mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	With pid namespaces this field is now dangerous to use explicitly, so hide it behind the helpers. Also the pid and pgrp fields o task_struct and signal_struct are to be deprecated. Unfortunately this patch cannot be sent right now as this leads to tons of warnings, so start isolating them, and deprecate later. Actually the p->tgid == pid has to be changed to has_group_leader_pid(), but Oleg pointed out that in case of posix cpu timers this is the same, and thread_group_leader() is more preferable. Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Acked-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1039 lines
		
	
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1039 lines
		
	
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * linux/kernel/posix-timers.c
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * 2002-10-15  Posix Clocks & timers
 | 
						|
 *                           by George Anzinger george@mvista.com
 | 
						|
 *
 | 
						|
 *			     Copyright (C) 2002 2003 by MontaVista Software.
 | 
						|
 *
 | 
						|
 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
 | 
						|
 *			     Copyright (C) 2004 Boris Hu
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or (at
 | 
						|
 * your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful, but
 | 
						|
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 | 
						|
 * General Public License for more details.
 | 
						|
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | 
						|
 *
 | 
						|
 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
 | 
						|
 */
 | 
						|
 | 
						|
/* These are all the functions necessary to implement
 | 
						|
 * POSIX clocks & timers
 | 
						|
 */
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/time.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
 | 
						|
#include <asm/uaccess.h>
 | 
						|
#include <asm/semaphore.h>
 | 
						|
#include <linux/list.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/compiler.h>
 | 
						|
#include <linux/idr.h>
 | 
						|
#include <linux/posix-timers.h>
 | 
						|
#include <linux/syscalls.h>
 | 
						|
#include <linux/wait.h>
 | 
						|
#include <linux/workqueue.h>
 | 
						|
#include <linux/module.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * Management arrays for POSIX timers.	 Timers are kept in slab memory
 | 
						|
 * Timer ids are allocated by an external routine that keeps track of the
 | 
						|
 * id and the timer.  The external interface is:
 | 
						|
 *
 | 
						|
 * void *idr_find(struct idr *idp, int id);           to find timer_id <id>
 | 
						|
 * int idr_get_new(struct idr *idp, void *ptr);       to get a new id and
 | 
						|
 *                                                    related it to <ptr>
 | 
						|
 * void idr_remove(struct idr *idp, int id);          to release <id>
 | 
						|
 * void idr_init(struct idr *idp);                    to initialize <idp>
 | 
						|
 *                                                    which we supply.
 | 
						|
 * The idr_get_new *may* call slab for more memory so it must not be
 | 
						|
 * called under a spin lock.  Likewise idr_remore may release memory
 | 
						|
 * (but it may be ok to do this under a lock...).
 | 
						|
 * idr_find is just a memory look up and is quite fast.  A -1 return
 | 
						|
 * indicates that the requested id does not exist.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Lets keep our timers in a slab cache :-)
 | 
						|
 */
 | 
						|
static struct kmem_cache *posix_timers_cache;
 | 
						|
static struct idr posix_timers_id;
 | 
						|
static DEFINE_SPINLOCK(idr_lock);
 | 
						|
 | 
						|
/*
 | 
						|
 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
 | 
						|
 * SIGEV values.  Here we put out an error if this assumption fails.
 | 
						|
 */
 | 
						|
#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
 | 
						|
                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
 | 
						|
#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * The timer ID is turned into a timer address by idr_find().
 | 
						|
 * Verifying a valid ID consists of:
 | 
						|
 *
 | 
						|
 * a) checking that idr_find() returns other than -1.
 | 
						|
 * b) checking that the timer id matches the one in the timer itself.
 | 
						|
 * c) that the timer owner is in the callers thread group.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
 | 
						|
 *	    to implement others.  This structure defines the various
 | 
						|
 *	    clocks and allows the possibility of adding others.	 We
 | 
						|
 *	    provide an interface to add clocks to the table and expect
 | 
						|
 *	    the "arch" code to add at least one clock that is high
 | 
						|
 *	    resolution.	 Here we define the standard CLOCK_REALTIME as a
 | 
						|
 *	    1/HZ resolution clock.
 | 
						|
 *
 | 
						|
 * RESOLUTION: Clock resolution is used to round up timer and interval
 | 
						|
 *	    times, NOT to report clock times, which are reported with as
 | 
						|
 *	    much resolution as the system can muster.  In some cases this
 | 
						|
 *	    resolution may depend on the underlying clock hardware and
 | 
						|
 *	    may not be quantifiable until run time, and only then is the
 | 
						|
 *	    necessary code is written.	The standard says we should say
 | 
						|
 *	    something about this issue in the documentation...
 | 
						|
 *
 | 
						|
 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
 | 
						|
 *	    various clock functions.  For clocks that use the standard
 | 
						|
 *	    system timer code these entries should be NULL.  This will
 | 
						|
 *	    allow dispatch without the overhead of indirect function
 | 
						|
 *	    calls.  CLOCKS that depend on other sources (e.g. WWV or GPS)
 | 
						|
 *	    must supply functions here, even if the function just returns
 | 
						|
 *	    ENOSYS.  The standard POSIX timer management code assumes the
 | 
						|
 *	    following: 1.) The k_itimer struct (sched.h) is used for the
 | 
						|
 *	    timer.  2.) The list, it_lock, it_clock, it_id and it_process
 | 
						|
 *	    fields are not modified by timer code.
 | 
						|
 *
 | 
						|
 *          At this time all functions EXCEPT clock_nanosleep can be
 | 
						|
 *          redirected by the CLOCKS structure.  Clock_nanosleep is in
 | 
						|
 *          there, but the code ignores it.
 | 
						|
 *
 | 
						|
 * Permissions: It is assumed that the clock_settime() function defined
 | 
						|
 *	    for each clock will take care of permission checks.	 Some
 | 
						|
 *	    clocks may be set able by any user (i.e. local process
 | 
						|
 *	    clocks) others not.	 Currently the only set able clock we
 | 
						|
 *	    have is CLOCK_REALTIME and its high res counter part, both of
 | 
						|
 *	    which we beg off on and pass to do_sys_settimeofday().
 | 
						|
 */
 | 
						|
 | 
						|
static struct k_clock posix_clocks[MAX_CLOCKS];
 | 
						|
 | 
						|
/*
 | 
						|
 * These ones are defined below.
 | 
						|
 */
 | 
						|
static int common_nsleep(const clockid_t, int flags, struct timespec *t,
 | 
						|
			 struct timespec __user *rmtp);
 | 
						|
static void common_timer_get(struct k_itimer *, struct itimerspec *);
 | 
						|
static int common_timer_set(struct k_itimer *, int,
 | 
						|
			    struct itimerspec *, struct itimerspec *);
 | 
						|
static int common_timer_del(struct k_itimer *timer);
 | 
						|
 | 
						|
static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
 | 
						|
 | 
						|
static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
 | 
						|
 | 
						|
static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
 | 
						|
{
 | 
						|
	spin_unlock_irqrestore(&timr->it_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Call the k_clock hook function if non-null, or the default function.
 | 
						|
 */
 | 
						|
#define CLOCK_DISPATCH(clock, call, arglist) \
 | 
						|
 	((clock) < 0 ? posix_cpu_##call arglist : \
 | 
						|
 	 (posix_clocks[clock].call != NULL \
 | 
						|
 	  ? (*posix_clocks[clock].call) arglist : common_##call arglist))
 | 
						|
 | 
						|
/*
 | 
						|
 * Default clock hook functions when the struct k_clock passed
 | 
						|
 * to register_posix_clock leaves a function pointer null.
 | 
						|
 *
 | 
						|
 * The function common_CALL is the default implementation for
 | 
						|
 * the function pointer CALL in struct k_clock.
 | 
						|
 */
 | 
						|
 | 
						|
static inline int common_clock_getres(const clockid_t which_clock,
 | 
						|
				      struct timespec *tp)
 | 
						|
{
 | 
						|
	tp->tv_sec = 0;
 | 
						|
	tp->tv_nsec = posix_clocks[which_clock].res;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get real time for posix timers
 | 
						|
 */
 | 
						|
static int common_clock_get(clockid_t which_clock, struct timespec *tp)
 | 
						|
{
 | 
						|
	ktime_get_real_ts(tp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int common_clock_set(const clockid_t which_clock,
 | 
						|
				   struct timespec *tp)
 | 
						|
{
 | 
						|
	return do_sys_settimeofday(tp, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static int common_timer_create(struct k_itimer *new_timer)
 | 
						|
{
 | 
						|
	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return nonzero if we know a priori this clockid_t value is bogus.
 | 
						|
 */
 | 
						|
static inline int invalid_clockid(const clockid_t which_clock)
 | 
						|
{
 | 
						|
	if (which_clock < 0)	/* CPU clock, posix_cpu_* will check it */
 | 
						|
		return 0;
 | 
						|
	if ((unsigned) which_clock >= MAX_CLOCKS)
 | 
						|
		return 1;
 | 
						|
	if (posix_clocks[which_clock].clock_getres != NULL)
 | 
						|
		return 0;
 | 
						|
	if (posix_clocks[which_clock].res != 0)
 | 
						|
		return 0;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get monotonic time for posix timers
 | 
						|
 */
 | 
						|
static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
 | 
						|
{
 | 
						|
	ktime_get_ts(tp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize everything, well, just everything in Posix clocks/timers ;)
 | 
						|
 */
 | 
						|
static __init int init_posix_timers(void)
 | 
						|
{
 | 
						|
	struct k_clock clock_realtime = {
 | 
						|
		.clock_getres = hrtimer_get_res,
 | 
						|
	};
 | 
						|
	struct k_clock clock_monotonic = {
 | 
						|
		.clock_getres = hrtimer_get_res,
 | 
						|
		.clock_get = posix_ktime_get_ts,
 | 
						|
		.clock_set = do_posix_clock_nosettime,
 | 
						|
	};
 | 
						|
 | 
						|
	register_posix_clock(CLOCK_REALTIME, &clock_realtime);
 | 
						|
	register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
 | 
						|
 | 
						|
	posix_timers_cache = kmem_cache_create("posix_timers_cache",
 | 
						|
					sizeof (struct k_itimer), 0, SLAB_PANIC,
 | 
						|
					NULL);
 | 
						|
	idr_init(&posix_timers_id);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
__initcall(init_posix_timers);
 | 
						|
 | 
						|
static void schedule_next_timer(struct k_itimer *timr)
 | 
						|
{
 | 
						|
	struct hrtimer *timer = &timr->it.real.timer;
 | 
						|
 | 
						|
	if (timr->it.real.interval.tv64 == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
 | 
						|
					    timr->it.real.interval);
 | 
						|
 | 
						|
	timr->it_overrun_last = timr->it_overrun;
 | 
						|
	timr->it_overrun = -1;
 | 
						|
	++timr->it_requeue_pending;
 | 
						|
	hrtimer_restart(timer);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function is exported for use by the signal deliver code.  It is
 | 
						|
 * called just prior to the info block being released and passes that
 | 
						|
 * block to us.  It's function is to update the overrun entry AND to
 | 
						|
 * restart the timer.  It should only be called if the timer is to be
 | 
						|
 * restarted (i.e. we have flagged this in the sys_private entry of the
 | 
						|
 * info block).
 | 
						|
 *
 | 
						|
 * To protect aginst the timer going away while the interrupt is queued,
 | 
						|
 * we require that the it_requeue_pending flag be set.
 | 
						|
 */
 | 
						|
void do_schedule_next_timer(struct siginfo *info)
 | 
						|
{
 | 
						|
	struct k_itimer *timr;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	timr = lock_timer(info->si_tid, &flags);
 | 
						|
 | 
						|
	if (timr && timr->it_requeue_pending == info->si_sys_private) {
 | 
						|
		if (timr->it_clock < 0)
 | 
						|
			posix_cpu_timer_schedule(timr);
 | 
						|
		else
 | 
						|
			schedule_next_timer(timr);
 | 
						|
 | 
						|
		info->si_overrun = timr->it_overrun_last;
 | 
						|
	}
 | 
						|
 | 
						|
	if (timr)
 | 
						|
		unlock_timer(timr, flags);
 | 
						|
}
 | 
						|
 | 
						|
int posix_timer_event(struct k_itimer *timr,int si_private)
 | 
						|
{
 | 
						|
	memset(&timr->sigq->info, 0, sizeof(siginfo_t));
 | 
						|
	timr->sigq->info.si_sys_private = si_private;
 | 
						|
	/* Send signal to the process that owns this timer.*/
 | 
						|
 | 
						|
	timr->sigq->info.si_signo = timr->it_sigev_signo;
 | 
						|
	timr->sigq->info.si_errno = 0;
 | 
						|
	timr->sigq->info.si_code = SI_TIMER;
 | 
						|
	timr->sigq->info.si_tid = timr->it_id;
 | 
						|
	timr->sigq->info.si_value = timr->it_sigev_value;
 | 
						|
 | 
						|
	if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
 | 
						|
		struct task_struct *leader;
 | 
						|
		int ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
 | 
						|
					timr->it_process);
 | 
						|
 | 
						|
		if (likely(ret >= 0))
 | 
						|
			return ret;
 | 
						|
 | 
						|
		timr->it_sigev_notify = SIGEV_SIGNAL;
 | 
						|
		leader = timr->it_process->group_leader;
 | 
						|
		put_task_struct(timr->it_process);
 | 
						|
		timr->it_process = leader;
 | 
						|
	}
 | 
						|
 | 
						|
	return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
 | 
						|
				   timr->it_process);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(posix_timer_event);
 | 
						|
 | 
						|
/*
 | 
						|
 * This function gets called when a POSIX.1b interval timer expires.  It
 | 
						|
 * is used as a callback from the kernel internal timer.  The
 | 
						|
 * run_timer_list code ALWAYS calls with interrupts on.
 | 
						|
 | 
						|
 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 | 
						|
 */
 | 
						|
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
 | 
						|
{
 | 
						|
	struct k_itimer *timr;
 | 
						|
	unsigned long flags;
 | 
						|
	int si_private = 0;
 | 
						|
	enum hrtimer_restart ret = HRTIMER_NORESTART;
 | 
						|
 | 
						|
	timr = container_of(timer, struct k_itimer, it.real.timer);
 | 
						|
	spin_lock_irqsave(&timr->it_lock, flags);
 | 
						|
 | 
						|
	if (timr->it.real.interval.tv64 != 0)
 | 
						|
		si_private = ++timr->it_requeue_pending;
 | 
						|
 | 
						|
	if (posix_timer_event(timr, si_private)) {
 | 
						|
		/*
 | 
						|
		 * signal was not sent because of sig_ignor
 | 
						|
		 * we will not get a call back to restart it AND
 | 
						|
		 * it should be restarted.
 | 
						|
		 */
 | 
						|
		if (timr->it.real.interval.tv64 != 0) {
 | 
						|
			ktime_t now = hrtimer_cb_get_time(timer);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * FIXME: What we really want, is to stop this
 | 
						|
			 * timer completely and restart it in case the
 | 
						|
			 * SIG_IGN is removed. This is a non trivial
 | 
						|
			 * change which involves sighand locking
 | 
						|
			 * (sigh !), which we don't want to do late in
 | 
						|
			 * the release cycle.
 | 
						|
			 *
 | 
						|
			 * For now we just let timers with an interval
 | 
						|
			 * less than a jiffie expire every jiffie to
 | 
						|
			 * avoid softirq starvation in case of SIG_IGN
 | 
						|
			 * and a very small interval, which would put
 | 
						|
			 * the timer right back on the softirq pending
 | 
						|
			 * list. By moving now ahead of time we trick
 | 
						|
			 * hrtimer_forward() to expire the timer
 | 
						|
			 * later, while we still maintain the overrun
 | 
						|
			 * accuracy, but have some inconsistency in
 | 
						|
			 * the timer_gettime() case. This is at least
 | 
						|
			 * better than a starved softirq. A more
 | 
						|
			 * complex fix which solves also another related
 | 
						|
			 * inconsistency is already in the pipeline.
 | 
						|
			 */
 | 
						|
#ifdef CONFIG_HIGH_RES_TIMERS
 | 
						|
			{
 | 
						|
				ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
 | 
						|
 | 
						|
				if (timr->it.real.interval.tv64 < kj.tv64)
 | 
						|
					now = ktime_add(now, kj);
 | 
						|
			}
 | 
						|
#endif
 | 
						|
			timr->it_overrun +=
 | 
						|
				hrtimer_forward(timer, now,
 | 
						|
						timr->it.real.interval);
 | 
						|
			ret = HRTIMER_RESTART;
 | 
						|
			++timr->it_requeue_pending;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	unlock_timer(timr, flags);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static struct task_struct * good_sigevent(sigevent_t * event)
 | 
						|
{
 | 
						|
	struct task_struct *rtn = current->group_leader;
 | 
						|
 | 
						|
	if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
 | 
						|
		(!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
 | 
						|
		 !same_thread_group(rtn, current) ||
 | 
						|
		 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
 | 
						|
	    ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return rtn;
 | 
						|
}
 | 
						|
 | 
						|
void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
 | 
						|
{
 | 
						|
	if ((unsigned) clock_id >= MAX_CLOCKS) {
 | 
						|
		printk("POSIX clock register failed for clock_id %d\n",
 | 
						|
		       clock_id);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	posix_clocks[clock_id] = *new_clock;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(register_posix_clock);
 | 
						|
 | 
						|
static struct k_itimer * alloc_posix_timer(void)
 | 
						|
{
 | 
						|
	struct k_itimer *tmr;
 | 
						|
	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
 | 
						|
	if (!tmr)
 | 
						|
		return tmr;
 | 
						|
	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
 | 
						|
		kmem_cache_free(posix_timers_cache, tmr);
 | 
						|
		tmr = NULL;
 | 
						|
	}
 | 
						|
	return tmr;
 | 
						|
}
 | 
						|
 | 
						|
#define IT_ID_SET	1
 | 
						|
#define IT_ID_NOT_SET	0
 | 
						|
static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
 | 
						|
{
 | 
						|
	if (it_id_set) {
 | 
						|
		unsigned long flags;
 | 
						|
		spin_lock_irqsave(&idr_lock, flags);
 | 
						|
		idr_remove(&posix_timers_id, tmr->it_id);
 | 
						|
		spin_unlock_irqrestore(&idr_lock, flags);
 | 
						|
	}
 | 
						|
	sigqueue_free(tmr->sigq);
 | 
						|
	if (unlikely(tmr->it_process) &&
 | 
						|
	    tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
 | 
						|
		put_task_struct(tmr->it_process);
 | 
						|
	kmem_cache_free(posix_timers_cache, tmr);
 | 
						|
}
 | 
						|
 | 
						|
/* Create a POSIX.1b interval timer. */
 | 
						|
 | 
						|
asmlinkage long
 | 
						|
sys_timer_create(const clockid_t which_clock,
 | 
						|
		 struct sigevent __user *timer_event_spec,
 | 
						|
		 timer_t __user * created_timer_id)
 | 
						|
{
 | 
						|
	int error = 0;
 | 
						|
	struct k_itimer *new_timer = NULL;
 | 
						|
	int new_timer_id;
 | 
						|
	struct task_struct *process = NULL;
 | 
						|
	unsigned long flags;
 | 
						|
	sigevent_t event;
 | 
						|
	int it_id_set = IT_ID_NOT_SET;
 | 
						|
 | 
						|
	if (invalid_clockid(which_clock))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	new_timer = alloc_posix_timer();
 | 
						|
	if (unlikely(!new_timer))
 | 
						|
		return -EAGAIN;
 | 
						|
 | 
						|
	spin_lock_init(&new_timer->it_lock);
 | 
						|
 retry:
 | 
						|
	if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
 | 
						|
		error = -EAGAIN;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	spin_lock_irq(&idr_lock);
 | 
						|
	error = idr_get_new(&posix_timers_id, (void *) new_timer,
 | 
						|
			    &new_timer_id);
 | 
						|
	spin_unlock_irq(&idr_lock);
 | 
						|
	if (error == -EAGAIN)
 | 
						|
		goto retry;
 | 
						|
	else if (error) {
 | 
						|
		/*
 | 
						|
		 * Wierd looking, but we return EAGAIN if the IDR is
 | 
						|
		 * full (proper POSIX return value for this)
 | 
						|
		 */
 | 
						|
		error = -EAGAIN;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	it_id_set = IT_ID_SET;
 | 
						|
	new_timer->it_id = (timer_t) new_timer_id;
 | 
						|
	new_timer->it_clock = which_clock;
 | 
						|
	new_timer->it_overrun = -1;
 | 
						|
	error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
 | 
						|
	if (error)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * return the timer_id now.  The next step is hard to
 | 
						|
	 * back out if there is an error.
 | 
						|
	 */
 | 
						|
	if (copy_to_user(created_timer_id,
 | 
						|
			 &new_timer_id, sizeof (new_timer_id))) {
 | 
						|
		error = -EFAULT;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	if (timer_event_spec) {
 | 
						|
		if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
 | 
						|
			error = -EFAULT;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		new_timer->it_sigev_notify = event.sigev_notify;
 | 
						|
		new_timer->it_sigev_signo = event.sigev_signo;
 | 
						|
		new_timer->it_sigev_value = event.sigev_value;
 | 
						|
 | 
						|
		read_lock(&tasklist_lock);
 | 
						|
		if ((process = good_sigevent(&event))) {
 | 
						|
			/*
 | 
						|
			 * We may be setting up this process for another
 | 
						|
			 * thread.  It may be exiting.  To catch this
 | 
						|
			 * case the we check the PF_EXITING flag.  If
 | 
						|
			 * the flag is not set, the siglock will catch
 | 
						|
			 * him before it is too late (in exit_itimers).
 | 
						|
			 *
 | 
						|
			 * The exec case is a bit more invloved but easy
 | 
						|
			 * to code.  If the process is in our thread
 | 
						|
			 * group (and it must be or we would not allow
 | 
						|
			 * it here) and is doing an exec, it will cause
 | 
						|
			 * us to be killed.  In this case it will wait
 | 
						|
			 * for us to die which means we can finish this
 | 
						|
			 * linkage with our last gasp. I.e. no code :)
 | 
						|
			 */
 | 
						|
			spin_lock_irqsave(&process->sighand->siglock, flags);
 | 
						|
			if (!(process->flags & PF_EXITING)) {
 | 
						|
				new_timer->it_process = process;
 | 
						|
				list_add(&new_timer->list,
 | 
						|
					 &process->signal->posix_timers);
 | 
						|
				if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
 | 
						|
					get_task_struct(process);
 | 
						|
				spin_unlock_irqrestore(&process->sighand->siglock, flags);
 | 
						|
			} else {
 | 
						|
				spin_unlock_irqrestore(&process->sighand->siglock, flags);
 | 
						|
				process = NULL;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		read_unlock(&tasklist_lock);
 | 
						|
		if (!process) {
 | 
						|
			error = -EINVAL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		new_timer->it_sigev_notify = SIGEV_SIGNAL;
 | 
						|
		new_timer->it_sigev_signo = SIGALRM;
 | 
						|
		new_timer->it_sigev_value.sival_int = new_timer->it_id;
 | 
						|
		process = current->group_leader;
 | 
						|
		spin_lock_irqsave(&process->sighand->siglock, flags);
 | 
						|
		new_timer->it_process = process;
 | 
						|
		list_add(&new_timer->list, &process->signal->posix_timers);
 | 
						|
		spin_unlock_irqrestore(&process->sighand->siglock, flags);
 | 
						|
	}
 | 
						|
 | 
						|
 	/*
 | 
						|
	 * In the case of the timer belonging to another task, after
 | 
						|
	 * the task is unlocked, the timer is owned by the other task
 | 
						|
	 * and may cease to exist at any time.  Don't use or modify
 | 
						|
	 * new_timer after the unlock call.
 | 
						|
	 */
 | 
						|
 | 
						|
out:
 | 
						|
	if (error)
 | 
						|
		release_posix_timer(new_timer, it_id_set);
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Locking issues: We need to protect the result of the id look up until
 | 
						|
 * we get the timer locked down so it is not deleted under us.  The
 | 
						|
 * removal is done under the idr spinlock so we use that here to bridge
 | 
						|
 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 | 
						|
 * be release with out holding the timer lock.
 | 
						|
 */
 | 
						|
static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
 | 
						|
{
 | 
						|
	struct k_itimer *timr;
 | 
						|
	/*
 | 
						|
	 * Watch out here.  We do a irqsave on the idr_lock and pass the
 | 
						|
	 * flags part over to the timer lock.  Must not let interrupts in
 | 
						|
	 * while we are moving the lock.
 | 
						|
	 */
 | 
						|
 | 
						|
	spin_lock_irqsave(&idr_lock, *flags);
 | 
						|
	timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
 | 
						|
	if (timr) {
 | 
						|
		spin_lock(&timr->it_lock);
 | 
						|
 | 
						|
		if ((timr->it_id != timer_id) || !(timr->it_process) ||
 | 
						|
				!same_thread_group(timr->it_process, current)) {
 | 
						|
			spin_unlock(&timr->it_lock);
 | 
						|
			spin_unlock_irqrestore(&idr_lock, *flags);
 | 
						|
			timr = NULL;
 | 
						|
		} else
 | 
						|
			spin_unlock(&idr_lock);
 | 
						|
	} else
 | 
						|
		spin_unlock_irqrestore(&idr_lock, *flags);
 | 
						|
 | 
						|
	return timr;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get the time remaining on a POSIX.1b interval timer.  This function
 | 
						|
 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 | 
						|
 * mess with irq.
 | 
						|
 *
 | 
						|
 * We have a couple of messes to clean up here.  First there is the case
 | 
						|
 * of a timer that has a requeue pending.  These timers should appear to
 | 
						|
 * be in the timer list with an expiry as if we were to requeue them
 | 
						|
 * now.
 | 
						|
 *
 | 
						|
 * The second issue is the SIGEV_NONE timer which may be active but is
 | 
						|
 * not really ever put in the timer list (to save system resources).
 | 
						|
 * This timer may be expired, and if so, we will do it here.  Otherwise
 | 
						|
 * it is the same as a requeue pending timer WRT to what we should
 | 
						|
 * report.
 | 
						|
 */
 | 
						|
static void
 | 
						|
common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
 | 
						|
{
 | 
						|
	ktime_t now, remaining, iv;
 | 
						|
	struct hrtimer *timer = &timr->it.real.timer;
 | 
						|
 | 
						|
	memset(cur_setting, 0, sizeof(struct itimerspec));
 | 
						|
 | 
						|
	iv = timr->it.real.interval;
 | 
						|
 | 
						|
	/* interval timer ? */
 | 
						|
	if (iv.tv64)
 | 
						|
		cur_setting->it_interval = ktime_to_timespec(iv);
 | 
						|
	else if (!hrtimer_active(timer) &&
 | 
						|
		 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
 | 
						|
		return;
 | 
						|
 | 
						|
	now = timer->base->get_time();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When a requeue is pending or this is a SIGEV_NONE
 | 
						|
	 * timer move the expiry time forward by intervals, so
 | 
						|
	 * expiry is > now.
 | 
						|
	 */
 | 
						|
	if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
 | 
						|
	    (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
 | 
						|
		timr->it_overrun += hrtimer_forward(timer, now, iv);
 | 
						|
 | 
						|
	remaining = ktime_sub(timer->expires, now);
 | 
						|
	/* Return 0 only, when the timer is expired and not pending */
 | 
						|
	if (remaining.tv64 <= 0) {
 | 
						|
		/*
 | 
						|
		 * A single shot SIGEV_NONE timer must return 0, when
 | 
						|
		 * it is expired !
 | 
						|
		 */
 | 
						|
		if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
 | 
						|
			cur_setting->it_value.tv_nsec = 1;
 | 
						|
	} else
 | 
						|
		cur_setting->it_value = ktime_to_timespec(remaining);
 | 
						|
}
 | 
						|
 | 
						|
/* Get the time remaining on a POSIX.1b interval timer. */
 | 
						|
asmlinkage long
 | 
						|
sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
 | 
						|
{
 | 
						|
	struct k_itimer *timr;
 | 
						|
	struct itimerspec cur_setting;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	timr = lock_timer(timer_id, &flags);
 | 
						|
	if (!timr)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
 | 
						|
 | 
						|
	unlock_timer(timr, flags);
 | 
						|
 | 
						|
	if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get the number of overruns of a POSIX.1b interval timer.  This is to
 | 
						|
 * be the overrun of the timer last delivered.  At the same time we are
 | 
						|
 * accumulating overruns on the next timer.  The overrun is frozen when
 | 
						|
 * the signal is delivered, either at the notify time (if the info block
 | 
						|
 * is not queued) or at the actual delivery time (as we are informed by
 | 
						|
 * the call back to do_schedule_next_timer().  So all we need to do is
 | 
						|
 * to pick up the frozen overrun.
 | 
						|
 */
 | 
						|
asmlinkage long
 | 
						|
sys_timer_getoverrun(timer_t timer_id)
 | 
						|
{
 | 
						|
	struct k_itimer *timr;
 | 
						|
	int overrun;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	timr = lock_timer(timer_id, &flags);
 | 
						|
	if (!timr)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	overrun = timr->it_overrun_last;
 | 
						|
	unlock_timer(timr, flags);
 | 
						|
 | 
						|
	return overrun;
 | 
						|
}
 | 
						|
 | 
						|
/* Set a POSIX.1b interval timer. */
 | 
						|
/* timr->it_lock is taken. */
 | 
						|
static int
 | 
						|
common_timer_set(struct k_itimer *timr, int flags,
 | 
						|
		 struct itimerspec *new_setting, struct itimerspec *old_setting)
 | 
						|
{
 | 
						|
	struct hrtimer *timer = &timr->it.real.timer;
 | 
						|
	enum hrtimer_mode mode;
 | 
						|
 | 
						|
	if (old_setting)
 | 
						|
		common_timer_get(timr, old_setting);
 | 
						|
 | 
						|
	/* disable the timer */
 | 
						|
	timr->it.real.interval.tv64 = 0;
 | 
						|
	/*
 | 
						|
	 * careful here.  If smp we could be in the "fire" routine which will
 | 
						|
	 * be spinning as we hold the lock.  But this is ONLY an SMP issue.
 | 
						|
	 */
 | 
						|
	if (hrtimer_try_to_cancel(timer) < 0)
 | 
						|
		return TIMER_RETRY;
 | 
						|
 | 
						|
	timr->it_requeue_pending = (timr->it_requeue_pending + 2) & 
 | 
						|
		~REQUEUE_PENDING;
 | 
						|
	timr->it_overrun_last = 0;
 | 
						|
 | 
						|
	/* switch off the timer when it_value is zero */
 | 
						|
	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
 | 
						|
	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
 | 
						|
	timr->it.real.timer.function = posix_timer_fn;
 | 
						|
 | 
						|
	timer->expires = timespec_to_ktime(new_setting->it_value);
 | 
						|
 | 
						|
	/* Convert interval */
 | 
						|
	timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
 | 
						|
 | 
						|
	/* SIGEV_NONE timers are not queued ! See common_timer_get */
 | 
						|
	if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
 | 
						|
		/* Setup correct expiry time for relative timers */
 | 
						|
		if (mode == HRTIMER_MODE_REL)
 | 
						|
			timer->expires = ktime_add(timer->expires,
 | 
						|
						   timer->base->get_time());
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	hrtimer_start(timer, timer->expires, mode);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Set a POSIX.1b interval timer */
 | 
						|
asmlinkage long
 | 
						|
sys_timer_settime(timer_t timer_id, int flags,
 | 
						|
		  const struct itimerspec __user *new_setting,
 | 
						|
		  struct itimerspec __user *old_setting)
 | 
						|
{
 | 
						|
	struct k_itimer *timr;
 | 
						|
	struct itimerspec new_spec, old_spec;
 | 
						|
	int error = 0;
 | 
						|
	unsigned long flag;
 | 
						|
	struct itimerspec *rtn = old_setting ? &old_spec : NULL;
 | 
						|
 | 
						|
	if (!new_setting)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	if (!timespec_valid(&new_spec.it_interval) ||
 | 
						|
	    !timespec_valid(&new_spec.it_value))
 | 
						|
		return -EINVAL;
 | 
						|
retry:
 | 
						|
	timr = lock_timer(timer_id, &flag);
 | 
						|
	if (!timr)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	error = CLOCK_DISPATCH(timr->it_clock, timer_set,
 | 
						|
			       (timr, flags, &new_spec, rtn));
 | 
						|
 | 
						|
	unlock_timer(timr, flag);
 | 
						|
	if (error == TIMER_RETRY) {
 | 
						|
		rtn = NULL;	// We already got the old time...
 | 
						|
		goto retry;
 | 
						|
	}
 | 
						|
 | 
						|
	if (old_setting && !error &&
 | 
						|
	    copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
 | 
						|
		error = -EFAULT;
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
static inline int common_timer_del(struct k_itimer *timer)
 | 
						|
{
 | 
						|
	timer->it.real.interval.tv64 = 0;
 | 
						|
 | 
						|
	if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
 | 
						|
		return TIMER_RETRY;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int timer_delete_hook(struct k_itimer *timer)
 | 
						|
{
 | 
						|
	return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
 | 
						|
}
 | 
						|
 | 
						|
/* Delete a POSIX.1b interval timer. */
 | 
						|
asmlinkage long
 | 
						|
sys_timer_delete(timer_t timer_id)
 | 
						|
{
 | 
						|
	struct k_itimer *timer;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
retry_delete:
 | 
						|
	timer = lock_timer(timer_id, &flags);
 | 
						|
	if (!timer)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (timer_delete_hook(timer) == TIMER_RETRY) {
 | 
						|
		unlock_timer(timer, flags);
 | 
						|
		goto retry_delete;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(¤t->sighand->siglock);
 | 
						|
	list_del(&timer->list);
 | 
						|
	spin_unlock(¤t->sighand->siglock);
 | 
						|
	/*
 | 
						|
	 * This keeps any tasks waiting on the spin lock from thinking
 | 
						|
	 * they got something (see the lock code above).
 | 
						|
	 */
 | 
						|
	if (timer->it_process) {
 | 
						|
		if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
 | 
						|
			put_task_struct(timer->it_process);
 | 
						|
		timer->it_process = NULL;
 | 
						|
	}
 | 
						|
	unlock_timer(timer, flags);
 | 
						|
	release_posix_timer(timer, IT_ID_SET);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * return timer owned by the process, used by exit_itimers
 | 
						|
 */
 | 
						|
static void itimer_delete(struct k_itimer *timer)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
retry_delete:
 | 
						|
	spin_lock_irqsave(&timer->it_lock, flags);
 | 
						|
 | 
						|
	if (timer_delete_hook(timer) == TIMER_RETRY) {
 | 
						|
		unlock_timer(timer, flags);
 | 
						|
		goto retry_delete;
 | 
						|
	}
 | 
						|
	list_del(&timer->list);
 | 
						|
	/*
 | 
						|
	 * This keeps any tasks waiting on the spin lock from thinking
 | 
						|
	 * they got something (see the lock code above).
 | 
						|
	 */
 | 
						|
	if (timer->it_process) {
 | 
						|
		if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
 | 
						|
			put_task_struct(timer->it_process);
 | 
						|
		timer->it_process = NULL;
 | 
						|
	}
 | 
						|
	unlock_timer(timer, flags);
 | 
						|
	release_posix_timer(timer, IT_ID_SET);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is called by do_exit or de_thread, only when there are no more
 | 
						|
 * references to the shared signal_struct.
 | 
						|
 */
 | 
						|
void exit_itimers(struct signal_struct *sig)
 | 
						|
{
 | 
						|
	struct k_itimer *tmr;
 | 
						|
 | 
						|
	while (!list_empty(&sig->posix_timers)) {
 | 
						|
		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
 | 
						|
		itimer_delete(tmr);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Not available / possible... functions */
 | 
						|
int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
 | 
						|
{
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
 | 
						|
 | 
						|
int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
 | 
						|
			       struct timespec *t, struct timespec __user *r)
 | 
						|
{
 | 
						|
#ifndef ENOTSUP
 | 
						|
	return -EOPNOTSUPP;	/* aka ENOTSUP in userland for POSIX */
 | 
						|
#else  /*  parisc does define it separately.  */
 | 
						|
	return -ENOTSUP;
 | 
						|
#endif
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
 | 
						|
 | 
						|
asmlinkage long sys_clock_settime(const clockid_t which_clock,
 | 
						|
				  const struct timespec __user *tp)
 | 
						|
{
 | 
						|
	struct timespec new_tp;
 | 
						|
 | 
						|
	if (invalid_clockid(which_clock))
 | 
						|
		return -EINVAL;
 | 
						|
	if (copy_from_user(&new_tp, tp, sizeof (*tp)))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
 | 
						|
}
 | 
						|
 | 
						|
asmlinkage long
 | 
						|
sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
 | 
						|
{
 | 
						|
	struct timespec kernel_tp;
 | 
						|
	int error;
 | 
						|
 | 
						|
	if (invalid_clockid(which_clock))
 | 
						|
		return -EINVAL;
 | 
						|
	error = CLOCK_DISPATCH(which_clock, clock_get,
 | 
						|
			       (which_clock, &kernel_tp));
 | 
						|
	if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
 | 
						|
		error = -EFAULT;
 | 
						|
 | 
						|
	return error;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
asmlinkage long
 | 
						|
sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
 | 
						|
{
 | 
						|
	struct timespec rtn_tp;
 | 
						|
	int error;
 | 
						|
 | 
						|
	if (invalid_clockid(which_clock))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	error = CLOCK_DISPATCH(which_clock, clock_getres,
 | 
						|
			       (which_clock, &rtn_tp));
 | 
						|
 | 
						|
	if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
 | 
						|
		error = -EFAULT;
 | 
						|
	}
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * nanosleep for monotonic and realtime clocks
 | 
						|
 */
 | 
						|
static int common_nsleep(const clockid_t which_clock, int flags,
 | 
						|
			 struct timespec *tsave, struct timespec __user *rmtp)
 | 
						|
{
 | 
						|
	struct timespec rmt;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = hrtimer_nanosleep(tsave, rmtp ? &rmt : NULL,
 | 
						|
				flags & TIMER_ABSTIME ?
 | 
						|
				HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
 | 
						|
				which_clock);
 | 
						|
 | 
						|
	if (ret && rmtp) {
 | 
						|
		if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
 | 
						|
			return -EFAULT;
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
asmlinkage long
 | 
						|
sys_clock_nanosleep(const clockid_t which_clock, int flags,
 | 
						|
		    const struct timespec __user *rqtp,
 | 
						|
		    struct timespec __user *rmtp)
 | 
						|
{
 | 
						|
	struct timespec t;
 | 
						|
 | 
						|
	if (invalid_clockid(which_clock))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	if (!timespec_valid(&t))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	return CLOCK_DISPATCH(which_clock, nsleep,
 | 
						|
			      (which_clock, flags, &t, rmtp));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * nanosleep_restart for monotonic and realtime clocks
 | 
						|
 */
 | 
						|
static int common_nsleep_restart(struct restart_block *restart_block)
 | 
						|
{
 | 
						|
	return hrtimer_nanosleep_restart(restart_block);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This will restart clock_nanosleep. This is required only by
 | 
						|
 * compat_clock_nanosleep_restart for now.
 | 
						|
 */
 | 
						|
long
 | 
						|
clock_nanosleep_restart(struct restart_block *restart_block)
 | 
						|
{
 | 
						|
	clockid_t which_clock = restart_block->arg0;
 | 
						|
 | 
						|
	return CLOCK_DISPATCH(which_clock, nsleep_restart,
 | 
						|
			      (restart_block));
 | 
						|
}
 |