mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAlqbuK8ACgkQxWXV+ddt WDsiVQ//eE8Axfw4qWOyHHjozoAIu9kifvOFQIhvKviLiXHJNrD/vBI6YwD1hyD1 rbbLilMsEl1OD1Sq3AeOUMNSSl5qUFEB+CA8vg9GznFTNRobTkL+p96Zt5xlRDu3 lsFFV93tED+dK4D/eSGP+xYbknA8hIk/2gWPkd6hpYKyh2QdsPBYDqCnaEXvd79P DIP/cAjIfzqQn0FTiZ9wbaES+LPO+NoZgQRC2w9McYQ5CEMc+oAChEmPJRwpPoKy YdhuwoULniRNHVnVOIVfi4w9jkSPSz7YIgLeRFli/WGBYGcKeHTMFkMa12KdpuUC JUclOogJ5ZMbFV3C0W8XEJ7Vb9ltIevrH8MgfKP/3BScuZzbJZ+n5KkH2Gf7vcpe w5cZGOsKDz+35fDCdTmsFpDK9kpGzHq48JlRifOjARbdyqNwVq4emxOeQlO1ygzq Y9H5UeMpp/FDAm6g/bV8ezCXzwuwUDV9CwAJBD+WCiZhD2nX85FfIp1kfF2zLcUg Y8irqV6A/J/0BFkF7Iu9AuzTxOdo6zMLkcHEKb+sL7yGxZ2248v5gZxDoyV5iNWR WY4Y2GaMemZGu6+NyyLFAJzlFyACD5fSy8vT7KD6upCzwmlAtaJ3VULfTrLyi/uM SNZAKf3WzKBVe5h52GNGRCi5OLTteH6Yqz5m5/h8r74mBO00IrA= =bF96 -----END PGP SIGNATURE----- Merge tag 'for-4.16-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - when NR_CPUS is large, a SRCU structure can significantly inflate size of the main filesystem structure that would not be possible to allocate by kmalloc, so the kvalloc fallback is used - improved error handling - fix endiannes when printing some filesystem attributes via sysfs, this is could happen when a filesystem is moved between different endianity hosts - send fixes: the NO_HOLE mode should not send a write operation for a file hole - fix log replay for for special files followed by file hardlinks - fix log replay failure after unlink and link combination - fix max chunk size calculation for DUP allocation * tag 'for-4.16-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: Btrfs: fix log replay failure after unlink and link combination Btrfs: fix log replay failure after linking special file and fsync Btrfs: send, fix issuing write op when processing hole in no data mode btrfs: use proper endianness accessors for super_copy btrfs: alloc_chunk: fix DUP stripe size handling btrfs: Handle btrfs_set_extent_delalloc failure in relocate_file_extent_cluster btrfs: handle failure of add_pending_csums btrfs: use kvzalloc to allocate btrfs_fs_info
		
			
				
	
	
		
			5976 lines
		
	
	
	
		
			159 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5976 lines
		
	
	
	
		
			159 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (C) 2008 Oracle.  All rights reserved.
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public
 | 
						|
 * License v2 as published by the Free Software Foundation.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public
 | 
						|
 * License along with this program; if not, write to the
 | 
						|
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | 
						|
 * Boston, MA 021110-1307, USA.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/blkdev.h>
 | 
						|
#include <linux/list_sort.h>
 | 
						|
#include <linux/iversion.h>
 | 
						|
#include "tree-log.h"
 | 
						|
#include "disk-io.h"
 | 
						|
#include "locking.h"
 | 
						|
#include "print-tree.h"
 | 
						|
#include "backref.h"
 | 
						|
#include "hash.h"
 | 
						|
#include "compression.h"
 | 
						|
#include "qgroup.h"
 | 
						|
#include "inode-map.h"
 | 
						|
 | 
						|
/* magic values for the inode_only field in btrfs_log_inode:
 | 
						|
 *
 | 
						|
 * LOG_INODE_ALL means to log everything
 | 
						|
 * LOG_INODE_EXISTS means to log just enough to recreate the inode
 | 
						|
 * during log replay
 | 
						|
 */
 | 
						|
#define LOG_INODE_ALL 0
 | 
						|
#define LOG_INODE_EXISTS 1
 | 
						|
#define LOG_OTHER_INODE 2
 | 
						|
 | 
						|
/*
 | 
						|
 * directory trouble cases
 | 
						|
 *
 | 
						|
 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
 | 
						|
 * log, we must force a full commit before doing an fsync of the directory
 | 
						|
 * where the unlink was done.
 | 
						|
 * ---> record transid of last unlink/rename per directory
 | 
						|
 *
 | 
						|
 * mkdir foo/some_dir
 | 
						|
 * normal commit
 | 
						|
 * rename foo/some_dir foo2/some_dir
 | 
						|
 * mkdir foo/some_dir
 | 
						|
 * fsync foo/some_dir/some_file
 | 
						|
 *
 | 
						|
 * The fsync above will unlink the original some_dir without recording
 | 
						|
 * it in its new location (foo2).  After a crash, some_dir will be gone
 | 
						|
 * unless the fsync of some_file forces a full commit
 | 
						|
 *
 | 
						|
 * 2) we must log any new names for any file or dir that is in the fsync
 | 
						|
 * log. ---> check inode while renaming/linking.
 | 
						|
 *
 | 
						|
 * 2a) we must log any new names for any file or dir during rename
 | 
						|
 * when the directory they are being removed from was logged.
 | 
						|
 * ---> check inode and old parent dir during rename
 | 
						|
 *
 | 
						|
 *  2a is actually the more important variant.  With the extra logging
 | 
						|
 *  a crash might unlink the old name without recreating the new one
 | 
						|
 *
 | 
						|
 * 3) after a crash, we must go through any directories with a link count
 | 
						|
 * of zero and redo the rm -rf
 | 
						|
 *
 | 
						|
 * mkdir f1/foo
 | 
						|
 * normal commit
 | 
						|
 * rm -rf f1/foo
 | 
						|
 * fsync(f1)
 | 
						|
 *
 | 
						|
 * The directory f1 was fully removed from the FS, but fsync was never
 | 
						|
 * called on f1, only its parent dir.  After a crash the rm -rf must
 | 
						|
 * be replayed.  This must be able to recurse down the entire
 | 
						|
 * directory tree.  The inode link count fixup code takes care of the
 | 
						|
 * ugly details.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * stages for the tree walking.  The first
 | 
						|
 * stage (0) is to only pin down the blocks we find
 | 
						|
 * the second stage (1) is to make sure that all the inodes
 | 
						|
 * we find in the log are created in the subvolume.
 | 
						|
 *
 | 
						|
 * The last stage is to deal with directories and links and extents
 | 
						|
 * and all the other fun semantics
 | 
						|
 */
 | 
						|
#define LOG_WALK_PIN_ONLY 0
 | 
						|
#define LOG_WALK_REPLAY_INODES 1
 | 
						|
#define LOG_WALK_REPLAY_DIR_INDEX 2
 | 
						|
#define LOG_WALK_REPLAY_ALL 3
 | 
						|
 | 
						|
static int btrfs_log_inode(struct btrfs_trans_handle *trans,
 | 
						|
			   struct btrfs_root *root, struct btrfs_inode *inode,
 | 
						|
			   int inode_only,
 | 
						|
			   const loff_t start,
 | 
						|
			   const loff_t end,
 | 
						|
			   struct btrfs_log_ctx *ctx);
 | 
						|
static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 | 
						|
			     struct btrfs_root *root,
 | 
						|
			     struct btrfs_path *path, u64 objectid);
 | 
						|
static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 | 
						|
				       struct btrfs_root *root,
 | 
						|
				       struct btrfs_root *log,
 | 
						|
				       struct btrfs_path *path,
 | 
						|
				       u64 dirid, int del_all);
 | 
						|
 | 
						|
/*
 | 
						|
 * tree logging is a special write ahead log used to make sure that
 | 
						|
 * fsyncs and O_SYNCs can happen without doing full tree commits.
 | 
						|
 *
 | 
						|
 * Full tree commits are expensive because they require commonly
 | 
						|
 * modified blocks to be recowed, creating many dirty pages in the
 | 
						|
 * extent tree an 4x-6x higher write load than ext3.
 | 
						|
 *
 | 
						|
 * Instead of doing a tree commit on every fsync, we use the
 | 
						|
 * key ranges and transaction ids to find items for a given file or directory
 | 
						|
 * that have changed in this transaction.  Those items are copied into
 | 
						|
 * a special tree (one per subvolume root), that tree is written to disk
 | 
						|
 * and then the fsync is considered complete.
 | 
						|
 *
 | 
						|
 * After a crash, items are copied out of the log-tree back into the
 | 
						|
 * subvolume tree.  Any file data extents found are recorded in the extent
 | 
						|
 * allocation tree, and the log-tree freed.
 | 
						|
 *
 | 
						|
 * The log tree is read three times, once to pin down all the extents it is
 | 
						|
 * using in ram and once, once to create all the inodes logged in the tree
 | 
						|
 * and once to do all the other items.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * start a sub transaction and setup the log tree
 | 
						|
 * this increments the log tree writer count to make the people
 | 
						|
 * syncing the tree wait for us to finish
 | 
						|
 */
 | 
						|
static int start_log_trans(struct btrfs_trans_handle *trans,
 | 
						|
			   struct btrfs_root *root,
 | 
						|
			   struct btrfs_log_ctx *ctx)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	mutex_lock(&root->log_mutex);
 | 
						|
 | 
						|
	if (root->log_root) {
 | 
						|
		if (btrfs_need_log_full_commit(fs_info, trans)) {
 | 
						|
			ret = -EAGAIN;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!root->log_start_pid) {
 | 
						|
			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 | 
						|
			root->log_start_pid = current->pid;
 | 
						|
		} else if (root->log_start_pid != current->pid) {
 | 
						|
			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		mutex_lock(&fs_info->tree_log_mutex);
 | 
						|
		if (!fs_info->log_root_tree)
 | 
						|
			ret = btrfs_init_log_root_tree(trans, fs_info);
 | 
						|
		mutex_unlock(&fs_info->tree_log_mutex);
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		ret = btrfs_add_log_tree(trans, root);
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 | 
						|
		root->log_start_pid = current->pid;
 | 
						|
	}
 | 
						|
 | 
						|
	atomic_inc(&root->log_batch);
 | 
						|
	atomic_inc(&root->log_writers);
 | 
						|
	if (ctx) {
 | 
						|
		int index = root->log_transid % 2;
 | 
						|
		list_add_tail(&ctx->list, &root->log_ctxs[index]);
 | 
						|
		ctx->log_transid = root->log_transid;
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	mutex_unlock(&root->log_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * returns 0 if there was a log transaction running and we were able
 | 
						|
 * to join, or returns -ENOENT if there were not transactions
 | 
						|
 * in progress
 | 
						|
 */
 | 
						|
static int join_running_log_trans(struct btrfs_root *root)
 | 
						|
{
 | 
						|
	int ret = -ENOENT;
 | 
						|
 | 
						|
	smp_mb();
 | 
						|
	if (!root->log_root)
 | 
						|
		return -ENOENT;
 | 
						|
 | 
						|
	mutex_lock(&root->log_mutex);
 | 
						|
	if (root->log_root) {
 | 
						|
		ret = 0;
 | 
						|
		atomic_inc(&root->log_writers);
 | 
						|
	}
 | 
						|
	mutex_unlock(&root->log_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This either makes the current running log transaction wait
 | 
						|
 * until you call btrfs_end_log_trans() or it makes any future
 | 
						|
 * log transactions wait until you call btrfs_end_log_trans()
 | 
						|
 */
 | 
						|
int btrfs_pin_log_trans(struct btrfs_root *root)
 | 
						|
{
 | 
						|
	int ret = -ENOENT;
 | 
						|
 | 
						|
	mutex_lock(&root->log_mutex);
 | 
						|
	atomic_inc(&root->log_writers);
 | 
						|
	mutex_unlock(&root->log_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * indicate we're done making changes to the log tree
 | 
						|
 * and wake up anyone waiting to do a sync
 | 
						|
 */
 | 
						|
void btrfs_end_log_trans(struct btrfs_root *root)
 | 
						|
{
 | 
						|
	if (atomic_dec_and_test(&root->log_writers)) {
 | 
						|
		/*
 | 
						|
		 * Implicit memory barrier after atomic_dec_and_test
 | 
						|
		 */
 | 
						|
		if (waitqueue_active(&root->log_writer_wait))
 | 
						|
			wake_up(&root->log_writer_wait);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * the walk control struct is used to pass state down the chain when
 | 
						|
 * processing the log tree.  The stage field tells us which part
 | 
						|
 * of the log tree processing we are currently doing.  The others
 | 
						|
 * are state fields used for that specific part
 | 
						|
 */
 | 
						|
struct walk_control {
 | 
						|
	/* should we free the extent on disk when done?  This is used
 | 
						|
	 * at transaction commit time while freeing a log tree
 | 
						|
	 */
 | 
						|
	int free;
 | 
						|
 | 
						|
	/* should we write out the extent buffer?  This is used
 | 
						|
	 * while flushing the log tree to disk during a sync
 | 
						|
	 */
 | 
						|
	int write;
 | 
						|
 | 
						|
	/* should we wait for the extent buffer io to finish?  Also used
 | 
						|
	 * while flushing the log tree to disk for a sync
 | 
						|
	 */
 | 
						|
	int wait;
 | 
						|
 | 
						|
	/* pin only walk, we record which extents on disk belong to the
 | 
						|
	 * log trees
 | 
						|
	 */
 | 
						|
	int pin;
 | 
						|
 | 
						|
	/* what stage of the replay code we're currently in */
 | 
						|
	int stage;
 | 
						|
 | 
						|
	/* the root we are currently replaying */
 | 
						|
	struct btrfs_root *replay_dest;
 | 
						|
 | 
						|
	/* the trans handle for the current replay */
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
 | 
						|
	/* the function that gets used to process blocks we find in the
 | 
						|
	 * tree.  Note the extent_buffer might not be up to date when it is
 | 
						|
	 * passed in, and it must be checked or read if you need the data
 | 
						|
	 * inside it
 | 
						|
	 */
 | 
						|
	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 | 
						|
			    struct walk_control *wc, u64 gen);
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * process_func used to pin down extents, write them or wait on them
 | 
						|
 */
 | 
						|
static int process_one_buffer(struct btrfs_root *log,
 | 
						|
			      struct extent_buffer *eb,
 | 
						|
			      struct walk_control *wc, u64 gen)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = log->fs_info;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this fs is mixed then we need to be able to process the leaves to
 | 
						|
	 * pin down any logged extents, so we have to read the block.
 | 
						|
	 */
 | 
						|
	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 | 
						|
		ret = btrfs_read_buffer(eb, gen);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	if (wc->pin)
 | 
						|
		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
 | 
						|
						      eb->len);
 | 
						|
 | 
						|
	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
 | 
						|
		if (wc->pin && btrfs_header_level(eb) == 0)
 | 
						|
			ret = btrfs_exclude_logged_extents(fs_info, eb);
 | 
						|
		if (wc->write)
 | 
						|
			btrfs_write_tree_block(eb);
 | 
						|
		if (wc->wait)
 | 
						|
			btrfs_wait_tree_block_writeback(eb);
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 | 
						|
 * to the src data we are copying out.
 | 
						|
 *
 | 
						|
 * root is the tree we are copying into, and path is a scratch
 | 
						|
 * path for use in this function (it should be released on entry and
 | 
						|
 * will be released on exit).
 | 
						|
 *
 | 
						|
 * If the key is already in the destination tree the existing item is
 | 
						|
 * overwritten.  If the existing item isn't big enough, it is extended.
 | 
						|
 * If it is too large, it is truncated.
 | 
						|
 *
 | 
						|
 * If the key isn't in the destination yet, a new item is inserted.
 | 
						|
 */
 | 
						|
static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 | 
						|
				   struct btrfs_root *root,
 | 
						|
				   struct btrfs_path *path,
 | 
						|
				   struct extent_buffer *eb, int slot,
 | 
						|
				   struct btrfs_key *key)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	int ret;
 | 
						|
	u32 item_size;
 | 
						|
	u64 saved_i_size = 0;
 | 
						|
	int save_old_i_size = 0;
 | 
						|
	unsigned long src_ptr;
 | 
						|
	unsigned long dst_ptr;
 | 
						|
	int overwrite_root = 0;
 | 
						|
	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 | 
						|
 | 
						|
	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 | 
						|
		overwrite_root = 1;
 | 
						|
 | 
						|
	item_size = btrfs_item_size_nr(eb, slot);
 | 
						|
	src_ptr = btrfs_item_ptr_offset(eb, slot);
 | 
						|
 | 
						|
	/* look for the key in the destination tree */
 | 
						|
	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 | 
						|
	if (ret < 0)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (ret == 0) {
 | 
						|
		char *src_copy;
 | 
						|
		char *dst_copy;
 | 
						|
		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 | 
						|
						  path->slots[0]);
 | 
						|
		if (dst_size != item_size)
 | 
						|
			goto insert;
 | 
						|
 | 
						|
		if (item_size == 0) {
 | 
						|
			btrfs_release_path(path);
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
		dst_copy = kmalloc(item_size, GFP_NOFS);
 | 
						|
		src_copy = kmalloc(item_size, GFP_NOFS);
 | 
						|
		if (!dst_copy || !src_copy) {
 | 
						|
			btrfs_release_path(path);
 | 
						|
			kfree(dst_copy);
 | 
						|
			kfree(src_copy);
 | 
						|
			return -ENOMEM;
 | 
						|
		}
 | 
						|
 | 
						|
		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 | 
						|
 | 
						|
		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 | 
						|
		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 | 
						|
				   item_size);
 | 
						|
		ret = memcmp(dst_copy, src_copy, item_size);
 | 
						|
 | 
						|
		kfree(dst_copy);
 | 
						|
		kfree(src_copy);
 | 
						|
		/*
 | 
						|
		 * they have the same contents, just return, this saves
 | 
						|
		 * us from cowing blocks in the destination tree and doing
 | 
						|
		 * extra writes that may not have been done by a previous
 | 
						|
		 * sync
 | 
						|
		 */
 | 
						|
		if (ret == 0) {
 | 
						|
			btrfs_release_path(path);
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We need to load the old nbytes into the inode so when we
 | 
						|
		 * replay the extents we've logged we get the right nbytes.
 | 
						|
		 */
 | 
						|
		if (inode_item) {
 | 
						|
			struct btrfs_inode_item *item;
 | 
						|
			u64 nbytes;
 | 
						|
			u32 mode;
 | 
						|
 | 
						|
			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | 
						|
					      struct btrfs_inode_item);
 | 
						|
			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 | 
						|
			item = btrfs_item_ptr(eb, slot,
 | 
						|
					      struct btrfs_inode_item);
 | 
						|
			btrfs_set_inode_nbytes(eb, item, nbytes);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * If this is a directory we need to reset the i_size to
 | 
						|
			 * 0 so that we can set it up properly when replaying
 | 
						|
			 * the rest of the items in this log.
 | 
						|
			 */
 | 
						|
			mode = btrfs_inode_mode(eb, item);
 | 
						|
			if (S_ISDIR(mode))
 | 
						|
				btrfs_set_inode_size(eb, item, 0);
 | 
						|
		}
 | 
						|
	} else if (inode_item) {
 | 
						|
		struct btrfs_inode_item *item;
 | 
						|
		u32 mode;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * New inode, set nbytes to 0 so that the nbytes comes out
 | 
						|
		 * properly when we replay the extents.
 | 
						|
		 */
 | 
						|
		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 | 
						|
		btrfs_set_inode_nbytes(eb, item, 0);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If this is a directory we need to reset the i_size to 0 so
 | 
						|
		 * that we can set it up properly when replaying the rest of
 | 
						|
		 * the items in this log.
 | 
						|
		 */
 | 
						|
		mode = btrfs_inode_mode(eb, item);
 | 
						|
		if (S_ISDIR(mode))
 | 
						|
			btrfs_set_inode_size(eb, item, 0);
 | 
						|
	}
 | 
						|
insert:
 | 
						|
	btrfs_release_path(path);
 | 
						|
	/* try to insert the key into the destination tree */
 | 
						|
	path->skip_release_on_error = 1;
 | 
						|
	ret = btrfs_insert_empty_item(trans, root, path,
 | 
						|
				      key, item_size);
 | 
						|
	path->skip_release_on_error = 0;
 | 
						|
 | 
						|
	/* make sure any existing item is the correct size */
 | 
						|
	if (ret == -EEXIST || ret == -EOVERFLOW) {
 | 
						|
		u32 found_size;
 | 
						|
		found_size = btrfs_item_size_nr(path->nodes[0],
 | 
						|
						path->slots[0]);
 | 
						|
		if (found_size > item_size)
 | 
						|
			btrfs_truncate_item(fs_info, path, item_size, 1);
 | 
						|
		else if (found_size < item_size)
 | 
						|
			btrfs_extend_item(fs_info, path,
 | 
						|
					  item_size - found_size);
 | 
						|
	} else if (ret) {
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 | 
						|
					path->slots[0]);
 | 
						|
 | 
						|
	/* don't overwrite an existing inode if the generation number
 | 
						|
	 * was logged as zero.  This is done when the tree logging code
 | 
						|
	 * is just logging an inode to make sure it exists after recovery.
 | 
						|
	 *
 | 
						|
	 * Also, don't overwrite i_size on directories during replay.
 | 
						|
	 * log replay inserts and removes directory items based on the
 | 
						|
	 * state of the tree found in the subvolume, and i_size is modified
 | 
						|
	 * as it goes
 | 
						|
	 */
 | 
						|
	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 | 
						|
		struct btrfs_inode_item *src_item;
 | 
						|
		struct btrfs_inode_item *dst_item;
 | 
						|
 | 
						|
		src_item = (struct btrfs_inode_item *)src_ptr;
 | 
						|
		dst_item = (struct btrfs_inode_item *)dst_ptr;
 | 
						|
 | 
						|
		if (btrfs_inode_generation(eb, src_item) == 0) {
 | 
						|
			struct extent_buffer *dst_eb = path->nodes[0];
 | 
						|
			const u64 ino_size = btrfs_inode_size(eb, src_item);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * For regular files an ino_size == 0 is used only when
 | 
						|
			 * logging that an inode exists, as part of a directory
 | 
						|
			 * fsync, and the inode wasn't fsynced before. In this
 | 
						|
			 * case don't set the size of the inode in the fs/subvol
 | 
						|
			 * tree, otherwise we would be throwing valid data away.
 | 
						|
			 */
 | 
						|
			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 | 
						|
			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 | 
						|
			    ino_size != 0) {
 | 
						|
				struct btrfs_map_token token;
 | 
						|
 | 
						|
				btrfs_init_map_token(&token);
 | 
						|
				btrfs_set_token_inode_size(dst_eb, dst_item,
 | 
						|
							   ino_size, &token);
 | 
						|
			}
 | 
						|
			goto no_copy;
 | 
						|
		}
 | 
						|
 | 
						|
		if (overwrite_root &&
 | 
						|
		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 | 
						|
		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 | 
						|
			save_old_i_size = 1;
 | 
						|
			saved_i_size = btrfs_inode_size(path->nodes[0],
 | 
						|
							dst_item);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 | 
						|
			   src_ptr, item_size);
 | 
						|
 | 
						|
	if (save_old_i_size) {
 | 
						|
		struct btrfs_inode_item *dst_item;
 | 
						|
		dst_item = (struct btrfs_inode_item *)dst_ptr;
 | 
						|
		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 | 
						|
	}
 | 
						|
 | 
						|
	/* make sure the generation is filled in */
 | 
						|
	if (key->type == BTRFS_INODE_ITEM_KEY) {
 | 
						|
		struct btrfs_inode_item *dst_item;
 | 
						|
		dst_item = (struct btrfs_inode_item *)dst_ptr;
 | 
						|
		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 | 
						|
			btrfs_set_inode_generation(path->nodes[0], dst_item,
 | 
						|
						   trans->transid);
 | 
						|
		}
 | 
						|
	}
 | 
						|
no_copy:
 | 
						|
	btrfs_mark_buffer_dirty(path->nodes[0]);
 | 
						|
	btrfs_release_path(path);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * simple helper to read an inode off the disk from a given root
 | 
						|
 * This can only be called for subvolume roots and not for the log
 | 
						|
 */
 | 
						|
static noinline struct inode *read_one_inode(struct btrfs_root *root,
 | 
						|
					     u64 objectid)
 | 
						|
{
 | 
						|
	struct btrfs_key key;
 | 
						|
	struct inode *inode;
 | 
						|
 | 
						|
	key.objectid = objectid;
 | 
						|
	key.type = BTRFS_INODE_ITEM_KEY;
 | 
						|
	key.offset = 0;
 | 
						|
	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 | 
						|
	if (IS_ERR(inode)) {
 | 
						|
		inode = NULL;
 | 
						|
	} else if (is_bad_inode(inode)) {
 | 
						|
		iput(inode);
 | 
						|
		inode = NULL;
 | 
						|
	}
 | 
						|
	return inode;
 | 
						|
}
 | 
						|
 | 
						|
/* replays a single extent in 'eb' at 'slot' with 'key' into the
 | 
						|
 * subvolume 'root'.  path is released on entry and should be released
 | 
						|
 * on exit.
 | 
						|
 *
 | 
						|
 * extents in the log tree have not been allocated out of the extent
 | 
						|
 * tree yet.  So, this completes the allocation, taking a reference
 | 
						|
 * as required if the extent already exists or creating a new extent
 | 
						|
 * if it isn't in the extent allocation tree yet.
 | 
						|
 *
 | 
						|
 * The extent is inserted into the file, dropping any existing extents
 | 
						|
 * from the file that overlap the new one.
 | 
						|
 */
 | 
						|
static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 | 
						|
				      struct btrfs_root *root,
 | 
						|
				      struct btrfs_path *path,
 | 
						|
				      struct extent_buffer *eb, int slot,
 | 
						|
				      struct btrfs_key *key)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	int found_type;
 | 
						|
	u64 extent_end;
 | 
						|
	u64 start = key->offset;
 | 
						|
	u64 nbytes = 0;
 | 
						|
	struct btrfs_file_extent_item *item;
 | 
						|
	struct inode *inode = NULL;
 | 
						|
	unsigned long size;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 | 
						|
	found_type = btrfs_file_extent_type(eb, item);
 | 
						|
 | 
						|
	if (found_type == BTRFS_FILE_EXTENT_REG ||
 | 
						|
	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 | 
						|
		nbytes = btrfs_file_extent_num_bytes(eb, item);
 | 
						|
		extent_end = start + nbytes;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We don't add to the inodes nbytes if we are prealloc or a
 | 
						|
		 * hole.
 | 
						|
		 */
 | 
						|
		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 | 
						|
			nbytes = 0;
 | 
						|
	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 | 
						|
		size = btrfs_file_extent_inline_len(eb, slot, item);
 | 
						|
		nbytes = btrfs_file_extent_ram_bytes(eb, item);
 | 
						|
		extent_end = ALIGN(start + size,
 | 
						|
				   fs_info->sectorsize);
 | 
						|
	} else {
 | 
						|
		ret = 0;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	inode = read_one_inode(root, key->objectid);
 | 
						|
	if (!inode) {
 | 
						|
		ret = -EIO;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * first check to see if we already have this extent in the
 | 
						|
	 * file.  This must be done before the btrfs_drop_extents run
 | 
						|
	 * so we don't try to drop this extent.
 | 
						|
	 */
 | 
						|
	ret = btrfs_lookup_file_extent(trans, root, path,
 | 
						|
			btrfs_ino(BTRFS_I(inode)), start, 0);
 | 
						|
 | 
						|
	if (ret == 0 &&
 | 
						|
	    (found_type == BTRFS_FILE_EXTENT_REG ||
 | 
						|
	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 | 
						|
		struct btrfs_file_extent_item cmp1;
 | 
						|
		struct btrfs_file_extent_item cmp2;
 | 
						|
		struct btrfs_file_extent_item *existing;
 | 
						|
		struct extent_buffer *leaf;
 | 
						|
 | 
						|
		leaf = path->nodes[0];
 | 
						|
		existing = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
					  struct btrfs_file_extent_item);
 | 
						|
 | 
						|
		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 | 
						|
				   sizeof(cmp1));
 | 
						|
		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 | 
						|
				   sizeof(cmp2));
 | 
						|
 | 
						|
		/*
 | 
						|
		 * we already have a pointer to this exact extent,
 | 
						|
		 * we don't have to do anything
 | 
						|
		 */
 | 
						|
		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 | 
						|
			btrfs_release_path(path);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	/* drop any overlapping extents */
 | 
						|
	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (found_type == BTRFS_FILE_EXTENT_REG ||
 | 
						|
	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 | 
						|
		u64 offset;
 | 
						|
		unsigned long dest_offset;
 | 
						|
		struct btrfs_key ins;
 | 
						|
 | 
						|
		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
 | 
						|
		    btrfs_fs_incompat(fs_info, NO_HOLES))
 | 
						|
			goto update_inode;
 | 
						|
 | 
						|
		ret = btrfs_insert_empty_item(trans, root, path, key,
 | 
						|
					      sizeof(*item));
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 | 
						|
						    path->slots[0]);
 | 
						|
		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 | 
						|
				(unsigned long)item,  sizeof(*item));
 | 
						|
 | 
						|
		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 | 
						|
		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 | 
						|
		ins.type = BTRFS_EXTENT_ITEM_KEY;
 | 
						|
		offset = key->offset - btrfs_file_extent_offset(eb, item);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Manually record dirty extent, as here we did a shallow
 | 
						|
		 * file extent item copy and skip normal backref update,
 | 
						|
		 * but modifying extent tree all by ourselves.
 | 
						|
		 * So need to manually record dirty extent for qgroup,
 | 
						|
		 * as the owner of the file extent changed from log tree
 | 
						|
		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
 | 
						|
		 */
 | 
						|
		ret = btrfs_qgroup_trace_extent(trans, fs_info,
 | 
						|
				btrfs_file_extent_disk_bytenr(eb, item),
 | 
						|
				btrfs_file_extent_disk_num_bytes(eb, item),
 | 
						|
				GFP_NOFS);
 | 
						|
		if (ret < 0)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		if (ins.objectid > 0) {
 | 
						|
			u64 csum_start;
 | 
						|
			u64 csum_end;
 | 
						|
			LIST_HEAD(ordered_sums);
 | 
						|
			/*
 | 
						|
			 * is this extent already allocated in the extent
 | 
						|
			 * allocation tree?  If so, just add a reference
 | 
						|
			 */
 | 
						|
			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
 | 
						|
						ins.offset);
 | 
						|
			if (ret == 0) {
 | 
						|
				ret = btrfs_inc_extent_ref(trans, root,
 | 
						|
						ins.objectid, ins.offset,
 | 
						|
						0, root->root_key.objectid,
 | 
						|
						key->objectid, offset);
 | 
						|
				if (ret)
 | 
						|
					goto out;
 | 
						|
			} else {
 | 
						|
				/*
 | 
						|
				 * insert the extent pointer in the extent
 | 
						|
				 * allocation tree
 | 
						|
				 */
 | 
						|
				ret = btrfs_alloc_logged_file_extent(trans,
 | 
						|
						fs_info,
 | 
						|
						root->root_key.objectid,
 | 
						|
						key->objectid, offset, &ins);
 | 
						|
				if (ret)
 | 
						|
					goto out;
 | 
						|
			}
 | 
						|
			btrfs_release_path(path);
 | 
						|
 | 
						|
			if (btrfs_file_extent_compression(eb, item)) {
 | 
						|
				csum_start = ins.objectid;
 | 
						|
				csum_end = csum_start + ins.offset;
 | 
						|
			} else {
 | 
						|
				csum_start = ins.objectid +
 | 
						|
					btrfs_file_extent_offset(eb, item);
 | 
						|
				csum_end = csum_start +
 | 
						|
					btrfs_file_extent_num_bytes(eb, item);
 | 
						|
			}
 | 
						|
 | 
						|
			ret = btrfs_lookup_csums_range(root->log_root,
 | 
						|
						csum_start, csum_end - 1,
 | 
						|
						&ordered_sums, 0);
 | 
						|
			if (ret)
 | 
						|
				goto out;
 | 
						|
			/*
 | 
						|
			 * Now delete all existing cums in the csum root that
 | 
						|
			 * cover our range. We do this because we can have an
 | 
						|
			 * extent that is completely referenced by one file
 | 
						|
			 * extent item and partially referenced by another
 | 
						|
			 * file extent item (like after using the clone or
 | 
						|
			 * extent_same ioctls). In this case if we end up doing
 | 
						|
			 * the replay of the one that partially references the
 | 
						|
			 * extent first, and we do not do the csum deletion
 | 
						|
			 * below, we can get 2 csum items in the csum tree that
 | 
						|
			 * overlap each other. For example, imagine our log has
 | 
						|
			 * the two following file extent items:
 | 
						|
			 *
 | 
						|
			 * key (257 EXTENT_DATA 409600)
 | 
						|
			 *     extent data disk byte 12845056 nr 102400
 | 
						|
			 *     extent data offset 20480 nr 20480 ram 102400
 | 
						|
			 *
 | 
						|
			 * key (257 EXTENT_DATA 819200)
 | 
						|
			 *     extent data disk byte 12845056 nr 102400
 | 
						|
			 *     extent data offset 0 nr 102400 ram 102400
 | 
						|
			 *
 | 
						|
			 * Where the second one fully references the 100K extent
 | 
						|
			 * that starts at disk byte 12845056, and the log tree
 | 
						|
			 * has a single csum item that covers the entire range
 | 
						|
			 * of the extent:
 | 
						|
			 *
 | 
						|
			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 | 
						|
			 *
 | 
						|
			 * After the first file extent item is replayed, the
 | 
						|
			 * csum tree gets the following csum item:
 | 
						|
			 *
 | 
						|
			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 | 
						|
			 *
 | 
						|
			 * Which covers the 20K sub-range starting at offset 20K
 | 
						|
			 * of our extent. Now when we replay the second file
 | 
						|
			 * extent item, if we do not delete existing csum items
 | 
						|
			 * that cover any of its blocks, we end up getting two
 | 
						|
			 * csum items in our csum tree that overlap each other:
 | 
						|
			 *
 | 
						|
			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 | 
						|
			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 | 
						|
			 *
 | 
						|
			 * Which is a problem, because after this anyone trying
 | 
						|
			 * to lookup up for the checksum of any block of our
 | 
						|
			 * extent starting at an offset of 40K or higher, will
 | 
						|
			 * end up looking at the second csum item only, which
 | 
						|
			 * does not contain the checksum for any block starting
 | 
						|
			 * at offset 40K or higher of our extent.
 | 
						|
			 */
 | 
						|
			while (!list_empty(&ordered_sums)) {
 | 
						|
				struct btrfs_ordered_sum *sums;
 | 
						|
				sums = list_entry(ordered_sums.next,
 | 
						|
						struct btrfs_ordered_sum,
 | 
						|
						list);
 | 
						|
				if (!ret)
 | 
						|
					ret = btrfs_del_csums(trans, fs_info,
 | 
						|
							      sums->bytenr,
 | 
						|
							      sums->len);
 | 
						|
				if (!ret)
 | 
						|
					ret = btrfs_csum_file_blocks(trans,
 | 
						|
						fs_info->csum_root, sums);
 | 
						|
				list_del(&sums->list);
 | 
						|
				kfree(sums);
 | 
						|
			}
 | 
						|
			if (ret)
 | 
						|
				goto out;
 | 
						|
		} else {
 | 
						|
			btrfs_release_path(path);
 | 
						|
		}
 | 
						|
	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 | 
						|
		/* inline extents are easy, we just overwrite them */
 | 
						|
		ret = overwrite_item(trans, root, path, eb, slot, key);
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	inode_add_bytes(inode, nbytes);
 | 
						|
update_inode:
 | 
						|
	ret = btrfs_update_inode(trans, root, inode);
 | 
						|
out:
 | 
						|
	if (inode)
 | 
						|
		iput(inode);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * when cleaning up conflicts between the directory names in the
 | 
						|
 * subvolume, directory names in the log and directory names in the
 | 
						|
 * inode back references, we may have to unlink inodes from directories.
 | 
						|
 *
 | 
						|
 * This is a helper function to do the unlink of a specific directory
 | 
						|
 * item
 | 
						|
 */
 | 
						|
static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 | 
						|
				      struct btrfs_root *root,
 | 
						|
				      struct btrfs_path *path,
 | 
						|
				      struct btrfs_inode *dir,
 | 
						|
				      struct btrfs_dir_item *di)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct inode *inode;
 | 
						|
	char *name;
 | 
						|
	int name_len;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct btrfs_key location;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	leaf = path->nodes[0];
 | 
						|
 | 
						|
	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 | 
						|
	name_len = btrfs_dir_name_len(leaf, di);
 | 
						|
	name = kmalloc(name_len, GFP_NOFS);
 | 
						|
	if (!name)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	inode = read_one_inode(root, location.objectid);
 | 
						|
	if (!inode) {
 | 
						|
		ret = -EIO;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
 | 
						|
			name_len);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
	else
 | 
						|
		ret = btrfs_run_delayed_items(trans, fs_info);
 | 
						|
out:
 | 
						|
	kfree(name);
 | 
						|
	iput(inode);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * helper function to see if a given name and sequence number found
 | 
						|
 * in an inode back reference are already in a directory and correctly
 | 
						|
 * point to this inode
 | 
						|
 */
 | 
						|
static noinline int inode_in_dir(struct btrfs_root *root,
 | 
						|
				 struct btrfs_path *path,
 | 
						|
				 u64 dirid, u64 objectid, u64 index,
 | 
						|
				 const char *name, int name_len)
 | 
						|
{
 | 
						|
	struct btrfs_dir_item *di;
 | 
						|
	struct btrfs_key location;
 | 
						|
	int match = 0;
 | 
						|
 | 
						|
	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 | 
						|
					 index, name, name_len, 0);
 | 
						|
	if (di && !IS_ERR(di)) {
 | 
						|
		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 | 
						|
		if (location.objectid != objectid)
 | 
						|
			goto out;
 | 
						|
	} else
 | 
						|
		goto out;
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 | 
						|
	if (di && !IS_ERR(di)) {
 | 
						|
		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 | 
						|
		if (location.objectid != objectid)
 | 
						|
			goto out;
 | 
						|
	} else
 | 
						|
		goto out;
 | 
						|
	match = 1;
 | 
						|
out:
 | 
						|
	btrfs_release_path(path);
 | 
						|
	return match;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * helper function to check a log tree for a named back reference in
 | 
						|
 * an inode.  This is used to decide if a back reference that is
 | 
						|
 * found in the subvolume conflicts with what we find in the log.
 | 
						|
 *
 | 
						|
 * inode backreferences may have multiple refs in a single item,
 | 
						|
 * during replay we process one reference at a time, and we don't
 | 
						|
 * want to delete valid links to a file from the subvolume if that
 | 
						|
 * link is also in the log.
 | 
						|
 */
 | 
						|
static noinline int backref_in_log(struct btrfs_root *log,
 | 
						|
				   struct btrfs_key *key,
 | 
						|
				   u64 ref_objectid,
 | 
						|
				   const char *name, int namelen)
 | 
						|
{
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct btrfs_inode_ref *ref;
 | 
						|
	unsigned long ptr;
 | 
						|
	unsigned long ptr_end;
 | 
						|
	unsigned long name_ptr;
 | 
						|
	int found_name_len;
 | 
						|
	int item_size;
 | 
						|
	int ret;
 | 
						|
	int match = 0;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 | 
						|
	if (ret != 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 | 
						|
 | 
						|
	if (key->type == BTRFS_INODE_EXTREF_KEY) {
 | 
						|
		if (btrfs_find_name_in_ext_backref(path->nodes[0],
 | 
						|
						   path->slots[0],
 | 
						|
						   ref_objectid,
 | 
						|
						   name, namelen, NULL))
 | 
						|
			match = 1;
 | 
						|
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 | 
						|
	ptr_end = ptr + item_size;
 | 
						|
	while (ptr < ptr_end) {
 | 
						|
		ref = (struct btrfs_inode_ref *)ptr;
 | 
						|
		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 | 
						|
		if (found_name_len == namelen) {
 | 
						|
			name_ptr = (unsigned long)(ref + 1);
 | 
						|
			ret = memcmp_extent_buffer(path->nodes[0], name,
 | 
						|
						   name_ptr, namelen);
 | 
						|
			if (ret == 0) {
 | 
						|
				match = 1;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		ptr = (unsigned long)(ref + 1) + found_name_len;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return match;
 | 
						|
}
 | 
						|
 | 
						|
static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
 | 
						|
				  struct btrfs_root *root,
 | 
						|
				  struct btrfs_path *path,
 | 
						|
				  struct btrfs_root *log_root,
 | 
						|
				  struct btrfs_inode *dir,
 | 
						|
				  struct btrfs_inode *inode,
 | 
						|
				  u64 inode_objectid, u64 parent_objectid,
 | 
						|
				  u64 ref_index, char *name, int namelen,
 | 
						|
				  int *search_done)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	int ret;
 | 
						|
	char *victim_name;
 | 
						|
	int victim_name_len;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct btrfs_dir_item *di;
 | 
						|
	struct btrfs_key search_key;
 | 
						|
	struct btrfs_inode_extref *extref;
 | 
						|
 | 
						|
again:
 | 
						|
	/* Search old style refs */
 | 
						|
	search_key.objectid = inode_objectid;
 | 
						|
	search_key.type = BTRFS_INODE_REF_KEY;
 | 
						|
	search_key.offset = parent_objectid;
 | 
						|
	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 | 
						|
	if (ret == 0) {
 | 
						|
		struct btrfs_inode_ref *victim_ref;
 | 
						|
		unsigned long ptr;
 | 
						|
		unsigned long ptr_end;
 | 
						|
 | 
						|
		leaf = path->nodes[0];
 | 
						|
 | 
						|
		/* are we trying to overwrite a back ref for the root directory
 | 
						|
		 * if so, just jump out, we're done
 | 
						|
		 */
 | 
						|
		if (search_key.objectid == search_key.offset)
 | 
						|
			return 1;
 | 
						|
 | 
						|
		/* check all the names in this back reference to see
 | 
						|
		 * if they are in the log.  if so, we allow them to stay
 | 
						|
		 * otherwise they must be unlinked as a conflict
 | 
						|
		 */
 | 
						|
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
 | 
						|
		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
 | 
						|
		while (ptr < ptr_end) {
 | 
						|
			victim_ref = (struct btrfs_inode_ref *)ptr;
 | 
						|
			victim_name_len = btrfs_inode_ref_name_len(leaf,
 | 
						|
								   victim_ref);
 | 
						|
			victim_name = kmalloc(victim_name_len, GFP_NOFS);
 | 
						|
			if (!victim_name)
 | 
						|
				return -ENOMEM;
 | 
						|
 | 
						|
			read_extent_buffer(leaf, victim_name,
 | 
						|
					   (unsigned long)(victim_ref + 1),
 | 
						|
					   victim_name_len);
 | 
						|
 | 
						|
			if (!backref_in_log(log_root, &search_key,
 | 
						|
					    parent_objectid,
 | 
						|
					    victim_name,
 | 
						|
					    victim_name_len)) {
 | 
						|
				inc_nlink(&inode->vfs_inode);
 | 
						|
				btrfs_release_path(path);
 | 
						|
 | 
						|
				ret = btrfs_unlink_inode(trans, root, dir, inode,
 | 
						|
						victim_name, victim_name_len);
 | 
						|
				kfree(victim_name);
 | 
						|
				if (ret)
 | 
						|
					return ret;
 | 
						|
				ret = btrfs_run_delayed_items(trans, fs_info);
 | 
						|
				if (ret)
 | 
						|
					return ret;
 | 
						|
				*search_done = 1;
 | 
						|
				goto again;
 | 
						|
			}
 | 
						|
			kfree(victim_name);
 | 
						|
 | 
						|
			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * NOTE: we have searched root tree and checked the
 | 
						|
		 * corresponding ref, it does not need to check again.
 | 
						|
		 */
 | 
						|
		*search_done = 1;
 | 
						|
	}
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	/* Same search but for extended refs */
 | 
						|
	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
 | 
						|
					   inode_objectid, parent_objectid, 0,
 | 
						|
					   0);
 | 
						|
	if (!IS_ERR_OR_NULL(extref)) {
 | 
						|
		u32 item_size;
 | 
						|
		u32 cur_offset = 0;
 | 
						|
		unsigned long base;
 | 
						|
		struct inode *victim_parent;
 | 
						|
 | 
						|
		leaf = path->nodes[0];
 | 
						|
 | 
						|
		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 | 
						|
		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
 | 
						|
 | 
						|
		while (cur_offset < item_size) {
 | 
						|
			extref = (struct btrfs_inode_extref *)(base + cur_offset);
 | 
						|
 | 
						|
			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
 | 
						|
 | 
						|
			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
 | 
						|
				goto next;
 | 
						|
 | 
						|
			victim_name = kmalloc(victim_name_len, GFP_NOFS);
 | 
						|
			if (!victim_name)
 | 
						|
				return -ENOMEM;
 | 
						|
			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
 | 
						|
					   victim_name_len);
 | 
						|
 | 
						|
			search_key.objectid = inode_objectid;
 | 
						|
			search_key.type = BTRFS_INODE_EXTREF_KEY;
 | 
						|
			search_key.offset = btrfs_extref_hash(parent_objectid,
 | 
						|
							      victim_name,
 | 
						|
							      victim_name_len);
 | 
						|
			ret = 0;
 | 
						|
			if (!backref_in_log(log_root, &search_key,
 | 
						|
					    parent_objectid, victim_name,
 | 
						|
					    victim_name_len)) {
 | 
						|
				ret = -ENOENT;
 | 
						|
				victim_parent = read_one_inode(root,
 | 
						|
						parent_objectid);
 | 
						|
				if (victim_parent) {
 | 
						|
					inc_nlink(&inode->vfs_inode);
 | 
						|
					btrfs_release_path(path);
 | 
						|
 | 
						|
					ret = btrfs_unlink_inode(trans, root,
 | 
						|
							BTRFS_I(victim_parent),
 | 
						|
							inode,
 | 
						|
							victim_name,
 | 
						|
							victim_name_len);
 | 
						|
					if (!ret)
 | 
						|
						ret = btrfs_run_delayed_items(
 | 
						|
								  trans,
 | 
						|
								  fs_info);
 | 
						|
				}
 | 
						|
				iput(victim_parent);
 | 
						|
				kfree(victim_name);
 | 
						|
				if (ret)
 | 
						|
					return ret;
 | 
						|
				*search_done = 1;
 | 
						|
				goto again;
 | 
						|
			}
 | 
						|
			kfree(victim_name);
 | 
						|
next:
 | 
						|
			cur_offset += victim_name_len + sizeof(*extref);
 | 
						|
		}
 | 
						|
		*search_done = 1;
 | 
						|
	}
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	/* look for a conflicting sequence number */
 | 
						|
	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
 | 
						|
					 ref_index, name, namelen, 0);
 | 
						|
	if (di && !IS_ERR(di)) {
 | 
						|
		ret = drop_one_dir_item(trans, root, path, dir, di);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	/* look for a conflicing name */
 | 
						|
	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
 | 
						|
				   name, namelen, 0);
 | 
						|
	if (di && !IS_ERR(di)) {
 | 
						|
		ret = drop_one_dir_item(trans, root, path, dir, di);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
 | 
						|
			     u32 *namelen, char **name, u64 *index,
 | 
						|
			     u64 *parent_objectid)
 | 
						|
{
 | 
						|
	struct btrfs_inode_extref *extref;
 | 
						|
 | 
						|
	extref = (struct btrfs_inode_extref *)ref_ptr;
 | 
						|
 | 
						|
	*namelen = btrfs_inode_extref_name_len(eb, extref);
 | 
						|
	*name = kmalloc(*namelen, GFP_NOFS);
 | 
						|
	if (*name == NULL)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
 | 
						|
			   *namelen);
 | 
						|
 | 
						|
	if (index)
 | 
						|
		*index = btrfs_inode_extref_index(eb, extref);
 | 
						|
	if (parent_objectid)
 | 
						|
		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
 | 
						|
			  u32 *namelen, char **name, u64 *index)
 | 
						|
{
 | 
						|
	struct btrfs_inode_ref *ref;
 | 
						|
 | 
						|
	ref = (struct btrfs_inode_ref *)ref_ptr;
 | 
						|
 | 
						|
	*namelen = btrfs_inode_ref_name_len(eb, ref);
 | 
						|
	*name = kmalloc(*namelen, GFP_NOFS);
 | 
						|
	if (*name == NULL)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
 | 
						|
 | 
						|
	if (index)
 | 
						|
		*index = btrfs_inode_ref_index(eb, ref);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Take an inode reference item from the log tree and iterate all names from the
 | 
						|
 * inode reference item in the subvolume tree with the same key (if it exists).
 | 
						|
 * For any name that is not in the inode reference item from the log tree, do a
 | 
						|
 * proper unlink of that name (that is, remove its entry from the inode
 | 
						|
 * reference item and both dir index keys).
 | 
						|
 */
 | 
						|
static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
 | 
						|
				 struct btrfs_root *root,
 | 
						|
				 struct btrfs_path *path,
 | 
						|
				 struct btrfs_inode *inode,
 | 
						|
				 struct extent_buffer *log_eb,
 | 
						|
				 int log_slot,
 | 
						|
				 struct btrfs_key *key)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	unsigned long ref_ptr;
 | 
						|
	unsigned long ref_end;
 | 
						|
	struct extent_buffer *eb;
 | 
						|
 | 
						|
again:
 | 
						|
	btrfs_release_path(path);
 | 
						|
	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 | 
						|
	if (ret > 0) {
 | 
						|
		ret = 0;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	if (ret < 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	eb = path->nodes[0];
 | 
						|
	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
 | 
						|
	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
 | 
						|
	while (ref_ptr < ref_end) {
 | 
						|
		char *name = NULL;
 | 
						|
		int namelen;
 | 
						|
		u64 parent_id;
 | 
						|
 | 
						|
		if (key->type == BTRFS_INODE_EXTREF_KEY) {
 | 
						|
			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
 | 
						|
						NULL, &parent_id);
 | 
						|
		} else {
 | 
						|
			parent_id = key->offset;
 | 
						|
			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
 | 
						|
					     NULL);
 | 
						|
		}
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		if (key->type == BTRFS_INODE_EXTREF_KEY)
 | 
						|
			ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
 | 
						|
							     parent_id, name,
 | 
						|
							     namelen, NULL);
 | 
						|
		else
 | 
						|
			ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
 | 
						|
							 namelen, NULL);
 | 
						|
 | 
						|
		if (!ret) {
 | 
						|
			struct inode *dir;
 | 
						|
 | 
						|
			btrfs_release_path(path);
 | 
						|
			dir = read_one_inode(root, parent_id);
 | 
						|
			if (!dir) {
 | 
						|
				ret = -ENOENT;
 | 
						|
				kfree(name);
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
 | 
						|
						 inode, name, namelen);
 | 
						|
			kfree(name);
 | 
						|
			iput(dir);
 | 
						|
			if (ret)
 | 
						|
				goto out;
 | 
						|
			goto again;
 | 
						|
		}
 | 
						|
 | 
						|
		kfree(name);
 | 
						|
		ref_ptr += namelen;
 | 
						|
		if (key->type == BTRFS_INODE_EXTREF_KEY)
 | 
						|
			ref_ptr += sizeof(struct btrfs_inode_extref);
 | 
						|
		else
 | 
						|
			ref_ptr += sizeof(struct btrfs_inode_ref);
 | 
						|
	}
 | 
						|
	ret = 0;
 | 
						|
 out:
 | 
						|
	btrfs_release_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * replay one inode back reference item found in the log tree.
 | 
						|
 * eb, slot and key refer to the buffer and key found in the log tree.
 | 
						|
 * root is the destination we are replaying into, and path is for temp
 | 
						|
 * use by this function.  (it should be released on return).
 | 
						|
 */
 | 
						|
static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
 | 
						|
				  struct btrfs_root *root,
 | 
						|
				  struct btrfs_root *log,
 | 
						|
				  struct btrfs_path *path,
 | 
						|
				  struct extent_buffer *eb, int slot,
 | 
						|
				  struct btrfs_key *key)
 | 
						|
{
 | 
						|
	struct inode *dir = NULL;
 | 
						|
	struct inode *inode = NULL;
 | 
						|
	unsigned long ref_ptr;
 | 
						|
	unsigned long ref_end;
 | 
						|
	char *name = NULL;
 | 
						|
	int namelen;
 | 
						|
	int ret;
 | 
						|
	int search_done = 0;
 | 
						|
	int log_ref_ver = 0;
 | 
						|
	u64 parent_objectid;
 | 
						|
	u64 inode_objectid;
 | 
						|
	u64 ref_index = 0;
 | 
						|
	int ref_struct_size;
 | 
						|
 | 
						|
	ref_ptr = btrfs_item_ptr_offset(eb, slot);
 | 
						|
	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
 | 
						|
 | 
						|
	if (key->type == BTRFS_INODE_EXTREF_KEY) {
 | 
						|
		struct btrfs_inode_extref *r;
 | 
						|
 | 
						|
		ref_struct_size = sizeof(struct btrfs_inode_extref);
 | 
						|
		log_ref_ver = 1;
 | 
						|
		r = (struct btrfs_inode_extref *)ref_ptr;
 | 
						|
		parent_objectid = btrfs_inode_extref_parent(eb, r);
 | 
						|
	} else {
 | 
						|
		ref_struct_size = sizeof(struct btrfs_inode_ref);
 | 
						|
		parent_objectid = key->offset;
 | 
						|
	}
 | 
						|
	inode_objectid = key->objectid;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * it is possible that we didn't log all the parent directories
 | 
						|
	 * for a given inode.  If we don't find the dir, just don't
 | 
						|
	 * copy the back ref in.  The link count fixup code will take
 | 
						|
	 * care of the rest
 | 
						|
	 */
 | 
						|
	dir = read_one_inode(root, parent_objectid);
 | 
						|
	if (!dir) {
 | 
						|
		ret = -ENOENT;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	inode = read_one_inode(root, inode_objectid);
 | 
						|
	if (!inode) {
 | 
						|
		ret = -EIO;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	while (ref_ptr < ref_end) {
 | 
						|
		if (log_ref_ver) {
 | 
						|
			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
 | 
						|
						&ref_index, &parent_objectid);
 | 
						|
			/*
 | 
						|
			 * parent object can change from one array
 | 
						|
			 * item to another.
 | 
						|
			 */
 | 
						|
			if (!dir)
 | 
						|
				dir = read_one_inode(root, parent_objectid);
 | 
						|
			if (!dir) {
 | 
						|
				ret = -ENOENT;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
 | 
						|
					     &ref_index);
 | 
						|
		}
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		/* if we already have a perfect match, we're done */
 | 
						|
		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
 | 
						|
					btrfs_ino(BTRFS_I(inode)), ref_index,
 | 
						|
					name, namelen)) {
 | 
						|
			/*
 | 
						|
			 * look for a conflicting back reference in the
 | 
						|
			 * metadata. if we find one we have to unlink that name
 | 
						|
			 * of the file before we add our new link.  Later on, we
 | 
						|
			 * overwrite any existing back reference, and we don't
 | 
						|
			 * want to create dangling pointers in the directory.
 | 
						|
			 */
 | 
						|
 | 
						|
			if (!search_done) {
 | 
						|
				ret = __add_inode_ref(trans, root, path, log,
 | 
						|
						      BTRFS_I(dir),
 | 
						|
						      BTRFS_I(inode),
 | 
						|
						      inode_objectid,
 | 
						|
						      parent_objectid,
 | 
						|
						      ref_index, name, namelen,
 | 
						|
						      &search_done);
 | 
						|
				if (ret) {
 | 
						|
					if (ret == 1)
 | 
						|
						ret = 0;
 | 
						|
					goto out;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			/* insert our name */
 | 
						|
			ret = btrfs_add_link(trans, BTRFS_I(dir),
 | 
						|
					BTRFS_I(inode),
 | 
						|
					name, namelen, 0, ref_index);
 | 
						|
			if (ret)
 | 
						|
				goto out;
 | 
						|
 | 
						|
			btrfs_update_inode(trans, root, inode);
 | 
						|
		}
 | 
						|
 | 
						|
		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
 | 
						|
		kfree(name);
 | 
						|
		name = NULL;
 | 
						|
		if (log_ref_ver) {
 | 
						|
			iput(dir);
 | 
						|
			dir = NULL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Before we overwrite the inode reference item in the subvolume tree
 | 
						|
	 * with the item from the log tree, we must unlink all names from the
 | 
						|
	 * parent directory that are in the subvolume's tree inode reference
 | 
						|
	 * item, otherwise we end up with an inconsistent subvolume tree where
 | 
						|
	 * dir index entries exist for a name but there is no inode reference
 | 
						|
	 * item with the same name.
 | 
						|
	 */
 | 
						|
	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
 | 
						|
				    key);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* finally write the back reference in the inode */
 | 
						|
	ret = overwrite_item(trans, root, path, eb, slot, key);
 | 
						|
out:
 | 
						|
	btrfs_release_path(path);
 | 
						|
	kfree(name);
 | 
						|
	iput(dir);
 | 
						|
	iput(inode);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int insert_orphan_item(struct btrfs_trans_handle *trans,
 | 
						|
			      struct btrfs_root *root, u64 ino)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = btrfs_insert_orphan_item(trans, root, ino);
 | 
						|
	if (ret == -EEXIST)
 | 
						|
		ret = 0;
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int count_inode_extrefs(struct btrfs_root *root,
 | 
						|
		struct btrfs_inode *inode, struct btrfs_path *path)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	int name_len;
 | 
						|
	unsigned int nlink = 0;
 | 
						|
	u32 item_size;
 | 
						|
	u32 cur_offset = 0;
 | 
						|
	u64 inode_objectid = btrfs_ino(inode);
 | 
						|
	u64 offset = 0;
 | 
						|
	unsigned long ptr;
 | 
						|
	struct btrfs_inode_extref *extref;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
 | 
						|
					    &extref, &offset);
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
 | 
						|
		leaf = path->nodes[0];
 | 
						|
		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 | 
						|
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
 | 
						|
		cur_offset = 0;
 | 
						|
 | 
						|
		while (cur_offset < item_size) {
 | 
						|
			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
 | 
						|
			name_len = btrfs_inode_extref_name_len(leaf, extref);
 | 
						|
 | 
						|
			nlink++;
 | 
						|
 | 
						|
			cur_offset += name_len + sizeof(*extref);
 | 
						|
		}
 | 
						|
 | 
						|
		offset++;
 | 
						|
		btrfs_release_path(path);
 | 
						|
	}
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	if (ret < 0 && ret != -ENOENT)
 | 
						|
		return ret;
 | 
						|
	return nlink;
 | 
						|
}
 | 
						|
 | 
						|
static int count_inode_refs(struct btrfs_root *root,
 | 
						|
			struct btrfs_inode *inode, struct btrfs_path *path)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct btrfs_key key;
 | 
						|
	unsigned int nlink = 0;
 | 
						|
	unsigned long ptr;
 | 
						|
	unsigned long ptr_end;
 | 
						|
	int name_len;
 | 
						|
	u64 ino = btrfs_ino(inode);
 | 
						|
 | 
						|
	key.objectid = ino;
 | 
						|
	key.type = BTRFS_INODE_REF_KEY;
 | 
						|
	key.offset = (u64)-1;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | 
						|
		if (ret < 0)
 | 
						|
			break;
 | 
						|
		if (ret > 0) {
 | 
						|
			if (path->slots[0] == 0)
 | 
						|
				break;
 | 
						|
			path->slots[0]--;
 | 
						|
		}
 | 
						|
process_slot:
 | 
						|
		btrfs_item_key_to_cpu(path->nodes[0], &key,
 | 
						|
				      path->slots[0]);
 | 
						|
		if (key.objectid != ino ||
 | 
						|
		    key.type != BTRFS_INODE_REF_KEY)
 | 
						|
			break;
 | 
						|
		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 | 
						|
		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
 | 
						|
						   path->slots[0]);
 | 
						|
		while (ptr < ptr_end) {
 | 
						|
			struct btrfs_inode_ref *ref;
 | 
						|
 | 
						|
			ref = (struct btrfs_inode_ref *)ptr;
 | 
						|
			name_len = btrfs_inode_ref_name_len(path->nodes[0],
 | 
						|
							    ref);
 | 
						|
			ptr = (unsigned long)(ref + 1) + name_len;
 | 
						|
			nlink++;
 | 
						|
		}
 | 
						|
 | 
						|
		if (key.offset == 0)
 | 
						|
			break;
 | 
						|
		if (path->slots[0] > 0) {
 | 
						|
			path->slots[0]--;
 | 
						|
			goto process_slot;
 | 
						|
		}
 | 
						|
		key.offset--;
 | 
						|
		btrfs_release_path(path);
 | 
						|
	}
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	return nlink;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * There are a few corners where the link count of the file can't
 | 
						|
 * be properly maintained during replay.  So, instead of adding
 | 
						|
 * lots of complexity to the log code, we just scan the backrefs
 | 
						|
 * for any file that has been through replay.
 | 
						|
 *
 | 
						|
 * The scan will update the link count on the inode to reflect the
 | 
						|
 * number of back refs found.  If it goes down to zero, the iput
 | 
						|
 * will free the inode.
 | 
						|
 */
 | 
						|
static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
 | 
						|
					   struct btrfs_root *root,
 | 
						|
					   struct inode *inode)
 | 
						|
{
 | 
						|
	struct btrfs_path *path;
 | 
						|
	int ret;
 | 
						|
	u64 nlink = 0;
 | 
						|
	u64 ino = btrfs_ino(BTRFS_I(inode));
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	ret = count_inode_refs(root, BTRFS_I(inode), path);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	nlink = ret;
 | 
						|
 | 
						|
	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	nlink += ret;
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
 | 
						|
	if (nlink != inode->i_nlink) {
 | 
						|
		set_nlink(inode, nlink);
 | 
						|
		btrfs_update_inode(trans, root, inode);
 | 
						|
	}
 | 
						|
	BTRFS_I(inode)->index_cnt = (u64)-1;
 | 
						|
 | 
						|
	if (inode->i_nlink == 0) {
 | 
						|
		if (S_ISDIR(inode->i_mode)) {
 | 
						|
			ret = replay_dir_deletes(trans, root, NULL, path,
 | 
						|
						 ino, 1);
 | 
						|
			if (ret)
 | 
						|
				goto out;
 | 
						|
		}
 | 
						|
		ret = insert_orphan_item(trans, root, ino);
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
 | 
						|
					    struct btrfs_root *root,
 | 
						|
					    struct btrfs_path *path)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct btrfs_key key;
 | 
						|
	struct inode *inode;
 | 
						|
 | 
						|
	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
 | 
						|
	key.type = BTRFS_ORPHAN_ITEM_KEY;
 | 
						|
	key.offset = (u64)-1;
 | 
						|
	while (1) {
 | 
						|
		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | 
						|
		if (ret < 0)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (ret == 1) {
 | 
						|
			if (path->slots[0] == 0)
 | 
						|
				break;
 | 
						|
			path->slots[0]--;
 | 
						|
		}
 | 
						|
 | 
						|
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | 
						|
		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
 | 
						|
		    key.type != BTRFS_ORPHAN_ITEM_KEY)
 | 
						|
			break;
 | 
						|
 | 
						|
		ret = btrfs_del_item(trans, root, path);
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		btrfs_release_path(path);
 | 
						|
		inode = read_one_inode(root, key.offset);
 | 
						|
		if (!inode)
 | 
						|
			return -EIO;
 | 
						|
 | 
						|
		ret = fixup_inode_link_count(trans, root, inode);
 | 
						|
		iput(inode);
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * fixup on a directory may create new entries,
 | 
						|
		 * make sure we always look for the highset possible
 | 
						|
		 * offset
 | 
						|
		 */
 | 
						|
		key.offset = (u64)-1;
 | 
						|
	}
 | 
						|
	ret = 0;
 | 
						|
out:
 | 
						|
	btrfs_release_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * record a given inode in the fixup dir so we can check its link
 | 
						|
 * count when replay is done.  The link count is incremented here
 | 
						|
 * so the inode won't go away until we check it
 | 
						|
 */
 | 
						|
static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 | 
						|
				      struct btrfs_root *root,
 | 
						|
				      struct btrfs_path *path,
 | 
						|
				      u64 objectid)
 | 
						|
{
 | 
						|
	struct btrfs_key key;
 | 
						|
	int ret = 0;
 | 
						|
	struct inode *inode;
 | 
						|
 | 
						|
	inode = read_one_inode(root, objectid);
 | 
						|
	if (!inode)
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
 | 
						|
	key.type = BTRFS_ORPHAN_ITEM_KEY;
 | 
						|
	key.offset = objectid;
 | 
						|
 | 
						|
	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
 | 
						|
 | 
						|
	btrfs_release_path(path);
 | 
						|
	if (ret == 0) {
 | 
						|
		if (!inode->i_nlink)
 | 
						|
			set_nlink(inode, 1);
 | 
						|
		else
 | 
						|
			inc_nlink(inode);
 | 
						|
		ret = btrfs_update_inode(trans, root, inode);
 | 
						|
	} else if (ret == -EEXIST) {
 | 
						|
		ret = 0;
 | 
						|
	} else {
 | 
						|
		BUG(); /* Logic Error */
 | 
						|
	}
 | 
						|
	iput(inode);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * when replaying the log for a directory, we only insert names
 | 
						|
 * for inodes that actually exist.  This means an fsync on a directory
 | 
						|
 * does not implicitly fsync all the new files in it
 | 
						|
 */
 | 
						|
static noinline int insert_one_name(struct btrfs_trans_handle *trans,
 | 
						|
				    struct btrfs_root *root,
 | 
						|
				    u64 dirid, u64 index,
 | 
						|
				    char *name, int name_len,
 | 
						|
				    struct btrfs_key *location)
 | 
						|
{
 | 
						|
	struct inode *inode;
 | 
						|
	struct inode *dir;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	inode = read_one_inode(root, location->objectid);
 | 
						|
	if (!inode)
 | 
						|
		return -ENOENT;
 | 
						|
 | 
						|
	dir = read_one_inode(root, dirid);
 | 
						|
	if (!dir) {
 | 
						|
		iput(inode);
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
 | 
						|
			name_len, 1, index);
 | 
						|
 | 
						|
	/* FIXME, put inode into FIXUP list */
 | 
						|
 | 
						|
	iput(inode);
 | 
						|
	iput(dir);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return true if an inode reference exists in the log for the given name,
 | 
						|
 * inode and parent inode.
 | 
						|
 */
 | 
						|
static bool name_in_log_ref(struct btrfs_root *log_root,
 | 
						|
			    const char *name, const int name_len,
 | 
						|
			    const u64 dirid, const u64 ino)
 | 
						|
{
 | 
						|
	struct btrfs_key search_key;
 | 
						|
 | 
						|
	search_key.objectid = ino;
 | 
						|
	search_key.type = BTRFS_INODE_REF_KEY;
 | 
						|
	search_key.offset = dirid;
 | 
						|
	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
 | 
						|
		return true;
 | 
						|
 | 
						|
	search_key.type = BTRFS_INODE_EXTREF_KEY;
 | 
						|
	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
 | 
						|
	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * take a single entry in a log directory item and replay it into
 | 
						|
 * the subvolume.
 | 
						|
 *
 | 
						|
 * if a conflicting item exists in the subdirectory already,
 | 
						|
 * the inode it points to is unlinked and put into the link count
 | 
						|
 * fix up tree.
 | 
						|
 *
 | 
						|
 * If a name from the log points to a file or directory that does
 | 
						|
 * not exist in the FS, it is skipped.  fsyncs on directories
 | 
						|
 * do not force down inodes inside that directory, just changes to the
 | 
						|
 * names or unlinks in a directory.
 | 
						|
 *
 | 
						|
 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
 | 
						|
 * non-existing inode) and 1 if the name was replayed.
 | 
						|
 */
 | 
						|
static noinline int replay_one_name(struct btrfs_trans_handle *trans,
 | 
						|
				    struct btrfs_root *root,
 | 
						|
				    struct btrfs_path *path,
 | 
						|
				    struct extent_buffer *eb,
 | 
						|
				    struct btrfs_dir_item *di,
 | 
						|
				    struct btrfs_key *key)
 | 
						|
{
 | 
						|
	char *name;
 | 
						|
	int name_len;
 | 
						|
	struct btrfs_dir_item *dst_di;
 | 
						|
	struct btrfs_key found_key;
 | 
						|
	struct btrfs_key log_key;
 | 
						|
	struct inode *dir;
 | 
						|
	u8 log_type;
 | 
						|
	int exists;
 | 
						|
	int ret = 0;
 | 
						|
	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
 | 
						|
	bool name_added = false;
 | 
						|
 | 
						|
	dir = read_one_inode(root, key->objectid);
 | 
						|
	if (!dir)
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	name_len = btrfs_dir_name_len(eb, di);
 | 
						|
	name = kmalloc(name_len, GFP_NOFS);
 | 
						|
	if (!name) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	log_type = btrfs_dir_type(eb, di);
 | 
						|
	read_extent_buffer(eb, name, (unsigned long)(di + 1),
 | 
						|
		   name_len);
 | 
						|
 | 
						|
	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
 | 
						|
	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
 | 
						|
	if (exists == 0)
 | 
						|
		exists = 1;
 | 
						|
	else
 | 
						|
		exists = 0;
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	if (key->type == BTRFS_DIR_ITEM_KEY) {
 | 
						|
		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
 | 
						|
				       name, name_len, 1);
 | 
						|
	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
 | 
						|
		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
 | 
						|
						     key->objectid,
 | 
						|
						     key->offset, name,
 | 
						|
						     name_len, 1);
 | 
						|
	} else {
 | 
						|
		/* Corruption */
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	if (IS_ERR_OR_NULL(dst_di)) {
 | 
						|
		/* we need a sequence number to insert, so we only
 | 
						|
		 * do inserts for the BTRFS_DIR_INDEX_KEY types
 | 
						|
		 */
 | 
						|
		if (key->type != BTRFS_DIR_INDEX_KEY)
 | 
						|
			goto out;
 | 
						|
		goto insert;
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
 | 
						|
	/* the existing item matches the logged item */
 | 
						|
	if (found_key.objectid == log_key.objectid &&
 | 
						|
	    found_key.type == log_key.type &&
 | 
						|
	    found_key.offset == log_key.offset &&
 | 
						|
	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
 | 
						|
		update_size = false;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * don't drop the conflicting directory entry if the inode
 | 
						|
	 * for the new entry doesn't exist
 | 
						|
	 */
 | 
						|
	if (!exists)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (key->type == BTRFS_DIR_INDEX_KEY)
 | 
						|
		goto insert;
 | 
						|
out:
 | 
						|
	btrfs_release_path(path);
 | 
						|
	if (!ret && update_size) {
 | 
						|
		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
 | 
						|
		ret = btrfs_update_inode(trans, root, dir);
 | 
						|
	}
 | 
						|
	kfree(name);
 | 
						|
	iput(dir);
 | 
						|
	if (!ret && name_added)
 | 
						|
		ret = 1;
 | 
						|
	return ret;
 | 
						|
 | 
						|
insert:
 | 
						|
	if (name_in_log_ref(root->log_root, name, name_len,
 | 
						|
			    key->objectid, log_key.objectid)) {
 | 
						|
		/* The dentry will be added later. */
 | 
						|
		ret = 0;
 | 
						|
		update_size = false;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	btrfs_release_path(path);
 | 
						|
	ret = insert_one_name(trans, root, key->objectid, key->offset,
 | 
						|
			      name, name_len, &log_key);
 | 
						|
	if (ret && ret != -ENOENT && ret != -EEXIST)
 | 
						|
		goto out;
 | 
						|
	if (!ret)
 | 
						|
		name_added = true;
 | 
						|
	update_size = false;
 | 
						|
	ret = 0;
 | 
						|
	goto out;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * find all the names in a directory item and reconcile them into
 | 
						|
 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
 | 
						|
 * one name in a directory item, but the same code gets used for
 | 
						|
 * both directory index types
 | 
						|
 */
 | 
						|
static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
 | 
						|
					struct btrfs_root *root,
 | 
						|
					struct btrfs_path *path,
 | 
						|
					struct extent_buffer *eb, int slot,
 | 
						|
					struct btrfs_key *key)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	u32 item_size = btrfs_item_size_nr(eb, slot);
 | 
						|
	struct btrfs_dir_item *di;
 | 
						|
	int name_len;
 | 
						|
	unsigned long ptr;
 | 
						|
	unsigned long ptr_end;
 | 
						|
	struct btrfs_path *fixup_path = NULL;
 | 
						|
 | 
						|
	ptr = btrfs_item_ptr_offset(eb, slot);
 | 
						|
	ptr_end = ptr + item_size;
 | 
						|
	while (ptr < ptr_end) {
 | 
						|
		di = (struct btrfs_dir_item *)ptr;
 | 
						|
		name_len = btrfs_dir_name_len(eb, di);
 | 
						|
		ret = replay_one_name(trans, root, path, eb, di, key);
 | 
						|
		if (ret < 0)
 | 
						|
			break;
 | 
						|
		ptr = (unsigned long)(di + 1);
 | 
						|
		ptr += name_len;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If this entry refers to a non-directory (directories can not
 | 
						|
		 * have a link count > 1) and it was added in the transaction
 | 
						|
		 * that was not committed, make sure we fixup the link count of
 | 
						|
		 * the inode it the entry points to. Otherwise something like
 | 
						|
		 * the following would result in a directory pointing to an
 | 
						|
		 * inode with a wrong link that does not account for this dir
 | 
						|
		 * entry:
 | 
						|
		 *
 | 
						|
		 * mkdir testdir
 | 
						|
		 * touch testdir/foo
 | 
						|
		 * touch testdir/bar
 | 
						|
		 * sync
 | 
						|
		 *
 | 
						|
		 * ln testdir/bar testdir/bar_link
 | 
						|
		 * ln testdir/foo testdir/foo_link
 | 
						|
		 * xfs_io -c "fsync" testdir/bar
 | 
						|
		 *
 | 
						|
		 * <power failure>
 | 
						|
		 *
 | 
						|
		 * mount fs, log replay happens
 | 
						|
		 *
 | 
						|
		 * File foo would remain with a link count of 1 when it has two
 | 
						|
		 * entries pointing to it in the directory testdir. This would
 | 
						|
		 * make it impossible to ever delete the parent directory has
 | 
						|
		 * it would result in stale dentries that can never be deleted.
 | 
						|
		 */
 | 
						|
		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
 | 
						|
			struct btrfs_key di_key;
 | 
						|
 | 
						|
			if (!fixup_path) {
 | 
						|
				fixup_path = btrfs_alloc_path();
 | 
						|
				if (!fixup_path) {
 | 
						|
					ret = -ENOMEM;
 | 
						|
					break;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
 | 
						|
			ret = link_to_fixup_dir(trans, root, fixup_path,
 | 
						|
						di_key.objectid);
 | 
						|
			if (ret)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		ret = 0;
 | 
						|
	}
 | 
						|
	btrfs_free_path(fixup_path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * directory replay has two parts.  There are the standard directory
 | 
						|
 * items in the log copied from the subvolume, and range items
 | 
						|
 * created in the log while the subvolume was logged.
 | 
						|
 *
 | 
						|
 * The range items tell us which parts of the key space the log
 | 
						|
 * is authoritative for.  During replay, if a key in the subvolume
 | 
						|
 * directory is in a logged range item, but not actually in the log
 | 
						|
 * that means it was deleted from the directory before the fsync
 | 
						|
 * and should be removed.
 | 
						|
 */
 | 
						|
static noinline int find_dir_range(struct btrfs_root *root,
 | 
						|
				   struct btrfs_path *path,
 | 
						|
				   u64 dirid, int key_type,
 | 
						|
				   u64 *start_ret, u64 *end_ret)
 | 
						|
{
 | 
						|
	struct btrfs_key key;
 | 
						|
	u64 found_end;
 | 
						|
	struct btrfs_dir_log_item *item;
 | 
						|
	int ret;
 | 
						|
	int nritems;
 | 
						|
 | 
						|
	if (*start_ret == (u64)-1)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	key.objectid = dirid;
 | 
						|
	key.type = key_type;
 | 
						|
	key.offset = *start_ret;
 | 
						|
 | 
						|
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out;
 | 
						|
	if (ret > 0) {
 | 
						|
		if (path->slots[0] == 0)
 | 
						|
			goto out;
 | 
						|
		path->slots[0]--;
 | 
						|
	}
 | 
						|
	if (ret != 0)
 | 
						|
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | 
						|
 | 
						|
	if (key.type != key_type || key.objectid != dirid) {
 | 
						|
		ret = 1;
 | 
						|
		goto next;
 | 
						|
	}
 | 
						|
	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | 
						|
			      struct btrfs_dir_log_item);
 | 
						|
	found_end = btrfs_dir_log_end(path->nodes[0], item);
 | 
						|
 | 
						|
	if (*start_ret >= key.offset && *start_ret <= found_end) {
 | 
						|
		ret = 0;
 | 
						|
		*start_ret = key.offset;
 | 
						|
		*end_ret = found_end;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	ret = 1;
 | 
						|
next:
 | 
						|
	/* check the next slot in the tree to see if it is a valid item */
 | 
						|
	nritems = btrfs_header_nritems(path->nodes[0]);
 | 
						|
	path->slots[0]++;
 | 
						|
	if (path->slots[0] >= nritems) {
 | 
						|
		ret = btrfs_next_leaf(root, path);
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | 
						|
 | 
						|
	if (key.type != key_type || key.objectid != dirid) {
 | 
						|
		ret = 1;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | 
						|
			      struct btrfs_dir_log_item);
 | 
						|
	found_end = btrfs_dir_log_end(path->nodes[0], item);
 | 
						|
	*start_ret = key.offset;
 | 
						|
	*end_ret = found_end;
 | 
						|
	ret = 0;
 | 
						|
out:
 | 
						|
	btrfs_release_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * this looks for a given directory item in the log.  If the directory
 | 
						|
 * item is not in the log, the item is removed and the inode it points
 | 
						|
 * to is unlinked
 | 
						|
 */
 | 
						|
static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
 | 
						|
				      struct btrfs_root *root,
 | 
						|
				      struct btrfs_root *log,
 | 
						|
				      struct btrfs_path *path,
 | 
						|
				      struct btrfs_path *log_path,
 | 
						|
				      struct inode *dir,
 | 
						|
				      struct btrfs_key *dir_key)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	int ret;
 | 
						|
	struct extent_buffer *eb;
 | 
						|
	int slot;
 | 
						|
	u32 item_size;
 | 
						|
	struct btrfs_dir_item *di;
 | 
						|
	struct btrfs_dir_item *log_di;
 | 
						|
	int name_len;
 | 
						|
	unsigned long ptr;
 | 
						|
	unsigned long ptr_end;
 | 
						|
	char *name;
 | 
						|
	struct inode *inode;
 | 
						|
	struct btrfs_key location;
 | 
						|
 | 
						|
again:
 | 
						|
	eb = path->nodes[0];
 | 
						|
	slot = path->slots[0];
 | 
						|
	item_size = btrfs_item_size_nr(eb, slot);
 | 
						|
	ptr = btrfs_item_ptr_offset(eb, slot);
 | 
						|
	ptr_end = ptr + item_size;
 | 
						|
	while (ptr < ptr_end) {
 | 
						|
		di = (struct btrfs_dir_item *)ptr;
 | 
						|
		name_len = btrfs_dir_name_len(eb, di);
 | 
						|
		name = kmalloc(name_len, GFP_NOFS);
 | 
						|
		if (!name) {
 | 
						|
			ret = -ENOMEM;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		read_extent_buffer(eb, name, (unsigned long)(di + 1),
 | 
						|
				  name_len);
 | 
						|
		log_di = NULL;
 | 
						|
		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
 | 
						|
			log_di = btrfs_lookup_dir_item(trans, log, log_path,
 | 
						|
						       dir_key->objectid,
 | 
						|
						       name, name_len, 0);
 | 
						|
		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
 | 
						|
			log_di = btrfs_lookup_dir_index_item(trans, log,
 | 
						|
						     log_path,
 | 
						|
						     dir_key->objectid,
 | 
						|
						     dir_key->offset,
 | 
						|
						     name, name_len, 0);
 | 
						|
		}
 | 
						|
		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
 | 
						|
			btrfs_dir_item_key_to_cpu(eb, di, &location);
 | 
						|
			btrfs_release_path(path);
 | 
						|
			btrfs_release_path(log_path);
 | 
						|
			inode = read_one_inode(root, location.objectid);
 | 
						|
			if (!inode) {
 | 
						|
				kfree(name);
 | 
						|
				return -EIO;
 | 
						|
			}
 | 
						|
 | 
						|
			ret = link_to_fixup_dir(trans, root,
 | 
						|
						path, location.objectid);
 | 
						|
			if (ret) {
 | 
						|
				kfree(name);
 | 
						|
				iput(inode);
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
 | 
						|
			inc_nlink(inode);
 | 
						|
			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
 | 
						|
					BTRFS_I(inode), name, name_len);
 | 
						|
			if (!ret)
 | 
						|
				ret = btrfs_run_delayed_items(trans, fs_info);
 | 
						|
			kfree(name);
 | 
						|
			iput(inode);
 | 
						|
			if (ret)
 | 
						|
				goto out;
 | 
						|
 | 
						|
			/* there might still be more names under this key
 | 
						|
			 * check and repeat if required
 | 
						|
			 */
 | 
						|
			ret = btrfs_search_slot(NULL, root, dir_key, path,
 | 
						|
						0, 0);
 | 
						|
			if (ret == 0)
 | 
						|
				goto again;
 | 
						|
			ret = 0;
 | 
						|
			goto out;
 | 
						|
		} else if (IS_ERR(log_di)) {
 | 
						|
			kfree(name);
 | 
						|
			return PTR_ERR(log_di);
 | 
						|
		}
 | 
						|
		btrfs_release_path(log_path);
 | 
						|
		kfree(name);
 | 
						|
 | 
						|
		ptr = (unsigned long)(di + 1);
 | 
						|
		ptr += name_len;
 | 
						|
	}
 | 
						|
	ret = 0;
 | 
						|
out:
 | 
						|
	btrfs_release_path(path);
 | 
						|
	btrfs_release_path(log_path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
 | 
						|
			      struct btrfs_root *root,
 | 
						|
			      struct btrfs_root *log,
 | 
						|
			      struct btrfs_path *path,
 | 
						|
			      const u64 ino)
 | 
						|
{
 | 
						|
	struct btrfs_key search_key;
 | 
						|
	struct btrfs_path *log_path;
 | 
						|
	int i;
 | 
						|
	int nritems;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	log_path = btrfs_alloc_path();
 | 
						|
	if (!log_path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	search_key.objectid = ino;
 | 
						|
	search_key.type = BTRFS_XATTR_ITEM_KEY;
 | 
						|
	search_key.offset = 0;
 | 
						|
again:
 | 
						|
	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out;
 | 
						|
process_leaf:
 | 
						|
	nritems = btrfs_header_nritems(path->nodes[0]);
 | 
						|
	for (i = path->slots[0]; i < nritems; i++) {
 | 
						|
		struct btrfs_key key;
 | 
						|
		struct btrfs_dir_item *di;
 | 
						|
		struct btrfs_dir_item *log_di;
 | 
						|
		u32 total_size;
 | 
						|
		u32 cur;
 | 
						|
 | 
						|
		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
 | 
						|
		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
 | 
						|
			ret = 0;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
 | 
						|
		total_size = btrfs_item_size_nr(path->nodes[0], i);
 | 
						|
		cur = 0;
 | 
						|
		while (cur < total_size) {
 | 
						|
			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
 | 
						|
			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
 | 
						|
			u32 this_len = sizeof(*di) + name_len + data_len;
 | 
						|
			char *name;
 | 
						|
 | 
						|
			name = kmalloc(name_len, GFP_NOFS);
 | 
						|
			if (!name) {
 | 
						|
				ret = -ENOMEM;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			read_extent_buffer(path->nodes[0], name,
 | 
						|
					   (unsigned long)(di + 1), name_len);
 | 
						|
 | 
						|
			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
 | 
						|
						    name, name_len, 0);
 | 
						|
			btrfs_release_path(log_path);
 | 
						|
			if (!log_di) {
 | 
						|
				/* Doesn't exist in log tree, so delete it. */
 | 
						|
				btrfs_release_path(path);
 | 
						|
				di = btrfs_lookup_xattr(trans, root, path, ino,
 | 
						|
							name, name_len, -1);
 | 
						|
				kfree(name);
 | 
						|
				if (IS_ERR(di)) {
 | 
						|
					ret = PTR_ERR(di);
 | 
						|
					goto out;
 | 
						|
				}
 | 
						|
				ASSERT(di);
 | 
						|
				ret = btrfs_delete_one_dir_name(trans, root,
 | 
						|
								path, di);
 | 
						|
				if (ret)
 | 
						|
					goto out;
 | 
						|
				btrfs_release_path(path);
 | 
						|
				search_key = key;
 | 
						|
				goto again;
 | 
						|
			}
 | 
						|
			kfree(name);
 | 
						|
			if (IS_ERR(log_di)) {
 | 
						|
				ret = PTR_ERR(log_di);
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			cur += this_len;
 | 
						|
			di = (struct btrfs_dir_item *)((char *)di + this_len);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	ret = btrfs_next_leaf(root, path);
 | 
						|
	if (ret > 0)
 | 
						|
		ret = 0;
 | 
						|
	else if (ret == 0)
 | 
						|
		goto process_leaf;
 | 
						|
out:
 | 
						|
	btrfs_free_path(log_path);
 | 
						|
	btrfs_release_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * deletion replay happens before we copy any new directory items
 | 
						|
 * out of the log or out of backreferences from inodes.  It
 | 
						|
 * scans the log to find ranges of keys that log is authoritative for,
 | 
						|
 * and then scans the directory to find items in those ranges that are
 | 
						|
 * not present in the log.
 | 
						|
 *
 | 
						|
 * Anything we don't find in the log is unlinked and removed from the
 | 
						|
 * directory.
 | 
						|
 */
 | 
						|
static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 | 
						|
				       struct btrfs_root *root,
 | 
						|
				       struct btrfs_root *log,
 | 
						|
				       struct btrfs_path *path,
 | 
						|
				       u64 dirid, int del_all)
 | 
						|
{
 | 
						|
	u64 range_start;
 | 
						|
	u64 range_end;
 | 
						|
	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
 | 
						|
	int ret = 0;
 | 
						|
	struct btrfs_key dir_key;
 | 
						|
	struct btrfs_key found_key;
 | 
						|
	struct btrfs_path *log_path;
 | 
						|
	struct inode *dir;
 | 
						|
 | 
						|
	dir_key.objectid = dirid;
 | 
						|
	dir_key.type = BTRFS_DIR_ITEM_KEY;
 | 
						|
	log_path = btrfs_alloc_path();
 | 
						|
	if (!log_path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	dir = read_one_inode(root, dirid);
 | 
						|
	/* it isn't an error if the inode isn't there, that can happen
 | 
						|
	 * because we replay the deletes before we copy in the inode item
 | 
						|
	 * from the log
 | 
						|
	 */
 | 
						|
	if (!dir) {
 | 
						|
		btrfs_free_path(log_path);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
again:
 | 
						|
	range_start = 0;
 | 
						|
	range_end = 0;
 | 
						|
	while (1) {
 | 
						|
		if (del_all)
 | 
						|
			range_end = (u64)-1;
 | 
						|
		else {
 | 
						|
			ret = find_dir_range(log, path, dirid, key_type,
 | 
						|
					     &range_start, &range_end);
 | 
						|
			if (ret != 0)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
 | 
						|
		dir_key.offset = range_start;
 | 
						|
		while (1) {
 | 
						|
			int nritems;
 | 
						|
			ret = btrfs_search_slot(NULL, root, &dir_key, path,
 | 
						|
						0, 0);
 | 
						|
			if (ret < 0)
 | 
						|
				goto out;
 | 
						|
 | 
						|
			nritems = btrfs_header_nritems(path->nodes[0]);
 | 
						|
			if (path->slots[0] >= nritems) {
 | 
						|
				ret = btrfs_next_leaf(root, path);
 | 
						|
				if (ret)
 | 
						|
					break;
 | 
						|
			}
 | 
						|
			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 | 
						|
					      path->slots[0]);
 | 
						|
			if (found_key.objectid != dirid ||
 | 
						|
			    found_key.type != dir_key.type)
 | 
						|
				goto next_type;
 | 
						|
 | 
						|
			if (found_key.offset > range_end)
 | 
						|
				break;
 | 
						|
 | 
						|
			ret = check_item_in_log(trans, root, log, path,
 | 
						|
						log_path, dir,
 | 
						|
						&found_key);
 | 
						|
			if (ret)
 | 
						|
				goto out;
 | 
						|
			if (found_key.offset == (u64)-1)
 | 
						|
				break;
 | 
						|
			dir_key.offset = found_key.offset + 1;
 | 
						|
		}
 | 
						|
		btrfs_release_path(path);
 | 
						|
		if (range_end == (u64)-1)
 | 
						|
			break;
 | 
						|
		range_start = range_end + 1;
 | 
						|
	}
 | 
						|
 | 
						|
next_type:
 | 
						|
	ret = 0;
 | 
						|
	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
 | 
						|
		key_type = BTRFS_DIR_LOG_INDEX_KEY;
 | 
						|
		dir_key.type = BTRFS_DIR_INDEX_KEY;
 | 
						|
		btrfs_release_path(path);
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	btrfs_release_path(path);
 | 
						|
	btrfs_free_path(log_path);
 | 
						|
	iput(dir);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * the process_func used to replay items from the log tree.  This
 | 
						|
 * gets called in two different stages.  The first stage just looks
 | 
						|
 * for inodes and makes sure they are all copied into the subvolume.
 | 
						|
 *
 | 
						|
 * The second stage copies all the other item types from the log into
 | 
						|
 * the subvolume.  The two stage approach is slower, but gets rid of
 | 
						|
 * lots of complexity around inodes referencing other inodes that exist
 | 
						|
 * only in the log (references come from either directory items or inode
 | 
						|
 * back refs).
 | 
						|
 */
 | 
						|
static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
 | 
						|
			     struct walk_control *wc, u64 gen)
 | 
						|
{
 | 
						|
	int nritems;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct btrfs_root *root = wc->replay_dest;
 | 
						|
	struct btrfs_key key;
 | 
						|
	int level;
 | 
						|
	int i;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = btrfs_read_buffer(eb, gen);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	level = btrfs_header_level(eb);
 | 
						|
 | 
						|
	if (level != 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	nritems = btrfs_header_nritems(eb);
 | 
						|
	for (i = 0; i < nritems; i++) {
 | 
						|
		btrfs_item_key_to_cpu(eb, &key, i);
 | 
						|
 | 
						|
		/* inode keys are done during the first stage */
 | 
						|
		if (key.type == BTRFS_INODE_ITEM_KEY &&
 | 
						|
		    wc->stage == LOG_WALK_REPLAY_INODES) {
 | 
						|
			struct btrfs_inode_item *inode_item;
 | 
						|
			u32 mode;
 | 
						|
 | 
						|
			inode_item = btrfs_item_ptr(eb, i,
 | 
						|
					    struct btrfs_inode_item);
 | 
						|
			ret = replay_xattr_deletes(wc->trans, root, log,
 | 
						|
						   path, key.objectid);
 | 
						|
			if (ret)
 | 
						|
				break;
 | 
						|
			mode = btrfs_inode_mode(eb, inode_item);
 | 
						|
			if (S_ISDIR(mode)) {
 | 
						|
				ret = replay_dir_deletes(wc->trans,
 | 
						|
					 root, log, path, key.objectid, 0);
 | 
						|
				if (ret)
 | 
						|
					break;
 | 
						|
			}
 | 
						|
			ret = overwrite_item(wc->trans, root, path,
 | 
						|
					     eb, i, &key);
 | 
						|
			if (ret)
 | 
						|
				break;
 | 
						|
 | 
						|
			/* for regular files, make sure corresponding
 | 
						|
			 * orphan item exist. extents past the new EOF
 | 
						|
			 * will be truncated later by orphan cleanup.
 | 
						|
			 */
 | 
						|
			if (S_ISREG(mode)) {
 | 
						|
				ret = insert_orphan_item(wc->trans, root,
 | 
						|
							 key.objectid);
 | 
						|
				if (ret)
 | 
						|
					break;
 | 
						|
			}
 | 
						|
 | 
						|
			ret = link_to_fixup_dir(wc->trans, root,
 | 
						|
						path, key.objectid);
 | 
						|
			if (ret)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (key.type == BTRFS_DIR_INDEX_KEY &&
 | 
						|
		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
 | 
						|
			ret = replay_one_dir_item(wc->trans, root, path,
 | 
						|
						  eb, i, &key);
 | 
						|
			if (ret)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (wc->stage < LOG_WALK_REPLAY_ALL)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* these keys are simply copied */
 | 
						|
		if (key.type == BTRFS_XATTR_ITEM_KEY) {
 | 
						|
			ret = overwrite_item(wc->trans, root, path,
 | 
						|
					     eb, i, &key);
 | 
						|
			if (ret)
 | 
						|
				break;
 | 
						|
		} else if (key.type == BTRFS_INODE_REF_KEY ||
 | 
						|
			   key.type == BTRFS_INODE_EXTREF_KEY) {
 | 
						|
			ret = add_inode_ref(wc->trans, root, log, path,
 | 
						|
					    eb, i, &key);
 | 
						|
			if (ret && ret != -ENOENT)
 | 
						|
				break;
 | 
						|
			ret = 0;
 | 
						|
		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
 | 
						|
			ret = replay_one_extent(wc->trans, root, path,
 | 
						|
						eb, i, &key);
 | 
						|
			if (ret)
 | 
						|
				break;
 | 
						|
		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
 | 
						|
			ret = replay_one_dir_item(wc->trans, root, path,
 | 
						|
						  eb, i, &key);
 | 
						|
			if (ret)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
 | 
						|
				   struct btrfs_root *root,
 | 
						|
				   struct btrfs_path *path, int *level,
 | 
						|
				   struct walk_control *wc)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	u64 root_owner;
 | 
						|
	u64 bytenr;
 | 
						|
	u64 ptr_gen;
 | 
						|
	struct extent_buffer *next;
 | 
						|
	struct extent_buffer *cur;
 | 
						|
	struct extent_buffer *parent;
 | 
						|
	u32 blocksize;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	WARN_ON(*level < 0);
 | 
						|
	WARN_ON(*level >= BTRFS_MAX_LEVEL);
 | 
						|
 | 
						|
	while (*level > 0) {
 | 
						|
		WARN_ON(*level < 0);
 | 
						|
		WARN_ON(*level >= BTRFS_MAX_LEVEL);
 | 
						|
		cur = path->nodes[*level];
 | 
						|
 | 
						|
		WARN_ON(btrfs_header_level(cur) != *level);
 | 
						|
 | 
						|
		if (path->slots[*level] >=
 | 
						|
		    btrfs_header_nritems(cur))
 | 
						|
			break;
 | 
						|
 | 
						|
		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
 | 
						|
		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
 | 
						|
		blocksize = fs_info->nodesize;
 | 
						|
 | 
						|
		parent = path->nodes[*level];
 | 
						|
		root_owner = btrfs_header_owner(parent);
 | 
						|
 | 
						|
		next = btrfs_find_create_tree_block(fs_info, bytenr);
 | 
						|
		if (IS_ERR(next))
 | 
						|
			return PTR_ERR(next);
 | 
						|
 | 
						|
		if (*level == 1) {
 | 
						|
			ret = wc->process_func(root, next, wc, ptr_gen);
 | 
						|
			if (ret) {
 | 
						|
				free_extent_buffer(next);
 | 
						|
				return ret;
 | 
						|
			}
 | 
						|
 | 
						|
			path->slots[*level]++;
 | 
						|
			if (wc->free) {
 | 
						|
				ret = btrfs_read_buffer(next, ptr_gen);
 | 
						|
				if (ret) {
 | 
						|
					free_extent_buffer(next);
 | 
						|
					return ret;
 | 
						|
				}
 | 
						|
 | 
						|
				if (trans) {
 | 
						|
					btrfs_tree_lock(next);
 | 
						|
					btrfs_set_lock_blocking(next);
 | 
						|
					clean_tree_block(fs_info, next);
 | 
						|
					btrfs_wait_tree_block_writeback(next);
 | 
						|
					btrfs_tree_unlock(next);
 | 
						|
				} else {
 | 
						|
					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
 | 
						|
						clear_extent_buffer_dirty(next);
 | 
						|
				}
 | 
						|
 | 
						|
				WARN_ON(root_owner !=
 | 
						|
					BTRFS_TREE_LOG_OBJECTID);
 | 
						|
				ret = btrfs_free_and_pin_reserved_extent(
 | 
						|
							fs_info, bytenr,
 | 
						|
							blocksize);
 | 
						|
				if (ret) {
 | 
						|
					free_extent_buffer(next);
 | 
						|
					return ret;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			free_extent_buffer(next);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		ret = btrfs_read_buffer(next, ptr_gen);
 | 
						|
		if (ret) {
 | 
						|
			free_extent_buffer(next);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
 | 
						|
		WARN_ON(*level <= 0);
 | 
						|
		if (path->nodes[*level-1])
 | 
						|
			free_extent_buffer(path->nodes[*level-1]);
 | 
						|
		path->nodes[*level-1] = next;
 | 
						|
		*level = btrfs_header_level(next);
 | 
						|
		path->slots[*level] = 0;
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
	WARN_ON(*level < 0);
 | 
						|
	WARN_ON(*level >= BTRFS_MAX_LEVEL);
 | 
						|
 | 
						|
	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
 | 
						|
 | 
						|
	cond_resched();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
 | 
						|
				 struct btrfs_root *root,
 | 
						|
				 struct btrfs_path *path, int *level,
 | 
						|
				 struct walk_control *wc)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	u64 root_owner;
 | 
						|
	int i;
 | 
						|
	int slot;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
 | 
						|
		slot = path->slots[i];
 | 
						|
		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
 | 
						|
			path->slots[i]++;
 | 
						|
			*level = i;
 | 
						|
			WARN_ON(*level == 0);
 | 
						|
			return 0;
 | 
						|
		} else {
 | 
						|
			struct extent_buffer *parent;
 | 
						|
			if (path->nodes[*level] == root->node)
 | 
						|
				parent = path->nodes[*level];
 | 
						|
			else
 | 
						|
				parent = path->nodes[*level + 1];
 | 
						|
 | 
						|
			root_owner = btrfs_header_owner(parent);
 | 
						|
			ret = wc->process_func(root, path->nodes[*level], wc,
 | 
						|
				 btrfs_header_generation(path->nodes[*level]));
 | 
						|
			if (ret)
 | 
						|
				return ret;
 | 
						|
 | 
						|
			if (wc->free) {
 | 
						|
				struct extent_buffer *next;
 | 
						|
 | 
						|
				next = path->nodes[*level];
 | 
						|
 | 
						|
				if (trans) {
 | 
						|
					btrfs_tree_lock(next);
 | 
						|
					btrfs_set_lock_blocking(next);
 | 
						|
					clean_tree_block(fs_info, next);
 | 
						|
					btrfs_wait_tree_block_writeback(next);
 | 
						|
					btrfs_tree_unlock(next);
 | 
						|
				} else {
 | 
						|
					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
 | 
						|
						clear_extent_buffer_dirty(next);
 | 
						|
				}
 | 
						|
 | 
						|
				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
 | 
						|
				ret = btrfs_free_and_pin_reserved_extent(
 | 
						|
						fs_info,
 | 
						|
						path->nodes[*level]->start,
 | 
						|
						path->nodes[*level]->len);
 | 
						|
				if (ret)
 | 
						|
					return ret;
 | 
						|
			}
 | 
						|
			free_extent_buffer(path->nodes[*level]);
 | 
						|
			path->nodes[*level] = NULL;
 | 
						|
			*level = i + 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * drop the reference count on the tree rooted at 'snap'.  This traverses
 | 
						|
 * the tree freeing any blocks that have a ref count of zero after being
 | 
						|
 * decremented.
 | 
						|
 */
 | 
						|
static int walk_log_tree(struct btrfs_trans_handle *trans,
 | 
						|
			 struct btrfs_root *log, struct walk_control *wc)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = log->fs_info;
 | 
						|
	int ret = 0;
 | 
						|
	int wret;
 | 
						|
	int level;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	int orig_level;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	level = btrfs_header_level(log->node);
 | 
						|
	orig_level = level;
 | 
						|
	path->nodes[level] = log->node;
 | 
						|
	extent_buffer_get(log->node);
 | 
						|
	path->slots[level] = 0;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		wret = walk_down_log_tree(trans, log, path, &level, wc);
 | 
						|
		if (wret > 0)
 | 
						|
			break;
 | 
						|
		if (wret < 0) {
 | 
						|
			ret = wret;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		wret = walk_up_log_tree(trans, log, path, &level, wc);
 | 
						|
		if (wret > 0)
 | 
						|
			break;
 | 
						|
		if (wret < 0) {
 | 
						|
			ret = wret;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* was the root node processed? if not, catch it here */
 | 
						|
	if (path->nodes[orig_level]) {
 | 
						|
		ret = wc->process_func(log, path->nodes[orig_level], wc,
 | 
						|
			 btrfs_header_generation(path->nodes[orig_level]));
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
		if (wc->free) {
 | 
						|
			struct extent_buffer *next;
 | 
						|
 | 
						|
			next = path->nodes[orig_level];
 | 
						|
 | 
						|
			if (trans) {
 | 
						|
				btrfs_tree_lock(next);
 | 
						|
				btrfs_set_lock_blocking(next);
 | 
						|
				clean_tree_block(fs_info, next);
 | 
						|
				btrfs_wait_tree_block_writeback(next);
 | 
						|
				btrfs_tree_unlock(next);
 | 
						|
			} else {
 | 
						|
				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
 | 
						|
					clear_extent_buffer_dirty(next);
 | 
						|
			}
 | 
						|
 | 
						|
			WARN_ON(log->root_key.objectid !=
 | 
						|
				BTRFS_TREE_LOG_OBJECTID);
 | 
						|
			ret = btrfs_free_and_pin_reserved_extent(fs_info,
 | 
						|
							next->start, next->len);
 | 
						|
			if (ret)
 | 
						|
				goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * helper function to update the item for a given subvolumes log root
 | 
						|
 * in the tree of log roots
 | 
						|
 */
 | 
						|
static int update_log_root(struct btrfs_trans_handle *trans,
 | 
						|
			   struct btrfs_root *log)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = log->fs_info;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (log->log_transid == 1) {
 | 
						|
		/* insert root item on the first sync */
 | 
						|
		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
 | 
						|
				&log->root_key, &log->root_item);
 | 
						|
	} else {
 | 
						|
		ret = btrfs_update_root(trans, fs_info->log_root_tree,
 | 
						|
				&log->root_key, &log->root_item);
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void wait_log_commit(struct btrfs_root *root, int transid)
 | 
						|
{
 | 
						|
	DEFINE_WAIT(wait);
 | 
						|
	int index = transid % 2;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * we only allow two pending log transactions at a time,
 | 
						|
	 * so we know that if ours is more than 2 older than the
 | 
						|
	 * current transaction, we're done
 | 
						|
	 */
 | 
						|
	for (;;) {
 | 
						|
		prepare_to_wait(&root->log_commit_wait[index],
 | 
						|
				&wait, TASK_UNINTERRUPTIBLE);
 | 
						|
 | 
						|
		if (!(root->log_transid_committed < transid &&
 | 
						|
		      atomic_read(&root->log_commit[index])))
 | 
						|
			break;
 | 
						|
 | 
						|
		mutex_unlock(&root->log_mutex);
 | 
						|
		schedule();
 | 
						|
		mutex_lock(&root->log_mutex);
 | 
						|
	}
 | 
						|
	finish_wait(&root->log_commit_wait[index], &wait);
 | 
						|
}
 | 
						|
 | 
						|
static void wait_for_writer(struct btrfs_root *root)
 | 
						|
{
 | 
						|
	DEFINE_WAIT(wait);
 | 
						|
 | 
						|
	for (;;) {
 | 
						|
		prepare_to_wait(&root->log_writer_wait, &wait,
 | 
						|
				TASK_UNINTERRUPTIBLE);
 | 
						|
		if (!atomic_read(&root->log_writers))
 | 
						|
			break;
 | 
						|
 | 
						|
		mutex_unlock(&root->log_mutex);
 | 
						|
		schedule();
 | 
						|
		mutex_lock(&root->log_mutex);
 | 
						|
	}
 | 
						|
	finish_wait(&root->log_writer_wait, &wait);
 | 
						|
}
 | 
						|
 | 
						|
static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
 | 
						|
					struct btrfs_log_ctx *ctx)
 | 
						|
{
 | 
						|
	if (!ctx)
 | 
						|
		return;
 | 
						|
 | 
						|
	mutex_lock(&root->log_mutex);
 | 
						|
	list_del_init(&ctx->list);
 | 
						|
	mutex_unlock(&root->log_mutex);
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
 * Invoked in log mutex context, or be sure there is no other task which
 | 
						|
 * can access the list.
 | 
						|
 */
 | 
						|
static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
 | 
						|
					     int index, int error)
 | 
						|
{
 | 
						|
	struct btrfs_log_ctx *ctx;
 | 
						|
	struct btrfs_log_ctx *safe;
 | 
						|
 | 
						|
	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
 | 
						|
		list_del_init(&ctx->list);
 | 
						|
		ctx->log_ret = error;
 | 
						|
	}
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&root->log_ctxs[index]);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * btrfs_sync_log does sends a given tree log down to the disk and
 | 
						|
 * updates the super blocks to record it.  When this call is done,
 | 
						|
 * you know that any inodes previously logged are safely on disk only
 | 
						|
 * if it returns 0.
 | 
						|
 *
 | 
						|
 * Any other return value means you need to call btrfs_commit_transaction.
 | 
						|
 * Some of the edge cases for fsyncing directories that have had unlinks
 | 
						|
 * or renames done in the past mean that sometimes the only safe
 | 
						|
 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
 | 
						|
 * that has happened.
 | 
						|
 */
 | 
						|
int btrfs_sync_log(struct btrfs_trans_handle *trans,
 | 
						|
		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
 | 
						|
{
 | 
						|
	int index1;
 | 
						|
	int index2;
 | 
						|
	int mark;
 | 
						|
	int ret;
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct btrfs_root *log = root->log_root;
 | 
						|
	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
 | 
						|
	int log_transid = 0;
 | 
						|
	struct btrfs_log_ctx root_log_ctx;
 | 
						|
	struct blk_plug plug;
 | 
						|
 | 
						|
	mutex_lock(&root->log_mutex);
 | 
						|
	log_transid = ctx->log_transid;
 | 
						|
	if (root->log_transid_committed >= log_transid) {
 | 
						|
		mutex_unlock(&root->log_mutex);
 | 
						|
		return ctx->log_ret;
 | 
						|
	}
 | 
						|
 | 
						|
	index1 = log_transid % 2;
 | 
						|
	if (atomic_read(&root->log_commit[index1])) {
 | 
						|
		wait_log_commit(root, log_transid);
 | 
						|
		mutex_unlock(&root->log_mutex);
 | 
						|
		return ctx->log_ret;
 | 
						|
	}
 | 
						|
	ASSERT(log_transid == root->log_transid);
 | 
						|
	atomic_set(&root->log_commit[index1], 1);
 | 
						|
 | 
						|
	/* wait for previous tree log sync to complete */
 | 
						|
	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
 | 
						|
		wait_log_commit(root, log_transid - 1);
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		int batch = atomic_read(&root->log_batch);
 | 
						|
		/* when we're on an ssd, just kick the log commit out */
 | 
						|
		if (!btrfs_test_opt(fs_info, SSD) &&
 | 
						|
		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
 | 
						|
			mutex_unlock(&root->log_mutex);
 | 
						|
			schedule_timeout_uninterruptible(1);
 | 
						|
			mutex_lock(&root->log_mutex);
 | 
						|
		}
 | 
						|
		wait_for_writer(root);
 | 
						|
		if (batch == atomic_read(&root->log_batch))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	/* bail out if we need to do a full commit */
 | 
						|
	if (btrfs_need_log_full_commit(fs_info, trans)) {
 | 
						|
		ret = -EAGAIN;
 | 
						|
		btrfs_free_logged_extents(log, log_transid);
 | 
						|
		mutex_unlock(&root->log_mutex);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (log_transid % 2 == 0)
 | 
						|
		mark = EXTENT_DIRTY;
 | 
						|
	else
 | 
						|
		mark = EXTENT_NEW;
 | 
						|
 | 
						|
	/* we start IO on  all the marked extents here, but we don't actually
 | 
						|
	 * wait for them until later.
 | 
						|
	 */
 | 
						|
	blk_start_plug(&plug);
 | 
						|
	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
 | 
						|
	if (ret) {
 | 
						|
		blk_finish_plug(&plug);
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		btrfs_free_logged_extents(log, log_transid);
 | 
						|
		btrfs_set_log_full_commit(fs_info, trans);
 | 
						|
		mutex_unlock(&root->log_mutex);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_set_root_node(&log->root_item, log->node);
 | 
						|
 | 
						|
	root->log_transid++;
 | 
						|
	log->log_transid = root->log_transid;
 | 
						|
	root->log_start_pid = 0;
 | 
						|
	/*
 | 
						|
	 * IO has been started, blocks of the log tree have WRITTEN flag set
 | 
						|
	 * in their headers. new modifications of the log will be written to
 | 
						|
	 * new positions. so it's safe to allow log writers to go in.
 | 
						|
	 */
 | 
						|
	mutex_unlock(&root->log_mutex);
 | 
						|
 | 
						|
	btrfs_init_log_ctx(&root_log_ctx, NULL);
 | 
						|
 | 
						|
	mutex_lock(&log_root_tree->log_mutex);
 | 
						|
	atomic_inc(&log_root_tree->log_batch);
 | 
						|
	atomic_inc(&log_root_tree->log_writers);
 | 
						|
 | 
						|
	index2 = log_root_tree->log_transid % 2;
 | 
						|
	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
 | 
						|
	root_log_ctx.log_transid = log_root_tree->log_transid;
 | 
						|
 | 
						|
	mutex_unlock(&log_root_tree->log_mutex);
 | 
						|
 | 
						|
	ret = update_log_root(trans, log);
 | 
						|
 | 
						|
	mutex_lock(&log_root_tree->log_mutex);
 | 
						|
	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
 | 
						|
		/*
 | 
						|
		 * Implicit memory barrier after atomic_dec_and_test
 | 
						|
		 */
 | 
						|
		if (waitqueue_active(&log_root_tree->log_writer_wait))
 | 
						|
			wake_up(&log_root_tree->log_writer_wait);
 | 
						|
	}
 | 
						|
 | 
						|
	if (ret) {
 | 
						|
		if (!list_empty(&root_log_ctx.list))
 | 
						|
			list_del_init(&root_log_ctx.list);
 | 
						|
 | 
						|
		blk_finish_plug(&plug);
 | 
						|
		btrfs_set_log_full_commit(fs_info, trans);
 | 
						|
 | 
						|
		if (ret != -ENOSPC) {
 | 
						|
			btrfs_abort_transaction(trans, ret);
 | 
						|
			mutex_unlock(&log_root_tree->log_mutex);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		btrfs_wait_tree_log_extents(log, mark);
 | 
						|
		btrfs_free_logged_extents(log, log_transid);
 | 
						|
		mutex_unlock(&log_root_tree->log_mutex);
 | 
						|
		ret = -EAGAIN;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
 | 
						|
		blk_finish_plug(&plug);
 | 
						|
		list_del_init(&root_log_ctx.list);
 | 
						|
		mutex_unlock(&log_root_tree->log_mutex);
 | 
						|
		ret = root_log_ctx.log_ret;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	index2 = root_log_ctx.log_transid % 2;
 | 
						|
	if (atomic_read(&log_root_tree->log_commit[index2])) {
 | 
						|
		blk_finish_plug(&plug);
 | 
						|
		ret = btrfs_wait_tree_log_extents(log, mark);
 | 
						|
		btrfs_wait_logged_extents(trans, log, log_transid);
 | 
						|
		wait_log_commit(log_root_tree,
 | 
						|
				root_log_ctx.log_transid);
 | 
						|
		mutex_unlock(&log_root_tree->log_mutex);
 | 
						|
		if (!ret)
 | 
						|
			ret = root_log_ctx.log_ret;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
 | 
						|
	atomic_set(&log_root_tree->log_commit[index2], 1);
 | 
						|
 | 
						|
	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
 | 
						|
		wait_log_commit(log_root_tree,
 | 
						|
				root_log_ctx.log_transid - 1);
 | 
						|
	}
 | 
						|
 | 
						|
	wait_for_writer(log_root_tree);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * now that we've moved on to the tree of log tree roots,
 | 
						|
	 * check the full commit flag again
 | 
						|
	 */
 | 
						|
	if (btrfs_need_log_full_commit(fs_info, trans)) {
 | 
						|
		blk_finish_plug(&plug);
 | 
						|
		btrfs_wait_tree_log_extents(log, mark);
 | 
						|
		btrfs_free_logged_extents(log, log_transid);
 | 
						|
		mutex_unlock(&log_root_tree->log_mutex);
 | 
						|
		ret = -EAGAIN;
 | 
						|
		goto out_wake_log_root;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_write_marked_extents(fs_info,
 | 
						|
					 &log_root_tree->dirty_log_pages,
 | 
						|
					 EXTENT_DIRTY | EXTENT_NEW);
 | 
						|
	blk_finish_plug(&plug);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_set_log_full_commit(fs_info, trans);
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		btrfs_free_logged_extents(log, log_transid);
 | 
						|
		mutex_unlock(&log_root_tree->log_mutex);
 | 
						|
		goto out_wake_log_root;
 | 
						|
	}
 | 
						|
	ret = btrfs_wait_tree_log_extents(log, mark);
 | 
						|
	if (!ret)
 | 
						|
		ret = btrfs_wait_tree_log_extents(log_root_tree,
 | 
						|
						  EXTENT_NEW | EXTENT_DIRTY);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_set_log_full_commit(fs_info, trans);
 | 
						|
		btrfs_free_logged_extents(log, log_transid);
 | 
						|
		mutex_unlock(&log_root_tree->log_mutex);
 | 
						|
		goto out_wake_log_root;
 | 
						|
	}
 | 
						|
	btrfs_wait_logged_extents(trans, log, log_transid);
 | 
						|
 | 
						|
	btrfs_set_super_log_root(fs_info->super_for_commit,
 | 
						|
				 log_root_tree->node->start);
 | 
						|
	btrfs_set_super_log_root_level(fs_info->super_for_commit,
 | 
						|
				       btrfs_header_level(log_root_tree->node));
 | 
						|
 | 
						|
	log_root_tree->log_transid++;
 | 
						|
	mutex_unlock(&log_root_tree->log_mutex);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * nobody else is going to jump in and write the the ctree
 | 
						|
	 * super here because the log_commit atomic below is protecting
 | 
						|
	 * us.  We must be called with a transaction handle pinning
 | 
						|
	 * the running transaction open, so a full commit can't hop
 | 
						|
	 * in and cause problems either.
 | 
						|
	 */
 | 
						|
	ret = write_all_supers(fs_info, 1);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_set_log_full_commit(fs_info, trans);
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out_wake_log_root;
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_lock(&root->log_mutex);
 | 
						|
	if (root->last_log_commit < log_transid)
 | 
						|
		root->last_log_commit = log_transid;
 | 
						|
	mutex_unlock(&root->log_mutex);
 | 
						|
 | 
						|
out_wake_log_root:
 | 
						|
	mutex_lock(&log_root_tree->log_mutex);
 | 
						|
	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
 | 
						|
 | 
						|
	log_root_tree->log_transid_committed++;
 | 
						|
	atomic_set(&log_root_tree->log_commit[index2], 0);
 | 
						|
	mutex_unlock(&log_root_tree->log_mutex);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The barrier before waitqueue_active is implied by mutex_unlock
 | 
						|
	 */
 | 
						|
	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
 | 
						|
		wake_up(&log_root_tree->log_commit_wait[index2]);
 | 
						|
out:
 | 
						|
	mutex_lock(&root->log_mutex);
 | 
						|
	btrfs_remove_all_log_ctxs(root, index1, ret);
 | 
						|
	root->log_transid_committed++;
 | 
						|
	atomic_set(&root->log_commit[index1], 0);
 | 
						|
	mutex_unlock(&root->log_mutex);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The barrier before waitqueue_active is implied by mutex_unlock
 | 
						|
	 */
 | 
						|
	if (waitqueue_active(&root->log_commit_wait[index1]))
 | 
						|
		wake_up(&root->log_commit_wait[index1]);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void free_log_tree(struct btrfs_trans_handle *trans,
 | 
						|
			  struct btrfs_root *log)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	u64 start;
 | 
						|
	u64 end;
 | 
						|
	struct walk_control wc = {
 | 
						|
		.free = 1,
 | 
						|
		.process_func = process_one_buffer
 | 
						|
	};
 | 
						|
 | 
						|
	ret = walk_log_tree(trans, log, &wc);
 | 
						|
	/* I don't think this can happen but just in case */
 | 
						|
	if (ret)
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		ret = find_first_extent_bit(&log->dirty_log_pages,
 | 
						|
				0, &start, &end,
 | 
						|
				EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
 | 
						|
				NULL);
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
 | 
						|
		clear_extent_bits(&log->dirty_log_pages, start, end,
 | 
						|
				  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We may have short-circuited the log tree with the full commit logic
 | 
						|
	 * and left ordered extents on our list, so clear these out to keep us
 | 
						|
	 * from leaking inodes and memory.
 | 
						|
	 */
 | 
						|
	btrfs_free_logged_extents(log, 0);
 | 
						|
	btrfs_free_logged_extents(log, 1);
 | 
						|
 | 
						|
	free_extent_buffer(log->node);
 | 
						|
	kfree(log);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * free all the extents used by the tree log.  This should be called
 | 
						|
 * at commit time of the full transaction
 | 
						|
 */
 | 
						|
int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
 | 
						|
{
 | 
						|
	if (root->log_root) {
 | 
						|
		free_log_tree(trans, root->log_root);
 | 
						|
		root->log_root = NULL;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
 | 
						|
			     struct btrfs_fs_info *fs_info)
 | 
						|
{
 | 
						|
	if (fs_info->log_root_tree) {
 | 
						|
		free_log_tree(trans, fs_info->log_root_tree);
 | 
						|
		fs_info->log_root_tree = NULL;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If both a file and directory are logged, and unlinks or renames are
 | 
						|
 * mixed in, we have a few interesting corners:
 | 
						|
 *
 | 
						|
 * create file X in dir Y
 | 
						|
 * link file X to X.link in dir Y
 | 
						|
 * fsync file X
 | 
						|
 * unlink file X but leave X.link
 | 
						|
 * fsync dir Y
 | 
						|
 *
 | 
						|
 * After a crash we would expect only X.link to exist.  But file X
 | 
						|
 * didn't get fsync'd again so the log has back refs for X and X.link.
 | 
						|
 *
 | 
						|
 * We solve this by removing directory entries and inode backrefs from the
 | 
						|
 * log when a file that was logged in the current transaction is
 | 
						|
 * unlinked.  Any later fsync will include the updated log entries, and
 | 
						|
 * we'll be able to reconstruct the proper directory items from backrefs.
 | 
						|
 *
 | 
						|
 * This optimizations allows us to avoid relogging the entire inode
 | 
						|
 * or the entire directory.
 | 
						|
 */
 | 
						|
int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
 | 
						|
				 struct btrfs_root *root,
 | 
						|
				 const char *name, int name_len,
 | 
						|
				 struct btrfs_inode *dir, u64 index)
 | 
						|
{
 | 
						|
	struct btrfs_root *log;
 | 
						|
	struct btrfs_dir_item *di;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	int ret;
 | 
						|
	int err = 0;
 | 
						|
	int bytes_del = 0;
 | 
						|
	u64 dir_ino = btrfs_ino(dir);
 | 
						|
 | 
						|
	if (dir->logged_trans < trans->transid)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	ret = join_running_log_trans(root);
 | 
						|
	if (ret)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	mutex_lock(&dir->log_mutex);
 | 
						|
 | 
						|
	log = root->log_root;
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path) {
 | 
						|
		err = -ENOMEM;
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
 | 
						|
				   name, name_len, -1);
 | 
						|
	if (IS_ERR(di)) {
 | 
						|
		err = PTR_ERR(di);
 | 
						|
		goto fail;
 | 
						|
	}
 | 
						|
	if (di) {
 | 
						|
		ret = btrfs_delete_one_dir_name(trans, log, path, di);
 | 
						|
		bytes_del += name_len;
 | 
						|
		if (ret) {
 | 
						|
			err = ret;
 | 
						|
			goto fail;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	btrfs_release_path(path);
 | 
						|
	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
 | 
						|
					 index, name, name_len, -1);
 | 
						|
	if (IS_ERR(di)) {
 | 
						|
		err = PTR_ERR(di);
 | 
						|
		goto fail;
 | 
						|
	}
 | 
						|
	if (di) {
 | 
						|
		ret = btrfs_delete_one_dir_name(trans, log, path, di);
 | 
						|
		bytes_del += name_len;
 | 
						|
		if (ret) {
 | 
						|
			err = ret;
 | 
						|
			goto fail;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* update the directory size in the log to reflect the names
 | 
						|
	 * we have removed
 | 
						|
	 */
 | 
						|
	if (bytes_del) {
 | 
						|
		struct btrfs_key key;
 | 
						|
 | 
						|
		key.objectid = dir_ino;
 | 
						|
		key.offset = 0;
 | 
						|
		key.type = BTRFS_INODE_ITEM_KEY;
 | 
						|
		btrfs_release_path(path);
 | 
						|
 | 
						|
		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
 | 
						|
		if (ret < 0) {
 | 
						|
			err = ret;
 | 
						|
			goto fail;
 | 
						|
		}
 | 
						|
		if (ret == 0) {
 | 
						|
			struct btrfs_inode_item *item;
 | 
						|
			u64 i_size;
 | 
						|
 | 
						|
			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | 
						|
					      struct btrfs_inode_item);
 | 
						|
			i_size = btrfs_inode_size(path->nodes[0], item);
 | 
						|
			if (i_size > bytes_del)
 | 
						|
				i_size -= bytes_del;
 | 
						|
			else
 | 
						|
				i_size = 0;
 | 
						|
			btrfs_set_inode_size(path->nodes[0], item, i_size);
 | 
						|
			btrfs_mark_buffer_dirty(path->nodes[0]);
 | 
						|
		} else
 | 
						|
			ret = 0;
 | 
						|
		btrfs_release_path(path);
 | 
						|
	}
 | 
						|
fail:
 | 
						|
	btrfs_free_path(path);
 | 
						|
out_unlock:
 | 
						|
	mutex_unlock(&dir->log_mutex);
 | 
						|
	if (ret == -ENOSPC) {
 | 
						|
		btrfs_set_log_full_commit(root->fs_info, trans);
 | 
						|
		ret = 0;
 | 
						|
	} else if (ret < 0)
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
 | 
						|
	btrfs_end_log_trans(root);
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/* see comments for btrfs_del_dir_entries_in_log */
 | 
						|
int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
 | 
						|
			       struct btrfs_root *root,
 | 
						|
			       const char *name, int name_len,
 | 
						|
			       struct btrfs_inode *inode, u64 dirid)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct btrfs_root *log;
 | 
						|
	u64 index;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (inode->logged_trans < trans->transid)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	ret = join_running_log_trans(root);
 | 
						|
	if (ret)
 | 
						|
		return 0;
 | 
						|
	log = root->log_root;
 | 
						|
	mutex_lock(&inode->log_mutex);
 | 
						|
 | 
						|
	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
 | 
						|
				  dirid, &index);
 | 
						|
	mutex_unlock(&inode->log_mutex);
 | 
						|
	if (ret == -ENOSPC) {
 | 
						|
		btrfs_set_log_full_commit(fs_info, trans);
 | 
						|
		ret = 0;
 | 
						|
	} else if (ret < 0 && ret != -ENOENT)
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
	btrfs_end_log_trans(root);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * creates a range item in the log for 'dirid'.  first_offset and
 | 
						|
 * last_offset tell us which parts of the key space the log should
 | 
						|
 * be considered authoritative for.
 | 
						|
 */
 | 
						|
static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
 | 
						|
				       struct btrfs_root *log,
 | 
						|
				       struct btrfs_path *path,
 | 
						|
				       int key_type, u64 dirid,
 | 
						|
				       u64 first_offset, u64 last_offset)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct btrfs_key key;
 | 
						|
	struct btrfs_dir_log_item *item;
 | 
						|
 | 
						|
	key.objectid = dirid;
 | 
						|
	key.offset = first_offset;
 | 
						|
	if (key_type == BTRFS_DIR_ITEM_KEY)
 | 
						|
		key.type = BTRFS_DIR_LOG_ITEM_KEY;
 | 
						|
	else
 | 
						|
		key.type = BTRFS_DIR_LOG_INDEX_KEY;
 | 
						|
	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | 
						|
			      struct btrfs_dir_log_item);
 | 
						|
	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
 | 
						|
	btrfs_mark_buffer_dirty(path->nodes[0]);
 | 
						|
	btrfs_release_path(path);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * log all the items included in the current transaction for a given
 | 
						|
 * directory.  This also creates the range items in the log tree required
 | 
						|
 * to replay anything deleted before the fsync
 | 
						|
 */
 | 
						|
static noinline int log_dir_items(struct btrfs_trans_handle *trans,
 | 
						|
			  struct btrfs_root *root, struct btrfs_inode *inode,
 | 
						|
			  struct btrfs_path *path,
 | 
						|
			  struct btrfs_path *dst_path, int key_type,
 | 
						|
			  struct btrfs_log_ctx *ctx,
 | 
						|
			  u64 min_offset, u64 *last_offset_ret)
 | 
						|
{
 | 
						|
	struct btrfs_key min_key;
 | 
						|
	struct btrfs_root *log = root->log_root;
 | 
						|
	struct extent_buffer *src;
 | 
						|
	int err = 0;
 | 
						|
	int ret;
 | 
						|
	int i;
 | 
						|
	int nritems;
 | 
						|
	u64 first_offset = min_offset;
 | 
						|
	u64 last_offset = (u64)-1;
 | 
						|
	u64 ino = btrfs_ino(inode);
 | 
						|
 | 
						|
	log = root->log_root;
 | 
						|
 | 
						|
	min_key.objectid = ino;
 | 
						|
	min_key.type = key_type;
 | 
						|
	min_key.offset = min_offset;
 | 
						|
 | 
						|
	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * we didn't find anything from this transaction, see if there
 | 
						|
	 * is anything at all
 | 
						|
	 */
 | 
						|
	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
 | 
						|
		min_key.objectid = ino;
 | 
						|
		min_key.type = key_type;
 | 
						|
		min_key.offset = (u64)-1;
 | 
						|
		btrfs_release_path(path);
 | 
						|
		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
 | 
						|
		if (ret < 0) {
 | 
						|
			btrfs_release_path(path);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
		ret = btrfs_previous_item(root, path, ino, key_type);
 | 
						|
 | 
						|
		/* if ret == 0 there are items for this type,
 | 
						|
		 * create a range to tell us the last key of this type.
 | 
						|
		 * otherwise, there are no items in this directory after
 | 
						|
		 * *min_offset, and we create a range to indicate that.
 | 
						|
		 */
 | 
						|
		if (ret == 0) {
 | 
						|
			struct btrfs_key tmp;
 | 
						|
			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
 | 
						|
					      path->slots[0]);
 | 
						|
			if (key_type == tmp.type)
 | 
						|
				first_offset = max(min_offset, tmp.offset) + 1;
 | 
						|
		}
 | 
						|
		goto done;
 | 
						|
	}
 | 
						|
 | 
						|
	/* go backward to find any previous key */
 | 
						|
	ret = btrfs_previous_item(root, path, ino, key_type);
 | 
						|
	if (ret == 0) {
 | 
						|
		struct btrfs_key tmp;
 | 
						|
		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
 | 
						|
		if (key_type == tmp.type) {
 | 
						|
			first_offset = tmp.offset;
 | 
						|
			ret = overwrite_item(trans, log, dst_path,
 | 
						|
					     path->nodes[0], path->slots[0],
 | 
						|
					     &tmp);
 | 
						|
			if (ret) {
 | 
						|
				err = ret;
 | 
						|
				goto done;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	/* find the first key from this transaction again */
 | 
						|
	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
 | 
						|
	if (WARN_ON(ret != 0))
 | 
						|
		goto done;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * we have a block from this transaction, log every item in it
 | 
						|
	 * from our directory
 | 
						|
	 */
 | 
						|
	while (1) {
 | 
						|
		struct btrfs_key tmp;
 | 
						|
		src = path->nodes[0];
 | 
						|
		nritems = btrfs_header_nritems(src);
 | 
						|
		for (i = path->slots[0]; i < nritems; i++) {
 | 
						|
			struct btrfs_dir_item *di;
 | 
						|
 | 
						|
			btrfs_item_key_to_cpu(src, &min_key, i);
 | 
						|
 | 
						|
			if (min_key.objectid != ino || min_key.type != key_type)
 | 
						|
				goto done;
 | 
						|
			ret = overwrite_item(trans, log, dst_path, src, i,
 | 
						|
					     &min_key);
 | 
						|
			if (ret) {
 | 
						|
				err = ret;
 | 
						|
				goto done;
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * We must make sure that when we log a directory entry,
 | 
						|
			 * the corresponding inode, after log replay, has a
 | 
						|
			 * matching link count. For example:
 | 
						|
			 *
 | 
						|
			 * touch foo
 | 
						|
			 * mkdir mydir
 | 
						|
			 * sync
 | 
						|
			 * ln foo mydir/bar
 | 
						|
			 * xfs_io -c "fsync" mydir
 | 
						|
			 * <crash>
 | 
						|
			 * <mount fs and log replay>
 | 
						|
			 *
 | 
						|
			 * Would result in a fsync log that when replayed, our
 | 
						|
			 * file inode would have a link count of 1, but we get
 | 
						|
			 * two directory entries pointing to the same inode.
 | 
						|
			 * After removing one of the names, it would not be
 | 
						|
			 * possible to remove the other name, which resulted
 | 
						|
			 * always in stale file handle errors, and would not
 | 
						|
			 * be possible to rmdir the parent directory, since
 | 
						|
			 * its i_size could never decrement to the value
 | 
						|
			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
 | 
						|
			 */
 | 
						|
			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
 | 
						|
			btrfs_dir_item_key_to_cpu(src, di, &tmp);
 | 
						|
			if (ctx &&
 | 
						|
			    (btrfs_dir_transid(src, di) == trans->transid ||
 | 
						|
			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
 | 
						|
			    tmp.type != BTRFS_ROOT_ITEM_KEY)
 | 
						|
				ctx->log_new_dentries = true;
 | 
						|
		}
 | 
						|
		path->slots[0] = nritems;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * look ahead to the next item and see if it is also
 | 
						|
		 * from this directory and from this transaction
 | 
						|
		 */
 | 
						|
		ret = btrfs_next_leaf(root, path);
 | 
						|
		if (ret == 1) {
 | 
						|
			last_offset = (u64)-1;
 | 
						|
			goto done;
 | 
						|
		}
 | 
						|
		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
 | 
						|
		if (tmp.objectid != ino || tmp.type != key_type) {
 | 
						|
			last_offset = (u64)-1;
 | 
						|
			goto done;
 | 
						|
		}
 | 
						|
		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
 | 
						|
			ret = overwrite_item(trans, log, dst_path,
 | 
						|
					     path->nodes[0], path->slots[0],
 | 
						|
					     &tmp);
 | 
						|
			if (ret)
 | 
						|
				err = ret;
 | 
						|
			else
 | 
						|
				last_offset = tmp.offset;
 | 
						|
			goto done;
 | 
						|
		}
 | 
						|
	}
 | 
						|
done:
 | 
						|
	btrfs_release_path(path);
 | 
						|
	btrfs_release_path(dst_path);
 | 
						|
 | 
						|
	if (err == 0) {
 | 
						|
		*last_offset_ret = last_offset;
 | 
						|
		/*
 | 
						|
		 * insert the log range keys to indicate where the log
 | 
						|
		 * is valid
 | 
						|
		 */
 | 
						|
		ret = insert_dir_log_key(trans, log, path, key_type,
 | 
						|
					 ino, first_offset, last_offset);
 | 
						|
		if (ret)
 | 
						|
			err = ret;
 | 
						|
	}
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * logging directories is very similar to logging inodes, We find all the items
 | 
						|
 * from the current transaction and write them to the log.
 | 
						|
 *
 | 
						|
 * The recovery code scans the directory in the subvolume, and if it finds a
 | 
						|
 * key in the range logged that is not present in the log tree, then it means
 | 
						|
 * that dir entry was unlinked during the transaction.
 | 
						|
 *
 | 
						|
 * In order for that scan to work, we must include one key smaller than
 | 
						|
 * the smallest logged by this transaction and one key larger than the largest
 | 
						|
 * key logged by this transaction.
 | 
						|
 */
 | 
						|
static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
 | 
						|
			  struct btrfs_root *root, struct btrfs_inode *inode,
 | 
						|
			  struct btrfs_path *path,
 | 
						|
			  struct btrfs_path *dst_path,
 | 
						|
			  struct btrfs_log_ctx *ctx)
 | 
						|
{
 | 
						|
	u64 min_key;
 | 
						|
	u64 max_key;
 | 
						|
	int ret;
 | 
						|
	int key_type = BTRFS_DIR_ITEM_KEY;
 | 
						|
 | 
						|
again:
 | 
						|
	min_key = 0;
 | 
						|
	max_key = 0;
 | 
						|
	while (1) {
 | 
						|
		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
 | 
						|
				ctx, min_key, &max_key);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
		if (max_key == (u64)-1)
 | 
						|
			break;
 | 
						|
		min_key = max_key + 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (key_type == BTRFS_DIR_ITEM_KEY) {
 | 
						|
		key_type = BTRFS_DIR_INDEX_KEY;
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * a helper function to drop items from the log before we relog an
 | 
						|
 * inode.  max_key_type indicates the highest item type to remove.
 | 
						|
 * This cannot be run for file data extents because it does not
 | 
						|
 * free the extents they point to.
 | 
						|
 */
 | 
						|
static int drop_objectid_items(struct btrfs_trans_handle *trans,
 | 
						|
				  struct btrfs_root *log,
 | 
						|
				  struct btrfs_path *path,
 | 
						|
				  u64 objectid, int max_key_type)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct btrfs_key key;
 | 
						|
	struct btrfs_key found_key;
 | 
						|
	int start_slot;
 | 
						|
 | 
						|
	key.objectid = objectid;
 | 
						|
	key.type = max_key_type;
 | 
						|
	key.offset = (u64)-1;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
 | 
						|
		BUG_ON(ret == 0); /* Logic error */
 | 
						|
		if (ret < 0)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (path->slots[0] == 0)
 | 
						|
			break;
 | 
						|
 | 
						|
		path->slots[0]--;
 | 
						|
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 | 
						|
				      path->slots[0]);
 | 
						|
 | 
						|
		if (found_key.objectid != objectid)
 | 
						|
			break;
 | 
						|
 | 
						|
		found_key.offset = 0;
 | 
						|
		found_key.type = 0;
 | 
						|
		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
 | 
						|
				       &start_slot);
 | 
						|
 | 
						|
		ret = btrfs_del_items(trans, log, path, start_slot,
 | 
						|
				      path->slots[0] - start_slot + 1);
 | 
						|
		/*
 | 
						|
		 * If start slot isn't 0 then we don't need to re-search, we've
 | 
						|
		 * found the last guy with the objectid in this tree.
 | 
						|
		 */
 | 
						|
		if (ret || start_slot != 0)
 | 
						|
			break;
 | 
						|
		btrfs_release_path(path);
 | 
						|
	}
 | 
						|
	btrfs_release_path(path);
 | 
						|
	if (ret > 0)
 | 
						|
		ret = 0;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void fill_inode_item(struct btrfs_trans_handle *trans,
 | 
						|
			    struct extent_buffer *leaf,
 | 
						|
			    struct btrfs_inode_item *item,
 | 
						|
			    struct inode *inode, int log_inode_only,
 | 
						|
			    u64 logged_isize)
 | 
						|
{
 | 
						|
	struct btrfs_map_token token;
 | 
						|
 | 
						|
	btrfs_init_map_token(&token);
 | 
						|
 | 
						|
	if (log_inode_only) {
 | 
						|
		/* set the generation to zero so the recover code
 | 
						|
		 * can tell the difference between an logging
 | 
						|
		 * just to say 'this inode exists' and a logging
 | 
						|
		 * to say 'update this inode with these values'
 | 
						|
		 */
 | 
						|
		btrfs_set_token_inode_generation(leaf, item, 0, &token);
 | 
						|
		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
 | 
						|
	} else {
 | 
						|
		btrfs_set_token_inode_generation(leaf, item,
 | 
						|
						 BTRFS_I(inode)->generation,
 | 
						|
						 &token);
 | 
						|
		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
 | 
						|
	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
 | 
						|
	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
 | 
						|
	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
 | 
						|
 | 
						|
	btrfs_set_token_timespec_sec(leaf, &item->atime,
 | 
						|
				     inode->i_atime.tv_sec, &token);
 | 
						|
	btrfs_set_token_timespec_nsec(leaf, &item->atime,
 | 
						|
				      inode->i_atime.tv_nsec, &token);
 | 
						|
 | 
						|
	btrfs_set_token_timespec_sec(leaf, &item->mtime,
 | 
						|
				     inode->i_mtime.tv_sec, &token);
 | 
						|
	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
 | 
						|
				      inode->i_mtime.tv_nsec, &token);
 | 
						|
 | 
						|
	btrfs_set_token_timespec_sec(leaf, &item->ctime,
 | 
						|
				     inode->i_ctime.tv_sec, &token);
 | 
						|
	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
 | 
						|
				      inode->i_ctime.tv_nsec, &token);
 | 
						|
 | 
						|
	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
 | 
						|
				     &token);
 | 
						|
 | 
						|
	btrfs_set_token_inode_sequence(leaf, item,
 | 
						|
				       inode_peek_iversion(inode), &token);
 | 
						|
	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
 | 
						|
	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
 | 
						|
	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
 | 
						|
	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
 | 
						|
}
 | 
						|
 | 
						|
static int log_inode_item(struct btrfs_trans_handle *trans,
 | 
						|
			  struct btrfs_root *log, struct btrfs_path *path,
 | 
						|
			  struct btrfs_inode *inode)
 | 
						|
{
 | 
						|
	struct btrfs_inode_item *inode_item;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = btrfs_insert_empty_item(trans, log, path,
 | 
						|
				      &inode->location, sizeof(*inode_item));
 | 
						|
	if (ret && ret != -EEXIST)
 | 
						|
		return ret;
 | 
						|
	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | 
						|
				    struct btrfs_inode_item);
 | 
						|
	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
 | 
						|
			0, 0);
 | 
						|
	btrfs_release_path(path);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static noinline int copy_items(struct btrfs_trans_handle *trans,
 | 
						|
			       struct btrfs_inode *inode,
 | 
						|
			       struct btrfs_path *dst_path,
 | 
						|
			       struct btrfs_path *src_path, u64 *last_extent,
 | 
						|
			       int start_slot, int nr, int inode_only,
 | 
						|
			       u64 logged_isize)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
 | 
						|
	unsigned long src_offset;
 | 
						|
	unsigned long dst_offset;
 | 
						|
	struct btrfs_root *log = inode->root->log_root;
 | 
						|
	struct btrfs_file_extent_item *extent;
 | 
						|
	struct btrfs_inode_item *inode_item;
 | 
						|
	struct extent_buffer *src = src_path->nodes[0];
 | 
						|
	struct btrfs_key first_key, last_key, key;
 | 
						|
	int ret;
 | 
						|
	struct btrfs_key *ins_keys;
 | 
						|
	u32 *ins_sizes;
 | 
						|
	char *ins_data;
 | 
						|
	int i;
 | 
						|
	struct list_head ordered_sums;
 | 
						|
	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
 | 
						|
	bool has_extents = false;
 | 
						|
	bool need_find_last_extent = true;
 | 
						|
	bool done = false;
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&ordered_sums);
 | 
						|
 | 
						|
	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
 | 
						|
			   nr * sizeof(u32), GFP_NOFS);
 | 
						|
	if (!ins_data)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	first_key.objectid = (u64)-1;
 | 
						|
 | 
						|
	ins_sizes = (u32 *)ins_data;
 | 
						|
	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
 | 
						|
 | 
						|
	for (i = 0; i < nr; i++) {
 | 
						|
		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
 | 
						|
		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
 | 
						|
	}
 | 
						|
	ret = btrfs_insert_empty_items(trans, log, dst_path,
 | 
						|
				       ins_keys, ins_sizes, nr);
 | 
						|
	if (ret) {
 | 
						|
		kfree(ins_data);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
 | 
						|
		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
 | 
						|
						   dst_path->slots[0]);
 | 
						|
 | 
						|
		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
 | 
						|
 | 
						|
		if (i == nr - 1)
 | 
						|
			last_key = ins_keys[i];
 | 
						|
 | 
						|
		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
 | 
						|
			inode_item = btrfs_item_ptr(dst_path->nodes[0],
 | 
						|
						    dst_path->slots[0],
 | 
						|
						    struct btrfs_inode_item);
 | 
						|
			fill_inode_item(trans, dst_path->nodes[0], inode_item,
 | 
						|
					&inode->vfs_inode,
 | 
						|
					inode_only == LOG_INODE_EXISTS,
 | 
						|
					logged_isize);
 | 
						|
		} else {
 | 
						|
			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
 | 
						|
					   src_offset, ins_sizes[i]);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We set need_find_last_extent here in case we know we were
 | 
						|
		 * processing other items and then walk into the first extent in
 | 
						|
		 * the inode.  If we don't hit an extent then nothing changes,
 | 
						|
		 * we'll do the last search the next time around.
 | 
						|
		 */
 | 
						|
		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
 | 
						|
			has_extents = true;
 | 
						|
			if (first_key.objectid == (u64)-1)
 | 
						|
				first_key = ins_keys[i];
 | 
						|
		} else {
 | 
						|
			need_find_last_extent = false;
 | 
						|
		}
 | 
						|
 | 
						|
		/* take a reference on file data extents so that truncates
 | 
						|
		 * or deletes of this inode don't have to relog the inode
 | 
						|
		 * again
 | 
						|
		 */
 | 
						|
		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
 | 
						|
		    !skip_csum) {
 | 
						|
			int found_type;
 | 
						|
			extent = btrfs_item_ptr(src, start_slot + i,
 | 
						|
						struct btrfs_file_extent_item);
 | 
						|
 | 
						|
			if (btrfs_file_extent_generation(src, extent) < trans->transid)
 | 
						|
				continue;
 | 
						|
 | 
						|
			found_type = btrfs_file_extent_type(src, extent);
 | 
						|
			if (found_type == BTRFS_FILE_EXTENT_REG) {
 | 
						|
				u64 ds, dl, cs, cl;
 | 
						|
				ds = btrfs_file_extent_disk_bytenr(src,
 | 
						|
								extent);
 | 
						|
				/* ds == 0 is a hole */
 | 
						|
				if (ds == 0)
 | 
						|
					continue;
 | 
						|
 | 
						|
				dl = btrfs_file_extent_disk_num_bytes(src,
 | 
						|
								extent);
 | 
						|
				cs = btrfs_file_extent_offset(src, extent);
 | 
						|
				cl = btrfs_file_extent_num_bytes(src,
 | 
						|
								extent);
 | 
						|
				if (btrfs_file_extent_compression(src,
 | 
						|
								  extent)) {
 | 
						|
					cs = 0;
 | 
						|
					cl = dl;
 | 
						|
				}
 | 
						|
 | 
						|
				ret = btrfs_lookup_csums_range(
 | 
						|
						fs_info->csum_root,
 | 
						|
						ds + cs, ds + cs + cl - 1,
 | 
						|
						&ordered_sums, 0);
 | 
						|
				if (ret) {
 | 
						|
					btrfs_release_path(dst_path);
 | 
						|
					kfree(ins_data);
 | 
						|
					return ret;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
 | 
						|
	btrfs_release_path(dst_path);
 | 
						|
	kfree(ins_data);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * we have to do this after the loop above to avoid changing the
 | 
						|
	 * log tree while trying to change the log tree.
 | 
						|
	 */
 | 
						|
	ret = 0;
 | 
						|
	while (!list_empty(&ordered_sums)) {
 | 
						|
		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
 | 
						|
						   struct btrfs_ordered_sum,
 | 
						|
						   list);
 | 
						|
		if (!ret)
 | 
						|
			ret = btrfs_csum_file_blocks(trans, log, sums);
 | 
						|
		list_del(&sums->list);
 | 
						|
		kfree(sums);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!has_extents)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (need_find_last_extent && *last_extent == first_key.offset) {
 | 
						|
		/*
 | 
						|
		 * We don't have any leafs between our current one and the one
 | 
						|
		 * we processed before that can have file extent items for our
 | 
						|
		 * inode (and have a generation number smaller than our current
 | 
						|
		 * transaction id).
 | 
						|
		 */
 | 
						|
		need_find_last_extent = false;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Because we use btrfs_search_forward we could skip leaves that were
 | 
						|
	 * not modified and then assume *last_extent is valid when it really
 | 
						|
	 * isn't.  So back up to the previous leaf and read the end of the last
 | 
						|
	 * extent before we go and fill in holes.
 | 
						|
	 */
 | 
						|
	if (need_find_last_extent) {
 | 
						|
		u64 len;
 | 
						|
 | 
						|
		ret = btrfs_prev_leaf(inode->root, src_path);
 | 
						|
		if (ret < 0)
 | 
						|
			return ret;
 | 
						|
		if (ret)
 | 
						|
			goto fill_holes;
 | 
						|
		if (src_path->slots[0])
 | 
						|
			src_path->slots[0]--;
 | 
						|
		src = src_path->nodes[0];
 | 
						|
		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
 | 
						|
		if (key.objectid != btrfs_ino(inode) ||
 | 
						|
		    key.type != BTRFS_EXTENT_DATA_KEY)
 | 
						|
			goto fill_holes;
 | 
						|
		extent = btrfs_item_ptr(src, src_path->slots[0],
 | 
						|
					struct btrfs_file_extent_item);
 | 
						|
		if (btrfs_file_extent_type(src, extent) ==
 | 
						|
		    BTRFS_FILE_EXTENT_INLINE) {
 | 
						|
			len = btrfs_file_extent_inline_len(src,
 | 
						|
							   src_path->slots[0],
 | 
						|
							   extent);
 | 
						|
			*last_extent = ALIGN(key.offset + len,
 | 
						|
					     fs_info->sectorsize);
 | 
						|
		} else {
 | 
						|
			len = btrfs_file_extent_num_bytes(src, extent);
 | 
						|
			*last_extent = key.offset + len;
 | 
						|
		}
 | 
						|
	}
 | 
						|
fill_holes:
 | 
						|
	/* So we did prev_leaf, now we need to move to the next leaf, but a few
 | 
						|
	 * things could have happened
 | 
						|
	 *
 | 
						|
	 * 1) A merge could have happened, so we could currently be on a leaf
 | 
						|
	 * that holds what we were copying in the first place.
 | 
						|
	 * 2) A split could have happened, and now not all of the items we want
 | 
						|
	 * are on the same leaf.
 | 
						|
	 *
 | 
						|
	 * So we need to adjust how we search for holes, we need to drop the
 | 
						|
	 * path and re-search for the first extent key we found, and then walk
 | 
						|
	 * forward until we hit the last one we copied.
 | 
						|
	 */
 | 
						|
	if (need_find_last_extent) {
 | 
						|
		/* btrfs_prev_leaf could return 1 without releasing the path */
 | 
						|
		btrfs_release_path(src_path);
 | 
						|
		ret = btrfs_search_slot(NULL, inode->root, &first_key,
 | 
						|
				src_path, 0, 0);
 | 
						|
		if (ret < 0)
 | 
						|
			return ret;
 | 
						|
		ASSERT(ret == 0);
 | 
						|
		src = src_path->nodes[0];
 | 
						|
		i = src_path->slots[0];
 | 
						|
	} else {
 | 
						|
		i = start_slot;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ok so here we need to go through and fill in any holes we may have
 | 
						|
	 * to make sure that holes are punched for those areas in case they had
 | 
						|
	 * extents previously.
 | 
						|
	 */
 | 
						|
	while (!done) {
 | 
						|
		u64 offset, len;
 | 
						|
		u64 extent_end;
 | 
						|
 | 
						|
		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
 | 
						|
			ret = btrfs_next_leaf(inode->root, src_path);
 | 
						|
			if (ret < 0)
 | 
						|
				return ret;
 | 
						|
			ASSERT(ret == 0);
 | 
						|
			src = src_path->nodes[0];
 | 
						|
			i = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		btrfs_item_key_to_cpu(src, &key, i);
 | 
						|
		if (!btrfs_comp_cpu_keys(&key, &last_key))
 | 
						|
			done = true;
 | 
						|
		if (key.objectid != btrfs_ino(inode) ||
 | 
						|
		    key.type != BTRFS_EXTENT_DATA_KEY) {
 | 
						|
			i++;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
 | 
						|
		if (btrfs_file_extent_type(src, extent) ==
 | 
						|
		    BTRFS_FILE_EXTENT_INLINE) {
 | 
						|
			len = btrfs_file_extent_inline_len(src, i, extent);
 | 
						|
			extent_end = ALIGN(key.offset + len,
 | 
						|
					   fs_info->sectorsize);
 | 
						|
		} else {
 | 
						|
			len = btrfs_file_extent_num_bytes(src, extent);
 | 
						|
			extent_end = key.offset + len;
 | 
						|
		}
 | 
						|
		i++;
 | 
						|
 | 
						|
		if (*last_extent == key.offset) {
 | 
						|
			*last_extent = extent_end;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		offset = *last_extent;
 | 
						|
		len = key.offset - *last_extent;
 | 
						|
		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
 | 
						|
				offset, 0, 0, len, 0, len, 0, 0, 0);
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
		*last_extent = extent_end;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Need to let the callers know we dropped the path so they should
 | 
						|
	 * re-search.
 | 
						|
	 */
 | 
						|
	if (!ret && need_find_last_extent)
 | 
						|
		ret = 1;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
 | 
						|
{
 | 
						|
	struct extent_map *em1, *em2;
 | 
						|
 | 
						|
	em1 = list_entry(a, struct extent_map, list);
 | 
						|
	em2 = list_entry(b, struct extent_map, list);
 | 
						|
 | 
						|
	if (em1->start < em2->start)
 | 
						|
		return -1;
 | 
						|
	else if (em1->start > em2->start)
 | 
						|
		return 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int wait_ordered_extents(struct btrfs_trans_handle *trans,
 | 
						|
				struct inode *inode,
 | 
						|
				struct btrfs_root *root,
 | 
						|
				const struct extent_map *em,
 | 
						|
				const struct list_head *logged_list,
 | 
						|
				bool *ordered_io_error)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct btrfs_ordered_extent *ordered;
 | 
						|
	struct btrfs_root *log = root->log_root;
 | 
						|
	u64 mod_start = em->mod_start;
 | 
						|
	u64 mod_len = em->mod_len;
 | 
						|
	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
 | 
						|
	u64 csum_offset;
 | 
						|
	u64 csum_len;
 | 
						|
	LIST_HEAD(ordered_sums);
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	*ordered_io_error = false;
 | 
						|
 | 
						|
	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
 | 
						|
	    em->block_start == EXTENT_MAP_HOLE)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Wait far any ordered extent that covers our extent map. If it
 | 
						|
	 * finishes without an error, first check and see if our csums are on
 | 
						|
	 * our outstanding ordered extents.
 | 
						|
	 */
 | 
						|
	list_for_each_entry(ordered, logged_list, log_list) {
 | 
						|
		struct btrfs_ordered_sum *sum;
 | 
						|
 | 
						|
		if (!mod_len)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (ordered->file_offset + ordered->len <= mod_start ||
 | 
						|
		    mod_start + mod_len <= ordered->file_offset)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
 | 
						|
		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
 | 
						|
		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
 | 
						|
			const u64 start = ordered->file_offset;
 | 
						|
			const u64 end = ordered->file_offset + ordered->len - 1;
 | 
						|
 | 
						|
			WARN_ON(ordered->inode != inode);
 | 
						|
			filemap_fdatawrite_range(inode->i_mapping, start, end);
 | 
						|
		}
 | 
						|
 | 
						|
		wait_event(ordered->wait,
 | 
						|
			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
 | 
						|
			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
 | 
						|
 | 
						|
		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
 | 
						|
			/*
 | 
						|
			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
 | 
						|
			 * i_mapping flags, so that the next fsync won't get
 | 
						|
			 * an outdated io error too.
 | 
						|
			 */
 | 
						|
			filemap_check_errors(inode->i_mapping);
 | 
						|
			*ordered_io_error = true;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * We are going to copy all the csums on this ordered extent, so
 | 
						|
		 * go ahead and adjust mod_start and mod_len in case this
 | 
						|
		 * ordered extent has already been logged.
 | 
						|
		 */
 | 
						|
		if (ordered->file_offset > mod_start) {
 | 
						|
			if (ordered->file_offset + ordered->len >=
 | 
						|
			    mod_start + mod_len)
 | 
						|
				mod_len = ordered->file_offset - mod_start;
 | 
						|
			/*
 | 
						|
			 * If we have this case
 | 
						|
			 *
 | 
						|
			 * |--------- logged extent ---------|
 | 
						|
			 *       |----- ordered extent ----|
 | 
						|
			 *
 | 
						|
			 * Just don't mess with mod_start and mod_len, we'll
 | 
						|
			 * just end up logging more csums than we need and it
 | 
						|
			 * will be ok.
 | 
						|
			 */
 | 
						|
		} else {
 | 
						|
			if (ordered->file_offset + ordered->len <
 | 
						|
			    mod_start + mod_len) {
 | 
						|
				mod_len = (mod_start + mod_len) -
 | 
						|
					(ordered->file_offset + ordered->len);
 | 
						|
				mod_start = ordered->file_offset +
 | 
						|
					ordered->len;
 | 
						|
			} else {
 | 
						|
				mod_len = 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (skip_csum)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * To keep us from looping for the above case of an ordered
 | 
						|
		 * extent that falls inside of the logged extent.
 | 
						|
		 */
 | 
						|
		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
 | 
						|
				     &ordered->flags))
 | 
						|
			continue;
 | 
						|
 | 
						|
		list_for_each_entry(sum, &ordered->list, list) {
 | 
						|
			ret = btrfs_csum_file_blocks(trans, log, sum);
 | 
						|
			if (ret)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (*ordered_io_error || !mod_len || ret || skip_csum)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (em->compress_type) {
 | 
						|
		csum_offset = 0;
 | 
						|
		csum_len = max(em->block_len, em->orig_block_len);
 | 
						|
	} else {
 | 
						|
		csum_offset = mod_start - em->start;
 | 
						|
		csum_len = mod_len;
 | 
						|
	}
 | 
						|
 | 
						|
	/* block start is already adjusted for the file extent offset. */
 | 
						|
	ret = btrfs_lookup_csums_range(fs_info->csum_root,
 | 
						|
				       em->block_start + csum_offset,
 | 
						|
				       em->block_start + csum_offset +
 | 
						|
				       csum_len - 1, &ordered_sums, 0);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	while (!list_empty(&ordered_sums)) {
 | 
						|
		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
 | 
						|
						   struct btrfs_ordered_sum,
 | 
						|
						   list);
 | 
						|
		if (!ret)
 | 
						|
			ret = btrfs_csum_file_blocks(trans, log, sums);
 | 
						|
		list_del(&sums->list);
 | 
						|
		kfree(sums);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int log_one_extent(struct btrfs_trans_handle *trans,
 | 
						|
			  struct btrfs_inode *inode, struct btrfs_root *root,
 | 
						|
			  const struct extent_map *em,
 | 
						|
			  struct btrfs_path *path,
 | 
						|
			  const struct list_head *logged_list,
 | 
						|
			  struct btrfs_log_ctx *ctx)
 | 
						|
{
 | 
						|
	struct btrfs_root *log = root->log_root;
 | 
						|
	struct btrfs_file_extent_item *fi;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct btrfs_map_token token;
 | 
						|
	struct btrfs_key key;
 | 
						|
	u64 extent_offset = em->start - em->orig_start;
 | 
						|
	u64 block_len;
 | 
						|
	int ret;
 | 
						|
	int extent_inserted = 0;
 | 
						|
	bool ordered_io_err = false;
 | 
						|
 | 
						|
	ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
 | 
						|
			logged_list, &ordered_io_err);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (ordered_io_err) {
 | 
						|
		ctx->io_err = -EIO;
 | 
						|
		return ctx->io_err;
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_init_map_token(&token);
 | 
						|
 | 
						|
	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
 | 
						|
				   em->start + em->len, NULL, 0, 1,
 | 
						|
				   sizeof(*fi), &extent_inserted);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (!extent_inserted) {
 | 
						|
		key.objectid = btrfs_ino(inode);
 | 
						|
		key.type = BTRFS_EXTENT_DATA_KEY;
 | 
						|
		key.offset = em->start;
 | 
						|
 | 
						|
		ret = btrfs_insert_empty_item(trans, log, path, &key,
 | 
						|
					      sizeof(*fi));
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
	leaf = path->nodes[0];
 | 
						|
	fi = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
			    struct btrfs_file_extent_item);
 | 
						|
 | 
						|
	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
 | 
						|
					       &token);
 | 
						|
	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
 | 
						|
		btrfs_set_token_file_extent_type(leaf, fi,
 | 
						|
						 BTRFS_FILE_EXTENT_PREALLOC,
 | 
						|
						 &token);
 | 
						|
	else
 | 
						|
		btrfs_set_token_file_extent_type(leaf, fi,
 | 
						|
						 BTRFS_FILE_EXTENT_REG,
 | 
						|
						 &token);
 | 
						|
 | 
						|
	block_len = max(em->block_len, em->orig_block_len);
 | 
						|
	if (em->compress_type != BTRFS_COMPRESS_NONE) {
 | 
						|
		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
 | 
						|
							em->block_start,
 | 
						|
							&token);
 | 
						|
		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
 | 
						|
							   &token);
 | 
						|
	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 | 
						|
		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
 | 
						|
							em->block_start -
 | 
						|
							extent_offset, &token);
 | 
						|
		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
 | 
						|
							   &token);
 | 
						|
	} else {
 | 
						|
		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
 | 
						|
		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
 | 
						|
							   &token);
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
 | 
						|
	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
 | 
						|
	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
 | 
						|
	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
 | 
						|
						&token);
 | 
						|
	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
 | 
						|
	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
 | 
						|
	btrfs_mark_buffer_dirty(leaf);
 | 
						|
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
 | 
						|
				     struct btrfs_root *root,
 | 
						|
				     struct btrfs_inode *inode,
 | 
						|
				     struct btrfs_path *path,
 | 
						|
				     struct list_head *logged_list,
 | 
						|
				     struct btrfs_log_ctx *ctx,
 | 
						|
				     const u64 start,
 | 
						|
				     const u64 end)
 | 
						|
{
 | 
						|
	struct extent_map *em, *n;
 | 
						|
	struct list_head extents;
 | 
						|
	struct extent_map_tree *tree = &inode->extent_tree;
 | 
						|
	u64 logged_start, logged_end;
 | 
						|
	u64 test_gen;
 | 
						|
	int ret = 0;
 | 
						|
	int num = 0;
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&extents);
 | 
						|
 | 
						|
	down_write(&inode->dio_sem);
 | 
						|
	write_lock(&tree->lock);
 | 
						|
	test_gen = root->fs_info->last_trans_committed;
 | 
						|
	logged_start = start;
 | 
						|
	logged_end = end;
 | 
						|
 | 
						|
	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
 | 
						|
		list_del_init(&em->list);
 | 
						|
		/*
 | 
						|
		 * Just an arbitrary number, this can be really CPU intensive
 | 
						|
		 * once we start getting a lot of extents, and really once we
 | 
						|
		 * have a bunch of extents we just want to commit since it will
 | 
						|
		 * be faster.
 | 
						|
		 */
 | 
						|
		if (++num > 32768) {
 | 
						|
			list_del_init(&tree->modified_extents);
 | 
						|
			ret = -EFBIG;
 | 
						|
			goto process;
 | 
						|
		}
 | 
						|
 | 
						|
		if (em->generation <= test_gen)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (em->start < logged_start)
 | 
						|
			logged_start = em->start;
 | 
						|
		if ((em->start + em->len - 1) > logged_end)
 | 
						|
			logged_end = em->start + em->len - 1;
 | 
						|
 | 
						|
		/* Need a ref to keep it from getting evicted from cache */
 | 
						|
		refcount_inc(&em->refs);
 | 
						|
		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
 | 
						|
		list_add_tail(&em->list, &extents);
 | 
						|
		num++;
 | 
						|
	}
 | 
						|
 | 
						|
	list_sort(NULL, &extents, extent_cmp);
 | 
						|
	btrfs_get_logged_extents(inode, logged_list, logged_start, logged_end);
 | 
						|
	/*
 | 
						|
	 * Some ordered extents started by fsync might have completed
 | 
						|
	 * before we could collect them into the list logged_list, which
 | 
						|
	 * means they're gone, not in our logged_list nor in the inode's
 | 
						|
	 * ordered tree. We want the application/user space to know an
 | 
						|
	 * error happened while attempting to persist file data so that
 | 
						|
	 * it can take proper action. If such error happened, we leave
 | 
						|
	 * without writing to the log tree and the fsync must report the
 | 
						|
	 * file data write error and not commit the current transaction.
 | 
						|
	 */
 | 
						|
	ret = filemap_check_errors(inode->vfs_inode.i_mapping);
 | 
						|
	if (ret)
 | 
						|
		ctx->io_err = ret;
 | 
						|
process:
 | 
						|
	while (!list_empty(&extents)) {
 | 
						|
		em = list_entry(extents.next, struct extent_map, list);
 | 
						|
 | 
						|
		list_del_init(&em->list);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we had an error we just need to delete everybody from our
 | 
						|
		 * private list.
 | 
						|
		 */
 | 
						|
		if (ret) {
 | 
						|
			clear_em_logging(tree, em);
 | 
						|
			free_extent_map(em);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		write_unlock(&tree->lock);
 | 
						|
 | 
						|
		ret = log_one_extent(trans, inode, root, em, path, logged_list,
 | 
						|
				     ctx);
 | 
						|
		write_lock(&tree->lock);
 | 
						|
		clear_em_logging(tree, em);
 | 
						|
		free_extent_map(em);
 | 
						|
	}
 | 
						|
	WARN_ON(!list_empty(&extents));
 | 
						|
	write_unlock(&tree->lock);
 | 
						|
	up_write(&inode->dio_sem);
 | 
						|
 | 
						|
	btrfs_release_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
 | 
						|
			     struct btrfs_path *path, u64 *size_ret)
 | 
						|
{
 | 
						|
	struct btrfs_key key;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	key.objectid = btrfs_ino(inode);
 | 
						|
	key.type = BTRFS_INODE_ITEM_KEY;
 | 
						|
	key.offset = 0;
 | 
						|
 | 
						|
	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
 | 
						|
	if (ret < 0) {
 | 
						|
		return ret;
 | 
						|
	} else if (ret > 0) {
 | 
						|
		*size_ret = 0;
 | 
						|
	} else {
 | 
						|
		struct btrfs_inode_item *item;
 | 
						|
 | 
						|
		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | 
						|
				      struct btrfs_inode_item);
 | 
						|
		*size_ret = btrfs_inode_size(path->nodes[0], item);
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_release_path(path);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * At the moment we always log all xattrs. This is to figure out at log replay
 | 
						|
 * time which xattrs must have their deletion replayed. If a xattr is missing
 | 
						|
 * in the log tree and exists in the fs/subvol tree, we delete it. This is
 | 
						|
 * because if a xattr is deleted, the inode is fsynced and a power failure
 | 
						|
 * happens, causing the log to be replayed the next time the fs is mounted,
 | 
						|
 * we want the xattr to not exist anymore (same behaviour as other filesystems
 | 
						|
 * with a journal, ext3/4, xfs, f2fs, etc).
 | 
						|
 */
 | 
						|
static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
 | 
						|
				struct btrfs_root *root,
 | 
						|
				struct btrfs_inode *inode,
 | 
						|
				struct btrfs_path *path,
 | 
						|
				struct btrfs_path *dst_path)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct btrfs_key key;
 | 
						|
	const u64 ino = btrfs_ino(inode);
 | 
						|
	int ins_nr = 0;
 | 
						|
	int start_slot = 0;
 | 
						|
 | 
						|
	key.objectid = ino;
 | 
						|
	key.type = BTRFS_XATTR_ITEM_KEY;
 | 
						|
	key.offset = 0;
 | 
						|
 | 
						|
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | 
						|
	if (ret < 0)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	while (true) {
 | 
						|
		int slot = path->slots[0];
 | 
						|
		struct extent_buffer *leaf = path->nodes[0];
 | 
						|
		int nritems = btrfs_header_nritems(leaf);
 | 
						|
 | 
						|
		if (slot >= nritems) {
 | 
						|
			if (ins_nr > 0) {
 | 
						|
				u64 last_extent = 0;
 | 
						|
 | 
						|
				ret = copy_items(trans, inode, dst_path, path,
 | 
						|
						 &last_extent, start_slot,
 | 
						|
						 ins_nr, 1, 0);
 | 
						|
				/* can't be 1, extent items aren't processed */
 | 
						|
				ASSERT(ret <= 0);
 | 
						|
				if (ret < 0)
 | 
						|
					return ret;
 | 
						|
				ins_nr = 0;
 | 
						|
			}
 | 
						|
			ret = btrfs_next_leaf(root, path);
 | 
						|
			if (ret < 0)
 | 
						|
				return ret;
 | 
						|
			else if (ret > 0)
 | 
						|
				break;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		btrfs_item_key_to_cpu(leaf, &key, slot);
 | 
						|
		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (ins_nr == 0)
 | 
						|
			start_slot = slot;
 | 
						|
		ins_nr++;
 | 
						|
		path->slots[0]++;
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
	if (ins_nr > 0) {
 | 
						|
		u64 last_extent = 0;
 | 
						|
 | 
						|
		ret = copy_items(trans, inode, dst_path, path,
 | 
						|
				 &last_extent, start_slot,
 | 
						|
				 ins_nr, 1, 0);
 | 
						|
		/* can't be 1, extent items aren't processed */
 | 
						|
		ASSERT(ret <= 0);
 | 
						|
		if (ret < 0)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If the no holes feature is enabled we need to make sure any hole between the
 | 
						|
 * last extent and the i_size of our inode is explicitly marked in the log. This
 | 
						|
 * is to make sure that doing something like:
 | 
						|
 *
 | 
						|
 *      1) create file with 128Kb of data
 | 
						|
 *      2) truncate file to 64Kb
 | 
						|
 *      3) truncate file to 256Kb
 | 
						|
 *      4) fsync file
 | 
						|
 *      5) <crash/power failure>
 | 
						|
 *      6) mount fs and trigger log replay
 | 
						|
 *
 | 
						|
 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
 | 
						|
 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
 | 
						|
 * file correspond to a hole. The presence of explicit holes in a log tree is
 | 
						|
 * what guarantees that log replay will remove/adjust file extent items in the
 | 
						|
 * fs/subvol tree.
 | 
						|
 *
 | 
						|
 * Here we do not need to care about holes between extents, that is already done
 | 
						|
 * by copy_items(). We also only need to do this in the full sync path, where we
 | 
						|
 * lookup for extents from the fs/subvol tree only. In the fast path case, we
 | 
						|
 * lookup the list of modified extent maps and if any represents a hole, we
 | 
						|
 * insert a corresponding extent representing a hole in the log tree.
 | 
						|
 */
 | 
						|
static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
 | 
						|
				   struct btrfs_root *root,
 | 
						|
				   struct btrfs_inode *inode,
 | 
						|
				   struct btrfs_path *path)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	int ret;
 | 
						|
	struct btrfs_key key;
 | 
						|
	u64 hole_start;
 | 
						|
	u64 hole_size;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct btrfs_root *log = root->log_root;
 | 
						|
	const u64 ino = btrfs_ino(inode);
 | 
						|
	const u64 i_size = i_size_read(&inode->vfs_inode);
 | 
						|
 | 
						|
	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	key.objectid = ino;
 | 
						|
	key.type = BTRFS_EXTENT_DATA_KEY;
 | 
						|
	key.offset = (u64)-1;
 | 
						|
 | 
						|
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | 
						|
	ASSERT(ret != 0);
 | 
						|
	if (ret < 0)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ASSERT(path->slots[0] > 0);
 | 
						|
	path->slots[0]--;
 | 
						|
	leaf = path->nodes[0];
 | 
						|
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | 
						|
 | 
						|
	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
 | 
						|
		/* inode does not have any extents */
 | 
						|
		hole_start = 0;
 | 
						|
		hole_size = i_size;
 | 
						|
	} else {
 | 
						|
		struct btrfs_file_extent_item *extent;
 | 
						|
		u64 len;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If there's an extent beyond i_size, an explicit hole was
 | 
						|
		 * already inserted by copy_items().
 | 
						|
		 */
 | 
						|
		if (key.offset >= i_size)
 | 
						|
			return 0;
 | 
						|
 | 
						|
		extent = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
					struct btrfs_file_extent_item);
 | 
						|
 | 
						|
		if (btrfs_file_extent_type(leaf, extent) ==
 | 
						|
		    BTRFS_FILE_EXTENT_INLINE) {
 | 
						|
			len = btrfs_file_extent_inline_len(leaf,
 | 
						|
							   path->slots[0],
 | 
						|
							   extent);
 | 
						|
			ASSERT(len == i_size ||
 | 
						|
			       (len == fs_info->sectorsize &&
 | 
						|
				btrfs_file_extent_compression(leaf, extent) !=
 | 
						|
				BTRFS_COMPRESS_NONE));
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
 | 
						|
		len = btrfs_file_extent_num_bytes(leaf, extent);
 | 
						|
		/* Last extent goes beyond i_size, no need to log a hole. */
 | 
						|
		if (key.offset + len > i_size)
 | 
						|
			return 0;
 | 
						|
		hole_start = key.offset + len;
 | 
						|
		hole_size = i_size - hole_start;
 | 
						|
	}
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	/* Last extent ends at i_size. */
 | 
						|
	if (hole_size == 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	hole_size = ALIGN(hole_size, fs_info->sectorsize);
 | 
						|
	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
 | 
						|
				       hole_size, 0, hole_size, 0, 0, 0);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * When we are logging a new inode X, check if it doesn't have a reference that
 | 
						|
 * matches the reference from some other inode Y created in a past transaction
 | 
						|
 * and that was renamed in the current transaction. If we don't do this, then at
 | 
						|
 * log replay time we can lose inode Y (and all its files if it's a directory):
 | 
						|
 *
 | 
						|
 * mkdir /mnt/x
 | 
						|
 * echo "hello world" > /mnt/x/foobar
 | 
						|
 * sync
 | 
						|
 * mv /mnt/x /mnt/y
 | 
						|
 * mkdir /mnt/x                 # or touch /mnt/x
 | 
						|
 * xfs_io -c fsync /mnt/x
 | 
						|
 * <power fail>
 | 
						|
 * mount fs, trigger log replay
 | 
						|
 *
 | 
						|
 * After the log replay procedure, we would lose the first directory and all its
 | 
						|
 * files (file foobar).
 | 
						|
 * For the case where inode Y is not a directory we simply end up losing it:
 | 
						|
 *
 | 
						|
 * echo "123" > /mnt/foo
 | 
						|
 * sync
 | 
						|
 * mv /mnt/foo /mnt/bar
 | 
						|
 * echo "abc" > /mnt/foo
 | 
						|
 * xfs_io -c fsync /mnt/foo
 | 
						|
 * <power fail>
 | 
						|
 *
 | 
						|
 * We also need this for cases where a snapshot entry is replaced by some other
 | 
						|
 * entry (file or directory) otherwise we end up with an unreplayable log due to
 | 
						|
 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
 | 
						|
 * if it were a regular entry:
 | 
						|
 *
 | 
						|
 * mkdir /mnt/x
 | 
						|
 * btrfs subvolume snapshot /mnt /mnt/x/snap
 | 
						|
 * btrfs subvolume delete /mnt/x/snap
 | 
						|
 * rmdir /mnt/x
 | 
						|
 * mkdir /mnt/x
 | 
						|
 * fsync /mnt/x or fsync some new file inside it
 | 
						|
 * <power fail>
 | 
						|
 *
 | 
						|
 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
 | 
						|
 * the same transaction.
 | 
						|
 */
 | 
						|
static int btrfs_check_ref_name_override(struct extent_buffer *eb,
 | 
						|
					 const int slot,
 | 
						|
					 const struct btrfs_key *key,
 | 
						|
					 struct btrfs_inode *inode,
 | 
						|
					 u64 *other_ino)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct btrfs_path *search_path;
 | 
						|
	char *name = NULL;
 | 
						|
	u32 name_len = 0;
 | 
						|
	u32 item_size = btrfs_item_size_nr(eb, slot);
 | 
						|
	u32 cur_offset = 0;
 | 
						|
	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
 | 
						|
 | 
						|
	search_path = btrfs_alloc_path();
 | 
						|
	if (!search_path)
 | 
						|
		return -ENOMEM;
 | 
						|
	search_path->search_commit_root = 1;
 | 
						|
	search_path->skip_locking = 1;
 | 
						|
 | 
						|
	while (cur_offset < item_size) {
 | 
						|
		u64 parent;
 | 
						|
		u32 this_name_len;
 | 
						|
		u32 this_len;
 | 
						|
		unsigned long name_ptr;
 | 
						|
		struct btrfs_dir_item *di;
 | 
						|
 | 
						|
		if (key->type == BTRFS_INODE_REF_KEY) {
 | 
						|
			struct btrfs_inode_ref *iref;
 | 
						|
 | 
						|
			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
 | 
						|
			parent = key->offset;
 | 
						|
			this_name_len = btrfs_inode_ref_name_len(eb, iref);
 | 
						|
			name_ptr = (unsigned long)(iref + 1);
 | 
						|
			this_len = sizeof(*iref) + this_name_len;
 | 
						|
		} else {
 | 
						|
			struct btrfs_inode_extref *extref;
 | 
						|
 | 
						|
			extref = (struct btrfs_inode_extref *)(ptr +
 | 
						|
							       cur_offset);
 | 
						|
			parent = btrfs_inode_extref_parent(eb, extref);
 | 
						|
			this_name_len = btrfs_inode_extref_name_len(eb, extref);
 | 
						|
			name_ptr = (unsigned long)&extref->name;
 | 
						|
			this_len = sizeof(*extref) + this_name_len;
 | 
						|
		}
 | 
						|
 | 
						|
		if (this_name_len > name_len) {
 | 
						|
			char *new_name;
 | 
						|
 | 
						|
			new_name = krealloc(name, this_name_len, GFP_NOFS);
 | 
						|
			if (!new_name) {
 | 
						|
				ret = -ENOMEM;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			name_len = this_name_len;
 | 
						|
			name = new_name;
 | 
						|
		}
 | 
						|
 | 
						|
		read_extent_buffer(eb, name, name_ptr, this_name_len);
 | 
						|
		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
 | 
						|
				parent, name, this_name_len, 0);
 | 
						|
		if (di && !IS_ERR(di)) {
 | 
						|
			struct btrfs_key di_key;
 | 
						|
 | 
						|
			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
 | 
						|
						  di, &di_key);
 | 
						|
			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
 | 
						|
				ret = 1;
 | 
						|
				*other_ino = di_key.objectid;
 | 
						|
			} else {
 | 
						|
				ret = -EAGAIN;
 | 
						|
			}
 | 
						|
			goto out;
 | 
						|
		} else if (IS_ERR(di)) {
 | 
						|
			ret = PTR_ERR(di);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		btrfs_release_path(search_path);
 | 
						|
 | 
						|
		cur_offset += this_len;
 | 
						|
	}
 | 
						|
	ret = 0;
 | 
						|
out:
 | 
						|
	btrfs_free_path(search_path);
 | 
						|
	kfree(name);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* log a single inode in the tree log.
 | 
						|
 * At least one parent directory for this inode must exist in the tree
 | 
						|
 * or be logged already.
 | 
						|
 *
 | 
						|
 * Any items from this inode changed by the current transaction are copied
 | 
						|
 * to the log tree.  An extra reference is taken on any extents in this
 | 
						|
 * file, allowing us to avoid a whole pile of corner cases around logging
 | 
						|
 * blocks that have been removed from the tree.
 | 
						|
 *
 | 
						|
 * See LOG_INODE_ALL and related defines for a description of what inode_only
 | 
						|
 * does.
 | 
						|
 *
 | 
						|
 * This handles both files and directories.
 | 
						|
 */
 | 
						|
static int btrfs_log_inode(struct btrfs_trans_handle *trans,
 | 
						|
			   struct btrfs_root *root, struct btrfs_inode *inode,
 | 
						|
			   int inode_only,
 | 
						|
			   const loff_t start,
 | 
						|
			   const loff_t end,
 | 
						|
			   struct btrfs_log_ctx *ctx)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct btrfs_path *dst_path;
 | 
						|
	struct btrfs_key min_key;
 | 
						|
	struct btrfs_key max_key;
 | 
						|
	struct btrfs_root *log = root->log_root;
 | 
						|
	LIST_HEAD(logged_list);
 | 
						|
	u64 last_extent = 0;
 | 
						|
	int err = 0;
 | 
						|
	int ret;
 | 
						|
	int nritems;
 | 
						|
	int ins_start_slot = 0;
 | 
						|
	int ins_nr;
 | 
						|
	bool fast_search = false;
 | 
						|
	u64 ino = btrfs_ino(inode);
 | 
						|
	struct extent_map_tree *em_tree = &inode->extent_tree;
 | 
						|
	u64 logged_isize = 0;
 | 
						|
	bool need_log_inode_item = true;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
	dst_path = btrfs_alloc_path();
 | 
						|
	if (!dst_path) {
 | 
						|
		btrfs_free_path(path);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	min_key.objectid = ino;
 | 
						|
	min_key.type = BTRFS_INODE_ITEM_KEY;
 | 
						|
	min_key.offset = 0;
 | 
						|
 | 
						|
	max_key.objectid = ino;
 | 
						|
 | 
						|
 | 
						|
	/* today the code can only do partial logging of directories */
 | 
						|
	if (S_ISDIR(inode->vfs_inode.i_mode) ||
 | 
						|
	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
 | 
						|
		       &inode->runtime_flags) &&
 | 
						|
	     inode_only >= LOG_INODE_EXISTS))
 | 
						|
		max_key.type = BTRFS_XATTR_ITEM_KEY;
 | 
						|
	else
 | 
						|
		max_key.type = (u8)-1;
 | 
						|
	max_key.offset = (u64)-1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Only run delayed items if we are a dir or a new file.
 | 
						|
	 * Otherwise commit the delayed inode only, which is needed in
 | 
						|
	 * order for the log replay code to mark inodes for link count
 | 
						|
	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
 | 
						|
	 */
 | 
						|
	if (S_ISDIR(inode->vfs_inode.i_mode) ||
 | 
						|
	    inode->generation > fs_info->last_trans_committed)
 | 
						|
		ret = btrfs_commit_inode_delayed_items(trans, inode);
 | 
						|
	else
 | 
						|
		ret = btrfs_commit_inode_delayed_inode(inode);
 | 
						|
 | 
						|
	if (ret) {
 | 
						|
		btrfs_free_path(path);
 | 
						|
		btrfs_free_path(dst_path);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	if (inode_only == LOG_OTHER_INODE) {
 | 
						|
		inode_only = LOG_INODE_EXISTS;
 | 
						|
		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
 | 
						|
	} else {
 | 
						|
		mutex_lock(&inode->log_mutex);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * a brute force approach to making sure we get the most uptodate
 | 
						|
	 * copies of everything.
 | 
						|
	 */
 | 
						|
	if (S_ISDIR(inode->vfs_inode.i_mode)) {
 | 
						|
		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
 | 
						|
 | 
						|
		if (inode_only == LOG_INODE_EXISTS)
 | 
						|
			max_key_type = BTRFS_XATTR_ITEM_KEY;
 | 
						|
		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
 | 
						|
	} else {
 | 
						|
		if (inode_only == LOG_INODE_EXISTS) {
 | 
						|
			/*
 | 
						|
			 * Make sure the new inode item we write to the log has
 | 
						|
			 * the same isize as the current one (if it exists).
 | 
						|
			 * This is necessary to prevent data loss after log
 | 
						|
			 * replay, and also to prevent doing a wrong expanding
 | 
						|
			 * truncate - for e.g. create file, write 4K into offset
 | 
						|
			 * 0, fsync, write 4K into offset 4096, add hard link,
 | 
						|
			 * fsync some other file (to sync log), power fail - if
 | 
						|
			 * we use the inode's current i_size, after log replay
 | 
						|
			 * we get a 8Kb file, with the last 4Kb extent as a hole
 | 
						|
			 * (zeroes), as if an expanding truncate happened,
 | 
						|
			 * instead of getting a file of 4Kb only.
 | 
						|
			 */
 | 
						|
			err = logged_inode_size(log, inode, path, &logged_isize);
 | 
						|
			if (err)
 | 
						|
				goto out_unlock;
 | 
						|
		}
 | 
						|
		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
 | 
						|
			     &inode->runtime_flags)) {
 | 
						|
			if (inode_only == LOG_INODE_EXISTS) {
 | 
						|
				max_key.type = BTRFS_XATTR_ITEM_KEY;
 | 
						|
				ret = drop_objectid_items(trans, log, path, ino,
 | 
						|
							  max_key.type);
 | 
						|
			} else {
 | 
						|
				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
 | 
						|
					  &inode->runtime_flags);
 | 
						|
				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
 | 
						|
					  &inode->runtime_flags);
 | 
						|
				while(1) {
 | 
						|
					ret = btrfs_truncate_inode_items(trans,
 | 
						|
						log, &inode->vfs_inode, 0, 0);
 | 
						|
					if (ret != -EAGAIN)
 | 
						|
						break;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
 | 
						|
					      &inode->runtime_flags) ||
 | 
						|
			   inode_only == LOG_INODE_EXISTS) {
 | 
						|
			if (inode_only == LOG_INODE_ALL)
 | 
						|
				fast_search = true;
 | 
						|
			max_key.type = BTRFS_XATTR_ITEM_KEY;
 | 
						|
			ret = drop_objectid_items(trans, log, path, ino,
 | 
						|
						  max_key.type);
 | 
						|
		} else {
 | 
						|
			if (inode_only == LOG_INODE_ALL)
 | 
						|
				fast_search = true;
 | 
						|
			goto log_extents;
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
	if (ret) {
 | 
						|
		err = ret;
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		ins_nr = 0;
 | 
						|
		ret = btrfs_search_forward(root, &min_key,
 | 
						|
					   path, trans->transid);
 | 
						|
		if (ret < 0) {
 | 
						|
			err = ret;
 | 
						|
			goto out_unlock;
 | 
						|
		}
 | 
						|
		if (ret != 0)
 | 
						|
			break;
 | 
						|
again:
 | 
						|
		/* note, ins_nr might be > 0 here, cleanup outside the loop */
 | 
						|
		if (min_key.objectid != ino)
 | 
						|
			break;
 | 
						|
		if (min_key.type > max_key.type)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (min_key.type == BTRFS_INODE_ITEM_KEY)
 | 
						|
			need_log_inode_item = false;
 | 
						|
 | 
						|
		if ((min_key.type == BTRFS_INODE_REF_KEY ||
 | 
						|
		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
 | 
						|
		    inode->generation == trans->transid) {
 | 
						|
			u64 other_ino = 0;
 | 
						|
 | 
						|
			ret = btrfs_check_ref_name_override(path->nodes[0],
 | 
						|
					path->slots[0], &min_key, inode,
 | 
						|
					&other_ino);
 | 
						|
			if (ret < 0) {
 | 
						|
				err = ret;
 | 
						|
				goto out_unlock;
 | 
						|
			} else if (ret > 0 && ctx &&
 | 
						|
				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
 | 
						|
				struct btrfs_key inode_key;
 | 
						|
				struct inode *other_inode;
 | 
						|
 | 
						|
				if (ins_nr > 0) {
 | 
						|
					ins_nr++;
 | 
						|
				} else {
 | 
						|
					ins_nr = 1;
 | 
						|
					ins_start_slot = path->slots[0];
 | 
						|
				}
 | 
						|
				ret = copy_items(trans, inode, dst_path, path,
 | 
						|
						 &last_extent, ins_start_slot,
 | 
						|
						 ins_nr, inode_only,
 | 
						|
						 logged_isize);
 | 
						|
				if (ret < 0) {
 | 
						|
					err = ret;
 | 
						|
					goto out_unlock;
 | 
						|
				}
 | 
						|
				ins_nr = 0;
 | 
						|
				btrfs_release_path(path);
 | 
						|
				inode_key.objectid = other_ino;
 | 
						|
				inode_key.type = BTRFS_INODE_ITEM_KEY;
 | 
						|
				inode_key.offset = 0;
 | 
						|
				other_inode = btrfs_iget(fs_info->sb,
 | 
						|
							 &inode_key, root,
 | 
						|
							 NULL);
 | 
						|
				/*
 | 
						|
				 * If the other inode that had a conflicting dir
 | 
						|
				 * entry was deleted in the current transaction,
 | 
						|
				 * we don't need to do more work nor fallback to
 | 
						|
				 * a transaction commit.
 | 
						|
				 */
 | 
						|
				if (IS_ERR(other_inode) &&
 | 
						|
				    PTR_ERR(other_inode) == -ENOENT) {
 | 
						|
					goto next_key;
 | 
						|
				} else if (IS_ERR(other_inode)) {
 | 
						|
					err = PTR_ERR(other_inode);
 | 
						|
					goto out_unlock;
 | 
						|
				}
 | 
						|
				/*
 | 
						|
				 * We are safe logging the other inode without
 | 
						|
				 * acquiring its i_mutex as long as we log with
 | 
						|
				 * the LOG_INODE_EXISTS mode. We're safe against
 | 
						|
				 * concurrent renames of the other inode as well
 | 
						|
				 * because during a rename we pin the log and
 | 
						|
				 * update the log with the new name before we
 | 
						|
				 * unpin it.
 | 
						|
				 */
 | 
						|
				err = btrfs_log_inode(trans, root,
 | 
						|
						BTRFS_I(other_inode),
 | 
						|
						LOG_OTHER_INODE, 0, LLONG_MAX,
 | 
						|
						ctx);
 | 
						|
				iput(other_inode);
 | 
						|
				if (err)
 | 
						|
					goto out_unlock;
 | 
						|
				else
 | 
						|
					goto next_key;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
 | 
						|
		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
 | 
						|
			if (ins_nr == 0)
 | 
						|
				goto next_slot;
 | 
						|
			ret = copy_items(trans, inode, dst_path, path,
 | 
						|
					 &last_extent, ins_start_slot,
 | 
						|
					 ins_nr, inode_only, logged_isize);
 | 
						|
			if (ret < 0) {
 | 
						|
				err = ret;
 | 
						|
				goto out_unlock;
 | 
						|
			}
 | 
						|
			ins_nr = 0;
 | 
						|
			if (ret) {
 | 
						|
				btrfs_release_path(path);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			goto next_slot;
 | 
						|
		}
 | 
						|
 | 
						|
		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
 | 
						|
			ins_nr++;
 | 
						|
			goto next_slot;
 | 
						|
		} else if (!ins_nr) {
 | 
						|
			ins_start_slot = path->slots[0];
 | 
						|
			ins_nr = 1;
 | 
						|
			goto next_slot;
 | 
						|
		}
 | 
						|
 | 
						|
		ret = copy_items(trans, inode, dst_path, path, &last_extent,
 | 
						|
				 ins_start_slot, ins_nr, inode_only,
 | 
						|
				 logged_isize);
 | 
						|
		if (ret < 0) {
 | 
						|
			err = ret;
 | 
						|
			goto out_unlock;
 | 
						|
		}
 | 
						|
		if (ret) {
 | 
						|
			ins_nr = 0;
 | 
						|
			btrfs_release_path(path);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		ins_nr = 1;
 | 
						|
		ins_start_slot = path->slots[0];
 | 
						|
next_slot:
 | 
						|
 | 
						|
		nritems = btrfs_header_nritems(path->nodes[0]);
 | 
						|
		path->slots[0]++;
 | 
						|
		if (path->slots[0] < nritems) {
 | 
						|
			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
 | 
						|
					      path->slots[0]);
 | 
						|
			goto again;
 | 
						|
		}
 | 
						|
		if (ins_nr) {
 | 
						|
			ret = copy_items(trans, inode, dst_path, path,
 | 
						|
					 &last_extent, ins_start_slot,
 | 
						|
					 ins_nr, inode_only, logged_isize);
 | 
						|
			if (ret < 0) {
 | 
						|
				err = ret;
 | 
						|
				goto out_unlock;
 | 
						|
			}
 | 
						|
			ret = 0;
 | 
						|
			ins_nr = 0;
 | 
						|
		}
 | 
						|
		btrfs_release_path(path);
 | 
						|
next_key:
 | 
						|
		if (min_key.offset < (u64)-1) {
 | 
						|
			min_key.offset++;
 | 
						|
		} else if (min_key.type < max_key.type) {
 | 
						|
			min_key.type++;
 | 
						|
			min_key.offset = 0;
 | 
						|
		} else {
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (ins_nr) {
 | 
						|
		ret = copy_items(trans, inode, dst_path, path, &last_extent,
 | 
						|
				 ins_start_slot, ins_nr, inode_only,
 | 
						|
				 logged_isize);
 | 
						|
		if (ret < 0) {
 | 
						|
			err = ret;
 | 
						|
			goto out_unlock;
 | 
						|
		}
 | 
						|
		ret = 0;
 | 
						|
		ins_nr = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_release_path(path);
 | 
						|
	btrfs_release_path(dst_path);
 | 
						|
	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
 | 
						|
	if (err)
 | 
						|
		goto out_unlock;
 | 
						|
	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
 | 
						|
		btrfs_release_path(path);
 | 
						|
		btrfs_release_path(dst_path);
 | 
						|
		err = btrfs_log_trailing_hole(trans, root, inode, path);
 | 
						|
		if (err)
 | 
						|
			goto out_unlock;
 | 
						|
	}
 | 
						|
log_extents:
 | 
						|
	btrfs_release_path(path);
 | 
						|
	btrfs_release_path(dst_path);
 | 
						|
	if (need_log_inode_item) {
 | 
						|
		err = log_inode_item(trans, log, dst_path, inode);
 | 
						|
		if (err)
 | 
						|
			goto out_unlock;
 | 
						|
	}
 | 
						|
	if (fast_search) {
 | 
						|
		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
 | 
						|
						&logged_list, ctx, start, end);
 | 
						|
		if (ret) {
 | 
						|
			err = ret;
 | 
						|
			goto out_unlock;
 | 
						|
		}
 | 
						|
	} else if (inode_only == LOG_INODE_ALL) {
 | 
						|
		struct extent_map *em, *n;
 | 
						|
 | 
						|
		write_lock(&em_tree->lock);
 | 
						|
		/*
 | 
						|
		 * We can't just remove every em if we're called for a ranged
 | 
						|
		 * fsync - that is, one that doesn't cover the whole possible
 | 
						|
		 * file range (0 to LLONG_MAX). This is because we can have
 | 
						|
		 * em's that fall outside the range we're logging and therefore
 | 
						|
		 * their ordered operations haven't completed yet
 | 
						|
		 * (btrfs_finish_ordered_io() not invoked yet). This means we
 | 
						|
		 * didn't get their respective file extent item in the fs/subvol
 | 
						|
		 * tree yet, and need to let the next fast fsync (one which
 | 
						|
		 * consults the list of modified extent maps) find the em so
 | 
						|
		 * that it logs a matching file extent item and waits for the
 | 
						|
		 * respective ordered operation to complete (if it's still
 | 
						|
		 * running).
 | 
						|
		 *
 | 
						|
		 * Removing every em outside the range we're logging would make
 | 
						|
		 * the next fast fsync not log their matching file extent items,
 | 
						|
		 * therefore making us lose data after a log replay.
 | 
						|
		 */
 | 
						|
		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
 | 
						|
					 list) {
 | 
						|
			const u64 mod_end = em->mod_start + em->mod_len - 1;
 | 
						|
 | 
						|
			if (em->mod_start >= start && mod_end <= end)
 | 
						|
				list_del_init(&em->list);
 | 
						|
		}
 | 
						|
		write_unlock(&em_tree->lock);
 | 
						|
	}
 | 
						|
 | 
						|
	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
 | 
						|
		ret = log_directory_changes(trans, root, inode, path, dst_path,
 | 
						|
					ctx);
 | 
						|
		if (ret) {
 | 
						|
			err = ret;
 | 
						|
			goto out_unlock;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&inode->lock);
 | 
						|
	inode->logged_trans = trans->transid;
 | 
						|
	inode->last_log_commit = inode->last_sub_trans;
 | 
						|
	spin_unlock(&inode->lock);
 | 
						|
out_unlock:
 | 
						|
	if (unlikely(err))
 | 
						|
		btrfs_put_logged_extents(&logged_list);
 | 
						|
	else
 | 
						|
		btrfs_submit_logged_extents(&logged_list, log);
 | 
						|
	mutex_unlock(&inode->log_mutex);
 | 
						|
 | 
						|
	btrfs_free_path(path);
 | 
						|
	btrfs_free_path(dst_path);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check if we must fallback to a transaction commit when logging an inode.
 | 
						|
 * This must be called after logging the inode and is used only in the context
 | 
						|
 * when fsyncing an inode requires the need to log some other inode - in which
 | 
						|
 * case we can't lock the i_mutex of each other inode we need to log as that
 | 
						|
 * can lead to deadlocks with concurrent fsync against other inodes (as we can
 | 
						|
 * log inodes up or down in the hierarchy) or rename operations for example. So
 | 
						|
 * we take the log_mutex of the inode after we have logged it and then check for
 | 
						|
 * its last_unlink_trans value - this is safe because any task setting
 | 
						|
 * last_unlink_trans must take the log_mutex and it must do this before it does
 | 
						|
 * the actual unlink operation, so if we do this check before a concurrent task
 | 
						|
 * sets last_unlink_trans it means we've logged a consistent version/state of
 | 
						|
 * all the inode items, otherwise we are not sure and must do a transaction
 | 
						|
 * commit (the concurrent task might have only updated last_unlink_trans before
 | 
						|
 * we logged the inode or it might have also done the unlink).
 | 
						|
 */
 | 
						|
static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
 | 
						|
					  struct btrfs_inode *inode)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | 
						|
	bool ret = false;
 | 
						|
 | 
						|
	mutex_lock(&inode->log_mutex);
 | 
						|
	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
 | 
						|
		/*
 | 
						|
		 * Make sure any commits to the log are forced to be full
 | 
						|
		 * commits.
 | 
						|
		 */
 | 
						|
		btrfs_set_log_full_commit(fs_info, trans);
 | 
						|
		ret = true;
 | 
						|
	}
 | 
						|
	mutex_unlock(&inode->log_mutex);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * follow the dentry parent pointers up the chain and see if any
 | 
						|
 * of the directories in it require a full commit before they can
 | 
						|
 * be logged.  Returns zero if nothing special needs to be done or 1 if
 | 
						|
 * a full commit is required.
 | 
						|
 */
 | 
						|
static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
 | 
						|
					       struct btrfs_inode *inode,
 | 
						|
					       struct dentry *parent,
 | 
						|
					       struct super_block *sb,
 | 
						|
					       u64 last_committed)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	struct dentry *old_parent = NULL;
 | 
						|
	struct btrfs_inode *orig_inode = inode;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * for regular files, if its inode is already on disk, we don't
 | 
						|
	 * have to worry about the parents at all.  This is because
 | 
						|
	 * we can use the last_unlink_trans field to record renames
 | 
						|
	 * and other fun in this file.
 | 
						|
	 */
 | 
						|
	if (S_ISREG(inode->vfs_inode.i_mode) &&
 | 
						|
	    inode->generation <= last_committed &&
 | 
						|
	    inode->last_unlink_trans <= last_committed)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
 | 
						|
		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
 | 
						|
			goto out;
 | 
						|
		inode = BTRFS_I(d_inode(parent));
 | 
						|
	}
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		/*
 | 
						|
		 * If we are logging a directory then we start with our inode,
 | 
						|
		 * not our parent's inode, so we need to skip setting the
 | 
						|
		 * logged_trans so that further down in the log code we don't
 | 
						|
		 * think this inode has already been logged.
 | 
						|
		 */
 | 
						|
		if (inode != orig_inode)
 | 
						|
			inode->logged_trans = trans->transid;
 | 
						|
		smp_mb();
 | 
						|
 | 
						|
		if (btrfs_must_commit_transaction(trans, inode)) {
 | 
						|
			ret = 1;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (IS_ROOT(parent)) {
 | 
						|
			inode = BTRFS_I(d_inode(parent));
 | 
						|
			if (btrfs_must_commit_transaction(trans, inode))
 | 
						|
				ret = 1;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		parent = dget_parent(parent);
 | 
						|
		dput(old_parent);
 | 
						|
		old_parent = parent;
 | 
						|
		inode = BTRFS_I(d_inode(parent));
 | 
						|
 | 
						|
	}
 | 
						|
	dput(old_parent);
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
struct btrfs_dir_list {
 | 
						|
	u64 ino;
 | 
						|
	struct list_head list;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Log the inodes of the new dentries of a directory. See log_dir_items() for
 | 
						|
 * details about the why it is needed.
 | 
						|
 * This is a recursive operation - if an existing dentry corresponds to a
 | 
						|
 * directory, that directory's new entries are logged too (same behaviour as
 | 
						|
 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
 | 
						|
 * the dentries point to we do not lock their i_mutex, otherwise lockdep
 | 
						|
 * complains about the following circular lock dependency / possible deadlock:
 | 
						|
 *
 | 
						|
 *        CPU0                                        CPU1
 | 
						|
 *        ----                                        ----
 | 
						|
 * lock(&type->i_mutex_dir_key#3/2);
 | 
						|
 *                                            lock(sb_internal#2);
 | 
						|
 *                                            lock(&type->i_mutex_dir_key#3/2);
 | 
						|
 * lock(&sb->s_type->i_mutex_key#14);
 | 
						|
 *
 | 
						|
 * Where sb_internal is the lock (a counter that works as a lock) acquired by
 | 
						|
 * sb_start_intwrite() in btrfs_start_transaction().
 | 
						|
 * Not locking i_mutex of the inodes is still safe because:
 | 
						|
 *
 | 
						|
 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
 | 
						|
 *    that while logging the inode new references (names) are added or removed
 | 
						|
 *    from the inode, leaving the logged inode item with a link count that does
 | 
						|
 *    not match the number of logged inode reference items. This is fine because
 | 
						|
 *    at log replay time we compute the real number of links and correct the
 | 
						|
 *    link count in the inode item (see replay_one_buffer() and
 | 
						|
 *    link_to_fixup_dir());
 | 
						|
 *
 | 
						|
 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
 | 
						|
 *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
 | 
						|
 *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
 | 
						|
 *    has a size that doesn't match the sum of the lengths of all the logged
 | 
						|
 *    names. This does not result in a problem because if a dir_item key is
 | 
						|
 *    logged but its matching dir_index key is not logged, at log replay time we
 | 
						|
 *    don't use it to replay the respective name (see replay_one_name()). On the
 | 
						|
 *    other hand if only the dir_index key ends up being logged, the respective
 | 
						|
 *    name is added to the fs/subvol tree with both the dir_item and dir_index
 | 
						|
 *    keys created (see replay_one_name()).
 | 
						|
 *    The directory's inode item with a wrong i_size is not a problem as well,
 | 
						|
 *    since we don't use it at log replay time to set the i_size in the inode
 | 
						|
 *    item of the fs/subvol tree (see overwrite_item()).
 | 
						|
 */
 | 
						|
static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
 | 
						|
				struct btrfs_root *root,
 | 
						|
				struct btrfs_inode *start_inode,
 | 
						|
				struct btrfs_log_ctx *ctx)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct btrfs_root *log = root->log_root;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	LIST_HEAD(dir_list);
 | 
						|
	struct btrfs_dir_list *dir_elem;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
 | 
						|
	if (!dir_elem) {
 | 
						|
		btrfs_free_path(path);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
	dir_elem->ino = btrfs_ino(start_inode);
 | 
						|
	list_add_tail(&dir_elem->list, &dir_list);
 | 
						|
 | 
						|
	while (!list_empty(&dir_list)) {
 | 
						|
		struct extent_buffer *leaf;
 | 
						|
		struct btrfs_key min_key;
 | 
						|
		int nritems;
 | 
						|
		int i;
 | 
						|
 | 
						|
		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
 | 
						|
					    list);
 | 
						|
		if (ret)
 | 
						|
			goto next_dir_inode;
 | 
						|
 | 
						|
		min_key.objectid = dir_elem->ino;
 | 
						|
		min_key.type = BTRFS_DIR_ITEM_KEY;
 | 
						|
		min_key.offset = 0;
 | 
						|
again:
 | 
						|
		btrfs_release_path(path);
 | 
						|
		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
 | 
						|
		if (ret < 0) {
 | 
						|
			goto next_dir_inode;
 | 
						|
		} else if (ret > 0) {
 | 
						|
			ret = 0;
 | 
						|
			goto next_dir_inode;
 | 
						|
		}
 | 
						|
 | 
						|
process_leaf:
 | 
						|
		leaf = path->nodes[0];
 | 
						|
		nritems = btrfs_header_nritems(leaf);
 | 
						|
		for (i = path->slots[0]; i < nritems; i++) {
 | 
						|
			struct btrfs_dir_item *di;
 | 
						|
			struct btrfs_key di_key;
 | 
						|
			struct inode *di_inode;
 | 
						|
			struct btrfs_dir_list *new_dir_elem;
 | 
						|
			int log_mode = LOG_INODE_EXISTS;
 | 
						|
			int type;
 | 
						|
 | 
						|
			btrfs_item_key_to_cpu(leaf, &min_key, i);
 | 
						|
			if (min_key.objectid != dir_elem->ino ||
 | 
						|
			    min_key.type != BTRFS_DIR_ITEM_KEY)
 | 
						|
				goto next_dir_inode;
 | 
						|
 | 
						|
			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
 | 
						|
			type = btrfs_dir_type(leaf, di);
 | 
						|
			if (btrfs_dir_transid(leaf, di) < trans->transid &&
 | 
						|
			    type != BTRFS_FT_DIR)
 | 
						|
				continue;
 | 
						|
			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
 | 
						|
			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
 | 
						|
				continue;
 | 
						|
 | 
						|
			btrfs_release_path(path);
 | 
						|
			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
 | 
						|
			if (IS_ERR(di_inode)) {
 | 
						|
				ret = PTR_ERR(di_inode);
 | 
						|
				goto next_dir_inode;
 | 
						|
			}
 | 
						|
 | 
						|
			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
 | 
						|
				iput(di_inode);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
			ctx->log_new_dentries = false;
 | 
						|
			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
 | 
						|
				log_mode = LOG_INODE_ALL;
 | 
						|
			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
 | 
						|
					      log_mode, 0, LLONG_MAX, ctx);
 | 
						|
			if (!ret &&
 | 
						|
			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
 | 
						|
				ret = 1;
 | 
						|
			iput(di_inode);
 | 
						|
			if (ret)
 | 
						|
				goto next_dir_inode;
 | 
						|
			if (ctx->log_new_dentries) {
 | 
						|
				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
 | 
						|
						       GFP_NOFS);
 | 
						|
				if (!new_dir_elem) {
 | 
						|
					ret = -ENOMEM;
 | 
						|
					goto next_dir_inode;
 | 
						|
				}
 | 
						|
				new_dir_elem->ino = di_key.objectid;
 | 
						|
				list_add_tail(&new_dir_elem->list, &dir_list);
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (i == nritems) {
 | 
						|
			ret = btrfs_next_leaf(log, path);
 | 
						|
			if (ret < 0) {
 | 
						|
				goto next_dir_inode;
 | 
						|
			} else if (ret > 0) {
 | 
						|
				ret = 0;
 | 
						|
				goto next_dir_inode;
 | 
						|
			}
 | 
						|
			goto process_leaf;
 | 
						|
		}
 | 
						|
		if (min_key.offset < (u64)-1) {
 | 
						|
			min_key.offset++;
 | 
						|
			goto again;
 | 
						|
		}
 | 
						|
next_dir_inode:
 | 
						|
		list_del(&dir_elem->list);
 | 
						|
		kfree(dir_elem);
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
 | 
						|
				 struct btrfs_inode *inode,
 | 
						|
				 struct btrfs_log_ctx *ctx)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
 | 
						|
	int ret;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct btrfs_key key;
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	const u64 ino = btrfs_ino(inode);
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
	path->skip_locking = 1;
 | 
						|
	path->search_commit_root = 1;
 | 
						|
 | 
						|
	key.objectid = ino;
 | 
						|
	key.type = BTRFS_INODE_REF_KEY;
 | 
						|
	key.offset = 0;
 | 
						|
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	while (true) {
 | 
						|
		struct extent_buffer *leaf = path->nodes[0];
 | 
						|
		int slot = path->slots[0];
 | 
						|
		u32 cur_offset = 0;
 | 
						|
		u32 item_size;
 | 
						|
		unsigned long ptr;
 | 
						|
 | 
						|
		if (slot >= btrfs_header_nritems(leaf)) {
 | 
						|
			ret = btrfs_next_leaf(root, path);
 | 
						|
			if (ret < 0)
 | 
						|
				goto out;
 | 
						|
			else if (ret > 0)
 | 
						|
				break;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		btrfs_item_key_to_cpu(leaf, &key, slot);
 | 
						|
		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
 | 
						|
		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
 | 
						|
			break;
 | 
						|
 | 
						|
		item_size = btrfs_item_size_nr(leaf, slot);
 | 
						|
		ptr = btrfs_item_ptr_offset(leaf, slot);
 | 
						|
		while (cur_offset < item_size) {
 | 
						|
			struct btrfs_key inode_key;
 | 
						|
			struct inode *dir_inode;
 | 
						|
 | 
						|
			inode_key.type = BTRFS_INODE_ITEM_KEY;
 | 
						|
			inode_key.offset = 0;
 | 
						|
 | 
						|
			if (key.type == BTRFS_INODE_EXTREF_KEY) {
 | 
						|
				struct btrfs_inode_extref *extref;
 | 
						|
 | 
						|
				extref = (struct btrfs_inode_extref *)
 | 
						|
					(ptr + cur_offset);
 | 
						|
				inode_key.objectid = btrfs_inode_extref_parent(
 | 
						|
					leaf, extref);
 | 
						|
				cur_offset += sizeof(*extref);
 | 
						|
				cur_offset += btrfs_inode_extref_name_len(leaf,
 | 
						|
					extref);
 | 
						|
			} else {
 | 
						|
				inode_key.objectid = key.offset;
 | 
						|
				cur_offset = item_size;
 | 
						|
			}
 | 
						|
 | 
						|
			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
 | 
						|
					       root, NULL);
 | 
						|
			/* If parent inode was deleted, skip it. */
 | 
						|
			if (IS_ERR(dir_inode))
 | 
						|
				continue;
 | 
						|
 | 
						|
			if (ctx)
 | 
						|
				ctx->log_new_dentries = false;
 | 
						|
			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
 | 
						|
					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
 | 
						|
			if (!ret &&
 | 
						|
			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
 | 
						|
				ret = 1;
 | 
						|
			if (!ret && ctx && ctx->log_new_dentries)
 | 
						|
				ret = log_new_dir_dentries(trans, root,
 | 
						|
						   BTRFS_I(dir_inode), ctx);
 | 
						|
			iput(dir_inode);
 | 
						|
			if (ret)
 | 
						|
				goto out;
 | 
						|
		}
 | 
						|
		path->slots[0]++;
 | 
						|
	}
 | 
						|
	ret = 0;
 | 
						|
out:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * helper function around btrfs_log_inode to make sure newly created
 | 
						|
 * parent directories also end up in the log.  A minimal inode and backref
 | 
						|
 * only logging is done of any parent directories that are older than
 | 
						|
 * the last committed transaction
 | 
						|
 */
 | 
						|
static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
 | 
						|
				  struct btrfs_root *root,
 | 
						|
				  struct btrfs_inode *inode,
 | 
						|
				  struct dentry *parent,
 | 
						|
				  const loff_t start,
 | 
						|
				  const loff_t end,
 | 
						|
				  int inode_only,
 | 
						|
				  struct btrfs_log_ctx *ctx)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct super_block *sb;
 | 
						|
	struct dentry *old_parent = NULL;
 | 
						|
	int ret = 0;
 | 
						|
	u64 last_committed = fs_info->last_trans_committed;
 | 
						|
	bool log_dentries = false;
 | 
						|
	struct btrfs_inode *orig_inode = inode;
 | 
						|
 | 
						|
	sb = inode->vfs_inode.i_sb;
 | 
						|
 | 
						|
	if (btrfs_test_opt(fs_info, NOTREELOG)) {
 | 
						|
		ret = 1;
 | 
						|
		goto end_no_trans;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The prev transaction commit doesn't complete, we need do
 | 
						|
	 * full commit by ourselves.
 | 
						|
	 */
 | 
						|
	if (fs_info->last_trans_log_full_commit >
 | 
						|
	    fs_info->last_trans_committed) {
 | 
						|
		ret = 1;
 | 
						|
		goto end_no_trans;
 | 
						|
	}
 | 
						|
 | 
						|
	if (root != inode->root || btrfs_root_refs(&root->root_item) == 0) {
 | 
						|
		ret = 1;
 | 
						|
		goto end_no_trans;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
 | 
						|
			last_committed);
 | 
						|
	if (ret)
 | 
						|
		goto end_no_trans;
 | 
						|
 | 
						|
	if (btrfs_inode_in_log(inode, trans->transid)) {
 | 
						|
		ret = BTRFS_NO_LOG_SYNC;
 | 
						|
		goto end_no_trans;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = start_log_trans(trans, root, ctx);
 | 
						|
	if (ret)
 | 
						|
		goto end_no_trans;
 | 
						|
 | 
						|
	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
 | 
						|
	if (ret)
 | 
						|
		goto end_trans;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * for regular files, if its inode is already on disk, we don't
 | 
						|
	 * have to worry about the parents at all.  This is because
 | 
						|
	 * we can use the last_unlink_trans field to record renames
 | 
						|
	 * and other fun in this file.
 | 
						|
	 */
 | 
						|
	if (S_ISREG(inode->vfs_inode.i_mode) &&
 | 
						|
	    inode->generation <= last_committed &&
 | 
						|
	    inode->last_unlink_trans <= last_committed) {
 | 
						|
		ret = 0;
 | 
						|
		goto end_trans;
 | 
						|
	}
 | 
						|
 | 
						|
	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
 | 
						|
		log_dentries = true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * On unlink we must make sure all our current and old parent directory
 | 
						|
	 * inodes are fully logged. This is to prevent leaving dangling
 | 
						|
	 * directory index entries in directories that were our parents but are
 | 
						|
	 * not anymore. Not doing this results in old parent directory being
 | 
						|
	 * impossible to delete after log replay (rmdir will always fail with
 | 
						|
	 * error -ENOTEMPTY).
 | 
						|
	 *
 | 
						|
	 * Example 1:
 | 
						|
	 *
 | 
						|
	 * mkdir testdir
 | 
						|
	 * touch testdir/foo
 | 
						|
	 * ln testdir/foo testdir/bar
 | 
						|
	 * sync
 | 
						|
	 * unlink testdir/bar
 | 
						|
	 * xfs_io -c fsync testdir/foo
 | 
						|
	 * <power failure>
 | 
						|
	 * mount fs, triggers log replay
 | 
						|
	 *
 | 
						|
	 * If we don't log the parent directory (testdir), after log replay the
 | 
						|
	 * directory still has an entry pointing to the file inode using the bar
 | 
						|
	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
 | 
						|
	 * the file inode has a link count of 1.
 | 
						|
	 *
 | 
						|
	 * Example 2:
 | 
						|
	 *
 | 
						|
	 * mkdir testdir
 | 
						|
	 * touch foo
 | 
						|
	 * ln foo testdir/foo2
 | 
						|
	 * ln foo testdir/foo3
 | 
						|
	 * sync
 | 
						|
	 * unlink testdir/foo3
 | 
						|
	 * xfs_io -c fsync foo
 | 
						|
	 * <power failure>
 | 
						|
	 * mount fs, triggers log replay
 | 
						|
	 *
 | 
						|
	 * Similar as the first example, after log replay the parent directory
 | 
						|
	 * testdir still has an entry pointing to the inode file with name foo3
 | 
						|
	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
 | 
						|
	 * and has a link count of 2.
 | 
						|
	 */
 | 
						|
	if (inode->last_unlink_trans > last_committed) {
 | 
						|
		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
 | 
						|
		if (ret)
 | 
						|
			goto end_trans;
 | 
						|
	}
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
 | 
						|
			break;
 | 
						|
 | 
						|
		inode = BTRFS_I(d_inode(parent));
 | 
						|
		if (root != inode->root)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (inode->generation > last_committed) {
 | 
						|
			ret = btrfs_log_inode(trans, root, inode,
 | 
						|
					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
 | 
						|
			if (ret)
 | 
						|
				goto end_trans;
 | 
						|
		}
 | 
						|
		if (IS_ROOT(parent))
 | 
						|
			break;
 | 
						|
 | 
						|
		parent = dget_parent(parent);
 | 
						|
		dput(old_parent);
 | 
						|
		old_parent = parent;
 | 
						|
	}
 | 
						|
	if (log_dentries)
 | 
						|
		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
 | 
						|
	else
 | 
						|
		ret = 0;
 | 
						|
end_trans:
 | 
						|
	dput(old_parent);
 | 
						|
	if (ret < 0) {
 | 
						|
		btrfs_set_log_full_commit(fs_info, trans);
 | 
						|
		ret = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (ret)
 | 
						|
		btrfs_remove_log_ctx(root, ctx);
 | 
						|
	btrfs_end_log_trans(root);
 | 
						|
end_no_trans:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * it is not safe to log dentry if the chunk root has added new
 | 
						|
 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
 | 
						|
 * If this returns 1, you must commit the transaction to safely get your
 | 
						|
 * data on disk.
 | 
						|
 */
 | 
						|
int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
 | 
						|
			  struct btrfs_root *root, struct dentry *dentry,
 | 
						|
			  const loff_t start,
 | 
						|
			  const loff_t end,
 | 
						|
			  struct btrfs_log_ctx *ctx)
 | 
						|
{
 | 
						|
	struct dentry *parent = dget_parent(dentry);
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = btrfs_log_inode_parent(trans, root, BTRFS_I(d_inode(dentry)),
 | 
						|
			parent, start, end, LOG_INODE_ALL, ctx);
 | 
						|
	dput(parent);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * should be called during mount to recover any replay any log trees
 | 
						|
 * from the FS
 | 
						|
 */
 | 
						|
int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	struct btrfs_key key;
 | 
						|
	struct btrfs_key found_key;
 | 
						|
	struct btrfs_key tmp_key;
 | 
						|
	struct btrfs_root *log;
 | 
						|
	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
 | 
						|
	struct walk_control wc = {
 | 
						|
		.process_func = process_one_buffer,
 | 
						|
		.stage = 0,
 | 
						|
	};
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
 | 
						|
 | 
						|
	trans = btrfs_start_transaction(fs_info->tree_root, 0);
 | 
						|
	if (IS_ERR(trans)) {
 | 
						|
		ret = PTR_ERR(trans);
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
 | 
						|
	wc.trans = trans;
 | 
						|
	wc.pin = 1;
 | 
						|
 | 
						|
	ret = walk_log_tree(trans, log_root_tree, &wc);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_handle_fs_error(fs_info, ret,
 | 
						|
			"Failed to pin buffers while recovering log root tree.");
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
 | 
						|
again:
 | 
						|
	key.objectid = BTRFS_TREE_LOG_OBJECTID;
 | 
						|
	key.offset = (u64)-1;
 | 
						|
	key.type = BTRFS_ROOT_ITEM_KEY;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
 | 
						|
 | 
						|
		if (ret < 0) {
 | 
						|
			btrfs_handle_fs_error(fs_info, ret,
 | 
						|
				    "Couldn't find tree log root.");
 | 
						|
			goto error;
 | 
						|
		}
 | 
						|
		if (ret > 0) {
 | 
						|
			if (path->slots[0] == 0)
 | 
						|
				break;
 | 
						|
			path->slots[0]--;
 | 
						|
		}
 | 
						|
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 | 
						|
				      path->slots[0]);
 | 
						|
		btrfs_release_path(path);
 | 
						|
		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 | 
						|
			break;
 | 
						|
 | 
						|
		log = btrfs_read_fs_root(log_root_tree, &found_key);
 | 
						|
		if (IS_ERR(log)) {
 | 
						|
			ret = PTR_ERR(log);
 | 
						|
			btrfs_handle_fs_error(fs_info, ret,
 | 
						|
				    "Couldn't read tree log root.");
 | 
						|
			goto error;
 | 
						|
		}
 | 
						|
 | 
						|
		tmp_key.objectid = found_key.offset;
 | 
						|
		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
 | 
						|
		tmp_key.offset = (u64)-1;
 | 
						|
 | 
						|
		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
 | 
						|
		if (IS_ERR(wc.replay_dest)) {
 | 
						|
			ret = PTR_ERR(wc.replay_dest);
 | 
						|
			free_extent_buffer(log->node);
 | 
						|
			free_extent_buffer(log->commit_root);
 | 
						|
			kfree(log);
 | 
						|
			btrfs_handle_fs_error(fs_info, ret,
 | 
						|
				"Couldn't read target root for tree log recovery.");
 | 
						|
			goto error;
 | 
						|
		}
 | 
						|
 | 
						|
		wc.replay_dest->log_root = log;
 | 
						|
		btrfs_record_root_in_trans(trans, wc.replay_dest);
 | 
						|
		ret = walk_log_tree(trans, log, &wc);
 | 
						|
 | 
						|
		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
 | 
						|
			ret = fixup_inode_link_counts(trans, wc.replay_dest,
 | 
						|
						      path);
 | 
						|
		}
 | 
						|
 | 
						|
		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
 | 
						|
			struct btrfs_root *root = wc.replay_dest;
 | 
						|
 | 
						|
			btrfs_release_path(path);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * We have just replayed everything, and the highest
 | 
						|
			 * objectid of fs roots probably has changed in case
 | 
						|
			 * some inode_item's got replayed.
 | 
						|
			 *
 | 
						|
			 * root->objectid_mutex is not acquired as log replay
 | 
						|
			 * could only happen during mount.
 | 
						|
			 */
 | 
						|
			ret = btrfs_find_highest_objectid(root,
 | 
						|
						  &root->highest_objectid);
 | 
						|
		}
 | 
						|
 | 
						|
		key.offset = found_key.offset - 1;
 | 
						|
		wc.replay_dest->log_root = NULL;
 | 
						|
		free_extent_buffer(log->node);
 | 
						|
		free_extent_buffer(log->commit_root);
 | 
						|
		kfree(log);
 | 
						|
 | 
						|
		if (ret)
 | 
						|
			goto error;
 | 
						|
 | 
						|
		if (found_key.offset == 0)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	/* step one is to pin it all, step two is to replay just inodes */
 | 
						|
	if (wc.pin) {
 | 
						|
		wc.pin = 0;
 | 
						|
		wc.process_func = replay_one_buffer;
 | 
						|
		wc.stage = LOG_WALK_REPLAY_INODES;
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
	/* step three is to replay everything */
 | 
						|
	if (wc.stage < LOG_WALK_REPLAY_ALL) {
 | 
						|
		wc.stage++;
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_free_path(path);
 | 
						|
 | 
						|
	/* step 4: commit the transaction, which also unpins the blocks */
 | 
						|
	ret = btrfs_commit_transaction(trans);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	free_extent_buffer(log_root_tree->node);
 | 
						|
	log_root_tree->log_root = NULL;
 | 
						|
	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
 | 
						|
	kfree(log_root_tree);
 | 
						|
 | 
						|
	return 0;
 | 
						|
error:
 | 
						|
	if (wc.trans)
 | 
						|
		btrfs_end_transaction(wc.trans);
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * there are some corner cases where we want to force a full
 | 
						|
 * commit instead of allowing a directory to be logged.
 | 
						|
 *
 | 
						|
 * They revolve around files there were unlinked from the directory, and
 | 
						|
 * this function updates the parent directory so that a full commit is
 | 
						|
 * properly done if it is fsync'd later after the unlinks are done.
 | 
						|
 *
 | 
						|
 * Must be called before the unlink operations (updates to the subvolume tree,
 | 
						|
 * inodes, etc) are done.
 | 
						|
 */
 | 
						|
void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
 | 
						|
			     struct btrfs_inode *dir, struct btrfs_inode *inode,
 | 
						|
			     int for_rename)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * when we're logging a file, if it hasn't been renamed
 | 
						|
	 * or unlinked, and its inode is fully committed on disk,
 | 
						|
	 * we don't have to worry about walking up the directory chain
 | 
						|
	 * to log its parents.
 | 
						|
	 *
 | 
						|
	 * So, we use the last_unlink_trans field to put this transid
 | 
						|
	 * into the file.  When the file is logged we check it and
 | 
						|
	 * don't log the parents if the file is fully on disk.
 | 
						|
	 */
 | 
						|
	mutex_lock(&inode->log_mutex);
 | 
						|
	inode->last_unlink_trans = trans->transid;
 | 
						|
	mutex_unlock(&inode->log_mutex);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * if this directory was already logged any new
 | 
						|
	 * names for this file/dir will get recorded
 | 
						|
	 */
 | 
						|
	smp_mb();
 | 
						|
	if (dir->logged_trans == trans->transid)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * if the inode we're about to unlink was logged,
 | 
						|
	 * the log will be properly updated for any new names
 | 
						|
	 */
 | 
						|
	if (inode->logged_trans == trans->transid)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * when renaming files across directories, if the directory
 | 
						|
	 * there we're unlinking from gets fsync'd later on, there's
 | 
						|
	 * no way to find the destination directory later and fsync it
 | 
						|
	 * properly.  So, we have to be conservative and force commits
 | 
						|
	 * so the new name gets discovered.
 | 
						|
	 */
 | 
						|
	if (for_rename)
 | 
						|
		goto record;
 | 
						|
 | 
						|
	/* we can safely do the unlink without any special recording */
 | 
						|
	return;
 | 
						|
 | 
						|
record:
 | 
						|
	mutex_lock(&dir->log_mutex);
 | 
						|
	dir->last_unlink_trans = trans->transid;
 | 
						|
	mutex_unlock(&dir->log_mutex);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Make sure that if someone attempts to fsync the parent directory of a deleted
 | 
						|
 * snapshot, it ends up triggering a transaction commit. This is to guarantee
 | 
						|
 * that after replaying the log tree of the parent directory's root we will not
 | 
						|
 * see the snapshot anymore and at log replay time we will not see any log tree
 | 
						|
 * corresponding to the deleted snapshot's root, which could lead to replaying
 | 
						|
 * it after replaying the log tree of the parent directory (which would replay
 | 
						|
 * the snapshot delete operation).
 | 
						|
 *
 | 
						|
 * Must be called before the actual snapshot destroy operation (updates to the
 | 
						|
 * parent root and tree of tree roots trees, etc) are done.
 | 
						|
 */
 | 
						|
void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
 | 
						|
				   struct btrfs_inode *dir)
 | 
						|
{
 | 
						|
	mutex_lock(&dir->log_mutex);
 | 
						|
	dir->last_unlink_trans = trans->transid;
 | 
						|
	mutex_unlock(&dir->log_mutex);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Call this after adding a new name for a file and it will properly
 | 
						|
 * update the log to reflect the new name.
 | 
						|
 *
 | 
						|
 * It will return zero if all goes well, and it will return 1 if a
 | 
						|
 * full transaction commit is required.
 | 
						|
 */
 | 
						|
int btrfs_log_new_name(struct btrfs_trans_handle *trans,
 | 
						|
			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
 | 
						|
			struct dentry *parent)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * this will force the logging code to walk the dentry chain
 | 
						|
	 * up for the file
 | 
						|
	 */
 | 
						|
	if (!S_ISDIR(inode->vfs_inode.i_mode))
 | 
						|
		inode->last_unlink_trans = trans->transid;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * if this inode hasn't been logged and directory we're renaming it
 | 
						|
	 * from hasn't been logged, we don't need to log it
 | 
						|
	 */
 | 
						|
	if (inode->logged_trans <= fs_info->last_trans_committed &&
 | 
						|
	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
 | 
						|
				      LLONG_MAX, LOG_INODE_EXISTS, NULL);
 | 
						|
}
 | 
						|
 |