mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 406808ab2f
			
		
	
	
		406808ab2f
		
	
	
	
	
		
			
			Several functions of the tree modification log use integers as booleans, so change them to use booleans instead, making their use more clear. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
		
			
				
	
	
		
			888 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			888 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| 
 | |
| #include "tree-mod-log.h"
 | |
| #include "disk-io.h"
 | |
| 
 | |
| struct tree_mod_root {
 | |
| 	u64 logical;
 | |
| 	u8 level;
 | |
| };
 | |
| 
 | |
| struct tree_mod_elem {
 | |
| 	struct rb_node node;
 | |
| 	u64 logical;
 | |
| 	u64 seq;
 | |
| 	enum btrfs_mod_log_op op;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is used for BTRFS_MOD_LOG_KEY_* and BTRFS_MOD_LOG_MOVE_KEYS
 | |
| 	 * operations.
 | |
| 	 */
 | |
| 	int slot;
 | |
| 
 | |
| 	/* This is used for BTRFS_MOD_LOG_KEY* and BTRFS_MOD_LOG_ROOT_REPLACE. */
 | |
| 	u64 generation;
 | |
| 
 | |
| 	/* Those are used for op == BTRFS_MOD_LOG_KEY_{REPLACE,REMOVE}. */
 | |
| 	struct btrfs_disk_key key;
 | |
| 	u64 blockptr;
 | |
| 
 | |
| 	/* This is used for op == BTRFS_MOD_LOG_MOVE_KEYS. */
 | |
| 	struct {
 | |
| 		int dst_slot;
 | |
| 		int nr_items;
 | |
| 	} move;
 | |
| 
 | |
| 	/* This is used for op == BTRFS_MOD_LOG_ROOT_REPLACE. */
 | |
| 	struct tree_mod_root old_root;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Pull a new tree mod seq number for our operation.
 | |
|  */
 | |
| static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	return atomic64_inc_return(&fs_info->tree_mod_seq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This adds a new blocker to the tree mod log's blocker list if the @elem
 | |
|  * passed does not already have a sequence number set. So when a caller expects
 | |
|  * to record tree modifications, it should ensure to set elem->seq to zero
 | |
|  * before calling btrfs_get_tree_mod_seq.
 | |
|  * Returns a fresh, unused tree log modification sequence number, even if no new
 | |
|  * blocker was added.
 | |
|  */
 | |
| u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 | |
| 			   struct btrfs_seq_list *elem)
 | |
| {
 | |
| 	write_lock(&fs_info->tree_mod_log_lock);
 | |
| 	if (!elem->seq) {
 | |
| 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 | |
| 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 | |
| 	}
 | |
| 	write_unlock(&fs_info->tree_mod_log_lock);
 | |
| 
 | |
| 	return elem->seq;
 | |
| }
 | |
| 
 | |
| void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 | |
| 			    struct btrfs_seq_list *elem)
 | |
| {
 | |
| 	struct rb_root *tm_root;
 | |
| 	struct rb_node *node;
 | |
| 	struct rb_node *next;
 | |
| 	struct tree_mod_elem *tm;
 | |
| 	u64 min_seq = BTRFS_SEQ_LAST;
 | |
| 	u64 seq_putting = elem->seq;
 | |
| 
 | |
| 	if (!seq_putting)
 | |
| 		return;
 | |
| 
 | |
| 	write_lock(&fs_info->tree_mod_log_lock);
 | |
| 	list_del(&elem->list);
 | |
| 	elem->seq = 0;
 | |
| 
 | |
| 	if (!list_empty(&fs_info->tree_mod_seq_list)) {
 | |
| 		struct btrfs_seq_list *first;
 | |
| 
 | |
| 		first = list_first_entry(&fs_info->tree_mod_seq_list,
 | |
| 					 struct btrfs_seq_list, list);
 | |
| 		if (seq_putting > first->seq) {
 | |
| 			/*
 | |
| 			 * Blocker with lower sequence number exists, we cannot
 | |
| 			 * remove anything from the log.
 | |
| 			 */
 | |
| 			write_unlock(&fs_info->tree_mod_log_lock);
 | |
| 			return;
 | |
| 		}
 | |
| 		min_seq = first->seq;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Anything that's lower than the lowest existing (read: blocked)
 | |
| 	 * sequence number can be removed from the tree.
 | |
| 	 */
 | |
| 	tm_root = &fs_info->tree_mod_log;
 | |
| 	for (node = rb_first(tm_root); node; node = next) {
 | |
| 		next = rb_next(node);
 | |
| 		tm = rb_entry(node, struct tree_mod_elem, node);
 | |
| 		if (tm->seq >= min_seq)
 | |
| 			continue;
 | |
| 		rb_erase(node, tm_root);
 | |
| 		kfree(tm);
 | |
| 	}
 | |
| 	write_unlock(&fs_info->tree_mod_log_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Key order of the log:
 | |
|  *       node/leaf start address -> sequence
 | |
|  *
 | |
|  * The 'start address' is the logical address of the *new* root node for root
 | |
|  * replace operations, or the logical address of the affected block for all
 | |
|  * other operations.
 | |
|  */
 | |
| static noinline int tree_mod_log_insert(struct btrfs_fs_info *fs_info,
 | |
| 					struct tree_mod_elem *tm)
 | |
| {
 | |
| 	struct rb_root *tm_root;
 | |
| 	struct rb_node **new;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct tree_mod_elem *cur;
 | |
| 
 | |
| 	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
 | |
| 
 | |
| 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 | |
| 
 | |
| 	tm_root = &fs_info->tree_mod_log;
 | |
| 	new = &tm_root->rb_node;
 | |
| 	while (*new) {
 | |
| 		cur = rb_entry(*new, struct tree_mod_elem, node);
 | |
| 		parent = *new;
 | |
| 		if (cur->logical < tm->logical)
 | |
| 			new = &((*new)->rb_left);
 | |
| 		else if (cur->logical > tm->logical)
 | |
| 			new = &((*new)->rb_right);
 | |
| 		else if (cur->seq < tm->seq)
 | |
| 			new = &((*new)->rb_left);
 | |
| 		else if (cur->seq > tm->seq)
 | |
| 			new = &((*new)->rb_right);
 | |
| 		else
 | |
| 			return -EEXIST;
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(&tm->node, parent, new);
 | |
| 	rb_insert_color(&tm->node, tm_root);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determines if logging can be omitted. Returns true if it can. Otherwise, it
 | |
|  * returns false with the tree_mod_log_lock acquired. The caller must hold
 | |
|  * this until all tree mod log insertions are recorded in the rb tree and then
 | |
|  * write unlock fs_info::tree_mod_log_lock.
 | |
|  */
 | |
| static inline bool tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 | |
| 				    struct extent_buffer *eb)
 | |
| {
 | |
| 	smp_mb();
 | |
| 	if (list_empty(&(fs_info)->tree_mod_seq_list))
 | |
| 		return true;
 | |
| 	if (eb && btrfs_header_level(eb) == 0)
 | |
| 		return true;
 | |
| 
 | |
| 	write_lock(&fs_info->tree_mod_log_lock);
 | |
| 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 | |
| 		write_unlock(&fs_info->tree_mod_log_lock);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 | |
| static inline bool tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 | |
| 				    struct extent_buffer *eb)
 | |
| {
 | |
| 	smp_mb();
 | |
| 	if (list_empty(&(fs_info)->tree_mod_seq_list))
 | |
| 		return false;
 | |
| 	if (eb && btrfs_header_level(eb) == 0)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static struct tree_mod_elem *alloc_tree_mod_elem(struct extent_buffer *eb,
 | |
| 						 int slot,
 | |
| 						 enum btrfs_mod_log_op op,
 | |
| 						 gfp_t flags)
 | |
| {
 | |
| 	struct tree_mod_elem *tm;
 | |
| 
 | |
| 	tm = kzalloc(sizeof(*tm), flags);
 | |
| 	if (!tm)
 | |
| 		return NULL;
 | |
| 
 | |
| 	tm->logical = eb->start;
 | |
| 	if (op != BTRFS_MOD_LOG_KEY_ADD) {
 | |
| 		btrfs_node_key(eb, &tm->key, slot);
 | |
| 		tm->blockptr = btrfs_node_blockptr(eb, slot);
 | |
| 	}
 | |
| 	tm->op = op;
 | |
| 	tm->slot = slot;
 | |
| 	tm->generation = btrfs_node_ptr_generation(eb, slot);
 | |
| 	RB_CLEAR_NODE(&tm->node);
 | |
| 
 | |
| 	return tm;
 | |
| }
 | |
| 
 | |
| int btrfs_tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
 | |
| 				  enum btrfs_mod_log_op op, gfp_t flags)
 | |
| {
 | |
| 	struct tree_mod_elem *tm;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!tree_mod_need_log(eb->fs_info, eb))
 | |
| 		return 0;
 | |
| 
 | |
| 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
 | |
| 	if (!tm)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (tree_mod_dont_log(eb->fs_info, eb)) {
 | |
| 		kfree(tm);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = tree_mod_log_insert(eb->fs_info, tm);
 | |
| 	write_unlock(&eb->fs_info->tree_mod_log_lock);
 | |
| 	if (ret)
 | |
| 		kfree(tm);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_tree_mod_log_insert_move(struct extent_buffer *eb,
 | |
| 				   int dst_slot, int src_slot,
 | |
| 				   int nr_items)
 | |
| {
 | |
| 	struct tree_mod_elem *tm = NULL;
 | |
| 	struct tree_mod_elem **tm_list = NULL;
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 	bool locked = false;
 | |
| 
 | |
| 	if (!tree_mod_need_log(eb->fs_info, eb))
 | |
| 		return 0;
 | |
| 
 | |
| 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
 | |
| 	if (!tm_list)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 | |
| 	if (!tm) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto free_tms;
 | |
| 	}
 | |
| 
 | |
| 	tm->logical = eb->start;
 | |
| 	tm->slot = src_slot;
 | |
| 	tm->move.dst_slot = dst_slot;
 | |
| 	tm->move.nr_items = nr_items;
 | |
| 	tm->op = BTRFS_MOD_LOG_MOVE_KEYS;
 | |
| 
 | |
| 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 | |
| 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 | |
| 				BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
 | |
| 		if (!tm_list[i]) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto free_tms;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (tree_mod_dont_log(eb->fs_info, eb))
 | |
| 		goto free_tms;
 | |
| 	locked = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * When we override something during the move, we log these removals.
 | |
| 	 * This can only happen when we move towards the beginning of the
 | |
| 	 * buffer, i.e. dst_slot < src_slot.
 | |
| 	 */
 | |
| 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 | |
| 		ret = tree_mod_log_insert(eb->fs_info, tm_list[i]);
 | |
| 		if (ret)
 | |
| 			goto free_tms;
 | |
| 	}
 | |
| 
 | |
| 	ret = tree_mod_log_insert(eb->fs_info, tm);
 | |
| 	if (ret)
 | |
| 		goto free_tms;
 | |
| 	write_unlock(&eb->fs_info->tree_mod_log_lock);
 | |
| 	kfree(tm_list);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_tms:
 | |
| 	for (i = 0; i < nr_items; i++) {
 | |
| 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 | |
| 			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
 | |
| 		kfree(tm_list[i]);
 | |
| 	}
 | |
| 	if (locked)
 | |
| 		write_unlock(&eb->fs_info->tree_mod_log_lock);
 | |
| 	kfree(tm_list);
 | |
| 	kfree(tm);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 | |
| 				       struct tree_mod_elem **tm_list,
 | |
| 				       int nritems)
 | |
| {
 | |
| 	int i, j;
 | |
| 	int ret;
 | |
| 
 | |
| 	for (i = nritems - 1; i >= 0; i--) {
 | |
| 		ret = tree_mod_log_insert(fs_info, tm_list[i]);
 | |
| 		if (ret) {
 | |
| 			for (j = nritems - 1; j > i; j--)
 | |
| 				rb_erase(&tm_list[j]->node,
 | |
| 					 &fs_info->tree_mod_log);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_tree_mod_log_insert_root(struct extent_buffer *old_root,
 | |
| 				   struct extent_buffer *new_root,
 | |
| 				   bool log_removal)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = old_root->fs_info;
 | |
| 	struct tree_mod_elem *tm = NULL;
 | |
| 	struct tree_mod_elem **tm_list = NULL;
 | |
| 	int nritems = 0;
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!tree_mod_need_log(fs_info, NULL))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (log_removal && btrfs_header_level(old_root) > 0) {
 | |
| 		nritems = btrfs_header_nritems(old_root);
 | |
| 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 | |
| 				  GFP_NOFS);
 | |
| 		if (!tm_list) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto free_tms;
 | |
| 		}
 | |
| 		for (i = 0; i < nritems; i++) {
 | |
| 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 | |
| 			    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 | |
| 			if (!tm_list[i]) {
 | |
| 				ret = -ENOMEM;
 | |
| 				goto free_tms;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 | |
| 	if (!tm) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto free_tms;
 | |
| 	}
 | |
| 
 | |
| 	tm->logical = new_root->start;
 | |
| 	tm->old_root.logical = old_root->start;
 | |
| 	tm->old_root.level = btrfs_header_level(old_root);
 | |
| 	tm->generation = btrfs_header_generation(old_root);
 | |
| 	tm->op = BTRFS_MOD_LOG_ROOT_REPLACE;
 | |
| 
 | |
| 	if (tree_mod_dont_log(fs_info, NULL))
 | |
| 		goto free_tms;
 | |
| 
 | |
| 	if (tm_list)
 | |
| 		ret = tree_mod_log_free_eb(fs_info, tm_list, nritems);
 | |
| 	if (!ret)
 | |
| 		ret = tree_mod_log_insert(fs_info, tm);
 | |
| 
 | |
| 	write_unlock(&fs_info->tree_mod_log_lock);
 | |
| 	if (ret)
 | |
| 		goto free_tms;
 | |
| 	kfree(tm_list);
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| free_tms:
 | |
| 	if (tm_list) {
 | |
| 		for (i = 0; i < nritems; i++)
 | |
| 			kfree(tm_list[i]);
 | |
| 		kfree(tm_list);
 | |
| 	}
 | |
| 	kfree(tm);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct tree_mod_elem *__tree_mod_log_search(struct btrfs_fs_info *fs_info,
 | |
| 						   u64 start, u64 min_seq,
 | |
| 						   bool smallest)
 | |
| {
 | |
| 	struct rb_root *tm_root;
 | |
| 	struct rb_node *node;
 | |
| 	struct tree_mod_elem *cur = NULL;
 | |
| 	struct tree_mod_elem *found = NULL;
 | |
| 
 | |
| 	read_lock(&fs_info->tree_mod_log_lock);
 | |
| 	tm_root = &fs_info->tree_mod_log;
 | |
| 	node = tm_root->rb_node;
 | |
| 	while (node) {
 | |
| 		cur = rb_entry(node, struct tree_mod_elem, node);
 | |
| 		if (cur->logical < start) {
 | |
| 			node = node->rb_left;
 | |
| 		} else if (cur->logical > start) {
 | |
| 			node = node->rb_right;
 | |
| 		} else if (cur->seq < min_seq) {
 | |
| 			node = node->rb_left;
 | |
| 		} else if (!smallest) {
 | |
| 			/* We want the node with the highest seq */
 | |
| 			if (found)
 | |
| 				BUG_ON(found->seq > cur->seq);
 | |
| 			found = cur;
 | |
| 			node = node->rb_left;
 | |
| 		} else if (cur->seq > min_seq) {
 | |
| 			/* We want the node with the smallest seq */
 | |
| 			if (found)
 | |
| 				BUG_ON(found->seq < cur->seq);
 | |
| 			found = cur;
 | |
| 			node = node->rb_right;
 | |
| 		} else {
 | |
| 			found = cur;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	read_unlock(&fs_info->tree_mod_log_lock);
 | |
| 
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This returns the element from the log with the smallest time sequence
 | |
|  * value that's in the log (the oldest log item). Any element with a time
 | |
|  * sequence lower than min_seq will be ignored.
 | |
|  */
 | |
| static struct tree_mod_elem *tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info,
 | |
| 							u64 start, u64 min_seq)
 | |
| {
 | |
| 	return __tree_mod_log_search(fs_info, start, min_seq, true);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This returns the element from the log with the largest time sequence
 | |
|  * value that's in the log (the most recent log item). Any element with
 | |
|  * a time sequence lower than min_seq will be ignored.
 | |
|  */
 | |
| static struct tree_mod_elem *tree_mod_log_search(struct btrfs_fs_info *fs_info,
 | |
| 						 u64 start, u64 min_seq)
 | |
| {
 | |
| 	return __tree_mod_log_search(fs_info, start, min_seq, false);
 | |
| }
 | |
| 
 | |
| int btrfs_tree_mod_log_eb_copy(struct extent_buffer *dst,
 | |
| 			       struct extent_buffer *src,
 | |
| 			       unsigned long dst_offset,
 | |
| 			       unsigned long src_offset,
 | |
| 			       int nr_items)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = dst->fs_info;
 | |
| 	int ret = 0;
 | |
| 	struct tree_mod_elem **tm_list = NULL;
 | |
| 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
 | |
| 	int i;
 | |
| 	bool locked = false;
 | |
| 
 | |
| 	if (!tree_mod_need_log(fs_info, NULL))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 | |
| 			  GFP_NOFS);
 | |
| 	if (!tm_list)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	tm_list_add = tm_list;
 | |
| 	tm_list_rem = tm_list + nr_items;
 | |
| 	for (i = 0; i < nr_items; i++) {
 | |
| 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 | |
| 		    BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
 | |
| 		if (!tm_list_rem[i]) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto free_tms;
 | |
| 		}
 | |
| 
 | |
| 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 | |
| 						BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
 | |
| 		if (!tm_list_add[i]) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto free_tms;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (tree_mod_dont_log(fs_info, NULL))
 | |
| 		goto free_tms;
 | |
| 	locked = true;
 | |
| 
 | |
| 	for (i = 0; i < nr_items; i++) {
 | |
| 		ret = tree_mod_log_insert(fs_info, tm_list_rem[i]);
 | |
| 		if (ret)
 | |
| 			goto free_tms;
 | |
| 		ret = tree_mod_log_insert(fs_info, tm_list_add[i]);
 | |
| 		if (ret)
 | |
| 			goto free_tms;
 | |
| 	}
 | |
| 
 | |
| 	write_unlock(&fs_info->tree_mod_log_lock);
 | |
| 	kfree(tm_list);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_tms:
 | |
| 	for (i = 0; i < nr_items * 2; i++) {
 | |
| 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 | |
| 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 | |
| 		kfree(tm_list[i]);
 | |
| 	}
 | |
| 	if (locked)
 | |
| 		write_unlock(&fs_info->tree_mod_log_lock);
 | |
| 	kfree(tm_list);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_tree_mod_log_free_eb(struct extent_buffer *eb)
 | |
| {
 | |
| 	struct tree_mod_elem **tm_list = NULL;
 | |
| 	int nritems = 0;
 | |
| 	int i;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (btrfs_header_level(eb) == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!tree_mod_need_log(eb->fs_info, NULL))
 | |
| 		return 0;
 | |
| 
 | |
| 	nritems = btrfs_header_nritems(eb);
 | |
| 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 | |
| 	if (!tm_list)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (i = 0; i < nritems; i++) {
 | |
| 		tm_list[i] = alloc_tree_mod_elem(eb, i,
 | |
| 		    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 | |
| 		if (!tm_list[i]) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto free_tms;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (tree_mod_dont_log(eb->fs_info, eb))
 | |
| 		goto free_tms;
 | |
| 
 | |
| 	ret = tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
 | |
| 	write_unlock(&eb->fs_info->tree_mod_log_lock);
 | |
| 	if (ret)
 | |
| 		goto free_tms;
 | |
| 	kfree(tm_list);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_tms:
 | |
| 	for (i = 0; i < nritems; i++)
 | |
| 		kfree(tm_list[i]);
 | |
| 	kfree(tm_list);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the logical address of the oldest predecessor of the given root.
 | |
|  * Entries older than time_seq are ignored.
 | |
|  */
 | |
| static struct tree_mod_elem *tree_mod_log_oldest_root(struct extent_buffer *eb_root,
 | |
| 						      u64 time_seq)
 | |
| {
 | |
| 	struct tree_mod_elem *tm;
 | |
| 	struct tree_mod_elem *found = NULL;
 | |
| 	u64 root_logical = eb_root->start;
 | |
| 	bool looped = false;
 | |
| 
 | |
| 	if (!time_seq)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * The very last operation that's logged for a root is the replacement
 | |
| 	 * operation (if it is replaced at all). This has the logical address
 | |
| 	 * of the *new* root, making it the very first operation that's logged
 | |
| 	 * for this root.
 | |
| 	 */
 | |
| 	while (1) {
 | |
| 		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
 | |
| 						time_seq);
 | |
| 		if (!looped && !tm)
 | |
| 			return NULL;
 | |
| 		/*
 | |
| 		 * If there are no tree operation for the oldest root, we simply
 | |
| 		 * return it. This should only happen if that (old) root is at
 | |
| 		 * level 0.
 | |
| 		 */
 | |
| 		if (!tm)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * If there's an operation that's not a root replacement, we
 | |
| 		 * found the oldest version of our root. Normally, we'll find a
 | |
| 		 * BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
 | |
| 		 */
 | |
| 		if (tm->op != BTRFS_MOD_LOG_ROOT_REPLACE)
 | |
| 			break;
 | |
| 
 | |
| 		found = tm;
 | |
| 		root_logical = tm->old_root.logical;
 | |
| 		looped = true;
 | |
| 	}
 | |
| 
 | |
| 	/* If there's no old root to return, return what we found instead */
 | |
| 	if (!found)
 | |
| 		found = tm;
 | |
| 
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * tm is a pointer to the first operation to rewind within eb. Then, all
 | |
|  * previous operations will be rewound (until we reach something older than
 | |
|  * time_seq).
 | |
|  */
 | |
| static void tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
 | |
| 				struct extent_buffer *eb,
 | |
| 				u64 time_seq,
 | |
| 				struct tree_mod_elem *first_tm)
 | |
| {
 | |
| 	u32 n;
 | |
| 	struct rb_node *next;
 | |
| 	struct tree_mod_elem *tm = first_tm;
 | |
| 	unsigned long o_dst;
 | |
| 	unsigned long o_src;
 | |
| 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
 | |
| 
 | |
| 	n = btrfs_header_nritems(eb);
 | |
| 	read_lock(&fs_info->tree_mod_log_lock);
 | |
| 	while (tm && tm->seq >= time_seq) {
 | |
| 		/*
 | |
| 		 * All the operations are recorded with the operator used for
 | |
| 		 * the modification. As we're going backwards, we do the
 | |
| 		 * opposite of each operation here.
 | |
| 		 */
 | |
| 		switch (tm->op) {
 | |
| 		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
 | |
| 			BUG_ON(tm->slot < n);
 | |
| 			fallthrough;
 | |
| 		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING:
 | |
| 		case BTRFS_MOD_LOG_KEY_REMOVE:
 | |
| 			btrfs_set_node_key(eb, &tm->key, tm->slot);
 | |
| 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
 | |
| 			btrfs_set_node_ptr_generation(eb, tm->slot,
 | |
| 						      tm->generation);
 | |
| 			n++;
 | |
| 			break;
 | |
| 		case BTRFS_MOD_LOG_KEY_REPLACE:
 | |
| 			BUG_ON(tm->slot >= n);
 | |
| 			btrfs_set_node_key(eb, &tm->key, tm->slot);
 | |
| 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
 | |
| 			btrfs_set_node_ptr_generation(eb, tm->slot,
 | |
| 						      tm->generation);
 | |
| 			break;
 | |
| 		case BTRFS_MOD_LOG_KEY_ADD:
 | |
| 			/* if a move operation is needed it's in the log */
 | |
| 			n--;
 | |
| 			break;
 | |
| 		case BTRFS_MOD_LOG_MOVE_KEYS:
 | |
| 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
 | |
| 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
 | |
| 			memmove_extent_buffer(eb, o_dst, o_src,
 | |
| 					      tm->move.nr_items * p_size);
 | |
| 			break;
 | |
| 		case BTRFS_MOD_LOG_ROOT_REPLACE:
 | |
| 			/*
 | |
| 			 * This operation is special. For roots, this must be
 | |
| 			 * handled explicitly before rewinding.
 | |
| 			 * For non-roots, this operation may exist if the node
 | |
| 			 * was a root: root A -> child B; then A gets empty and
 | |
| 			 * B is promoted to the new root. In the mod log, we'll
 | |
| 			 * have a root-replace operation for B, a tree block
 | |
| 			 * that is no root. We simply ignore that operation.
 | |
| 			 */
 | |
| 			break;
 | |
| 		}
 | |
| 		next = rb_next(&tm->node);
 | |
| 		if (!next)
 | |
| 			break;
 | |
| 		tm = rb_entry(next, struct tree_mod_elem, node);
 | |
| 		if (tm->logical != first_tm->logical)
 | |
| 			break;
 | |
| 	}
 | |
| 	read_unlock(&fs_info->tree_mod_log_lock);
 | |
| 	btrfs_set_header_nritems(eb, n);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
 | |
|  * is returned. If rewind operations happen, a fresh buffer is returned. The
 | |
|  * returned buffer is always read-locked. If the returned buffer is not the
 | |
|  * input buffer, the lock on the input buffer is released and the input buffer
 | |
|  * is freed (its refcount is decremented).
 | |
|  */
 | |
| struct extent_buffer *btrfs_tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
 | |
| 						struct btrfs_path *path,
 | |
| 						struct extent_buffer *eb,
 | |
| 						u64 time_seq)
 | |
| {
 | |
| 	struct extent_buffer *eb_rewin;
 | |
| 	struct tree_mod_elem *tm;
 | |
| 
 | |
| 	if (!time_seq)
 | |
| 		return eb;
 | |
| 
 | |
| 	if (btrfs_header_level(eb) == 0)
 | |
| 		return eb;
 | |
| 
 | |
| 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
 | |
| 	if (!tm)
 | |
| 		return eb;
 | |
| 
 | |
| 	if (tm->op == BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
 | |
| 		BUG_ON(tm->slot != 0);
 | |
| 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
 | |
| 		if (!eb_rewin) {
 | |
| 			btrfs_tree_read_unlock(eb);
 | |
| 			free_extent_buffer(eb);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		btrfs_set_header_bytenr(eb_rewin, eb->start);
 | |
| 		btrfs_set_header_backref_rev(eb_rewin,
 | |
| 					     btrfs_header_backref_rev(eb));
 | |
| 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
 | |
| 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
 | |
| 	} else {
 | |
| 		eb_rewin = btrfs_clone_extent_buffer(eb);
 | |
| 		if (!eb_rewin) {
 | |
| 			btrfs_tree_read_unlock(eb);
 | |
| 			free_extent_buffer(eb);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btrfs_tree_read_unlock(eb);
 | |
| 	free_extent_buffer(eb);
 | |
| 
 | |
| 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
 | |
| 				       eb_rewin, btrfs_header_level(eb_rewin));
 | |
| 	btrfs_tree_read_lock(eb_rewin);
 | |
| 	tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
 | |
| 	WARN_ON(btrfs_header_nritems(eb_rewin) >
 | |
| 		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
 | |
| 
 | |
| 	return eb_rewin;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Rewind the state of @root's root node to the given @time_seq value.
 | |
|  * If there are no changes, the current root->root_node is returned. If anything
 | |
|  * changed in between, there's a fresh buffer allocated on which the rewind
 | |
|  * operations are done. In any case, the returned buffer is read locked.
 | |
|  * Returns NULL on error (with no locks held).
 | |
|  */
 | |
| struct extent_buffer *btrfs_get_old_root(struct btrfs_root *root, u64 time_seq)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct tree_mod_elem *tm;
 | |
| 	struct extent_buffer *eb = NULL;
 | |
| 	struct extent_buffer *eb_root;
 | |
| 	u64 eb_root_owner = 0;
 | |
| 	struct extent_buffer *old;
 | |
| 	struct tree_mod_root *old_root = NULL;
 | |
| 	u64 old_generation = 0;
 | |
| 	u64 logical;
 | |
| 	int level;
 | |
| 
 | |
| 	eb_root = btrfs_read_lock_root_node(root);
 | |
| 	tm = tree_mod_log_oldest_root(eb_root, time_seq);
 | |
| 	if (!tm)
 | |
| 		return eb_root;
 | |
| 
 | |
| 	if (tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) {
 | |
| 		old_root = &tm->old_root;
 | |
| 		old_generation = tm->generation;
 | |
| 		logical = old_root->logical;
 | |
| 		level = old_root->level;
 | |
| 	} else {
 | |
| 		logical = eb_root->start;
 | |
| 		level = btrfs_header_level(eb_root);
 | |
| 	}
 | |
| 
 | |
| 	tm = tree_mod_log_search(fs_info, logical, time_seq);
 | |
| 	if (old_root && tm && tm->op != BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
 | |
| 		btrfs_tree_read_unlock(eb_root);
 | |
| 		free_extent_buffer(eb_root);
 | |
| 		old = read_tree_block(fs_info, logical, root->root_key.objectid,
 | |
| 				      0, level, NULL);
 | |
| 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
 | |
| 			if (!IS_ERR(old))
 | |
| 				free_extent_buffer(old);
 | |
| 			btrfs_warn(fs_info,
 | |
| 				   "failed to read tree block %llu from get_old_root",
 | |
| 				   logical);
 | |
| 		} else {
 | |
| 			btrfs_tree_read_lock(old);
 | |
| 			eb = btrfs_clone_extent_buffer(old);
 | |
| 			btrfs_tree_read_unlock(old);
 | |
| 			free_extent_buffer(old);
 | |
| 		}
 | |
| 	} else if (old_root) {
 | |
| 		eb_root_owner = btrfs_header_owner(eb_root);
 | |
| 		btrfs_tree_read_unlock(eb_root);
 | |
| 		free_extent_buffer(eb_root);
 | |
| 		eb = alloc_dummy_extent_buffer(fs_info, logical);
 | |
| 	} else {
 | |
| 		eb = btrfs_clone_extent_buffer(eb_root);
 | |
| 		btrfs_tree_read_unlock(eb_root);
 | |
| 		free_extent_buffer(eb_root);
 | |
| 	}
 | |
| 
 | |
| 	if (!eb)
 | |
| 		return NULL;
 | |
| 	if (old_root) {
 | |
| 		btrfs_set_header_bytenr(eb, eb->start);
 | |
| 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
 | |
| 		btrfs_set_header_owner(eb, eb_root_owner);
 | |
| 		btrfs_set_header_level(eb, old_root->level);
 | |
| 		btrfs_set_header_generation(eb, old_generation);
 | |
| 	}
 | |
| 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
 | |
| 				       btrfs_header_level(eb));
 | |
| 	btrfs_tree_read_lock(eb);
 | |
| 	if (tm)
 | |
| 		tree_mod_log_rewind(fs_info, eb, time_seq, tm);
 | |
| 	else
 | |
| 		WARN_ON(btrfs_header_level(eb) != 0);
 | |
| 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
 | |
| 
 | |
| 	return eb;
 | |
| }
 | |
| 
 | |
| int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
 | |
| {
 | |
| 	struct tree_mod_elem *tm;
 | |
| 	int level;
 | |
| 	struct extent_buffer *eb_root = btrfs_root_node(root);
 | |
| 
 | |
| 	tm = tree_mod_log_oldest_root(eb_root, time_seq);
 | |
| 	if (tm && tm->op == BTRFS_MOD_LOG_ROOT_REPLACE)
 | |
| 		level = tm->old_root.level;
 | |
| 	else
 | |
| 		level = btrfs_header_level(eb_root);
 | |
| 
 | |
| 	free_extent_buffer(eb_root);
 | |
| 
 | |
| 	return level;
 | |
| }
 | |
| 
 |