mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 448e9f34d9
			
		
	
	
		448e9f34d9
		
	
	
	
	
		
			
			rcu_report_dead() and rcutree_migrate_callbacks() have their headers in rcupdate.h while those are pure rcutree calls, like the other CPU-hotplug functions. Also rcu_cpu_starting() and rcu_report_dead() have different naming conventions while they mirror each other's effects. Fix the headers and propose a naming that relates both functions and aligns with the prefix of other rcutree CPU-hotplug functions. Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
		
			
				
	
	
		
			1317 lines
		
	
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1317 lines
		
	
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  *  SMP related functions
 | |
|  *
 | |
|  *    Copyright IBM Corp. 1999, 2012
 | |
|  *    Author(s): Denis Joseph Barrow,
 | |
|  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
 | |
|  *
 | |
|  *  based on other smp stuff by
 | |
|  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
 | |
|  *    (c) 1998 Ingo Molnar
 | |
|  *
 | |
|  * The code outside of smp.c uses logical cpu numbers, only smp.c does
 | |
|  * the translation of logical to physical cpu ids. All new code that
 | |
|  * operates on physical cpu numbers needs to go into smp.c.
 | |
|  */
 | |
| 
 | |
| #define KMSG_COMPONENT "cpu"
 | |
| #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
 | |
| 
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/irqflags.h>
 | |
| #include <linux/irq_work.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sched/hotplug.h>
 | |
| #include <linux/sched/task_stack.h>
 | |
| #include <linux/crash_dump.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <asm/asm-offsets.h>
 | |
| #include <asm/pfault.h>
 | |
| #include <asm/diag.h>
 | |
| #include <asm/switch_to.h>
 | |
| #include <asm/facility.h>
 | |
| #include <asm/ipl.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/vtimer.h>
 | |
| #include <asm/abs_lowcore.h>
 | |
| #include <asm/sclp.h>
 | |
| #include <asm/debug.h>
 | |
| #include <asm/os_info.h>
 | |
| #include <asm/sigp.h>
 | |
| #include <asm/idle.h>
 | |
| #include <asm/nmi.h>
 | |
| #include <asm/stacktrace.h>
 | |
| #include <asm/topology.h>
 | |
| #include <asm/vdso.h>
 | |
| #include <asm/maccess.h>
 | |
| #include "entry.h"
 | |
| 
 | |
| enum {
 | |
| 	ec_schedule = 0,
 | |
| 	ec_call_function_single,
 | |
| 	ec_stop_cpu,
 | |
| 	ec_mcck_pending,
 | |
| 	ec_irq_work,
 | |
| };
 | |
| 
 | |
| enum {
 | |
| 	CPU_STATE_STANDBY,
 | |
| 	CPU_STATE_CONFIGURED,
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct cpu *, cpu_device);
 | |
| 
 | |
| struct pcpu {
 | |
| 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
 | |
| 	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
 | |
| 	signed char state;		/* physical cpu state */
 | |
| 	signed char polarization;	/* physical polarization */
 | |
| 	u16 address;			/* physical cpu address */
 | |
| };
 | |
| 
 | |
| static u8 boot_core_type;
 | |
| static struct pcpu pcpu_devices[NR_CPUS];
 | |
| 
 | |
| unsigned int smp_cpu_mt_shift;
 | |
| EXPORT_SYMBOL(smp_cpu_mt_shift);
 | |
| 
 | |
| unsigned int smp_cpu_mtid;
 | |
| EXPORT_SYMBOL(smp_cpu_mtid);
 | |
| 
 | |
| #ifdef CONFIG_CRASH_DUMP
 | |
| __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
 | |
| #endif
 | |
| 
 | |
| static unsigned int smp_max_threads __initdata = -1U;
 | |
| cpumask_t cpu_setup_mask;
 | |
| 
 | |
| static int __init early_nosmt(char *s)
 | |
| {
 | |
| 	smp_max_threads = 1;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("nosmt", early_nosmt);
 | |
| 
 | |
| static int __init early_smt(char *s)
 | |
| {
 | |
| 	get_option(&s, &smp_max_threads);
 | |
| 	return 0;
 | |
| }
 | |
| early_param("smt", early_smt);
 | |
| 
 | |
| /*
 | |
|  * The smp_cpu_state_mutex must be held when changing the state or polarization
 | |
|  * member of a pcpu data structure within the pcpu_devices array.
 | |
|  */
 | |
| DEFINE_MUTEX(smp_cpu_state_mutex);
 | |
| 
 | |
| /*
 | |
|  * Signal processor helper functions.
 | |
|  */
 | |
| static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 | |
| {
 | |
| 	int cc;
 | |
| 
 | |
| 	while (1) {
 | |
| 		cc = __pcpu_sigp(addr, order, parm, NULL);
 | |
| 		if (cc != SIGP_CC_BUSY)
 | |
| 			return cc;
 | |
| 		cpu_relax();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 | |
| {
 | |
| 	int cc, retry;
 | |
| 
 | |
| 	for (retry = 0; ; retry++) {
 | |
| 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 | |
| 		if (cc != SIGP_CC_BUSY)
 | |
| 			break;
 | |
| 		if (retry >= 3)
 | |
| 			udelay(10);
 | |
| 	}
 | |
| 	return cc;
 | |
| }
 | |
| 
 | |
| static inline int pcpu_stopped(struct pcpu *pcpu)
 | |
| {
 | |
| 	u32 status;
 | |
| 
 | |
| 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 | |
| 			0, &status) != SIGP_CC_STATUS_STORED)
 | |
| 		return 0;
 | |
| 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 | |
| }
 | |
| 
 | |
| static inline int pcpu_running(struct pcpu *pcpu)
 | |
| {
 | |
| 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 | |
| 			0, NULL) != SIGP_CC_STATUS_STORED)
 | |
| 		return 1;
 | |
| 	/* Status stored condition code is equivalent to cpu not running. */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find struct pcpu by cpu address.
 | |
|  */
 | |
| static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_cpu(cpu, mask)
 | |
| 		if (pcpu_devices[cpu].address == address)
 | |
| 			return pcpu_devices + cpu;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 | |
| {
 | |
| 	int order;
 | |
| 
 | |
| 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 | |
| 		return;
 | |
| 	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 | |
| 	pcpu->ec_clk = get_tod_clock_fast();
 | |
| 	pcpu_sigp_retry(pcpu, order, 0);
 | |
| }
 | |
| 
 | |
| static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 | |
| {
 | |
| 	unsigned long async_stack, nodat_stack, mcck_stack;
 | |
| 	struct lowcore *lc;
 | |
| 
 | |
| 	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 | |
| 	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
 | |
| 	async_stack = stack_alloc();
 | |
| 	mcck_stack = stack_alloc();
 | |
| 	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
 | |
| 		goto out;
 | |
| 	memcpy(lc, &S390_lowcore, 512);
 | |
| 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 | |
| 	lc->async_stack = async_stack + STACK_INIT_OFFSET;
 | |
| 	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
 | |
| 	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
 | |
| 	lc->cpu_nr = cpu;
 | |
| 	lc->spinlock_lockval = arch_spin_lockval(cpu);
 | |
| 	lc->spinlock_index = 0;
 | |
| 	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
 | |
| 	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
 | |
| 	lc->preempt_count = PREEMPT_DISABLED;
 | |
| 	if (nmi_alloc_mcesa(&lc->mcesad))
 | |
| 		goto out;
 | |
| 	if (abs_lowcore_map(cpu, lc, true))
 | |
| 		goto out_mcesa;
 | |
| 	lowcore_ptr[cpu] = lc;
 | |
| 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
 | |
| 	return 0;
 | |
| 
 | |
| out_mcesa:
 | |
| 	nmi_free_mcesa(&lc->mcesad);
 | |
| out:
 | |
| 	stack_free(mcck_stack);
 | |
| 	stack_free(async_stack);
 | |
| 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 | |
| 	free_pages((unsigned long) lc, LC_ORDER);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void pcpu_free_lowcore(struct pcpu *pcpu)
 | |
| {
 | |
| 	unsigned long async_stack, nodat_stack, mcck_stack;
 | |
| 	struct lowcore *lc;
 | |
| 	int cpu;
 | |
| 
 | |
| 	cpu = pcpu - pcpu_devices;
 | |
| 	lc = lowcore_ptr[cpu];
 | |
| 	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
 | |
| 	async_stack = lc->async_stack - STACK_INIT_OFFSET;
 | |
| 	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
 | |
| 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 | |
| 	lowcore_ptr[cpu] = NULL;
 | |
| 	abs_lowcore_unmap(cpu);
 | |
| 	nmi_free_mcesa(&lc->mcesad);
 | |
| 	stack_free(async_stack);
 | |
| 	stack_free(mcck_stack);
 | |
| 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 | |
| 	free_pages((unsigned long) lc, LC_ORDER);
 | |
| }
 | |
| 
 | |
| static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 | |
| {
 | |
| 	struct lowcore *lc, *abs_lc;
 | |
| 
 | |
| 	lc = lowcore_ptr[cpu];
 | |
| 	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 | |
| 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 | |
| 	lc->cpu_nr = cpu;
 | |
| 	lc->restart_flags = RESTART_FLAG_CTLREGS;
 | |
| 	lc->spinlock_lockval = arch_spin_lockval(cpu);
 | |
| 	lc->spinlock_index = 0;
 | |
| 	lc->percpu_offset = __per_cpu_offset[cpu];
 | |
| 	lc->kernel_asce = S390_lowcore.kernel_asce;
 | |
| 	lc->user_asce = s390_invalid_asce;
 | |
| 	lc->machine_flags = S390_lowcore.machine_flags;
 | |
| 	lc->user_timer = lc->system_timer =
 | |
| 		lc->steal_timer = lc->avg_steal_timer = 0;
 | |
| 	abs_lc = get_abs_lowcore();
 | |
| 	memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
 | |
| 	put_abs_lowcore(abs_lc);
 | |
| 	lc->cregs_save_area[1] = lc->kernel_asce;
 | |
| 	lc->cregs_save_area[7] = lc->user_asce;
 | |
| 	save_access_regs((unsigned int *) lc->access_regs_save_area);
 | |
| 	arch_spin_lock_setup(cpu);
 | |
| }
 | |
| 
 | |
| static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 | |
| {
 | |
| 	struct lowcore *lc;
 | |
| 	int cpu;
 | |
| 
 | |
| 	cpu = pcpu - pcpu_devices;
 | |
| 	lc = lowcore_ptr[cpu];
 | |
| 	lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
 | |
| 	lc->current_task = (unsigned long)tsk;
 | |
| 	lc->lpp = LPP_MAGIC;
 | |
| 	lc->current_pid = tsk->pid;
 | |
| 	lc->user_timer = tsk->thread.user_timer;
 | |
| 	lc->guest_timer = tsk->thread.guest_timer;
 | |
| 	lc->system_timer = tsk->thread.system_timer;
 | |
| 	lc->hardirq_timer = tsk->thread.hardirq_timer;
 | |
| 	lc->softirq_timer = tsk->thread.softirq_timer;
 | |
| 	lc->steal_timer = 0;
 | |
| }
 | |
| 
 | |
| static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 | |
| {
 | |
| 	struct lowcore *lc;
 | |
| 	int cpu;
 | |
| 
 | |
| 	cpu = pcpu - pcpu_devices;
 | |
| 	lc = lowcore_ptr[cpu];
 | |
| 	lc->restart_stack = lc->kernel_stack;
 | |
| 	lc->restart_fn = (unsigned long) func;
 | |
| 	lc->restart_data = (unsigned long) data;
 | |
| 	lc->restart_source = -1U;
 | |
| 	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 | |
| }
 | |
| 
 | |
| typedef void (pcpu_delegate_fn)(void *);
 | |
| 
 | |
| /*
 | |
|  * Call function via PSW restart on pcpu and stop the current cpu.
 | |
|  */
 | |
| static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
 | |
| {
 | |
| 	func(data);	/* should not return */
 | |
| }
 | |
| 
 | |
| static void pcpu_delegate(struct pcpu *pcpu,
 | |
| 			  pcpu_delegate_fn *func,
 | |
| 			  void *data, unsigned long stack)
 | |
| {
 | |
| 	struct lowcore *lc, *abs_lc;
 | |
| 	unsigned int source_cpu;
 | |
| 
 | |
| 	lc = lowcore_ptr[pcpu - pcpu_devices];
 | |
| 	source_cpu = stap();
 | |
| 
 | |
| 	if (pcpu->address == source_cpu) {
 | |
| 		call_on_stack(2, stack, void, __pcpu_delegate,
 | |
| 			      pcpu_delegate_fn *, func, void *, data);
 | |
| 	}
 | |
| 	/* Stop target cpu (if func returns this stops the current cpu). */
 | |
| 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 | |
| 	pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
 | |
| 	/* Restart func on the target cpu and stop the current cpu. */
 | |
| 	if (lc) {
 | |
| 		lc->restart_stack = stack;
 | |
| 		lc->restart_fn = (unsigned long)func;
 | |
| 		lc->restart_data = (unsigned long)data;
 | |
| 		lc->restart_source = source_cpu;
 | |
| 	} else {
 | |
| 		abs_lc = get_abs_lowcore();
 | |
| 		abs_lc->restart_stack = stack;
 | |
| 		abs_lc->restart_fn = (unsigned long)func;
 | |
| 		abs_lc->restart_data = (unsigned long)data;
 | |
| 		abs_lc->restart_source = source_cpu;
 | |
| 		put_abs_lowcore(abs_lc);
 | |
| 	}
 | |
| 	asm volatile(
 | |
| 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 | |
| 		"	brc	2,0b	# busy, try again\n"
 | |
| 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 | |
| 		"	brc	2,1b	# busy, try again\n"
 | |
| 		: : "d" (pcpu->address), "d" (source_cpu),
 | |
| 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 | |
| 		: "0", "1", "cc");
 | |
| 	for (;;) ;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable additional logical cpus for multi-threading.
 | |
|  */
 | |
| static int pcpu_set_smt(unsigned int mtid)
 | |
| {
 | |
| 	int cc;
 | |
| 
 | |
| 	if (smp_cpu_mtid == mtid)
 | |
| 		return 0;
 | |
| 	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 | |
| 	if (cc == 0) {
 | |
| 		smp_cpu_mtid = mtid;
 | |
| 		smp_cpu_mt_shift = 0;
 | |
| 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 | |
| 			smp_cpu_mt_shift++;
 | |
| 		pcpu_devices[0].address = stap();
 | |
| 	}
 | |
| 	return cc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Call function on an online CPU.
 | |
|  */
 | |
| void smp_call_online_cpu(void (*func)(void *), void *data)
 | |
| {
 | |
| 	struct pcpu *pcpu;
 | |
| 
 | |
| 	/* Use the current cpu if it is online. */
 | |
| 	pcpu = pcpu_find_address(cpu_online_mask, stap());
 | |
| 	if (!pcpu)
 | |
| 		/* Use the first online cpu. */
 | |
| 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 | |
| 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Call function on the ipl CPU.
 | |
|  */
 | |
| void smp_call_ipl_cpu(void (*func)(void *), void *data)
 | |
| {
 | |
| 	struct lowcore *lc = lowcore_ptr[0];
 | |
| 
 | |
| 	if (pcpu_devices[0].address == stap())
 | |
| 		lc = &S390_lowcore;
 | |
| 
 | |
| 	pcpu_delegate(&pcpu_devices[0], func, data,
 | |
| 		      lc->nodat_stack);
 | |
| }
 | |
| 
 | |
| int smp_find_processor_id(u16 address)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_present_cpu(cpu)
 | |
| 		if (pcpu_devices[cpu].address == address)
 | |
| 			return cpu;
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| void schedule_mcck_handler(void)
 | |
| {
 | |
| 	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
 | |
| }
 | |
| 
 | |
| bool notrace arch_vcpu_is_preempted(int cpu)
 | |
| {
 | |
| 	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 | |
| 		return false;
 | |
| 	if (pcpu_running(pcpu_devices + cpu))
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL(arch_vcpu_is_preempted);
 | |
| 
 | |
| void notrace smp_yield_cpu(int cpu)
 | |
| {
 | |
| 	if (!MACHINE_HAS_DIAG9C)
 | |
| 		return;
 | |
| 	diag_stat_inc_norecursion(DIAG_STAT_X09C);
 | |
| 	asm volatile("diag %0,0,0x9c"
 | |
| 		     : : "d" (pcpu_devices[cpu].address));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(smp_yield_cpu);
 | |
| 
 | |
| /*
 | |
|  * Send cpus emergency shutdown signal. This gives the cpus the
 | |
|  * opportunity to complete outstanding interrupts.
 | |
|  */
 | |
| void notrace smp_emergency_stop(void)
 | |
| {
 | |
| 	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
 | |
| 	static cpumask_t cpumask;
 | |
| 	u64 end;
 | |
| 	int cpu;
 | |
| 
 | |
| 	arch_spin_lock(&lock);
 | |
| 	cpumask_copy(&cpumask, cpu_online_mask);
 | |
| 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 | |
| 
 | |
| 	end = get_tod_clock() + (1000000UL << 12);
 | |
| 	for_each_cpu(cpu, &cpumask) {
 | |
| 		struct pcpu *pcpu = pcpu_devices + cpu;
 | |
| 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 | |
| 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 | |
| 				   0, NULL) == SIGP_CC_BUSY &&
 | |
| 		       get_tod_clock() < end)
 | |
| 			cpu_relax();
 | |
| 	}
 | |
| 	while (get_tod_clock() < end) {
 | |
| 		for_each_cpu(cpu, &cpumask)
 | |
| 			if (pcpu_stopped(pcpu_devices + cpu))
 | |
| 				cpumask_clear_cpu(cpu, &cpumask);
 | |
| 		if (cpumask_empty(&cpumask))
 | |
| 			break;
 | |
| 		cpu_relax();
 | |
| 	}
 | |
| 	arch_spin_unlock(&lock);
 | |
| }
 | |
| NOKPROBE_SYMBOL(smp_emergency_stop);
 | |
| 
 | |
| /*
 | |
|  * Stop all cpus but the current one.
 | |
|  */
 | |
| void smp_send_stop(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	/* Disable all interrupts/machine checks */
 | |
| 	__load_psw_mask(PSW_KERNEL_BITS);
 | |
| 	trace_hardirqs_off();
 | |
| 
 | |
| 	debug_set_critical();
 | |
| 
 | |
| 	if (oops_in_progress)
 | |
| 		smp_emergency_stop();
 | |
| 
 | |
| 	/* stop all processors */
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (cpu == smp_processor_id())
 | |
| 			continue;
 | |
| 		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
 | |
| 		while (!pcpu_stopped(pcpu_devices + cpu))
 | |
| 			cpu_relax();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the main routine where commands issued by other
 | |
|  * cpus are handled.
 | |
|  */
 | |
| static void smp_handle_ext_call(void)
 | |
| {
 | |
| 	unsigned long bits;
 | |
| 
 | |
| 	/* handle bit signal external calls */
 | |
| 	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 | |
| 	if (test_bit(ec_stop_cpu, &bits))
 | |
| 		smp_stop_cpu();
 | |
| 	if (test_bit(ec_schedule, &bits))
 | |
| 		scheduler_ipi();
 | |
| 	if (test_bit(ec_call_function_single, &bits))
 | |
| 		generic_smp_call_function_single_interrupt();
 | |
| 	if (test_bit(ec_mcck_pending, &bits))
 | |
| 		s390_handle_mcck();
 | |
| 	if (test_bit(ec_irq_work, &bits))
 | |
| 		irq_work_run();
 | |
| }
 | |
| 
 | |
| static void do_ext_call_interrupt(struct ext_code ext_code,
 | |
| 				  unsigned int param32, unsigned long param64)
 | |
| {
 | |
| 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 | |
| 	smp_handle_ext_call();
 | |
| }
 | |
| 
 | |
| void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_cpu(cpu, mask)
 | |
| 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 | |
| }
 | |
| 
 | |
| void arch_send_call_function_single_ipi(int cpu)
 | |
| {
 | |
| 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this function sends a 'reschedule' IPI to another CPU.
 | |
|  * it goes straight through and wastes no time serializing
 | |
|  * anything. Worst case is that we lose a reschedule ...
 | |
|  */
 | |
| void arch_smp_send_reschedule(int cpu)
 | |
| {
 | |
| 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_IRQ_WORK
 | |
| void arch_irq_work_raise(void)
 | |
| {
 | |
| 	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * parameter area for the set/clear control bit callbacks
 | |
|  */
 | |
| struct ec_creg_mask_parms {
 | |
| 	unsigned long orval;
 | |
| 	unsigned long andval;
 | |
| 	int cr;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * callback for setting/clearing control bits
 | |
|  */
 | |
| static void smp_ctl_bit_callback(void *info)
 | |
| {
 | |
| 	struct ec_creg_mask_parms *pp = info;
 | |
| 	unsigned long cregs[16];
 | |
| 
 | |
| 	__ctl_store(cregs, 0, 15);
 | |
| 	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 | |
| 	__ctl_load(cregs, 0, 15);
 | |
| }
 | |
| 
 | |
| static DEFINE_SPINLOCK(ctl_lock);
 | |
| 
 | |
| void smp_ctl_set_clear_bit(int cr, int bit, bool set)
 | |
| {
 | |
| 	struct ec_creg_mask_parms parms = { .cr = cr, };
 | |
| 	struct lowcore *abs_lc;
 | |
| 	u64 ctlreg;
 | |
| 
 | |
| 	if (set) {
 | |
| 		parms.orval = 1UL << bit;
 | |
| 		parms.andval = -1UL;
 | |
| 	} else {
 | |
| 		parms.orval = 0;
 | |
| 		parms.andval = ~(1UL << bit);
 | |
| 	}
 | |
| 	spin_lock(&ctl_lock);
 | |
| 	abs_lc = get_abs_lowcore();
 | |
| 	ctlreg = abs_lc->cregs_save_area[cr];
 | |
| 	ctlreg = (ctlreg & parms.andval) | parms.orval;
 | |
| 	abs_lc->cregs_save_area[cr] = ctlreg;
 | |
| 	put_abs_lowcore(abs_lc);
 | |
| 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 | |
| 	spin_unlock(&ctl_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(smp_ctl_set_clear_bit);
 | |
| 
 | |
| #ifdef CONFIG_CRASH_DUMP
 | |
| 
 | |
| int smp_store_status(int cpu)
 | |
| {
 | |
| 	struct lowcore *lc;
 | |
| 	struct pcpu *pcpu;
 | |
| 	unsigned long pa;
 | |
| 
 | |
| 	pcpu = pcpu_devices + cpu;
 | |
| 	lc = lowcore_ptr[cpu];
 | |
| 	pa = __pa(&lc->floating_pt_save_area);
 | |
| 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 | |
| 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 | |
| 		return -EIO;
 | |
| 	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
 | |
| 		return 0;
 | |
| 	pa = lc->mcesad & MCESA_ORIGIN_MASK;
 | |
| 	if (MACHINE_HAS_GS)
 | |
| 		pa |= lc->mcesad & MCESA_LC_MASK;
 | |
| 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 | |
| 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 | |
| 		return -EIO;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Collect CPU state of the previous, crashed system.
 | |
|  * There are four cases:
 | |
|  * 1) standard zfcp/nvme dump
 | |
|  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
 | |
|  *    The state for all CPUs except the boot CPU needs to be collected
 | |
|  *    with sigp stop-and-store-status. The boot CPU state is located in
 | |
|  *    the absolute lowcore of the memory stored in the HSA. The zcore code
 | |
|  *    will copy the boot CPU state from the HSA.
 | |
|  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
 | |
|  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
 | |
|  *    The state for all CPUs except the boot CPU needs to be collected
 | |
|  *    with sigp stop-and-store-status. The firmware or the boot-loader
 | |
|  *    stored the registers of the boot CPU in the absolute lowcore in the
 | |
|  *    memory of the old system.
 | |
|  * 3) kdump and the old kernel did not store the CPU state,
 | |
|  *    or stand-alone kdump for DASD
 | |
|  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 | |
|  *    The state for all CPUs except the boot CPU needs to be collected
 | |
|  *    with sigp stop-and-store-status. The kexec code or the boot-loader
 | |
|  *    stored the registers of the boot CPU in the memory of the old system.
 | |
|  * 4) kdump and the old kernel stored the CPU state
 | |
|  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 | |
|  *    This case does not exist for s390 anymore, setup_arch explicitly
 | |
|  *    deactivates the elfcorehdr= kernel parameter
 | |
|  */
 | |
| static bool dump_available(void)
 | |
| {
 | |
| 	return oldmem_data.start || is_ipl_type_dump();
 | |
| }
 | |
| 
 | |
| void __init smp_save_dump_ipl_cpu(void)
 | |
| {
 | |
| 	struct save_area *sa;
 | |
| 	void *regs;
 | |
| 
 | |
| 	if (!dump_available())
 | |
| 		return;
 | |
| 	sa = save_area_alloc(true);
 | |
| 	regs = memblock_alloc(512, 8);
 | |
| 	if (!sa || !regs)
 | |
| 		panic("could not allocate memory for boot CPU save area\n");
 | |
| 	copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
 | |
| 	save_area_add_regs(sa, regs);
 | |
| 	memblock_free(regs, 512);
 | |
| 	if (MACHINE_HAS_VX)
 | |
| 		save_area_add_vxrs(sa, boot_cpu_vector_save_area);
 | |
| }
 | |
| 
 | |
| void __init smp_save_dump_secondary_cpus(void)
 | |
| {
 | |
| 	int addr, boot_cpu_addr, max_cpu_addr;
 | |
| 	struct save_area *sa;
 | |
| 	void *page;
 | |
| 
 | |
| 	if (!dump_available())
 | |
| 		return;
 | |
| 	/* Allocate a page as dumping area for the store status sigps */
 | |
| 	page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
 | |
| 	if (!page)
 | |
| 		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
 | |
| 		      PAGE_SIZE, 1UL << 31);
 | |
| 
 | |
| 	/* Set multi-threading state to the previous system. */
 | |
| 	pcpu_set_smt(sclp.mtid_prev);
 | |
| 	boot_cpu_addr = stap();
 | |
| 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 | |
| 	for (addr = 0; addr <= max_cpu_addr; addr++) {
 | |
| 		if (addr == boot_cpu_addr)
 | |
| 			continue;
 | |
| 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 | |
| 		    SIGP_CC_NOT_OPERATIONAL)
 | |
| 			continue;
 | |
| 		sa = save_area_alloc(false);
 | |
| 		if (!sa)
 | |
| 			panic("could not allocate memory for save area\n");
 | |
| 		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
 | |
| 		save_area_add_regs(sa, page);
 | |
| 		if (MACHINE_HAS_VX) {
 | |
| 			__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
 | |
| 			save_area_add_vxrs(sa, page);
 | |
| 		}
 | |
| 	}
 | |
| 	memblock_free(page, PAGE_SIZE);
 | |
| 	diag_amode31_ops.diag308_reset();
 | |
| 	pcpu_set_smt(0);
 | |
| }
 | |
| #endif /* CONFIG_CRASH_DUMP */
 | |
| 
 | |
| void smp_cpu_set_polarization(int cpu, int val)
 | |
| {
 | |
| 	pcpu_devices[cpu].polarization = val;
 | |
| }
 | |
| 
 | |
| int smp_cpu_get_polarization(int cpu)
 | |
| {
 | |
| 	return pcpu_devices[cpu].polarization;
 | |
| }
 | |
| 
 | |
| int smp_cpu_get_cpu_address(int cpu)
 | |
| {
 | |
| 	return pcpu_devices[cpu].address;
 | |
| }
 | |
| 
 | |
| static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 | |
| {
 | |
| 	static int use_sigp_detection;
 | |
| 	int address;
 | |
| 
 | |
| 	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 | |
| 		use_sigp_detection = 1;
 | |
| 		for (address = 0;
 | |
| 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 | |
| 		     address += (1U << smp_cpu_mt_shift)) {
 | |
| 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 | |
| 			    SIGP_CC_NOT_OPERATIONAL)
 | |
| 				continue;
 | |
| 			info->core[info->configured].core_id =
 | |
| 				address >> smp_cpu_mt_shift;
 | |
| 			info->configured++;
 | |
| 		}
 | |
| 		info->combined = info->configured;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int smp_add_present_cpu(int cpu);
 | |
| 
 | |
| static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
 | |
| 			bool configured, bool early)
 | |
| {
 | |
| 	struct pcpu *pcpu;
 | |
| 	int cpu, nr, i;
 | |
| 	u16 address;
 | |
| 
 | |
| 	nr = 0;
 | |
| 	if (sclp.has_core_type && core->type != boot_core_type)
 | |
| 		return nr;
 | |
| 	cpu = cpumask_first(avail);
 | |
| 	address = core->core_id << smp_cpu_mt_shift;
 | |
| 	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
 | |
| 		if (pcpu_find_address(cpu_present_mask, address + i))
 | |
| 			continue;
 | |
| 		pcpu = pcpu_devices + cpu;
 | |
| 		pcpu->address = address + i;
 | |
| 		if (configured)
 | |
| 			pcpu->state = CPU_STATE_CONFIGURED;
 | |
| 		else
 | |
| 			pcpu->state = CPU_STATE_STANDBY;
 | |
| 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 | |
| 		set_cpu_present(cpu, true);
 | |
| 		if (!early && smp_add_present_cpu(cpu) != 0)
 | |
| 			set_cpu_present(cpu, false);
 | |
| 		else
 | |
| 			nr++;
 | |
| 		cpumask_clear_cpu(cpu, avail);
 | |
| 		cpu = cpumask_next(cpu, avail);
 | |
| 	}
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
 | |
| {
 | |
| 	struct sclp_core_entry *core;
 | |
| 	static cpumask_t avail;
 | |
| 	bool configured;
 | |
| 	u16 core_id;
 | |
| 	int nr, i;
 | |
| 
 | |
| 	cpus_read_lock();
 | |
| 	mutex_lock(&smp_cpu_state_mutex);
 | |
| 	nr = 0;
 | |
| 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 | |
| 	/*
 | |
| 	 * Add IPL core first (which got logical CPU number 0) to make sure
 | |
| 	 * that all SMT threads get subsequent logical CPU numbers.
 | |
| 	 */
 | |
| 	if (early) {
 | |
| 		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
 | |
| 		for (i = 0; i < info->configured; i++) {
 | |
| 			core = &info->core[i];
 | |
| 			if (core->core_id == core_id) {
 | |
| 				nr += smp_add_core(core, &avail, true, early);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	for (i = 0; i < info->combined; i++) {
 | |
| 		configured = i < info->configured;
 | |
| 		nr += smp_add_core(&info->core[i], &avail, configured, early);
 | |
| 	}
 | |
| 	mutex_unlock(&smp_cpu_state_mutex);
 | |
| 	cpus_read_unlock();
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| void __init smp_detect_cpus(void)
 | |
| {
 | |
| 	unsigned int cpu, mtid, c_cpus, s_cpus;
 | |
| 	struct sclp_core_info *info;
 | |
| 	u16 address;
 | |
| 
 | |
| 	/* Get CPU information */
 | |
| 	info = memblock_alloc(sizeof(*info), 8);
 | |
| 	if (!info)
 | |
| 		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 | |
| 		      __func__, sizeof(*info), 8);
 | |
| 	smp_get_core_info(info, 1);
 | |
| 	/* Find boot CPU type */
 | |
| 	if (sclp.has_core_type) {
 | |
| 		address = stap();
 | |
| 		for (cpu = 0; cpu < info->combined; cpu++)
 | |
| 			if (info->core[cpu].core_id == address) {
 | |
| 				/* The boot cpu dictates the cpu type. */
 | |
| 				boot_core_type = info->core[cpu].type;
 | |
| 				break;
 | |
| 			}
 | |
| 		if (cpu >= info->combined)
 | |
| 			panic("Could not find boot CPU type");
 | |
| 	}
 | |
| 
 | |
| 	/* Set multi-threading state for the current system */
 | |
| 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 | |
| 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 | |
| 	pcpu_set_smt(mtid);
 | |
| 
 | |
| 	/* Print number of CPUs */
 | |
| 	c_cpus = s_cpus = 0;
 | |
| 	for (cpu = 0; cpu < info->combined; cpu++) {
 | |
| 		if (sclp.has_core_type &&
 | |
| 		    info->core[cpu].type != boot_core_type)
 | |
| 			continue;
 | |
| 		if (cpu < info->configured)
 | |
| 			c_cpus += smp_cpu_mtid + 1;
 | |
| 		else
 | |
| 			s_cpus += smp_cpu_mtid + 1;
 | |
| 	}
 | |
| 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 | |
| 
 | |
| 	/* Add CPUs present at boot */
 | |
| 	__smp_rescan_cpus(info, true);
 | |
| 	memblock_free(info, sizeof(*info));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Activate a secondary processor.
 | |
|  */
 | |
| static void smp_start_secondary(void *cpuvoid)
 | |
| {
 | |
| 	int cpu = raw_smp_processor_id();
 | |
| 
 | |
| 	S390_lowcore.last_update_clock = get_tod_clock();
 | |
| 	S390_lowcore.restart_stack = (unsigned long)restart_stack;
 | |
| 	S390_lowcore.restart_fn = (unsigned long)do_restart;
 | |
| 	S390_lowcore.restart_data = 0;
 | |
| 	S390_lowcore.restart_source = -1U;
 | |
| 	S390_lowcore.restart_flags = 0;
 | |
| 	restore_access_regs(S390_lowcore.access_regs_save_area);
 | |
| 	cpu_init();
 | |
| 	rcutree_report_cpu_starting(cpu);
 | |
| 	init_cpu_timer();
 | |
| 	vtime_init();
 | |
| 	vdso_getcpu_init();
 | |
| 	pfault_init();
 | |
| 	cpumask_set_cpu(cpu, &cpu_setup_mask);
 | |
| 	update_cpu_masks();
 | |
| 	notify_cpu_starting(cpu);
 | |
| 	if (topology_cpu_dedicated(cpu))
 | |
| 		set_cpu_flag(CIF_DEDICATED_CPU);
 | |
| 	else
 | |
| 		clear_cpu_flag(CIF_DEDICATED_CPU);
 | |
| 	set_cpu_online(cpu, true);
 | |
| 	inc_irq_stat(CPU_RST);
 | |
| 	local_irq_enable();
 | |
| 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 | |
| }
 | |
| 
 | |
| /* Upping and downing of CPUs */
 | |
| int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 | |
| {
 | |
| 	struct pcpu *pcpu = pcpu_devices + cpu;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (pcpu->state != CPU_STATE_CONFIGURED)
 | |
| 		return -EIO;
 | |
| 	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
 | |
| 	    SIGP_CC_ORDER_CODE_ACCEPTED)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	rc = pcpu_alloc_lowcore(pcpu, cpu);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 	/*
 | |
| 	 * Make sure global control register contents do not change
 | |
| 	 * until new CPU has initialized control registers.
 | |
| 	 */
 | |
| 	spin_lock(&ctl_lock);
 | |
| 	pcpu_prepare_secondary(pcpu, cpu);
 | |
| 	pcpu_attach_task(pcpu, tidle);
 | |
| 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 | |
| 	/* Wait until cpu puts itself in the online & active maps */
 | |
| 	while (!cpu_online(cpu))
 | |
| 		cpu_relax();
 | |
| 	spin_unlock(&ctl_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned int setup_possible_cpus __initdata;
 | |
| 
 | |
| static int __init _setup_possible_cpus(char *s)
 | |
| {
 | |
| 	get_option(&s, &setup_possible_cpus);
 | |
| 	return 0;
 | |
| }
 | |
| early_param("possible_cpus", _setup_possible_cpus);
 | |
| 
 | |
| int __cpu_disable(void)
 | |
| {
 | |
| 	unsigned long cregs[16];
 | |
| 	int cpu;
 | |
| 
 | |
| 	/* Handle possible pending IPIs */
 | |
| 	smp_handle_ext_call();
 | |
| 	cpu = smp_processor_id();
 | |
| 	set_cpu_online(cpu, false);
 | |
| 	cpumask_clear_cpu(cpu, &cpu_setup_mask);
 | |
| 	update_cpu_masks();
 | |
| 	/* Disable pseudo page faults on this cpu. */
 | |
| 	pfault_fini();
 | |
| 	/* Disable interrupt sources via control register. */
 | |
| 	__ctl_store(cregs, 0, 15);
 | |
| 	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
 | |
| 	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
 | |
| 	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
 | |
| 	__ctl_load(cregs, 0, 15);
 | |
| 	clear_cpu_flag(CIF_NOHZ_DELAY);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __cpu_die(unsigned int cpu)
 | |
| {
 | |
| 	struct pcpu *pcpu;
 | |
| 
 | |
| 	/* Wait until target cpu is down */
 | |
| 	pcpu = pcpu_devices + cpu;
 | |
| 	while (!pcpu_stopped(pcpu))
 | |
| 		cpu_relax();
 | |
| 	pcpu_free_lowcore(pcpu);
 | |
| 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 | |
| 	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 | |
| }
 | |
| 
 | |
| void __noreturn cpu_die(void)
 | |
| {
 | |
| 	idle_task_exit();
 | |
| 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 | |
| 	for (;;) ;
 | |
| }
 | |
| 
 | |
| void __init smp_fill_possible_mask(void)
 | |
| {
 | |
| 	unsigned int possible, sclp_max, cpu;
 | |
| 
 | |
| 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 | |
| 	sclp_max = min(smp_max_threads, sclp_max);
 | |
| 	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
 | |
| 	possible = setup_possible_cpus ?: nr_cpu_ids;
 | |
| 	possible = min(possible, sclp_max);
 | |
| 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 | |
| 		set_cpu_possible(cpu, true);
 | |
| }
 | |
| 
 | |
| void __init smp_prepare_cpus(unsigned int max_cpus)
 | |
| {
 | |
| 	/* request the 0x1201 emergency signal external interrupt */
 | |
| 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 | |
| 		panic("Couldn't request external interrupt 0x1201");
 | |
| 	/* request the 0x1202 external call external interrupt */
 | |
| 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 | |
| 		panic("Couldn't request external interrupt 0x1202");
 | |
| }
 | |
| 
 | |
| void __init smp_prepare_boot_cpu(void)
 | |
| {
 | |
| 	struct pcpu *pcpu = pcpu_devices;
 | |
| 
 | |
| 	WARN_ON(!cpu_present(0) || !cpu_online(0));
 | |
| 	pcpu->state = CPU_STATE_CONFIGURED;
 | |
| 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
 | |
| 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 | |
| }
 | |
| 
 | |
| void __init smp_setup_processor_id(void)
 | |
| {
 | |
| 	pcpu_devices[0].address = stap();
 | |
| 	S390_lowcore.cpu_nr = 0;
 | |
| 	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
 | |
| 	S390_lowcore.spinlock_index = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the frequency of the profiling timer can be changed
 | |
|  * by writing a multiplier value into /proc/profile.
 | |
|  *
 | |
|  * usually you want to run this on all CPUs ;)
 | |
|  */
 | |
| int setup_profiling_timer(unsigned int multiplier)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t cpu_configure_show(struct device *dev,
 | |
| 				  struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	ssize_t count;
 | |
| 
 | |
| 	mutex_lock(&smp_cpu_state_mutex);
 | |
| 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
 | |
| 	mutex_unlock(&smp_cpu_state_mutex);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t cpu_configure_store(struct device *dev,
 | |
| 				   struct device_attribute *attr,
 | |
| 				   const char *buf, size_t count)
 | |
| {
 | |
| 	struct pcpu *pcpu;
 | |
| 	int cpu, val, rc, i;
 | |
| 	char delim;
 | |
| 
 | |
| 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
 | |
| 		return -EINVAL;
 | |
| 	if (val != 0 && val != 1)
 | |
| 		return -EINVAL;
 | |
| 	cpus_read_lock();
 | |
| 	mutex_lock(&smp_cpu_state_mutex);
 | |
| 	rc = -EBUSY;
 | |
| 	/* disallow configuration changes of online cpus and cpu 0 */
 | |
| 	cpu = dev->id;
 | |
| 	cpu = smp_get_base_cpu(cpu);
 | |
| 	if (cpu == 0)
 | |
| 		goto out;
 | |
| 	for (i = 0; i <= smp_cpu_mtid; i++)
 | |
| 		if (cpu_online(cpu + i))
 | |
| 			goto out;
 | |
| 	pcpu = pcpu_devices + cpu;
 | |
| 	rc = 0;
 | |
| 	switch (val) {
 | |
| 	case 0:
 | |
| 		if (pcpu->state != CPU_STATE_CONFIGURED)
 | |
| 			break;
 | |
| 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
 | |
| 		if (rc)
 | |
| 			break;
 | |
| 		for (i = 0; i <= smp_cpu_mtid; i++) {
 | |
| 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
 | |
| 				continue;
 | |
| 			pcpu[i].state = CPU_STATE_STANDBY;
 | |
| 			smp_cpu_set_polarization(cpu + i,
 | |
| 						 POLARIZATION_UNKNOWN);
 | |
| 		}
 | |
| 		topology_expect_change();
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		if (pcpu->state != CPU_STATE_STANDBY)
 | |
| 			break;
 | |
| 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
 | |
| 		if (rc)
 | |
| 			break;
 | |
| 		for (i = 0; i <= smp_cpu_mtid; i++) {
 | |
| 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
 | |
| 				continue;
 | |
| 			pcpu[i].state = CPU_STATE_CONFIGURED;
 | |
| 			smp_cpu_set_polarization(cpu + i,
 | |
| 						 POLARIZATION_UNKNOWN);
 | |
| 		}
 | |
| 		topology_expect_change();
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| out:
 | |
| 	mutex_unlock(&smp_cpu_state_mutex);
 | |
| 	cpus_read_unlock();
 | |
| 	return rc ? rc : count;
 | |
| }
 | |
| static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
 | |
| 
 | |
| static ssize_t show_cpu_address(struct device *dev,
 | |
| 				struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
 | |
| }
 | |
| static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
 | |
| 
 | |
| static struct attribute *cpu_common_attrs[] = {
 | |
| 	&dev_attr_configure.attr,
 | |
| 	&dev_attr_address.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute_group cpu_common_attr_group = {
 | |
| 	.attrs = cpu_common_attrs,
 | |
| };
 | |
| 
 | |
| static struct attribute *cpu_online_attrs[] = {
 | |
| 	&dev_attr_idle_count.attr,
 | |
| 	&dev_attr_idle_time_us.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute_group cpu_online_attr_group = {
 | |
| 	.attrs = cpu_online_attrs,
 | |
| };
 | |
| 
 | |
| static int smp_cpu_online(unsigned int cpu)
 | |
| {
 | |
| 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
 | |
| 
 | |
| 	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
 | |
| }
 | |
| 
 | |
| static int smp_cpu_pre_down(unsigned int cpu)
 | |
| {
 | |
| 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
 | |
| 
 | |
| 	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int smp_add_present_cpu(int cpu)
 | |
| {
 | |
| 	struct device *s;
 | |
| 	struct cpu *c;
 | |
| 	int rc;
 | |
| 
 | |
| 	c = kzalloc(sizeof(*c), GFP_KERNEL);
 | |
| 	if (!c)
 | |
| 		return -ENOMEM;
 | |
| 	per_cpu(cpu_device, cpu) = c;
 | |
| 	s = &c->dev;
 | |
| 	c->hotpluggable = 1;
 | |
| 	rc = register_cpu(c, cpu);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
 | |
| 	if (rc)
 | |
| 		goto out_cpu;
 | |
| 	rc = topology_cpu_init(c);
 | |
| 	if (rc)
 | |
| 		goto out_topology;
 | |
| 	return 0;
 | |
| 
 | |
| out_topology:
 | |
| 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
 | |
| out_cpu:
 | |
| 	unregister_cpu(c);
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int __ref smp_rescan_cpus(void)
 | |
| {
 | |
| 	struct sclp_core_info *info;
 | |
| 	int nr;
 | |
| 
 | |
| 	info = kzalloc(sizeof(*info), GFP_KERNEL);
 | |
| 	if (!info)
 | |
| 		return -ENOMEM;
 | |
| 	smp_get_core_info(info, 0);
 | |
| 	nr = __smp_rescan_cpus(info, false);
 | |
| 	kfree(info);
 | |
| 	if (nr)
 | |
| 		topology_schedule_update();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t __ref rescan_store(struct device *dev,
 | |
| 				  struct device_attribute *attr,
 | |
| 				  const char *buf,
 | |
| 				  size_t count)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = lock_device_hotplug_sysfs();
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 	rc = smp_rescan_cpus();
 | |
| 	unlock_device_hotplug();
 | |
| 	return rc ? rc : count;
 | |
| }
 | |
| static DEVICE_ATTR_WO(rescan);
 | |
| 
 | |
| static int __init s390_smp_init(void)
 | |
| {
 | |
| 	struct device *dev_root;
 | |
| 	int cpu, rc = 0;
 | |
| 
 | |
| 	dev_root = bus_get_dev_root(&cpu_subsys);
 | |
| 	if (dev_root) {
 | |
| 		rc = device_create_file(dev_root, &dev_attr_rescan);
 | |
| 		put_device(dev_root);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 	}
 | |
| 
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		rc = smp_add_present_cpu(cpu);
 | |
| 		if (rc)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
 | |
| 			       smp_cpu_online, smp_cpu_pre_down);
 | |
| 	rc = rc <= 0 ? rc : 0;
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| subsys_initcall(s390_smp_init);
 | |
| 
 | |
| static __always_inline void set_new_lowcore(struct lowcore *lc)
 | |
| {
 | |
| 	union register_pair dst, src;
 | |
| 	u32 pfx;
 | |
| 
 | |
| 	src.even = (unsigned long) &S390_lowcore;
 | |
| 	src.odd  = sizeof(S390_lowcore);
 | |
| 	dst.even = (unsigned long) lc;
 | |
| 	dst.odd  = sizeof(*lc);
 | |
| 	pfx = __pa(lc);
 | |
| 
 | |
| 	asm volatile(
 | |
| 		"	mvcl	%[dst],%[src]\n"
 | |
| 		"	spx	%[pfx]\n"
 | |
| 		: [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
 | |
| 		: [pfx] "Q" (pfx)
 | |
| 		: "memory", "cc");
 | |
| }
 | |
| 
 | |
| int __init smp_reinit_ipl_cpu(void)
 | |
| {
 | |
| 	unsigned long async_stack, nodat_stack, mcck_stack;
 | |
| 	struct lowcore *lc, *lc_ipl;
 | |
| 	unsigned long flags, cr0;
 | |
| 	u64 mcesad;
 | |
| 
 | |
| 	lc_ipl = lowcore_ptr[0];
 | |
| 	lc = (struct lowcore *)	__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 | |
| 	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
 | |
| 	async_stack = stack_alloc();
 | |
| 	mcck_stack = stack_alloc();
 | |
| 	if (!lc || !nodat_stack || !async_stack || !mcck_stack || nmi_alloc_mcesa(&mcesad))
 | |
| 		panic("Couldn't allocate memory");
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	local_mcck_disable();
 | |
| 	set_new_lowcore(lc);
 | |
| 	S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
 | |
| 	S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
 | |
| 	S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
 | |
| 	__ctl_store(cr0, 0, 0);
 | |
| 	__ctl_clear_bit(0, 28); /* disable lowcore protection */
 | |
| 	S390_lowcore.mcesad = mcesad;
 | |
| 	__ctl_load(cr0, 0, 0);
 | |
| 	if (abs_lowcore_map(0, lc, false))
 | |
| 		panic("Couldn't remap absolute lowcore");
 | |
| 	lowcore_ptr[0] = lc;
 | |
| 	local_mcck_enable();
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	memblock_free_late(__pa(lc_ipl->mcck_stack - STACK_INIT_OFFSET), THREAD_SIZE);
 | |
| 	memblock_free_late(__pa(lc_ipl->async_stack - STACK_INIT_OFFSET), THREAD_SIZE);
 | |
| 	memblock_free_late(__pa(lc_ipl->nodat_stack - STACK_INIT_OFFSET), THREAD_SIZE);
 | |
| 	memblock_free_late(__pa(lc_ipl), sizeof(*lc_ipl));
 | |
| 	return 0;
 | |
| }
 |