mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:
        kmalloc(a * b, gfp)
with:
        kmalloc_array(a * b, gfp)
as well as handling cases of:
        kmalloc(a * b * c, gfp)
with:
        kmalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
        kmalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
        kmalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
  kmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
  kmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kmalloc
+ kmalloc_array
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
  kmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
  kmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
  kmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
  kmalloc(sizeof(THING) * C2, ...)
|
  kmalloc(sizeof(TYPE) * C2, ...)
|
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	E1 * E2
+	E1, E2
  , ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
		
	
			
		
			
				
	
	
		
			1789 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1789 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0+
 | 
						|
/*
 | 
						|
 * Driver for SanDisk SDDR-09 SmartMedia reader
 | 
						|
 *
 | 
						|
 *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
 | 
						|
 *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
 | 
						|
 * Developed with the assistance of:
 | 
						|
 *   (c) 2002 Alan Stern <stern@rowland.org>
 | 
						|
 *
 | 
						|
 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
 | 
						|
 * This chip is a programmable USB controller. In the SDDR-09, it has
 | 
						|
 * been programmed to obey a certain limited set of SCSI commands.
 | 
						|
 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
 | 
						|
 * commands.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Known vendor commands: 12 bytes, first byte is opcode
 | 
						|
 *
 | 
						|
 * E7: read scatter gather
 | 
						|
 * E8: read
 | 
						|
 * E9: write
 | 
						|
 * EA: erase
 | 
						|
 * EB: reset
 | 
						|
 * EC: read status
 | 
						|
 * ED: read ID
 | 
						|
 * EE: write CIS (?)
 | 
						|
 * EF: compute checksum (?)
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
 | 
						|
#include <scsi/scsi.h>
 | 
						|
#include <scsi/scsi_cmnd.h>
 | 
						|
#include <scsi/scsi_device.h>
 | 
						|
 | 
						|
#include "usb.h"
 | 
						|
#include "transport.h"
 | 
						|
#include "protocol.h"
 | 
						|
#include "debug.h"
 | 
						|
#include "scsiglue.h"
 | 
						|
 | 
						|
#define DRV_NAME "ums-sddr09"
 | 
						|
 | 
						|
MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
 | 
						|
MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
 | 
						|
MODULE_LICENSE("GPL");
 | 
						|
 | 
						|
static int usb_stor_sddr09_dpcm_init(struct us_data *us);
 | 
						|
static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
 | 
						|
static int usb_stor_sddr09_init(struct us_data *us);
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * The table of devices
 | 
						|
 */
 | 
						|
#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
 | 
						|
		    vendorName, productName, useProtocol, useTransport, \
 | 
						|
		    initFunction, flags) \
 | 
						|
{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
 | 
						|
  .driver_info = (flags) }
 | 
						|
 | 
						|
static struct usb_device_id sddr09_usb_ids[] = {
 | 
						|
#	include "unusual_sddr09.h"
 | 
						|
	{ }		/* Terminating entry */
 | 
						|
};
 | 
						|
MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
 | 
						|
 | 
						|
#undef UNUSUAL_DEV
 | 
						|
 | 
						|
/*
 | 
						|
 * The flags table
 | 
						|
 */
 | 
						|
#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
 | 
						|
		    vendor_name, product_name, use_protocol, use_transport, \
 | 
						|
		    init_function, Flags) \
 | 
						|
{ \
 | 
						|
	.vendorName = vendor_name,	\
 | 
						|
	.productName = product_name,	\
 | 
						|
	.useProtocol = use_protocol,	\
 | 
						|
	.useTransport = use_transport,	\
 | 
						|
	.initFunction = init_function,	\
 | 
						|
}
 | 
						|
 | 
						|
static struct us_unusual_dev sddr09_unusual_dev_list[] = {
 | 
						|
#	include "unusual_sddr09.h"
 | 
						|
	{ }		/* Terminating entry */
 | 
						|
};
 | 
						|
 | 
						|
#undef UNUSUAL_DEV
 | 
						|
 | 
						|
 | 
						|
#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
 | 
						|
#define LSB_of(s) ((s)&0xFF)
 | 
						|
#define MSB_of(s) ((s)>>8)
 | 
						|
 | 
						|
/*
 | 
						|
 * First some stuff that does not belong here:
 | 
						|
 * data on SmartMedia and other cards, completely
 | 
						|
 * unrelated to this driver.
 | 
						|
 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
 | 
						|
 */
 | 
						|
 | 
						|
struct nand_flash_dev {
 | 
						|
	int model_id;
 | 
						|
	int chipshift;		/* 1<<cs bytes total capacity */
 | 
						|
	char pageshift;		/* 1<<ps bytes in a page */
 | 
						|
	char blockshift;	/* 1<<bs pages in an erase block */
 | 
						|
	char zoneshift;		/* 1<<zs blocks in a zone */
 | 
						|
				/* # of logical blocks is 125/128 of this */
 | 
						|
	char pageadrlen;	/* length of an address in bytes - 1 */
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * NAND Flash Manufacturer ID Codes
 | 
						|
 */
 | 
						|
#define NAND_MFR_AMD		0x01
 | 
						|
#define NAND_MFR_NATSEMI	0x8f
 | 
						|
#define NAND_MFR_TOSHIBA	0x98
 | 
						|
#define NAND_MFR_SAMSUNG	0xec
 | 
						|
 | 
						|
static inline char *nand_flash_manufacturer(int manuf_id) {
 | 
						|
	switch(manuf_id) {
 | 
						|
	case NAND_MFR_AMD:
 | 
						|
		return "AMD";
 | 
						|
	case NAND_MFR_NATSEMI:
 | 
						|
		return "NATSEMI";
 | 
						|
	case NAND_MFR_TOSHIBA:
 | 
						|
		return "Toshiba";
 | 
						|
	case NAND_MFR_SAMSUNG:
 | 
						|
		return "Samsung";
 | 
						|
	default:
 | 
						|
		return "unknown";
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * It looks like it is unnecessary to attach manufacturer to the
 | 
						|
 * remaining data: SSFDC prescribes manufacturer-independent id codes.
 | 
						|
 *
 | 
						|
 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
 | 
						|
 */
 | 
						|
 | 
						|
static struct nand_flash_dev nand_flash_ids[] = {
 | 
						|
	/* NAND flash */
 | 
						|
	{ 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */
 | 
						|
	{ 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */
 | 
						|
	{ 0xec, 20, 8, 4, 8, 2},	/* 1 MB */
 | 
						|
	{ 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */
 | 
						|
	{ 0xea, 21, 8, 4, 9, 2},	/* 2 MB */
 | 
						|
	{ 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */
 | 
						|
	{ 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */
 | 
						|
	{ 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */
 | 
						|
	{ 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */
 | 
						|
	{ 0x73, 24, 9, 5, 10, 2},	/* 16 MB */
 | 
						|
	{ 0x75, 25, 9, 5, 10, 2},	/* 32 MB */
 | 
						|
	{ 0x76, 26, 9, 5, 10, 3},	/* 64 MB */
 | 
						|
	{ 0x79, 27, 9, 5, 10, 3},	/* 128 MB */
 | 
						|
 | 
						|
	/* MASK ROM */
 | 
						|
	{ 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */
 | 
						|
	{ 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */
 | 
						|
	{ 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */
 | 
						|
	{ 0x57, 24, 9, 4, 11, 2},	/* 16 MB */
 | 
						|
	{ 0x58, 25, 9, 4, 12, 2},	/* 32 MB */
 | 
						|
	{ 0,}
 | 
						|
};
 | 
						|
 | 
						|
static struct nand_flash_dev *
 | 
						|
nand_find_id(unsigned char id) {
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
 | 
						|
		if (nand_flash_ids[i].model_id == id)
 | 
						|
			return &(nand_flash_ids[i]);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ECC computation.
 | 
						|
 */
 | 
						|
static unsigned char parity[256];
 | 
						|
static unsigned char ecc2[256];
 | 
						|
 | 
						|
static void nand_init_ecc(void) {
 | 
						|
	int i, j, a;
 | 
						|
 | 
						|
	parity[0] = 0;
 | 
						|
	for (i = 1; i < 256; i++)
 | 
						|
		parity[i] = (parity[i&(i-1)] ^ 1);
 | 
						|
 | 
						|
	for (i = 0; i < 256; i++) {
 | 
						|
		a = 0;
 | 
						|
		for (j = 0; j < 8; j++) {
 | 
						|
			if (i & (1<<j)) {
 | 
						|
				if ((j & 1) == 0)
 | 
						|
					a ^= 0x04;
 | 
						|
				if ((j & 2) == 0)
 | 
						|
					a ^= 0x10;
 | 
						|
				if ((j & 4) == 0)
 | 
						|
					a ^= 0x40;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* compute 3-byte ecc on 256 bytes */
 | 
						|
static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
 | 
						|
	int i, j, a;
 | 
						|
	unsigned char par = 0, bit, bits[8] = {0};
 | 
						|
 | 
						|
	/* collect 16 checksum bits */
 | 
						|
	for (i = 0; i < 256; i++) {
 | 
						|
		par ^= data[i];
 | 
						|
		bit = parity[data[i]];
 | 
						|
		for (j = 0; j < 8; j++)
 | 
						|
			if ((i & (1<<j)) == 0)
 | 
						|
				bits[j] ^= bit;
 | 
						|
	}
 | 
						|
 | 
						|
	/* put 4+4+4 = 12 bits in the ecc */
 | 
						|
	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 | 
						|
	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 | 
						|
 | 
						|
	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 | 
						|
	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 | 
						|
 | 
						|
	ecc[2] = ecc2[par];
 | 
						|
}
 | 
						|
 | 
						|
static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
 | 
						|
	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 | 
						|
}
 | 
						|
 | 
						|
static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
 | 
						|
	memcpy(data, ecc, 3);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The actual driver starts here.
 | 
						|
 */
 | 
						|
 | 
						|
struct sddr09_card_info {
 | 
						|
	unsigned long	capacity;	/* Size of card in bytes */
 | 
						|
	int		pagesize;	/* Size of page in bytes */
 | 
						|
	int		pageshift;	/* log2 of pagesize */
 | 
						|
	int		blocksize;	/* Size of block in pages */
 | 
						|
	int		blockshift;	/* log2 of blocksize */
 | 
						|
	int		blockmask;	/* 2^blockshift - 1 */
 | 
						|
	int		*lba_to_pba;	/* logical to physical map */
 | 
						|
	int		*pba_to_lba;	/* physical to logical map */
 | 
						|
	int		lbact;		/* number of available pages */
 | 
						|
	int		flags;
 | 
						|
#define	SDDR09_WP	1		/* write protected */
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * On my 16MB card, control blocks have size 64 (16 real control bytes,
 | 
						|
 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
 | 
						|
 * so the reader makes up the remaining 48. Don't know whether these numbers
 | 
						|
 * depend on the card. For now a constant.
 | 
						|
 */
 | 
						|
#define CONTROL_SHIFT 6
 | 
						|
 | 
						|
/*
 | 
						|
 * On my Combo CF/SM reader, the SM reader has LUN 1.
 | 
						|
 * (and things fail with LUN 0).
 | 
						|
 * It seems LUN is irrelevant for others.
 | 
						|
 */
 | 
						|
#define LUN	1
 | 
						|
#define	LUNBITS	(LUN << 5)
 | 
						|
 | 
						|
/*
 | 
						|
 * LBA and PBA are unsigned ints. Special values.
 | 
						|
 */
 | 
						|
#define UNDEF    0xffffffff
 | 
						|
#define SPARE    0xfffffffe
 | 
						|
#define UNUSABLE 0xfffffffd
 | 
						|
 | 
						|
static const int erase_bad_lba_entries = 0;
 | 
						|
 | 
						|
/* send vendor interface command (0x41) */
 | 
						|
/* called for requests 0, 1, 8 */
 | 
						|
static int
 | 
						|
sddr09_send_command(struct us_data *us,
 | 
						|
		    unsigned char request,
 | 
						|
		    unsigned char direction,
 | 
						|
		    unsigned char *xfer_data,
 | 
						|
		    unsigned int xfer_len) {
 | 
						|
	unsigned int pipe;
 | 
						|
	unsigned char requesttype = (0x41 | direction);
 | 
						|
	int rc;
 | 
						|
 | 
						|
	// Get the receive or send control pipe number
 | 
						|
 | 
						|
	if (direction == USB_DIR_IN)
 | 
						|
		pipe = us->recv_ctrl_pipe;
 | 
						|
	else
 | 
						|
		pipe = us->send_ctrl_pipe;
 | 
						|
 | 
						|
	rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
 | 
						|
				   0, 0, xfer_data, xfer_len);
 | 
						|
	switch (rc) {
 | 
						|
		case USB_STOR_XFER_GOOD:	return 0;
 | 
						|
		case USB_STOR_XFER_STALLED:	return -EPIPE;
 | 
						|
		default:			return -EIO;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
sddr09_send_scsi_command(struct us_data *us,
 | 
						|
			 unsigned char *command,
 | 
						|
			 unsigned int command_len) {
 | 
						|
	return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
 | 
						|
}
 | 
						|
 | 
						|
#if 0
 | 
						|
/*
 | 
						|
 * Test Unit Ready Command: 12 bytes.
 | 
						|
 * byte 0: opcode: 00
 | 
						|
 */
 | 
						|
static int
 | 
						|
sddr09_test_unit_ready(struct us_data *us) {
 | 
						|
	unsigned char *command = us->iobuf;
 | 
						|
	int result;
 | 
						|
 | 
						|
	memset(command, 0, 6);
 | 
						|
	command[1] = LUNBITS;
 | 
						|
 | 
						|
	result = sddr09_send_scsi_command(us, command, 6);
 | 
						|
 | 
						|
	usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Request Sense Command: 12 bytes.
 | 
						|
 * byte 0: opcode: 03
 | 
						|
 * byte 4: data length
 | 
						|
 */
 | 
						|
static int
 | 
						|
sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
 | 
						|
	unsigned char *command = us->iobuf;
 | 
						|
	int result;
 | 
						|
 | 
						|
	memset(command, 0, 12);
 | 
						|
	command[0] = 0x03;
 | 
						|
	command[1] = LUNBITS;
 | 
						|
	command[4] = buflen;
 | 
						|
 | 
						|
	result = sddr09_send_scsi_command(us, command, 12);
 | 
						|
	if (result)
 | 
						|
		return result;
 | 
						|
 | 
						|
	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 | 
						|
			sensebuf, buflen, NULL);
 | 
						|
	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Read Command: 12 bytes.
 | 
						|
 * byte 0: opcode: E8
 | 
						|
 * byte 1: last two bits: 00: read data, 01: read blockwise control,
 | 
						|
 *			10: read both, 11: read pagewise control.
 | 
						|
 *	 It turns out we need values 20, 21, 22, 23 here (LUN 1).
 | 
						|
 * bytes 2-5: address (interpretation depends on byte 1, see below)
 | 
						|
 * bytes 10-11: count (idem)
 | 
						|
 *
 | 
						|
 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
 | 
						|
 * A read data command gets data in 512-byte pages.
 | 
						|
 * A read control command gets control in 64-byte chunks.
 | 
						|
 * A read both command gets data+control in 576-byte chunks.
 | 
						|
 *
 | 
						|
 * Blocks are groups of 32 pages, and read blockwise control jumps to the
 | 
						|
 * next block, while read pagewise control jumps to the next page after
 | 
						|
 * reading a group of 64 control bytes.
 | 
						|
 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
 | 
						|
 *
 | 
						|
 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
 | 
						|
 */
 | 
						|
 | 
						|
static int
 | 
						|
sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
 | 
						|
	     int nr_of_pages, int bulklen, unsigned char *buf,
 | 
						|
	     int use_sg) {
 | 
						|
 | 
						|
	unsigned char *command = us->iobuf;
 | 
						|
	int result;
 | 
						|
 | 
						|
	command[0] = 0xE8;
 | 
						|
	command[1] = LUNBITS | x;
 | 
						|
	command[2] = MSB_of(fromaddress>>16);
 | 
						|
	command[3] = LSB_of(fromaddress>>16); 
 | 
						|
	command[4] = MSB_of(fromaddress & 0xFFFF);
 | 
						|
	command[5] = LSB_of(fromaddress & 0xFFFF); 
 | 
						|
	command[6] = 0;
 | 
						|
	command[7] = 0;
 | 
						|
	command[8] = 0;
 | 
						|
	command[9] = 0;
 | 
						|
	command[10] = MSB_of(nr_of_pages);
 | 
						|
	command[11] = LSB_of(nr_of_pages);
 | 
						|
 | 
						|
	result = sddr09_send_scsi_command(us, command, 12);
 | 
						|
 | 
						|
	if (result) {
 | 
						|
		usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
 | 
						|
			     x, result);
 | 
						|
		return result;
 | 
						|
	}
 | 
						|
 | 
						|
	result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
 | 
						|
				       buf, bulklen, use_sg, NULL);
 | 
						|
 | 
						|
	if (result != USB_STOR_XFER_GOOD) {
 | 
						|
		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
 | 
						|
			     x, result);
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Read Data
 | 
						|
 *
 | 
						|
 * fromaddress counts data shorts:
 | 
						|
 * increasing it by 256 shifts the bytestream by 512 bytes;
 | 
						|
 * the last 8 bits are ignored.
 | 
						|
 *
 | 
						|
 * nr_of_pages counts pages of size (1 << pageshift).
 | 
						|
 */
 | 
						|
static int
 | 
						|
sddr09_read20(struct us_data *us, unsigned long fromaddress,
 | 
						|
	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 | 
						|
	int bulklen = nr_of_pages << pageshift;
 | 
						|
 | 
						|
	/* The last 8 bits of fromaddress are ignored. */
 | 
						|
	return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
 | 
						|
			    buf, use_sg);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Read Blockwise Control
 | 
						|
 *
 | 
						|
 * fromaddress gives the starting position (as in read data;
 | 
						|
 * the last 8 bits are ignored); increasing it by 32*256 shifts
 | 
						|
 * the output stream by 64 bytes.
 | 
						|
 *
 | 
						|
 * count counts control groups of size (1 << controlshift).
 | 
						|
 * For me, controlshift = 6. Is this constant?
 | 
						|
 *
 | 
						|
 * After getting one control group, jump to the next block
 | 
						|
 * (fromaddress += 8192).
 | 
						|
 */
 | 
						|
static int
 | 
						|
sddr09_read21(struct us_data *us, unsigned long fromaddress,
 | 
						|
	      int count, int controlshift, unsigned char *buf, int use_sg) {
 | 
						|
 | 
						|
	int bulklen = (count << controlshift);
 | 
						|
	return sddr09_readX(us, 1, fromaddress, count, bulklen,
 | 
						|
			    buf, use_sg);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Read both Data and Control
 | 
						|
 *
 | 
						|
 * fromaddress counts data shorts, ignoring control:
 | 
						|
 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
 | 
						|
 * the last 8 bits are ignored.
 | 
						|
 *
 | 
						|
 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
 | 
						|
 */
 | 
						|
static int
 | 
						|
sddr09_read22(struct us_data *us, unsigned long fromaddress,
 | 
						|
	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 | 
						|
 | 
						|
	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 | 
						|
	usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
 | 
						|
	return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
 | 
						|
			    buf, use_sg);
 | 
						|
}
 | 
						|
 | 
						|
#if 0
 | 
						|
/*
 | 
						|
 * Read Pagewise Control
 | 
						|
 *
 | 
						|
 * fromaddress gives the starting position (as in read data;
 | 
						|
 * the last 8 bits are ignored); increasing it by 256 shifts
 | 
						|
 * the output stream by 64 bytes.
 | 
						|
 *
 | 
						|
 * count counts control groups of size (1 << controlshift).
 | 
						|
 * For me, controlshift = 6. Is this constant?
 | 
						|
 *
 | 
						|
 * After getting one control group, jump to the next page
 | 
						|
 * (fromaddress += 256).
 | 
						|
 */
 | 
						|
static int
 | 
						|
sddr09_read23(struct us_data *us, unsigned long fromaddress,
 | 
						|
	      int count, int controlshift, unsigned char *buf, int use_sg) {
 | 
						|
 | 
						|
	int bulklen = (count << controlshift);
 | 
						|
	return sddr09_readX(us, 3, fromaddress, count, bulklen,
 | 
						|
			    buf, use_sg);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Erase Command: 12 bytes.
 | 
						|
 * byte 0: opcode: EA
 | 
						|
 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 | 
						|
 * 
 | 
						|
 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
 | 
						|
 * The byte address being erased is 2*Eaddress.
 | 
						|
 * The CIS cannot be erased.
 | 
						|
 */
 | 
						|
static int
 | 
						|
sddr09_erase(struct us_data *us, unsigned long Eaddress) {
 | 
						|
	unsigned char *command = us->iobuf;
 | 
						|
	int result;
 | 
						|
 | 
						|
	usb_stor_dbg(us, "erase address %lu\n", Eaddress);
 | 
						|
 | 
						|
	memset(command, 0, 12);
 | 
						|
	command[0] = 0xEA;
 | 
						|
	command[1] = LUNBITS;
 | 
						|
	command[6] = MSB_of(Eaddress>>16);
 | 
						|
	command[7] = LSB_of(Eaddress>>16);
 | 
						|
	command[8] = MSB_of(Eaddress & 0xFFFF);
 | 
						|
	command[9] = LSB_of(Eaddress & 0xFFFF);
 | 
						|
 | 
						|
	result = sddr09_send_scsi_command(us, command, 12);
 | 
						|
 | 
						|
	if (result)
 | 
						|
		usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
 | 
						|
			     result);
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Write CIS Command: 12 bytes.
 | 
						|
 * byte 0: opcode: EE
 | 
						|
 * bytes 2-5: write address in shorts
 | 
						|
 * bytes 10-11: sector count
 | 
						|
 *
 | 
						|
 * This writes at the indicated address. Don't know how it differs
 | 
						|
 * from E9. Maybe it does not erase? However, it will also write to
 | 
						|
 * the CIS.
 | 
						|
 *
 | 
						|
 * When two such commands on the same page follow each other directly,
 | 
						|
 * the second one is not done.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Write Command: 12 bytes.
 | 
						|
 * byte 0: opcode: E9
 | 
						|
 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
 | 
						|
 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 | 
						|
 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
 | 
						|
 *
 | 
						|
 * If write address equals erase address, the erase is done first,
 | 
						|
 * otherwise the write is done first. When erase address equals zero
 | 
						|
 * no erase is done?
 | 
						|
 */
 | 
						|
static int
 | 
						|
sddr09_writeX(struct us_data *us,
 | 
						|
	      unsigned long Waddress, unsigned long Eaddress,
 | 
						|
	      int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
 | 
						|
 | 
						|
	unsigned char *command = us->iobuf;
 | 
						|
	int result;
 | 
						|
 | 
						|
	command[0] = 0xE9;
 | 
						|
	command[1] = LUNBITS;
 | 
						|
 | 
						|
	command[2] = MSB_of(Waddress>>16);
 | 
						|
	command[3] = LSB_of(Waddress>>16);
 | 
						|
	command[4] = MSB_of(Waddress & 0xFFFF);
 | 
						|
	command[5] = LSB_of(Waddress & 0xFFFF);
 | 
						|
 | 
						|
	command[6] = MSB_of(Eaddress>>16);
 | 
						|
	command[7] = LSB_of(Eaddress>>16);
 | 
						|
	command[8] = MSB_of(Eaddress & 0xFFFF);
 | 
						|
	command[9] = LSB_of(Eaddress & 0xFFFF);
 | 
						|
 | 
						|
	command[10] = MSB_of(nr_of_pages);
 | 
						|
	command[11] = LSB_of(nr_of_pages);
 | 
						|
 | 
						|
	result = sddr09_send_scsi_command(us, command, 12);
 | 
						|
 | 
						|
	if (result) {
 | 
						|
		usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
 | 
						|
			     result);
 | 
						|
		return result;
 | 
						|
	}
 | 
						|
 | 
						|
	result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
 | 
						|
				       buf, bulklen, use_sg, NULL);
 | 
						|
 | 
						|
	if (result != USB_STOR_XFER_GOOD) {
 | 
						|
		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
 | 
						|
			     result);
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* erase address, write same address */
 | 
						|
static int
 | 
						|
sddr09_write_inplace(struct us_data *us, unsigned long address,
 | 
						|
		     int nr_of_pages, int pageshift, unsigned char *buf,
 | 
						|
		     int use_sg) {
 | 
						|
	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 | 
						|
	return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
 | 
						|
			     buf, use_sg);
 | 
						|
}
 | 
						|
 | 
						|
#if 0
 | 
						|
/*
 | 
						|
 * Read Scatter Gather Command: 3+4n bytes.
 | 
						|
 * byte 0: opcode E7
 | 
						|
 * byte 2: n
 | 
						|
 * bytes 4i-1,4i,4i+1: page address
 | 
						|
 * byte 4i+2: page count
 | 
						|
 * (i=1..n)
 | 
						|
 *
 | 
						|
 * This reads several pages from the card to a single memory buffer.
 | 
						|
 * The last two bits of byte 1 have the same meaning as for E8.
 | 
						|
 */
 | 
						|
static int
 | 
						|
sddr09_read_sg_test_only(struct us_data *us) {
 | 
						|
	unsigned char *command = us->iobuf;
 | 
						|
	int result, bulklen, nsg, ct;
 | 
						|
	unsigned char *buf;
 | 
						|
	unsigned long address;
 | 
						|
 | 
						|
	nsg = bulklen = 0;
 | 
						|
	command[0] = 0xE7;
 | 
						|
	command[1] = LUNBITS;
 | 
						|
	command[2] = 0;
 | 
						|
	address = 040000; ct = 1;
 | 
						|
	nsg++;
 | 
						|
	bulklen += (ct << 9);
 | 
						|
	command[4*nsg+2] = ct;
 | 
						|
	command[4*nsg+1] = ((address >> 9) & 0xFF);
 | 
						|
	command[4*nsg+0] = ((address >> 17) & 0xFF);
 | 
						|
	command[4*nsg-1] = ((address >> 25) & 0xFF);
 | 
						|
 | 
						|
	address = 0340000; ct = 1;
 | 
						|
	nsg++;
 | 
						|
	bulklen += (ct << 9);
 | 
						|
	command[4*nsg+2] = ct;
 | 
						|
	command[4*nsg+1] = ((address >> 9) & 0xFF);
 | 
						|
	command[4*nsg+0] = ((address >> 17) & 0xFF);
 | 
						|
	command[4*nsg-1] = ((address >> 25) & 0xFF);
 | 
						|
 | 
						|
	address = 01000000; ct = 2;
 | 
						|
	nsg++;
 | 
						|
	bulklen += (ct << 9);
 | 
						|
	command[4*nsg+2] = ct;
 | 
						|
	command[4*nsg+1] = ((address >> 9) & 0xFF);
 | 
						|
	command[4*nsg+0] = ((address >> 17) & 0xFF);
 | 
						|
	command[4*nsg-1] = ((address >> 25) & 0xFF);
 | 
						|
 | 
						|
	command[2] = nsg;
 | 
						|
 | 
						|
	result = sddr09_send_scsi_command(us, command, 4*nsg+3);
 | 
						|
 | 
						|
	if (result) {
 | 
						|
		usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
 | 
						|
			     result);
 | 
						|
		return result;
 | 
						|
	}
 | 
						|
 | 
						|
	buf = kmalloc(bulklen, GFP_NOIO);
 | 
						|
	if (!buf)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 | 
						|
				       buf, bulklen, NULL);
 | 
						|
	kfree(buf);
 | 
						|
	if (result != USB_STOR_XFER_GOOD) {
 | 
						|
		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
 | 
						|
			     result);
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Read Status Command: 12 bytes.
 | 
						|
 * byte 0: opcode: EC
 | 
						|
 *
 | 
						|
 * Returns 64 bytes, all zero except for the first.
 | 
						|
 * bit 0: 1: Error
 | 
						|
 * bit 5: 1: Suspended
 | 
						|
 * bit 6: 1: Ready
 | 
						|
 * bit 7: 1: Not write-protected
 | 
						|
 */
 | 
						|
 | 
						|
static int
 | 
						|
sddr09_read_status(struct us_data *us, unsigned char *status) {
 | 
						|
 | 
						|
	unsigned char *command = us->iobuf;
 | 
						|
	unsigned char *data = us->iobuf;
 | 
						|
	int result;
 | 
						|
 | 
						|
	usb_stor_dbg(us, "Reading status...\n");
 | 
						|
 | 
						|
	memset(command, 0, 12);
 | 
						|
	command[0] = 0xEC;
 | 
						|
	command[1] = LUNBITS;
 | 
						|
 | 
						|
	result = sddr09_send_scsi_command(us, command, 12);
 | 
						|
	if (result)
 | 
						|
		return result;
 | 
						|
 | 
						|
	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 | 
						|
				       data, 64, NULL);
 | 
						|
	*status = data[0];
 | 
						|
	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
sddr09_read_data(struct us_data *us,
 | 
						|
		 unsigned long address,
 | 
						|
		 unsigned int sectors) {
 | 
						|
 | 
						|
	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 | 
						|
	unsigned char *buffer;
 | 
						|
	unsigned int lba, maxlba, pba;
 | 
						|
	unsigned int page, pages;
 | 
						|
	unsigned int len, offset;
 | 
						|
	struct scatterlist *sg;
 | 
						|
	int result;
 | 
						|
 | 
						|
	// Figure out the initial LBA and page
 | 
						|
	lba = address >> info->blockshift;
 | 
						|
	page = (address & info->blockmask);
 | 
						|
	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 | 
						|
	if (lba >= maxlba)
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	// Since we only read in one block at a time, we have to create
 | 
						|
	// a bounce buffer and move the data a piece at a time between the
 | 
						|
	// bounce buffer and the actual transfer buffer.
 | 
						|
 | 
						|
	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
 | 
						|
	buffer = kmalloc(len, GFP_NOIO);
 | 
						|
	if (!buffer)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	// This could be made much more efficient by checking for
 | 
						|
	// contiguous LBA's. Another exercise left to the student.
 | 
						|
 | 
						|
	result = 0;
 | 
						|
	offset = 0;
 | 
						|
	sg = NULL;
 | 
						|
 | 
						|
	while (sectors > 0) {
 | 
						|
 | 
						|
		/* Find number of pages we can read in this block */
 | 
						|
		pages = min(sectors, info->blocksize - page);
 | 
						|
		len = pages << info->pageshift;
 | 
						|
 | 
						|
		/* Not overflowing capacity? */
 | 
						|
		if (lba >= maxlba) {
 | 
						|
			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
 | 
						|
				     lba, maxlba);
 | 
						|
			result = -EIO;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Find where this lba lives on disk */
 | 
						|
		pba = info->lba_to_pba[lba];
 | 
						|
 | 
						|
		if (pba == UNDEF) {	/* this lba was never written */
 | 
						|
 | 
						|
			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
 | 
						|
				     pages, lba, page);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * This is not really an error. It just means
 | 
						|
			 * that the block has never been written.
 | 
						|
			 * Instead of returning an error
 | 
						|
			 * it is better to return all zero data.
 | 
						|
			 */
 | 
						|
 | 
						|
			memset(buffer, 0, len);
 | 
						|
 | 
						|
		} else {
 | 
						|
			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
 | 
						|
				     pages, pba, lba, page);
 | 
						|
 | 
						|
			address = ((pba << info->blockshift) + page) << 
 | 
						|
				info->pageshift;
 | 
						|
 | 
						|
			result = sddr09_read20(us, address>>1,
 | 
						|
					pages, info->pageshift, buffer, 0);
 | 
						|
			if (result)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
 | 
						|
		// Store the data in the transfer buffer
 | 
						|
		usb_stor_access_xfer_buf(buffer, len, us->srb,
 | 
						|
				&sg, &offset, TO_XFER_BUF);
 | 
						|
 | 
						|
		page = 0;
 | 
						|
		lba++;
 | 
						|
		sectors -= pages;
 | 
						|
	}
 | 
						|
 | 
						|
	kfree(buffer);
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned int
 | 
						|
sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
 | 
						|
	static unsigned int lastpba = 1;
 | 
						|
	int zonestart, end, i;
 | 
						|
 | 
						|
	zonestart = (lba/1000) << 10;
 | 
						|
	end = info->capacity >> (info->blockshift + info->pageshift);
 | 
						|
	end -= zonestart;
 | 
						|
	if (end > 1024)
 | 
						|
		end = 1024;
 | 
						|
 | 
						|
	for (i = lastpba+1; i < end; i++) {
 | 
						|
		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 | 
						|
			lastpba = i;
 | 
						|
			return zonestart+i;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	for (i = 0; i <= lastpba; i++) {
 | 
						|
		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 | 
						|
			lastpba = i;
 | 
						|
			return zonestart+i;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
sddr09_write_lba(struct us_data *us, unsigned int lba,
 | 
						|
		 unsigned int page, unsigned int pages,
 | 
						|
		 unsigned char *ptr, unsigned char *blockbuffer) {
 | 
						|
 | 
						|
	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 | 
						|
	unsigned long address;
 | 
						|
	unsigned int pba, lbap;
 | 
						|
	unsigned int pagelen;
 | 
						|
	unsigned char *bptr, *cptr, *xptr;
 | 
						|
	unsigned char ecc[3];
 | 
						|
	int i, result;
 | 
						|
 | 
						|
	lbap = ((lba % 1000) << 1) | 0x1000;
 | 
						|
	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 | 
						|
		lbap ^= 1;
 | 
						|
	pba = info->lba_to_pba[lba];
 | 
						|
 | 
						|
	if (pba == UNDEF) {
 | 
						|
		pba = sddr09_find_unused_pba(info, lba);
 | 
						|
		if (!pba) {
 | 
						|
			printk(KERN_WARNING
 | 
						|
			       "sddr09_write_lba: Out of unused blocks\n");
 | 
						|
			return -ENOSPC;
 | 
						|
		}
 | 
						|
		info->pba_to_lba[pba] = lba;
 | 
						|
		info->lba_to_pba[lba] = pba;
 | 
						|
	}
 | 
						|
 | 
						|
	if (pba == 1) {
 | 
						|
		/*
 | 
						|
		 * Maybe it is impossible to write to PBA 1.
 | 
						|
		 * Fake success, but don't do anything.
 | 
						|
		 */
 | 
						|
		printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 | 
						|
 | 
						|
	/* read old contents */
 | 
						|
	address = (pba << (info->pageshift + info->blockshift));
 | 
						|
	result = sddr09_read22(us, address>>1, info->blocksize,
 | 
						|
			       info->pageshift, blockbuffer, 0);
 | 
						|
	if (result)
 | 
						|
		return result;
 | 
						|
 | 
						|
	/* check old contents and fill lba */
 | 
						|
	for (i = 0; i < info->blocksize; i++) {
 | 
						|
		bptr = blockbuffer + i*pagelen;
 | 
						|
		cptr = bptr + info->pagesize;
 | 
						|
		nand_compute_ecc(bptr, ecc);
 | 
						|
		if (!nand_compare_ecc(cptr+13, ecc)) {
 | 
						|
			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
 | 
						|
				     i, pba);
 | 
						|
			nand_store_ecc(cptr+13, ecc);
 | 
						|
		}
 | 
						|
		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 | 
						|
		if (!nand_compare_ecc(cptr+8, ecc)) {
 | 
						|
			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
 | 
						|
				     i, pba);
 | 
						|
			nand_store_ecc(cptr+8, ecc);
 | 
						|
		}
 | 
						|
		cptr[6] = cptr[11] = MSB_of(lbap);
 | 
						|
		cptr[7] = cptr[12] = LSB_of(lbap);
 | 
						|
	}
 | 
						|
 | 
						|
	/* copy in new stuff and compute ECC */
 | 
						|
	xptr = ptr;
 | 
						|
	for (i = page; i < page+pages; i++) {
 | 
						|
		bptr = blockbuffer + i*pagelen;
 | 
						|
		cptr = bptr + info->pagesize;
 | 
						|
		memcpy(bptr, xptr, info->pagesize);
 | 
						|
		xptr += info->pagesize;
 | 
						|
		nand_compute_ecc(bptr, ecc);
 | 
						|
		nand_store_ecc(cptr+13, ecc);
 | 
						|
		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 | 
						|
		nand_store_ecc(cptr+8, ecc);
 | 
						|
	}
 | 
						|
 | 
						|
	usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
 | 
						|
 | 
						|
	result = sddr09_write_inplace(us, address>>1, info->blocksize,
 | 
						|
				      info->pageshift, blockbuffer, 0);
 | 
						|
 | 
						|
	usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
 | 
						|
 | 
						|
#if 0
 | 
						|
	{
 | 
						|
		unsigned char status = 0;
 | 
						|
		int result2 = sddr09_read_status(us, &status);
 | 
						|
		if (result2)
 | 
						|
			usb_stor_dbg(us, "cannot read status\n");
 | 
						|
		else if (status != 0xc0)
 | 
						|
			usb_stor_dbg(us, "status after write: 0x%x\n", status);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
#if 0
 | 
						|
	{
 | 
						|
		int result2 = sddr09_test_unit_ready(us);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
sddr09_write_data(struct us_data *us,
 | 
						|
		  unsigned long address,
 | 
						|
		  unsigned int sectors) {
 | 
						|
 | 
						|
	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 | 
						|
	unsigned int lba, maxlba, page, pages;
 | 
						|
	unsigned int pagelen, blocklen;
 | 
						|
	unsigned char *blockbuffer;
 | 
						|
	unsigned char *buffer;
 | 
						|
	unsigned int len, offset;
 | 
						|
	struct scatterlist *sg;
 | 
						|
	int result;
 | 
						|
 | 
						|
	/* Figure out the initial LBA and page */
 | 
						|
	lba = address >> info->blockshift;
 | 
						|
	page = (address & info->blockmask);
 | 
						|
	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 | 
						|
	if (lba >= maxlba)
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * blockbuffer is used for reading in the old data, overwriting
 | 
						|
	 * with the new data, and performing ECC calculations
 | 
						|
	 */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * TODO: instead of doing kmalloc/kfree for each write,
 | 
						|
	 * add a bufferpointer to the info structure
 | 
						|
	 */
 | 
						|
 | 
						|
	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 | 
						|
	blocklen = (pagelen << info->blockshift);
 | 
						|
	blockbuffer = kmalloc(blocklen, GFP_NOIO);
 | 
						|
	if (!blockbuffer)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since we don't write the user data directly to the device,
 | 
						|
	 * we have to create a bounce buffer and move the data a piece
 | 
						|
	 * at a time between the bounce buffer and the actual transfer buffer.
 | 
						|
	 */
 | 
						|
 | 
						|
	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
 | 
						|
	buffer = kmalloc(len, GFP_NOIO);
 | 
						|
	if (!buffer) {
 | 
						|
		kfree(blockbuffer);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	result = 0;
 | 
						|
	offset = 0;
 | 
						|
	sg = NULL;
 | 
						|
 | 
						|
	while (sectors > 0) {
 | 
						|
 | 
						|
		/* Write as many sectors as possible in this block */
 | 
						|
 | 
						|
		pages = min(sectors, info->blocksize - page);
 | 
						|
		len = (pages << info->pageshift);
 | 
						|
 | 
						|
		/* Not overflowing capacity? */
 | 
						|
		if (lba >= maxlba) {
 | 
						|
			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
 | 
						|
				     lba, maxlba);
 | 
						|
			result = -EIO;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Get the data from the transfer buffer */
 | 
						|
		usb_stor_access_xfer_buf(buffer, len, us->srb,
 | 
						|
				&sg, &offset, FROM_XFER_BUF);
 | 
						|
 | 
						|
		result = sddr09_write_lba(us, lba, page, pages,
 | 
						|
				buffer, blockbuffer);
 | 
						|
		if (result)
 | 
						|
			break;
 | 
						|
 | 
						|
		page = 0;
 | 
						|
		lba++;
 | 
						|
		sectors -= pages;
 | 
						|
	}
 | 
						|
 | 
						|
	kfree(buffer);
 | 
						|
	kfree(blockbuffer);
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
sddr09_read_control(struct us_data *us,
 | 
						|
		unsigned long address,
 | 
						|
		unsigned int blocks,
 | 
						|
		unsigned char *content,
 | 
						|
		int use_sg) {
 | 
						|
 | 
						|
	usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
 | 
						|
		     address, blocks);
 | 
						|
 | 
						|
	return sddr09_read21(us, address, blocks,
 | 
						|
			     CONTROL_SHIFT, content, use_sg);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Read Device ID Command: 12 bytes.
 | 
						|
 * byte 0: opcode: ED
 | 
						|
 *
 | 
						|
 * Returns 2 bytes: Manufacturer ID and Device ID.
 | 
						|
 * On more recent cards 3 bytes: the third byte is an option code A5
 | 
						|
 * signifying that the secret command to read an 128-bit ID is available.
 | 
						|
 * On still more recent cards 4 bytes: the fourth byte C0 means that
 | 
						|
 * a second read ID cmd is available.
 | 
						|
 */
 | 
						|
static int
 | 
						|
sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
 | 
						|
	unsigned char *command = us->iobuf;
 | 
						|
	unsigned char *content = us->iobuf;
 | 
						|
	int result, i;
 | 
						|
 | 
						|
	memset(command, 0, 12);
 | 
						|
	command[0] = 0xED;
 | 
						|
	command[1] = LUNBITS;
 | 
						|
 | 
						|
	result = sddr09_send_scsi_command(us, command, 12);
 | 
						|
	if (result)
 | 
						|
		return result;
 | 
						|
 | 
						|
	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 | 
						|
			content, 64, NULL);
 | 
						|
 | 
						|
	for (i = 0; i < 4; i++)
 | 
						|
		deviceID[i] = content[i];
 | 
						|
 | 
						|
	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
 | 
						|
	int result;
 | 
						|
	unsigned char status;
 | 
						|
	const char *wp_fmt;
 | 
						|
 | 
						|
	result = sddr09_read_status(us, &status);
 | 
						|
	if (result) {
 | 
						|
		usb_stor_dbg(us, "read_status fails\n");
 | 
						|
		return result;
 | 
						|
	}
 | 
						|
	if ((status & 0x80) == 0) {
 | 
						|
		info->flags |= SDDR09_WP;	/* write protected */
 | 
						|
		wp_fmt = " WP";
 | 
						|
	} else {
 | 
						|
		wp_fmt = "";
 | 
						|
	}
 | 
						|
	usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
 | 
						|
		     status & 0x40 ? " Ready" : "",
 | 
						|
		     status & LUNBITS ? " Suspended" : "",
 | 
						|
		     status & 0x01 ? " Error" : "");
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#if 0
 | 
						|
/*
 | 
						|
 * Reset Command: 12 bytes.
 | 
						|
 * byte 0: opcode: EB
 | 
						|
 */
 | 
						|
static int
 | 
						|
sddr09_reset(struct us_data *us) {
 | 
						|
 | 
						|
	unsigned char *command = us->iobuf;
 | 
						|
 | 
						|
	memset(command, 0, 12);
 | 
						|
	command[0] = 0xEB;
 | 
						|
	command[1] = LUNBITS;
 | 
						|
 | 
						|
	return sddr09_send_scsi_command(us, command, 12);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static struct nand_flash_dev *
 | 
						|
sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
 | 
						|
	struct nand_flash_dev *cardinfo;
 | 
						|
	unsigned char deviceID[4];
 | 
						|
	char blurbtxt[256];
 | 
						|
	int result;
 | 
						|
 | 
						|
	usb_stor_dbg(us, "Reading capacity...\n");
 | 
						|
 | 
						|
	result = sddr09_read_deviceID(us, deviceID);
 | 
						|
 | 
						|
	if (result) {
 | 
						|
		usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
 | 
						|
		printk(KERN_WARNING "sddr09: could not read card info\n");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
 | 
						|
 | 
						|
	/* Byte 0 is the manufacturer */
 | 
						|
	sprintf(blurbtxt + strlen(blurbtxt),
 | 
						|
		": Manuf. %s",
 | 
						|
		nand_flash_manufacturer(deviceID[0]));
 | 
						|
 | 
						|
	/* Byte 1 is the device type */
 | 
						|
	cardinfo = nand_find_id(deviceID[1]);
 | 
						|
	if (cardinfo) {
 | 
						|
		/*
 | 
						|
		 * MB or MiB? It is neither. A 16 MB card has
 | 
						|
		 * 17301504 raw bytes, of which 16384000 are
 | 
						|
		 * usable for user data.
 | 
						|
		 */
 | 
						|
		sprintf(blurbtxt + strlen(blurbtxt),
 | 
						|
			", %d MB", 1<<(cardinfo->chipshift - 20));
 | 
						|
	} else {
 | 
						|
		sprintf(blurbtxt + strlen(blurbtxt),
 | 
						|
			", type unrecognized");
 | 
						|
	}
 | 
						|
 | 
						|
	/* Byte 2 is code to signal availability of 128-bit ID */
 | 
						|
	if (deviceID[2] == 0xa5) {
 | 
						|
		sprintf(blurbtxt + strlen(blurbtxt),
 | 
						|
			", 128-bit ID");
 | 
						|
	}
 | 
						|
 | 
						|
	/* Byte 3 announces the availability of another read ID command */
 | 
						|
	if (deviceID[3] == 0xc0) {
 | 
						|
		sprintf(blurbtxt + strlen(blurbtxt),
 | 
						|
			", extra cmd");
 | 
						|
	}
 | 
						|
 | 
						|
	if (flags & SDDR09_WP)
 | 
						|
		sprintf(blurbtxt + strlen(blurbtxt),
 | 
						|
			", WP");
 | 
						|
 | 
						|
	printk(KERN_WARNING "%s\n", blurbtxt);
 | 
						|
 | 
						|
	return cardinfo;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
sddr09_read_map(struct us_data *us) {
 | 
						|
 | 
						|
	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 | 
						|
	int numblocks, alloc_len, alloc_blocks;
 | 
						|
	int i, j, result;
 | 
						|
	unsigned char *buffer, *buffer_end, *ptr;
 | 
						|
	unsigned int lba, lbact;
 | 
						|
 | 
						|
	if (!info->capacity)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * size of a block is 1 << (blockshift + pageshift) bytes
 | 
						|
	 * divide into the total capacity to get the number of blocks
 | 
						|
	 */
 | 
						|
 | 
						|
	numblocks = info->capacity >> (info->blockshift + info->pageshift);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
 | 
						|
	 * but only use a 64 KB buffer
 | 
						|
	 * buffer size used must be a multiple of (1 << CONTROL_SHIFT)
 | 
						|
	 */
 | 
						|
#define SDDR09_READ_MAP_BUFSZ 65536
 | 
						|
 | 
						|
	alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
 | 
						|
	alloc_len = (alloc_blocks << CONTROL_SHIFT);
 | 
						|
	buffer = kmalloc(alloc_len, GFP_NOIO);
 | 
						|
	if (!buffer) {
 | 
						|
		result = -1;
 | 
						|
		goto done;
 | 
						|
	}
 | 
						|
	buffer_end = buffer + alloc_len;
 | 
						|
 | 
						|
#undef SDDR09_READ_MAP_BUFSZ
 | 
						|
 | 
						|
	kfree(info->lba_to_pba);
 | 
						|
	kfree(info->pba_to_lba);
 | 
						|
	info->lba_to_pba = kmalloc_array(numblocks, sizeof(int), GFP_NOIO);
 | 
						|
	info->pba_to_lba = kmalloc_array(numblocks, sizeof(int), GFP_NOIO);
 | 
						|
 | 
						|
	if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
 | 
						|
		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
 | 
						|
		result = -1;
 | 
						|
		goto done;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < numblocks; i++)
 | 
						|
		info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Define lba-pba translation table
 | 
						|
	 */
 | 
						|
 | 
						|
	ptr = buffer_end;
 | 
						|
	for (i = 0; i < numblocks; i++) {
 | 
						|
		ptr += (1 << CONTROL_SHIFT);
 | 
						|
		if (ptr >= buffer_end) {
 | 
						|
			unsigned long address;
 | 
						|
 | 
						|
			address = i << (info->pageshift + info->blockshift);
 | 
						|
			result = sddr09_read_control(
 | 
						|
				us, address>>1,
 | 
						|
				min(alloc_blocks, numblocks - i),
 | 
						|
				buffer, 0);
 | 
						|
			if (result) {
 | 
						|
				result = -1;
 | 
						|
				goto done;
 | 
						|
			}
 | 
						|
			ptr = buffer;
 | 
						|
		}
 | 
						|
 | 
						|
		if (i == 0 || i == 1) {
 | 
						|
			info->pba_to_lba[i] = UNUSABLE;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* special PBAs have control field 0^16 */
 | 
						|
		for (j = 0; j < 16; j++)
 | 
						|
			if (ptr[j] != 0)
 | 
						|
				goto nonz;
 | 
						|
		info->pba_to_lba[i] = UNUSABLE;
 | 
						|
		printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
 | 
						|
		       i);
 | 
						|
		continue;
 | 
						|
 | 
						|
	nonz:
 | 
						|
		/* unwritten PBAs have control field FF^16 */
 | 
						|
		for (j = 0; j < 16; j++)
 | 
						|
			if (ptr[j] != 0xff)
 | 
						|
				goto nonff;
 | 
						|
		continue;
 | 
						|
 | 
						|
	nonff:
 | 
						|
		/* normal PBAs start with six FFs */
 | 
						|
		if (j < 6) {
 | 
						|
			printk(KERN_WARNING
 | 
						|
			       "sddr09: PBA %d has no logical mapping: "
 | 
						|
			       "reserved area = %02X%02X%02X%02X "
 | 
						|
			       "data status %02X block status %02X\n",
 | 
						|
			       i, ptr[0], ptr[1], ptr[2], ptr[3],
 | 
						|
			       ptr[4], ptr[5]);
 | 
						|
			info->pba_to_lba[i] = UNUSABLE;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if ((ptr[6] >> 4) != 0x01) {
 | 
						|
			printk(KERN_WARNING
 | 
						|
			       "sddr09: PBA %d has invalid address field "
 | 
						|
			       "%02X%02X/%02X%02X\n",
 | 
						|
			       i, ptr[6], ptr[7], ptr[11], ptr[12]);
 | 
						|
			info->pba_to_lba[i] = UNUSABLE;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* check even parity */
 | 
						|
		if (parity[ptr[6] ^ ptr[7]]) {
 | 
						|
			printk(KERN_WARNING
 | 
						|
			       "sddr09: Bad parity in LBA for block %d"
 | 
						|
			       " (%02X %02X)\n", i, ptr[6], ptr[7]);
 | 
						|
			info->pba_to_lba[i] = UNUSABLE;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		lba = short_pack(ptr[7], ptr[6]);
 | 
						|
		lba = (lba & 0x07FF) >> 1;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Every 1024 physical blocks ("zone"), the LBA numbers
 | 
						|
		 * go back to zero, but are within a higher block of LBA's.
 | 
						|
		 * Also, there is a maximum of 1000 LBA's per zone.
 | 
						|
		 * In other words, in PBA 1024-2047 you will find LBA 0-999
 | 
						|
		 * which are really LBA 1000-1999. This allows for 24 bad
 | 
						|
		 * or special physical blocks per zone.
 | 
						|
		 */
 | 
						|
 | 
						|
		if (lba >= 1000) {
 | 
						|
			printk(KERN_WARNING
 | 
						|
			       "sddr09: Bad low LBA %d for block %d\n",
 | 
						|
			       lba, i);
 | 
						|
			goto possibly_erase;
 | 
						|
		}
 | 
						|
 | 
						|
		lba += 1000*(i/0x400);
 | 
						|
 | 
						|
		if (info->lba_to_pba[lba] != UNDEF) {
 | 
						|
			printk(KERN_WARNING
 | 
						|
			       "sddr09: LBA %d seen for PBA %d and %d\n",
 | 
						|
			       lba, info->lba_to_pba[lba], i);
 | 
						|
			goto possibly_erase;
 | 
						|
		}
 | 
						|
 | 
						|
		info->pba_to_lba[i] = lba;
 | 
						|
		info->lba_to_pba[lba] = i;
 | 
						|
		continue;
 | 
						|
 | 
						|
	possibly_erase:
 | 
						|
		if (erase_bad_lba_entries) {
 | 
						|
			unsigned long address;
 | 
						|
 | 
						|
			address = (i << (info->pageshift + info->blockshift));
 | 
						|
			sddr09_erase(us, address>>1);
 | 
						|
			info->pba_to_lba[i] = UNDEF;
 | 
						|
		} else
 | 
						|
			info->pba_to_lba[i] = UNUSABLE;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Approximate capacity. This is not entirely correct yet,
 | 
						|
	 * since a zone with less than 1000 usable pages leads to
 | 
						|
	 * missing LBAs. Especially if it is the last zone, some
 | 
						|
	 * LBAs can be past capacity.
 | 
						|
	 */
 | 
						|
	lbact = 0;
 | 
						|
	for (i = 0; i < numblocks; i += 1024) {
 | 
						|
		int ct = 0;
 | 
						|
 | 
						|
		for (j = 0; j < 1024 && i+j < numblocks; j++) {
 | 
						|
			if (info->pba_to_lba[i+j] != UNUSABLE) {
 | 
						|
				if (ct >= 1000)
 | 
						|
					info->pba_to_lba[i+j] = SPARE;
 | 
						|
				else
 | 
						|
					ct++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		lbact += ct;
 | 
						|
	}
 | 
						|
	info->lbact = lbact;
 | 
						|
	usb_stor_dbg(us, "Found %d LBA's\n", lbact);
 | 
						|
	result = 0;
 | 
						|
 | 
						|
 done:
 | 
						|
	if (result != 0) {
 | 
						|
		kfree(info->lba_to_pba);
 | 
						|
		kfree(info->pba_to_lba);
 | 
						|
		info->lba_to_pba = NULL;
 | 
						|
		info->pba_to_lba = NULL;
 | 
						|
	}
 | 
						|
	kfree(buffer);
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
sddr09_card_info_destructor(void *extra) {
 | 
						|
	struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
 | 
						|
 | 
						|
	if (!info)
 | 
						|
		return;
 | 
						|
 | 
						|
	kfree(info->lba_to_pba);
 | 
						|
	kfree(info->pba_to_lba);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
sddr09_common_init(struct us_data *us) {
 | 
						|
	int result;
 | 
						|
 | 
						|
	/* set the configuration -- STALL is an acceptable response here */
 | 
						|
	if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
 | 
						|
		usb_stor_dbg(us, "active config #%d != 1 ??\n",
 | 
						|
			     us->pusb_dev->actconfig->desc.bConfigurationValue);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	result = usb_reset_configuration(us->pusb_dev);
 | 
						|
	usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
 | 
						|
	if (result == -EPIPE) {
 | 
						|
		usb_stor_dbg(us, "-- stall on control interface\n");
 | 
						|
	} else if (result != 0) {
 | 
						|
		/* it's not a stall, but another error -- time to bail */
 | 
						|
		usb_stor_dbg(us, "-- Unknown error.  Rejecting device\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
 | 
						|
	if (!us->extra)
 | 
						|
		return -ENOMEM;
 | 
						|
	us->extra_destructor = sddr09_card_info_destructor;
 | 
						|
 | 
						|
	nand_init_ecc();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * This is needed at a very early stage. If this is not listed in the
 | 
						|
 * unusual devices list but called from here then LUN 0 of the combo reader
 | 
						|
 * is not recognized. But I do not know what precisely these calls do.
 | 
						|
 */
 | 
						|
static int
 | 
						|
usb_stor_sddr09_dpcm_init(struct us_data *us) {
 | 
						|
	int result;
 | 
						|
	unsigned char *data = us->iobuf;
 | 
						|
 | 
						|
	result = sddr09_common_init(us);
 | 
						|
	if (result)
 | 
						|
		return result;
 | 
						|
 | 
						|
	result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
 | 
						|
	if (result) {
 | 
						|
		usb_stor_dbg(us, "send_command fails\n");
 | 
						|
		return result;
 | 
						|
	}
 | 
						|
 | 
						|
	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
 | 
						|
	// get 07 02
 | 
						|
 | 
						|
	result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
 | 
						|
	if (result) {
 | 
						|
		usb_stor_dbg(us, "2nd send_command fails\n");
 | 
						|
		return result;
 | 
						|
	}
 | 
						|
 | 
						|
	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
 | 
						|
	// get 07 00
 | 
						|
 | 
						|
	result = sddr09_request_sense(us, data, 18);
 | 
						|
	if (result == 0 && data[2] != 0) {
 | 
						|
		int j;
 | 
						|
		for (j=0; j<18; j++)
 | 
						|
			printk(" %02X", data[j]);
 | 
						|
		printk("\n");
 | 
						|
		// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
 | 
						|
		// 70: current command
 | 
						|
		// sense key 0, sense code 0, extd sense code 0
 | 
						|
		// additional transfer length * = sizeof(data) - 7
 | 
						|
		// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
 | 
						|
		// sense key 06, sense code 28: unit attention,
 | 
						|
		// not ready to ready transition
 | 
						|
	}
 | 
						|
 | 
						|
	// test unit ready
 | 
						|
 | 
						|
	return 0;		/* not result */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Transport for the Microtech DPCM-USB
 | 
						|
 */
 | 
						|
static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
 | 
						|
 | 
						|
	switch (srb->device->lun) {
 | 
						|
	case 0:
 | 
						|
 | 
						|
		/*
 | 
						|
		 * LUN 0 corresponds to the CompactFlash card reader.
 | 
						|
		 */
 | 
						|
		ret = usb_stor_CB_transport(srb, us);
 | 
						|
		break;
 | 
						|
 | 
						|
	case 1:
 | 
						|
 | 
						|
		/*
 | 
						|
		 * LUN 1 corresponds to the SmartMedia card reader.
 | 
						|
		 */
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Set the LUN to 0 (just in case).
 | 
						|
		 */
 | 
						|
		srb->device->lun = 0;
 | 
						|
		ret = sddr09_transport(srb, us);
 | 
						|
		srb->device->lun = 1;
 | 
						|
		break;
 | 
						|
 | 
						|
	default:
 | 
						|
	    usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
 | 
						|
		ret = USB_STOR_TRANSPORT_ERROR;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Transport for the Sandisk SDDR-09
 | 
						|
 */
 | 
						|
static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
 | 
						|
{
 | 
						|
	static unsigned char sensekey = 0, sensecode = 0;
 | 
						|
	static unsigned char havefakesense = 0;
 | 
						|
	int result, i;
 | 
						|
	unsigned char *ptr = us->iobuf;
 | 
						|
	unsigned long capacity;
 | 
						|
	unsigned int page, pages;
 | 
						|
 | 
						|
	struct sddr09_card_info *info;
 | 
						|
 | 
						|
	static unsigned char inquiry_response[8] = {
 | 
						|
		0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
 | 
						|
	};
 | 
						|
 | 
						|
	/* note: no block descriptor support */
 | 
						|
	static unsigned char mode_page_01[19] = {
 | 
						|
		0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
 | 
						|
		0x01, 0x0A,
 | 
						|
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
 | 
						|
	};
 | 
						|
 | 
						|
	info = (struct sddr09_card_info *)us->extra;
 | 
						|
 | 
						|
	if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
 | 
						|
		/* for a faked command, we have to follow with a faked sense */
 | 
						|
		memset(ptr, 0, 18);
 | 
						|
		ptr[0] = 0x70;
 | 
						|
		ptr[2] = sensekey;
 | 
						|
		ptr[7] = 11;
 | 
						|
		ptr[12] = sensecode;
 | 
						|
		usb_stor_set_xfer_buf(ptr, 18, srb);
 | 
						|
		sensekey = sensecode = havefakesense = 0;
 | 
						|
		return USB_STOR_TRANSPORT_GOOD;
 | 
						|
	}
 | 
						|
 | 
						|
	havefakesense = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Dummy up a response for INQUIRY since SDDR09 doesn't
 | 
						|
	 * respond to INQUIRY commands
 | 
						|
	 */
 | 
						|
 | 
						|
	if (srb->cmnd[0] == INQUIRY) {
 | 
						|
		memcpy(ptr, inquiry_response, 8);
 | 
						|
		fill_inquiry_response(us, ptr, 36);
 | 
						|
		return USB_STOR_TRANSPORT_GOOD;
 | 
						|
	}
 | 
						|
 | 
						|
	if (srb->cmnd[0] == READ_CAPACITY) {
 | 
						|
		struct nand_flash_dev *cardinfo;
 | 
						|
 | 
						|
		sddr09_get_wp(us, info);	/* read WP bit */
 | 
						|
 | 
						|
		cardinfo = sddr09_get_cardinfo(us, info->flags);
 | 
						|
		if (!cardinfo) {
 | 
						|
			/* probably no media */
 | 
						|
		init_error:
 | 
						|
			sensekey = 0x02;	/* not ready */
 | 
						|
			sensecode = 0x3a;	/* medium not present */
 | 
						|
			return USB_STOR_TRANSPORT_FAILED;
 | 
						|
		}
 | 
						|
 | 
						|
		info->capacity = (1 << cardinfo->chipshift);
 | 
						|
		info->pageshift = cardinfo->pageshift;
 | 
						|
		info->pagesize = (1 << info->pageshift);
 | 
						|
		info->blockshift = cardinfo->blockshift;
 | 
						|
		info->blocksize = (1 << info->blockshift);
 | 
						|
		info->blockmask = info->blocksize - 1;
 | 
						|
 | 
						|
		// map initialization, must follow get_cardinfo()
 | 
						|
		if (sddr09_read_map(us)) {
 | 
						|
			/* probably out of memory */
 | 
						|
			goto init_error;
 | 
						|
		}
 | 
						|
 | 
						|
		// Report capacity
 | 
						|
 | 
						|
		capacity = (info->lbact << info->blockshift) - 1;
 | 
						|
 | 
						|
		((__be32 *) ptr)[0] = cpu_to_be32(capacity);
 | 
						|
 | 
						|
		// Report page size
 | 
						|
 | 
						|
		((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
 | 
						|
		usb_stor_set_xfer_buf(ptr, 8, srb);
 | 
						|
 | 
						|
		return USB_STOR_TRANSPORT_GOOD;
 | 
						|
	}
 | 
						|
 | 
						|
	if (srb->cmnd[0] == MODE_SENSE_10) {
 | 
						|
		int modepage = (srb->cmnd[2] & 0x3F);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * They ask for the Read/Write error recovery page,
 | 
						|
		 * or for all pages.
 | 
						|
		 */
 | 
						|
		/* %% We should check DBD %% */
 | 
						|
		if (modepage == 0x01 || modepage == 0x3F) {
 | 
						|
			usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
 | 
						|
				     modepage);
 | 
						|
 | 
						|
			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
 | 
						|
			((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
 | 
						|
			ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
 | 
						|
			usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
 | 
						|
			return USB_STOR_TRANSPORT_GOOD;
 | 
						|
		}
 | 
						|
 | 
						|
		sensekey = 0x05;	/* illegal request */
 | 
						|
		sensecode = 0x24;	/* invalid field in CDB */
 | 
						|
		return USB_STOR_TRANSPORT_FAILED;
 | 
						|
	}
 | 
						|
 | 
						|
	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
 | 
						|
		return USB_STOR_TRANSPORT_GOOD;
 | 
						|
 | 
						|
	havefakesense = 0;
 | 
						|
 | 
						|
	if (srb->cmnd[0] == READ_10) {
 | 
						|
 | 
						|
		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
 | 
						|
		page <<= 16;
 | 
						|
		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
 | 
						|
		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
 | 
						|
 | 
						|
		usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
 | 
						|
			     page, pages);
 | 
						|
 | 
						|
		result = sddr09_read_data(us, page, pages);
 | 
						|
		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
 | 
						|
				USB_STOR_TRANSPORT_ERROR);
 | 
						|
	}
 | 
						|
 | 
						|
	if (srb->cmnd[0] == WRITE_10) {
 | 
						|
 | 
						|
		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
 | 
						|
		page <<= 16;
 | 
						|
		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
 | 
						|
		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
 | 
						|
 | 
						|
		usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
 | 
						|
			     page, pages);
 | 
						|
 | 
						|
		result = sddr09_write_data(us, page, pages);
 | 
						|
		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
 | 
						|
				USB_STOR_TRANSPORT_ERROR);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * catch-all for all other commands, except
 | 
						|
	 * pass TEST_UNIT_READY and REQUEST_SENSE through
 | 
						|
	 */
 | 
						|
	if (srb->cmnd[0] != TEST_UNIT_READY &&
 | 
						|
	    srb->cmnd[0] != REQUEST_SENSE) {
 | 
						|
		sensekey = 0x05;	/* illegal request */
 | 
						|
		sensecode = 0x20;	/* invalid command */
 | 
						|
		havefakesense = 1;
 | 
						|
		return USB_STOR_TRANSPORT_FAILED;
 | 
						|
	}
 | 
						|
 | 
						|
	for (; srb->cmd_len<12; srb->cmd_len++)
 | 
						|
		srb->cmnd[srb->cmd_len] = 0;
 | 
						|
 | 
						|
	srb->cmnd[1] = LUNBITS;
 | 
						|
 | 
						|
	ptr[0] = 0;
 | 
						|
	for (i=0; i<12; i++)
 | 
						|
		sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
 | 
						|
 | 
						|
	usb_stor_dbg(us, "Send control for command %s\n", ptr);
 | 
						|
 | 
						|
	result = sddr09_send_scsi_command(us, srb->cmnd, 12);
 | 
						|
	if (result) {
 | 
						|
		usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
 | 
						|
			     result);
 | 
						|
		return USB_STOR_TRANSPORT_ERROR;
 | 
						|
	}
 | 
						|
 | 
						|
	if (scsi_bufflen(srb) == 0)
 | 
						|
		return USB_STOR_TRANSPORT_GOOD;
 | 
						|
 | 
						|
	if (srb->sc_data_direction == DMA_TO_DEVICE ||
 | 
						|
	    srb->sc_data_direction == DMA_FROM_DEVICE) {
 | 
						|
		unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
 | 
						|
				? us->send_bulk_pipe : us->recv_bulk_pipe;
 | 
						|
 | 
						|
		usb_stor_dbg(us, "%s %d bytes\n",
 | 
						|
			     (srb->sc_data_direction == DMA_TO_DEVICE) ?
 | 
						|
			     "sending" : "receiving",
 | 
						|
			     scsi_bufflen(srb));
 | 
						|
 | 
						|
		result = usb_stor_bulk_srb(us, pipe, srb);
 | 
						|
 | 
						|
		return (result == USB_STOR_XFER_GOOD ?
 | 
						|
			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
 | 
						|
	} 
 | 
						|
 | 
						|
	return USB_STOR_TRANSPORT_GOOD;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialization routine for the sddr09 subdriver
 | 
						|
 */
 | 
						|
static int
 | 
						|
usb_stor_sddr09_init(struct us_data *us) {
 | 
						|
	return sddr09_common_init(us);
 | 
						|
}
 | 
						|
 | 
						|
static struct scsi_host_template sddr09_host_template;
 | 
						|
 | 
						|
static int sddr09_probe(struct usb_interface *intf,
 | 
						|
			 const struct usb_device_id *id)
 | 
						|
{
 | 
						|
	struct us_data *us;
 | 
						|
	int result;
 | 
						|
 | 
						|
	result = usb_stor_probe1(&us, intf, id,
 | 
						|
			(id - sddr09_usb_ids) + sddr09_unusual_dev_list,
 | 
						|
			&sddr09_host_template);
 | 
						|
	if (result)
 | 
						|
		return result;
 | 
						|
 | 
						|
	if (us->protocol == USB_PR_DPCM_USB) {
 | 
						|
		us->transport_name = "Control/Bulk-EUSB/SDDR09";
 | 
						|
		us->transport = dpcm_transport;
 | 
						|
		us->transport_reset = usb_stor_CB_reset;
 | 
						|
		us->max_lun = 1;
 | 
						|
	} else {
 | 
						|
		us->transport_name = "EUSB/SDDR09";
 | 
						|
		us->transport = sddr09_transport;
 | 
						|
		us->transport_reset = usb_stor_CB_reset;
 | 
						|
		us->max_lun = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	result = usb_stor_probe2(us);
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
static struct usb_driver sddr09_driver = {
 | 
						|
	.name =		DRV_NAME,
 | 
						|
	.probe =	sddr09_probe,
 | 
						|
	.disconnect =	usb_stor_disconnect,
 | 
						|
	.suspend =	usb_stor_suspend,
 | 
						|
	.resume =	usb_stor_resume,
 | 
						|
	.reset_resume =	usb_stor_reset_resume,
 | 
						|
	.pre_reset =	usb_stor_pre_reset,
 | 
						|
	.post_reset =	usb_stor_post_reset,
 | 
						|
	.id_table =	sddr09_usb_ids,
 | 
						|
	.soft_unbind =	1,
 | 
						|
	.no_dynamic_id = 1,
 | 
						|
};
 | 
						|
 | 
						|
module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);
 |