter,
 | 
						|
	.mmap		= btrfs_file_mmap,
 | 
						|
	.open		= btrfs_file_open,
 | 
						|
	.release	= btrfs_release_file,
 | 
						|
	.fsync		= btrfs_sync_file,
 | 
						|
	.fallocate	= btrfs_fallocate,
 | 
						|
	.unlocked_ioctl	= btrfs_ioctl,
 | 
						|
#ifdef CONFIG_COMPAT
 | 
						|
	.compat_ioctl	= btrfs_compat_ioctl,
 | 
						|
#endif
 | 
						|
	.remap_file_range = btrfs_remap_file_range,
 | 
						|
};
 | 
						|
 | 
						|
void __cold btrfs_auto_defrag_exit(void)
 | 
						|
{
 | 
						|
	kmem_cache_destroy(btrfs_inode_defrag_cachep);
 | 
						|
}
 | 
						|
 | 
						|
int __init btrfs_auto_defrag_init(void)
 | 
						|
{
 | 
						|
	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
 | 
						|
					sizeof(struct inode_defrag), 0,
 | 
						|
					SLAB_MEM_SPREAD,
 | 
						|
					NULL);
 | 
						|
	if (!btrfs_inode_defrag_cachep)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * So with compression we will find and lock a dirty page and clear the
 | 
						|
	 * first one as dirty, setup an async extent, and immediately return
 | 
						|
	 * with the entire range locked but with nobody actually marked with
 | 
						|
	 * writeback.  So we can't just filemap_write_and_wait_range() and
 | 
						|
	 * expect it to work since it will just kick off a thread to do the
 | 
						|
	 * actual work.  So we need to call filemap_fdatawrite_range _again_
 | 
						|
	 * since it will wait on the page lock, which won't be unlocked until
 | 
						|
	 * after the pages have been marked as writeback and so we're good to go
 | 
						|
	 * from there.  We have to do this otherwise we'll miss the ordered
 | 
						|
	 * extents and that results in badness.  Please Josef, do not think you
 | 
						|
	 * know better and pull this out at some point in the future, it is
 | 
						|
	 * right and you are wrong.
 | 
						|
	 */
 | 
						|
	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
 | 
						|
	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
 | 
						|
			     &BTRFS_I(inode)->runtime_flags))
 | 
						|
		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 |