mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	Using 'hw_pressure' for local variable name is confusing in regard to the
per-CPU 'hw_pressure' variable that uses the same name:
  include/linux/arch_topology.h:DECLARE_PER_CPU(unsigned long, hw_pressure);
... which puts it into a global scope for all code that includes
<linux/topology.h>, shadowing the local variable.
Rename it to avoid compiler confusion & Sparse warnings.
[ mingo: Expanded the changelog. ]
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Konrad Dybcio <konrad.dybcio@linaro.org>
Acked-by: Sudeep Holla <sudeep.holla@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20240425073709.379016-1-vincent.guittot@linaro.org
Closes: https://lore.kernel.org/oe-kbuild-all/202404250740.VhQQoD7N-lkp@intel.com/
Fixes: d4dbc99171 ("sched/cpufreq: Rename arch_update_thermal_pressure() => arch_update_hw_pressure()")
Tested-by: Konrad Dybcio <konrad.dybcio@linaro.org> # QC SM8550 QRD
		
	
			
		
			
				
	
	
		
			907 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			907 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Arch specific cpu topology information
 | 
						|
 *
 | 
						|
 * Copyright (C) 2016, ARM Ltd.
 | 
						|
 * Written by: Juri Lelli, ARM Ltd.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/acpi.h>
 | 
						|
#include <linux/cacheinfo.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/cpufreq.h>
 | 
						|
#include <linux/device.h>
 | 
						|
#include <linux/of.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/sched/topology.h>
 | 
						|
#include <linux/cpuset.h>
 | 
						|
#include <linux/cpumask.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/rcupdate.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/units.h>
 | 
						|
 | 
						|
#define CREATE_TRACE_POINTS
 | 
						|
#include <trace/events/hw_pressure.h>
 | 
						|
 | 
						|
static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
 | 
						|
static struct cpumask scale_freq_counters_mask;
 | 
						|
static bool scale_freq_invariant;
 | 
						|
DEFINE_PER_CPU(unsigned long, capacity_freq_ref) = 1;
 | 
						|
EXPORT_PER_CPU_SYMBOL_GPL(capacity_freq_ref);
 | 
						|
 | 
						|
static bool supports_scale_freq_counters(const struct cpumask *cpus)
 | 
						|
{
 | 
						|
	return cpumask_subset(cpus, &scale_freq_counters_mask);
 | 
						|
}
 | 
						|
 | 
						|
bool topology_scale_freq_invariant(void)
 | 
						|
{
 | 
						|
	return cpufreq_supports_freq_invariance() ||
 | 
						|
	       supports_scale_freq_counters(cpu_online_mask);
 | 
						|
}
 | 
						|
 | 
						|
static void update_scale_freq_invariant(bool status)
 | 
						|
{
 | 
						|
	if (scale_freq_invariant == status)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Task scheduler behavior depends on frequency invariance support,
 | 
						|
	 * either cpufreq or counter driven. If the support status changes as
 | 
						|
	 * a result of counter initialisation and use, retrigger the build of
 | 
						|
	 * scheduling domains to ensure the information is propagated properly.
 | 
						|
	 */
 | 
						|
	if (topology_scale_freq_invariant() == status) {
 | 
						|
		scale_freq_invariant = status;
 | 
						|
		rebuild_sched_domains_energy();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void topology_set_scale_freq_source(struct scale_freq_data *data,
 | 
						|
				    const struct cpumask *cpus)
 | 
						|
{
 | 
						|
	struct scale_freq_data *sfd;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
 | 
						|
	 * supported by cpufreq.
 | 
						|
	 */
 | 
						|
	if (cpumask_empty(&scale_freq_counters_mask))
 | 
						|
		scale_freq_invariant = topology_scale_freq_invariant();
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
 | 
						|
	for_each_cpu(cpu, cpus) {
 | 
						|
		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
 | 
						|
 | 
						|
		/* Use ARCH provided counters whenever possible */
 | 
						|
		if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
 | 
						|
			rcu_assign_pointer(per_cpu(sft_data, cpu), data);
 | 
						|
			cpumask_set_cpu(cpu, &scale_freq_counters_mask);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	update_scale_freq_invariant(true);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
 | 
						|
 | 
						|
void topology_clear_scale_freq_source(enum scale_freq_source source,
 | 
						|
				      const struct cpumask *cpus)
 | 
						|
{
 | 
						|
	struct scale_freq_data *sfd;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
 | 
						|
	for_each_cpu(cpu, cpus) {
 | 
						|
		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
 | 
						|
 | 
						|
		if (sfd && sfd->source == source) {
 | 
						|
			rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
 | 
						|
			cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure all references to previous sft_data are dropped to avoid
 | 
						|
	 * use-after-free races.
 | 
						|
	 */
 | 
						|
	synchronize_rcu();
 | 
						|
 | 
						|
	update_scale_freq_invariant(false);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
 | 
						|
 | 
						|
void topology_scale_freq_tick(void)
 | 
						|
{
 | 
						|
	struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
 | 
						|
 | 
						|
	if (sfd)
 | 
						|
		sfd->set_freq_scale();
 | 
						|
}
 | 
						|
 | 
						|
DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
 | 
						|
EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
 | 
						|
 | 
						|
void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
 | 
						|
			     unsigned long max_freq)
 | 
						|
{
 | 
						|
	unsigned long scale;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (WARN_ON_ONCE(!cur_freq || !max_freq))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the use of counters for FIE is enabled, just return as we don't
 | 
						|
	 * want to update the scale factor with information from CPUFREQ.
 | 
						|
	 * Instead the scale factor will be updated from arch_scale_freq_tick.
 | 
						|
	 */
 | 
						|
	if (supports_scale_freq_counters(cpus))
 | 
						|
		return;
 | 
						|
 | 
						|
	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
 | 
						|
 | 
						|
	for_each_cpu(i, cpus)
 | 
						|
		per_cpu(arch_freq_scale, i) = scale;
 | 
						|
}
 | 
						|
 | 
						|
DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
 | 
						|
EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
 | 
						|
 | 
						|
void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
 | 
						|
{
 | 
						|
	per_cpu(cpu_scale, cpu) = capacity;
 | 
						|
}
 | 
						|
 | 
						|
DEFINE_PER_CPU(unsigned long, hw_pressure);
 | 
						|
 | 
						|
/**
 | 
						|
 * topology_update_hw_pressure() - Update HW pressure for CPUs
 | 
						|
 * @cpus        : The related CPUs for which capacity has been reduced
 | 
						|
 * @capped_freq : The maximum allowed frequency that CPUs can run at
 | 
						|
 *
 | 
						|
 * Update the value of HW pressure for all @cpus in the mask. The
 | 
						|
 * cpumask should include all (online+offline) affected CPUs, to avoid
 | 
						|
 * operating on stale data when hot-plug is used for some CPUs. The
 | 
						|
 * @capped_freq reflects the currently allowed max CPUs frequency due to
 | 
						|
 * HW capping. It might be also a boost frequency value, which is bigger
 | 
						|
 * than the internal 'capacity_freq_ref' max frequency. In such case the
 | 
						|
 * pressure value should simply be removed, since this is an indication that
 | 
						|
 * there is no HW throttling. The @capped_freq must be provided in kHz.
 | 
						|
 */
 | 
						|
void topology_update_hw_pressure(const struct cpumask *cpus,
 | 
						|
				      unsigned long capped_freq)
 | 
						|
{
 | 
						|
	unsigned long max_capacity, capacity, pressure;
 | 
						|
	u32 max_freq;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	cpu = cpumask_first(cpus);
 | 
						|
	max_capacity = arch_scale_cpu_capacity(cpu);
 | 
						|
	max_freq = arch_scale_freq_ref(cpu);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Handle properly the boost frequencies, which should simply clean
 | 
						|
	 * the HW pressure value.
 | 
						|
	 */
 | 
						|
	if (max_freq <= capped_freq)
 | 
						|
		capacity = max_capacity;
 | 
						|
	else
 | 
						|
		capacity = mult_frac(max_capacity, capped_freq, max_freq);
 | 
						|
 | 
						|
	pressure = max_capacity - capacity;
 | 
						|
 | 
						|
	trace_hw_pressure_update(cpu, pressure);
 | 
						|
 | 
						|
	for_each_cpu(cpu, cpus)
 | 
						|
		WRITE_ONCE(per_cpu(hw_pressure, cpu), pressure);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(topology_update_hw_pressure);
 | 
						|
 | 
						|
static ssize_t cpu_capacity_show(struct device *dev,
 | 
						|
				 struct device_attribute *attr,
 | 
						|
				 char *buf)
 | 
						|
{
 | 
						|
	struct cpu *cpu = container_of(dev, struct cpu, dev);
 | 
						|
 | 
						|
	return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
 | 
						|
}
 | 
						|
 | 
						|
static void update_topology_flags_workfn(struct work_struct *work);
 | 
						|
static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
 | 
						|
 | 
						|
static DEVICE_ATTR_RO(cpu_capacity);
 | 
						|
 | 
						|
static int cpu_capacity_sysctl_add(unsigned int cpu)
 | 
						|
{
 | 
						|
	struct device *cpu_dev = get_cpu_device(cpu);
 | 
						|
 | 
						|
	if (!cpu_dev)
 | 
						|
		return -ENOENT;
 | 
						|
 | 
						|
	device_create_file(cpu_dev, &dev_attr_cpu_capacity);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int cpu_capacity_sysctl_remove(unsigned int cpu)
 | 
						|
{
 | 
						|
	struct device *cpu_dev = get_cpu_device(cpu);
 | 
						|
 | 
						|
	if (!cpu_dev)
 | 
						|
		return -ENOENT;
 | 
						|
 | 
						|
	device_remove_file(cpu_dev, &dev_attr_cpu_capacity);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int register_cpu_capacity_sysctl(void)
 | 
						|
{
 | 
						|
	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "topology/cpu-capacity",
 | 
						|
			  cpu_capacity_sysctl_add, cpu_capacity_sysctl_remove);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
subsys_initcall(register_cpu_capacity_sysctl);
 | 
						|
 | 
						|
static int update_topology;
 | 
						|
 | 
						|
int topology_update_cpu_topology(void)
 | 
						|
{
 | 
						|
	return update_topology;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Updating the sched_domains can't be done directly from cpufreq callbacks
 | 
						|
 * due to locking, so queue the work for later.
 | 
						|
 */
 | 
						|
static void update_topology_flags_workfn(struct work_struct *work)
 | 
						|
{
 | 
						|
	update_topology = 1;
 | 
						|
	rebuild_sched_domains();
 | 
						|
	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
 | 
						|
	update_topology = 0;
 | 
						|
}
 | 
						|
 | 
						|
static u32 *raw_capacity;
 | 
						|
 | 
						|
static int free_raw_capacity(void)
 | 
						|
{
 | 
						|
	kfree(raw_capacity);
 | 
						|
	raw_capacity = NULL;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void topology_normalize_cpu_scale(void)
 | 
						|
{
 | 
						|
	u64 capacity;
 | 
						|
	u64 capacity_scale;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	if (!raw_capacity)
 | 
						|
		return;
 | 
						|
 | 
						|
	capacity_scale = 1;
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu);
 | 
						|
		capacity_scale = max(capacity, capacity_scale);
 | 
						|
	}
 | 
						|
 | 
						|
	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu);
 | 
						|
		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
 | 
						|
			capacity_scale);
 | 
						|
		topology_set_cpu_scale(cpu, capacity);
 | 
						|
		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
 | 
						|
			cpu, topology_get_cpu_scale(cpu));
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
 | 
						|
{
 | 
						|
	struct clk *cpu_clk;
 | 
						|
	static bool cap_parsing_failed;
 | 
						|
	int ret;
 | 
						|
	u32 cpu_capacity;
 | 
						|
 | 
						|
	if (cap_parsing_failed)
 | 
						|
		return false;
 | 
						|
 | 
						|
	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
 | 
						|
				   &cpu_capacity);
 | 
						|
	if (!ret) {
 | 
						|
		if (!raw_capacity) {
 | 
						|
			raw_capacity = kcalloc(num_possible_cpus(),
 | 
						|
					       sizeof(*raw_capacity),
 | 
						|
					       GFP_KERNEL);
 | 
						|
			if (!raw_capacity) {
 | 
						|
				cap_parsing_failed = true;
 | 
						|
				return false;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		raw_capacity[cpu] = cpu_capacity;
 | 
						|
		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
 | 
						|
			cpu_node, raw_capacity[cpu]);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Update capacity_freq_ref for calculating early boot CPU capacities.
 | 
						|
		 * For non-clk CPU DVFS mechanism, there's no way to get the
 | 
						|
		 * frequency value now, assuming they are running at the same
 | 
						|
		 * frequency (by keeping the initial capacity_freq_ref value).
 | 
						|
		 */
 | 
						|
		cpu_clk = of_clk_get(cpu_node, 0);
 | 
						|
		if (!PTR_ERR_OR_ZERO(cpu_clk)) {
 | 
						|
			per_cpu(capacity_freq_ref, cpu) =
 | 
						|
				clk_get_rate(cpu_clk) / HZ_PER_KHZ;
 | 
						|
			clk_put(cpu_clk);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		if (raw_capacity) {
 | 
						|
			pr_err("cpu_capacity: missing %pOF raw capacity\n",
 | 
						|
				cpu_node);
 | 
						|
			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
 | 
						|
		}
 | 
						|
		cap_parsing_failed = true;
 | 
						|
		free_raw_capacity();
 | 
						|
	}
 | 
						|
 | 
						|
	return !ret;
 | 
						|
}
 | 
						|
 | 
						|
void __weak freq_inv_set_max_ratio(int cpu, u64 max_rate)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_ACPI_CPPC_LIB
 | 
						|
#include <acpi/cppc_acpi.h>
 | 
						|
 | 
						|
void topology_init_cpu_capacity_cppc(void)
 | 
						|
{
 | 
						|
	u64 capacity, capacity_scale = 0;
 | 
						|
	struct cppc_perf_caps perf_caps;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	if (likely(!acpi_cpc_valid()))
 | 
						|
		return;
 | 
						|
 | 
						|
	raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
 | 
						|
			       GFP_KERNEL);
 | 
						|
	if (!raw_capacity)
 | 
						|
		return;
 | 
						|
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		if (!cppc_get_perf_caps(cpu, &perf_caps) &&
 | 
						|
		    (perf_caps.highest_perf >= perf_caps.nominal_perf) &&
 | 
						|
		    (perf_caps.highest_perf >= perf_caps.lowest_perf)) {
 | 
						|
			raw_capacity[cpu] = perf_caps.highest_perf;
 | 
						|
			capacity_scale = max_t(u64, capacity_scale, raw_capacity[cpu]);
 | 
						|
 | 
						|
			per_cpu(capacity_freq_ref, cpu) = cppc_perf_to_khz(&perf_caps, raw_capacity[cpu]);
 | 
						|
 | 
						|
			pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
 | 
						|
				 cpu, raw_capacity[cpu]);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
 | 
						|
		pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
 | 
						|
		goto exit;
 | 
						|
	}
 | 
						|
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		freq_inv_set_max_ratio(cpu,
 | 
						|
				       per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
 | 
						|
 | 
						|
		capacity = raw_capacity[cpu];
 | 
						|
		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
 | 
						|
				     capacity_scale);
 | 
						|
		topology_set_cpu_scale(cpu, capacity);
 | 
						|
		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
 | 
						|
			cpu, topology_get_cpu_scale(cpu));
 | 
						|
	}
 | 
						|
 | 
						|
	schedule_work(&update_topology_flags_work);
 | 
						|
	pr_debug("cpu_capacity: cpu_capacity initialization done\n");
 | 
						|
 | 
						|
exit:
 | 
						|
	free_raw_capacity();
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_CPU_FREQ
 | 
						|
static cpumask_var_t cpus_to_visit;
 | 
						|
static void parsing_done_workfn(struct work_struct *work);
 | 
						|
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
 | 
						|
 | 
						|
static int
 | 
						|
init_cpu_capacity_callback(struct notifier_block *nb,
 | 
						|
			   unsigned long val,
 | 
						|
			   void *data)
 | 
						|
{
 | 
						|
	struct cpufreq_policy *policy = data;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	if (val != CPUFREQ_CREATE_POLICY)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
 | 
						|
		 cpumask_pr_args(policy->related_cpus),
 | 
						|
		 cpumask_pr_args(cpus_to_visit));
 | 
						|
 | 
						|
	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
 | 
						|
 | 
						|
	for_each_cpu(cpu, policy->related_cpus) {
 | 
						|
		per_cpu(capacity_freq_ref, cpu) = policy->cpuinfo.max_freq;
 | 
						|
		freq_inv_set_max_ratio(cpu,
 | 
						|
				       per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
 | 
						|
	}
 | 
						|
 | 
						|
	if (cpumask_empty(cpus_to_visit)) {
 | 
						|
		if (raw_capacity) {
 | 
						|
			topology_normalize_cpu_scale();
 | 
						|
			schedule_work(&update_topology_flags_work);
 | 
						|
			free_raw_capacity();
 | 
						|
		}
 | 
						|
		pr_debug("cpu_capacity: parsing done\n");
 | 
						|
		schedule_work(&parsing_done_work);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static struct notifier_block init_cpu_capacity_notifier = {
 | 
						|
	.notifier_call = init_cpu_capacity_callback,
 | 
						|
};
 | 
						|
 | 
						|
static int __init register_cpufreq_notifier(void)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * On ACPI-based systems skip registering cpufreq notifier as cpufreq
 | 
						|
	 * information is not needed for cpu capacity initialization.
 | 
						|
	 */
 | 
						|
	if (!acpi_disabled)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	cpumask_copy(cpus_to_visit, cpu_possible_mask);
 | 
						|
 | 
						|
	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
 | 
						|
					CPUFREQ_POLICY_NOTIFIER);
 | 
						|
 | 
						|
	if (ret)
 | 
						|
		free_cpumask_var(cpus_to_visit);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
core_initcall(register_cpufreq_notifier);
 | 
						|
 | 
						|
static void parsing_done_workfn(struct work_struct *work)
 | 
						|
{
 | 
						|
	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
 | 
						|
					 CPUFREQ_POLICY_NOTIFIER);
 | 
						|
	free_cpumask_var(cpus_to_visit);
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
core_initcall(free_raw_capacity);
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
 | 
						|
/*
 | 
						|
 * This function returns the logic cpu number of the node.
 | 
						|
 * There are basically three kinds of return values:
 | 
						|
 * (1) logic cpu number which is > 0.
 | 
						|
 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
 | 
						|
 * there is no possible logical CPU in the kernel to match. This happens
 | 
						|
 * when CONFIG_NR_CPUS is configure to be smaller than the number of
 | 
						|
 * CPU nodes in DT. We need to just ignore this case.
 | 
						|
 * (3) -1 if the node does not exist in the device tree
 | 
						|
 */
 | 
						|
static int __init get_cpu_for_node(struct device_node *node)
 | 
						|
{
 | 
						|
	struct device_node *cpu_node;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	cpu_node = of_parse_phandle(node, "cpu", 0);
 | 
						|
	if (!cpu_node)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	cpu = of_cpu_node_to_id(cpu_node);
 | 
						|
	if (cpu >= 0)
 | 
						|
		topology_parse_cpu_capacity(cpu_node, cpu);
 | 
						|
	else
 | 
						|
		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
 | 
						|
			cpu_node, cpumask_pr_args(cpu_possible_mask));
 | 
						|
 | 
						|
	of_node_put(cpu_node);
 | 
						|
	return cpu;
 | 
						|
}
 | 
						|
 | 
						|
static int __init parse_core(struct device_node *core, int package_id,
 | 
						|
			     int cluster_id, int core_id)
 | 
						|
{
 | 
						|
	char name[20];
 | 
						|
	bool leaf = true;
 | 
						|
	int i = 0;
 | 
						|
	int cpu;
 | 
						|
	struct device_node *t;
 | 
						|
 | 
						|
	do {
 | 
						|
		snprintf(name, sizeof(name), "thread%d", i);
 | 
						|
		t = of_get_child_by_name(core, name);
 | 
						|
		if (t) {
 | 
						|
			leaf = false;
 | 
						|
			cpu = get_cpu_for_node(t);
 | 
						|
			if (cpu >= 0) {
 | 
						|
				cpu_topology[cpu].package_id = package_id;
 | 
						|
				cpu_topology[cpu].cluster_id = cluster_id;
 | 
						|
				cpu_topology[cpu].core_id = core_id;
 | 
						|
				cpu_topology[cpu].thread_id = i;
 | 
						|
			} else if (cpu != -ENODEV) {
 | 
						|
				pr_err("%pOF: Can't get CPU for thread\n", t);
 | 
						|
				of_node_put(t);
 | 
						|
				return -EINVAL;
 | 
						|
			}
 | 
						|
			of_node_put(t);
 | 
						|
		}
 | 
						|
		i++;
 | 
						|
	} while (t);
 | 
						|
 | 
						|
	cpu = get_cpu_for_node(core);
 | 
						|
	if (cpu >= 0) {
 | 
						|
		if (!leaf) {
 | 
						|
			pr_err("%pOF: Core has both threads and CPU\n",
 | 
						|
			       core);
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
 | 
						|
		cpu_topology[cpu].package_id = package_id;
 | 
						|
		cpu_topology[cpu].cluster_id = cluster_id;
 | 
						|
		cpu_topology[cpu].core_id = core_id;
 | 
						|
	} else if (leaf && cpu != -ENODEV) {
 | 
						|
		pr_err("%pOF: Can't get CPU for leaf core\n", core);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int __init parse_cluster(struct device_node *cluster, int package_id,
 | 
						|
				int cluster_id, int depth)
 | 
						|
{
 | 
						|
	char name[20];
 | 
						|
	bool leaf = true;
 | 
						|
	bool has_cores = false;
 | 
						|
	struct device_node *c;
 | 
						|
	int core_id = 0;
 | 
						|
	int i, ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * First check for child clusters; we currently ignore any
 | 
						|
	 * information about the nesting of clusters and present the
 | 
						|
	 * scheduler with a flat list of them.
 | 
						|
	 */
 | 
						|
	i = 0;
 | 
						|
	do {
 | 
						|
		snprintf(name, sizeof(name), "cluster%d", i);
 | 
						|
		c = of_get_child_by_name(cluster, name);
 | 
						|
		if (c) {
 | 
						|
			leaf = false;
 | 
						|
			ret = parse_cluster(c, package_id, i, depth + 1);
 | 
						|
			if (depth > 0)
 | 
						|
				pr_warn("Topology for clusters of clusters not yet supported\n");
 | 
						|
			of_node_put(c);
 | 
						|
			if (ret != 0)
 | 
						|
				return ret;
 | 
						|
		}
 | 
						|
		i++;
 | 
						|
	} while (c);
 | 
						|
 | 
						|
	/* Now check for cores */
 | 
						|
	i = 0;
 | 
						|
	do {
 | 
						|
		snprintf(name, sizeof(name), "core%d", i);
 | 
						|
		c = of_get_child_by_name(cluster, name);
 | 
						|
		if (c) {
 | 
						|
			has_cores = true;
 | 
						|
 | 
						|
			if (depth == 0) {
 | 
						|
				pr_err("%pOF: cpu-map children should be clusters\n",
 | 
						|
				       c);
 | 
						|
				of_node_put(c);
 | 
						|
				return -EINVAL;
 | 
						|
			}
 | 
						|
 | 
						|
			if (leaf) {
 | 
						|
				ret = parse_core(c, package_id, cluster_id,
 | 
						|
						 core_id++);
 | 
						|
			} else {
 | 
						|
				pr_err("%pOF: Non-leaf cluster with core %s\n",
 | 
						|
				       cluster, name);
 | 
						|
				ret = -EINVAL;
 | 
						|
			}
 | 
						|
 | 
						|
			of_node_put(c);
 | 
						|
			if (ret != 0)
 | 
						|
				return ret;
 | 
						|
		}
 | 
						|
		i++;
 | 
						|
	} while (c);
 | 
						|
 | 
						|
	if (leaf && !has_cores)
 | 
						|
		pr_warn("%pOF: empty cluster\n", cluster);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int __init parse_socket(struct device_node *socket)
 | 
						|
{
 | 
						|
	char name[20];
 | 
						|
	struct device_node *c;
 | 
						|
	bool has_socket = false;
 | 
						|
	int package_id = 0, ret;
 | 
						|
 | 
						|
	do {
 | 
						|
		snprintf(name, sizeof(name), "socket%d", package_id);
 | 
						|
		c = of_get_child_by_name(socket, name);
 | 
						|
		if (c) {
 | 
						|
			has_socket = true;
 | 
						|
			ret = parse_cluster(c, package_id, -1, 0);
 | 
						|
			of_node_put(c);
 | 
						|
			if (ret != 0)
 | 
						|
				return ret;
 | 
						|
		}
 | 
						|
		package_id++;
 | 
						|
	} while (c);
 | 
						|
 | 
						|
	if (!has_socket)
 | 
						|
		ret = parse_cluster(socket, 0, -1, 0);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int __init parse_dt_topology(void)
 | 
						|
{
 | 
						|
	struct device_node *cn, *map;
 | 
						|
	int ret = 0;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	cn = of_find_node_by_path("/cpus");
 | 
						|
	if (!cn) {
 | 
						|
		pr_err("No CPU information found in DT\n");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When topology is provided cpu-map is essentially a root
 | 
						|
	 * cluster with restricted subnodes.
 | 
						|
	 */
 | 
						|
	map = of_get_child_by_name(cn, "cpu-map");
 | 
						|
	if (!map)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	ret = parse_socket(map);
 | 
						|
	if (ret != 0)
 | 
						|
		goto out_map;
 | 
						|
 | 
						|
	topology_normalize_cpu_scale();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check that all cores are in the topology; the SMP code will
 | 
						|
	 * only mark cores described in the DT as possible.
 | 
						|
	 */
 | 
						|
	for_each_possible_cpu(cpu)
 | 
						|
		if (cpu_topology[cpu].package_id < 0) {
 | 
						|
			ret = -EINVAL;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
out_map:
 | 
						|
	of_node_put(map);
 | 
						|
out:
 | 
						|
	of_node_put(cn);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * cpu topology table
 | 
						|
 */
 | 
						|
struct cpu_topology cpu_topology[NR_CPUS];
 | 
						|
EXPORT_SYMBOL_GPL(cpu_topology);
 | 
						|
 | 
						|
const struct cpumask *cpu_coregroup_mask(int cpu)
 | 
						|
{
 | 
						|
	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
 | 
						|
 | 
						|
	/* Find the smaller of NUMA, core or LLC siblings */
 | 
						|
	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
 | 
						|
		/* not numa in package, lets use the package siblings */
 | 
						|
		core_mask = &cpu_topology[cpu].core_sibling;
 | 
						|
	}
 | 
						|
 | 
						|
	if (last_level_cache_is_valid(cpu)) {
 | 
						|
		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
 | 
						|
			core_mask = &cpu_topology[cpu].llc_sibling;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For systems with no shared cpu-side LLC but with clusters defined,
 | 
						|
	 * extend core_mask to cluster_siblings. The sched domain builder will
 | 
						|
	 * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled.
 | 
						|
	 */
 | 
						|
	if (IS_ENABLED(CONFIG_SCHED_CLUSTER) &&
 | 
						|
	    cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling))
 | 
						|
		core_mask = &cpu_topology[cpu].cluster_sibling;
 | 
						|
 | 
						|
	return core_mask;
 | 
						|
}
 | 
						|
 | 
						|
const struct cpumask *cpu_clustergroup_mask(int cpu)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Forbid cpu_clustergroup_mask() to span more or the same CPUs as
 | 
						|
	 * cpu_coregroup_mask().
 | 
						|
	 */
 | 
						|
	if (cpumask_subset(cpu_coregroup_mask(cpu),
 | 
						|
			   &cpu_topology[cpu].cluster_sibling))
 | 
						|
		return topology_sibling_cpumask(cpu);
 | 
						|
 | 
						|
	return &cpu_topology[cpu].cluster_sibling;
 | 
						|
}
 | 
						|
 | 
						|
void update_siblings_masks(unsigned int cpuid)
 | 
						|
{
 | 
						|
	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
 | 
						|
	int cpu, ret;
 | 
						|
 | 
						|
	ret = detect_cache_attributes(cpuid);
 | 
						|
	if (ret && ret != -ENOENT)
 | 
						|
		pr_info("Early cacheinfo allocation failed, ret = %d\n", ret);
 | 
						|
 | 
						|
	/* update core and thread sibling masks */
 | 
						|
	for_each_online_cpu(cpu) {
 | 
						|
		cpu_topo = &cpu_topology[cpu];
 | 
						|
 | 
						|
		if (last_level_cache_is_shared(cpu, cpuid)) {
 | 
						|
			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
 | 
						|
			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
 | 
						|
		}
 | 
						|
 | 
						|
		if (cpuid_topo->package_id != cpu_topo->package_id)
 | 
						|
			continue;
 | 
						|
 | 
						|
		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
 | 
						|
		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
 | 
						|
 | 
						|
		if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (cpuid_topo->cluster_id >= 0) {
 | 
						|
			cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
 | 
						|
			cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
 | 
						|
		}
 | 
						|
 | 
						|
		if (cpuid_topo->core_id != cpu_topo->core_id)
 | 
						|
			continue;
 | 
						|
 | 
						|
		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
 | 
						|
		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void clear_cpu_topology(int cpu)
 | 
						|
{
 | 
						|
	struct cpu_topology *cpu_topo = &cpu_topology[cpu];
 | 
						|
 | 
						|
	cpumask_clear(&cpu_topo->llc_sibling);
 | 
						|
	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
 | 
						|
 | 
						|
	cpumask_clear(&cpu_topo->cluster_sibling);
 | 
						|
	cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
 | 
						|
 | 
						|
	cpumask_clear(&cpu_topo->core_sibling);
 | 
						|
	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
 | 
						|
	cpumask_clear(&cpu_topo->thread_sibling);
 | 
						|
	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
 | 
						|
}
 | 
						|
 | 
						|
void __init reset_cpu_topology(void)
 | 
						|
{
 | 
						|
	unsigned int cpu;
 | 
						|
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
 | 
						|
 | 
						|
		cpu_topo->thread_id = -1;
 | 
						|
		cpu_topo->core_id = -1;
 | 
						|
		cpu_topo->cluster_id = -1;
 | 
						|
		cpu_topo->package_id = -1;
 | 
						|
 | 
						|
		clear_cpu_topology(cpu);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void remove_cpu_topology(unsigned int cpu)
 | 
						|
{
 | 
						|
	int sibling;
 | 
						|
 | 
						|
	for_each_cpu(sibling, topology_core_cpumask(cpu))
 | 
						|
		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
 | 
						|
	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
 | 
						|
		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
 | 
						|
	for_each_cpu(sibling, topology_cluster_cpumask(cpu))
 | 
						|
		cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
 | 
						|
	for_each_cpu(sibling, topology_llc_cpumask(cpu))
 | 
						|
		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
 | 
						|
 | 
						|
	clear_cpu_topology(cpu);
 | 
						|
}
 | 
						|
 | 
						|
__weak int __init parse_acpi_topology(void)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
 | 
						|
void __init init_cpu_topology(void)
 | 
						|
{
 | 
						|
	int cpu, ret;
 | 
						|
 | 
						|
	reset_cpu_topology();
 | 
						|
	ret = parse_acpi_topology();
 | 
						|
	if (!ret)
 | 
						|
		ret = of_have_populated_dt() && parse_dt_topology();
 | 
						|
 | 
						|
	if (ret) {
 | 
						|
		/*
 | 
						|
		 * Discard anything that was parsed if we hit an error so we
 | 
						|
		 * don't use partial information. But do not return yet to give
 | 
						|
		 * arch-specific early cache level detection a chance to run.
 | 
						|
		 */
 | 
						|
		reset_cpu_topology();
 | 
						|
	}
 | 
						|
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		ret = fetch_cache_info(cpu);
 | 
						|
		if (!ret)
 | 
						|
			continue;
 | 
						|
		else if (ret != -ENOENT)
 | 
						|
			pr_err("Early cacheinfo failed, ret = %d\n", ret);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void store_cpu_topology(unsigned int cpuid)
 | 
						|
{
 | 
						|
	struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
 | 
						|
 | 
						|
	if (cpuid_topo->package_id != -1)
 | 
						|
		goto topology_populated;
 | 
						|
 | 
						|
	cpuid_topo->thread_id = -1;
 | 
						|
	cpuid_topo->core_id = cpuid;
 | 
						|
	cpuid_topo->package_id = cpu_to_node(cpuid);
 | 
						|
 | 
						|
	pr_debug("CPU%u: package %d core %d thread %d\n",
 | 
						|
		 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
 | 
						|
		 cpuid_topo->thread_id);
 | 
						|
 | 
						|
topology_populated:
 | 
						|
	update_siblings_masks(cpuid);
 | 
						|
}
 | 
						|
#endif
 |