mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 448e9f34d9
			
		
	
	
		448e9f34d9
		
	
	
	
	
		
			
			rcu_report_dead() and rcutree_migrate_callbacks() have their headers in rcupdate.h while those are pure rcutree calls, like the other CPU-hotplug functions. Also rcu_cpu_starting() and rcu_report_dead() have different naming conventions while they mirror each other's effects. Fix the headers and propose a naming that relates both functions and aligns with the prefix of other rcutree CPU-hotplug functions. Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
		
			
				
	
	
		
			3224 lines
		
	
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3224 lines
		
	
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* CPU control.
 | |
|  * (C) 2001, 2002, 2003, 2004 Rusty Russell
 | |
|  *
 | |
|  * This code is licenced under the GPL.
 | |
|  */
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/sched/hotplug.h>
 | |
| #include <linux/sched/isolation.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/sched/smt.h>
 | |
| #include <linux/unistd.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/oom.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/stop_machine.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/suspend.h>
 | |
| #include <linux/lockdep.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/nmi.h>
 | |
| #include <linux/smpboot.h>
 | |
| #include <linux/relay.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/scs.h>
 | |
| #include <linux/percpu-rwsem.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/cc_platform.h>
 | |
| 
 | |
| #include <trace/events/power.h>
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/cpuhp.h>
 | |
| 
 | |
| #include "smpboot.h"
 | |
| 
 | |
| /**
 | |
|  * struct cpuhp_cpu_state - Per cpu hotplug state storage
 | |
|  * @state:	The current cpu state
 | |
|  * @target:	The target state
 | |
|  * @fail:	Current CPU hotplug callback state
 | |
|  * @thread:	Pointer to the hotplug thread
 | |
|  * @should_run:	Thread should execute
 | |
|  * @rollback:	Perform a rollback
 | |
|  * @single:	Single callback invocation
 | |
|  * @bringup:	Single callback bringup or teardown selector
 | |
|  * @cpu:	CPU number
 | |
|  * @node:	Remote CPU node; for multi-instance, do a
 | |
|  *		single entry callback for install/remove
 | |
|  * @last:	For multi-instance rollback, remember how far we got
 | |
|  * @cb_state:	The state for a single callback (install/uninstall)
 | |
|  * @result:	Result of the operation
 | |
|  * @ap_sync_state:	State for AP synchronization
 | |
|  * @done_up:	Signal completion to the issuer of the task for cpu-up
 | |
|  * @done_down:	Signal completion to the issuer of the task for cpu-down
 | |
|  */
 | |
| struct cpuhp_cpu_state {
 | |
| 	enum cpuhp_state	state;
 | |
| 	enum cpuhp_state	target;
 | |
| 	enum cpuhp_state	fail;
 | |
| #ifdef CONFIG_SMP
 | |
| 	struct task_struct	*thread;
 | |
| 	bool			should_run;
 | |
| 	bool			rollback;
 | |
| 	bool			single;
 | |
| 	bool			bringup;
 | |
| 	struct hlist_node	*node;
 | |
| 	struct hlist_node	*last;
 | |
| 	enum cpuhp_state	cb_state;
 | |
| 	int			result;
 | |
| 	atomic_t		ap_sync_state;
 | |
| 	struct completion	done_up;
 | |
| 	struct completion	done_down;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
 | |
| 	.fail = CPUHP_INVALID,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| cpumask_t cpus_booted_once_mask;
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
 | |
| static struct lockdep_map cpuhp_state_up_map =
 | |
| 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
 | |
| static struct lockdep_map cpuhp_state_down_map =
 | |
| 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
 | |
| 
 | |
| 
 | |
| static inline void cpuhp_lock_acquire(bool bringup)
 | |
| {
 | |
| 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
 | |
| }
 | |
| 
 | |
| static inline void cpuhp_lock_release(bool bringup)
 | |
| {
 | |
| 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
 | |
| }
 | |
| #else
 | |
| 
 | |
| static inline void cpuhp_lock_acquire(bool bringup) { }
 | |
| static inline void cpuhp_lock_release(bool bringup) { }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * struct cpuhp_step - Hotplug state machine step
 | |
|  * @name:	Name of the step
 | |
|  * @startup:	Startup function of the step
 | |
|  * @teardown:	Teardown function of the step
 | |
|  * @cant_stop:	Bringup/teardown can't be stopped at this step
 | |
|  * @multi_instance:	State has multiple instances which get added afterwards
 | |
|  */
 | |
| struct cpuhp_step {
 | |
| 	const char		*name;
 | |
| 	union {
 | |
| 		int		(*single)(unsigned int cpu);
 | |
| 		int		(*multi)(unsigned int cpu,
 | |
| 					 struct hlist_node *node);
 | |
| 	} startup;
 | |
| 	union {
 | |
| 		int		(*single)(unsigned int cpu);
 | |
| 		int		(*multi)(unsigned int cpu,
 | |
| 					 struct hlist_node *node);
 | |
| 	} teardown;
 | |
| 	/* private: */
 | |
| 	struct hlist_head	list;
 | |
| 	/* public: */
 | |
| 	bool			cant_stop;
 | |
| 	bool			multi_instance;
 | |
| };
 | |
| 
 | |
| static DEFINE_MUTEX(cpuhp_state_mutex);
 | |
| static struct cpuhp_step cpuhp_hp_states[];
 | |
| 
 | |
| static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
 | |
| {
 | |
| 	return cpuhp_hp_states + state;
 | |
| }
 | |
| 
 | |
| static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
 | |
| {
 | |
| 	return bringup ? !step->startup.single : !step->teardown.single;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpuhp_invoke_callback - Invoke the callbacks for a given state
 | |
|  * @cpu:	The cpu for which the callback should be invoked
 | |
|  * @state:	The state to do callbacks for
 | |
|  * @bringup:	True if the bringup callback should be invoked
 | |
|  * @node:	For multi-instance, do a single entry callback for install/remove
 | |
|  * @lastp:	For multi-instance rollback, remember how far we got
 | |
|  *
 | |
|  * Called from cpu hotplug and from the state register machinery.
 | |
|  *
 | |
|  * Return: %0 on success or a negative errno code
 | |
|  */
 | |
| static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
 | |
| 				 bool bringup, struct hlist_node *node,
 | |
| 				 struct hlist_node **lastp)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 | |
| 	struct cpuhp_step *step = cpuhp_get_step(state);
 | |
| 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
 | |
| 	int (*cb)(unsigned int cpu);
 | |
| 	int ret, cnt;
 | |
| 
 | |
| 	if (st->fail == state) {
 | |
| 		st->fail = CPUHP_INVALID;
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	if (cpuhp_step_empty(bringup, step)) {
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!step->multi_instance) {
 | |
| 		WARN_ON_ONCE(lastp && *lastp);
 | |
| 		cb = bringup ? step->startup.single : step->teardown.single;
 | |
| 
 | |
| 		trace_cpuhp_enter(cpu, st->target, state, cb);
 | |
| 		ret = cb(cpu);
 | |
| 		trace_cpuhp_exit(cpu, st->state, state, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	cbm = bringup ? step->startup.multi : step->teardown.multi;
 | |
| 
 | |
| 	/* Single invocation for instance add/remove */
 | |
| 	if (node) {
 | |
| 		WARN_ON_ONCE(lastp && *lastp);
 | |
| 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 | |
| 		ret = cbm(cpu, node);
 | |
| 		trace_cpuhp_exit(cpu, st->state, state, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* State transition. Invoke on all instances */
 | |
| 	cnt = 0;
 | |
| 	hlist_for_each(node, &step->list) {
 | |
| 		if (lastp && node == *lastp)
 | |
| 			break;
 | |
| 
 | |
| 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 | |
| 		ret = cbm(cpu, node);
 | |
| 		trace_cpuhp_exit(cpu, st->state, state, ret);
 | |
| 		if (ret) {
 | |
| 			if (!lastp)
 | |
| 				goto err;
 | |
| 
 | |
| 			*lastp = node;
 | |
| 			return ret;
 | |
| 		}
 | |
| 		cnt++;
 | |
| 	}
 | |
| 	if (lastp)
 | |
| 		*lastp = NULL;
 | |
| 	return 0;
 | |
| err:
 | |
| 	/* Rollback the instances if one failed */
 | |
| 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
 | |
| 	if (!cbm)
 | |
| 		return ret;
 | |
| 
 | |
| 	hlist_for_each(node, &step->list) {
 | |
| 		if (!cnt--)
 | |
| 			break;
 | |
| 
 | |
| 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 | |
| 		ret = cbm(cpu, node);
 | |
| 		trace_cpuhp_exit(cpu, st->state, state, ret);
 | |
| 		/*
 | |
| 		 * Rollback must not fail,
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(ret);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static bool cpuhp_is_ap_state(enum cpuhp_state state)
 | |
| {
 | |
| 	/*
 | |
| 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
 | |
| 	 * purposes as that state is handled explicitly in cpu_down.
 | |
| 	 */
 | |
| 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
 | |
| }
 | |
| 
 | |
| static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 | |
| {
 | |
| 	struct completion *done = bringup ? &st->done_up : &st->done_down;
 | |
| 	wait_for_completion(done);
 | |
| }
 | |
| 
 | |
| static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 | |
| {
 | |
| 	struct completion *done = bringup ? &st->done_up : &st->done_down;
 | |
| 	complete(done);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
 | |
|  */
 | |
| static bool cpuhp_is_atomic_state(enum cpuhp_state state)
 | |
| {
 | |
| 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
 | |
| }
 | |
| 
 | |
| /* Synchronization state management */
 | |
| enum cpuhp_sync_state {
 | |
| 	SYNC_STATE_DEAD,
 | |
| 	SYNC_STATE_KICKED,
 | |
| 	SYNC_STATE_SHOULD_DIE,
 | |
| 	SYNC_STATE_ALIVE,
 | |
| 	SYNC_STATE_SHOULD_ONLINE,
 | |
| 	SYNC_STATE_ONLINE,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CORE_SYNC
 | |
| /**
 | |
|  * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
 | |
|  * @state:	The synchronization state to set
 | |
|  *
 | |
|  * No synchronization point. Just update of the synchronization state, but implies
 | |
|  * a full barrier so that the AP changes are visible before the control CPU proceeds.
 | |
|  */
 | |
| static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
 | |
| {
 | |
| 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
 | |
| 
 | |
| 	(void)atomic_xchg(st, state);
 | |
| }
 | |
| 
 | |
| void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
 | |
| 
 | |
| static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
 | |
| 				      enum cpuhp_sync_state next_state)
 | |
| {
 | |
| 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
 | |
| 	ktime_t now, end, start = ktime_get();
 | |
| 	int sync;
 | |
| 
 | |
| 	end = start + 10ULL * NSEC_PER_SEC;
 | |
| 
 | |
| 	sync = atomic_read(st);
 | |
| 	while (1) {
 | |
| 		if (sync == state) {
 | |
| 			if (!atomic_try_cmpxchg(st, &sync, next_state))
 | |
| 				continue;
 | |
| 			return true;
 | |
| 		}
 | |
| 
 | |
| 		now = ktime_get();
 | |
| 		if (now > end) {
 | |
| 			/* Timeout. Leave the state unchanged */
 | |
| 			return false;
 | |
| 		} else if (now - start < NSEC_PER_MSEC) {
 | |
| 			/* Poll for one millisecond */
 | |
| 			arch_cpuhp_sync_state_poll();
 | |
| 		} else {
 | |
| 			usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
 | |
| 		}
 | |
| 		sync = atomic_read(st);
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| #else  /* CONFIG_HOTPLUG_CORE_SYNC */
 | |
| static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
 | |
| #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
 | |
| /**
 | |
|  * cpuhp_ap_report_dead - Update synchronization state to DEAD
 | |
|  *
 | |
|  * No synchronization point. Just update of the synchronization state.
 | |
|  */
 | |
| void cpuhp_ap_report_dead(void)
 | |
| {
 | |
| 	cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
 | |
| }
 | |
| 
 | |
| void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
 | |
| 
 | |
| /*
 | |
|  * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
 | |
|  * because the AP cannot issue complete() at this stage.
 | |
|  */
 | |
| static void cpuhp_bp_sync_dead(unsigned int cpu)
 | |
| {
 | |
| 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
 | |
| 	int sync = atomic_read(st);
 | |
| 
 | |
| 	do {
 | |
| 		/* CPU can have reported dead already. Don't overwrite that! */
 | |
| 		if (sync == SYNC_STATE_DEAD)
 | |
| 			break;
 | |
| 	} while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
 | |
| 
 | |
| 	if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
 | |
| 		/* CPU reached dead state. Invoke the cleanup function */
 | |
| 		arch_cpuhp_cleanup_dead_cpu(cpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* No further action possible. Emit message and give up. */
 | |
| 	pr_err("CPU%u failed to report dead state\n", cpu);
 | |
| }
 | |
| #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
 | |
| static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
 | |
| #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
 | |
| /**
 | |
|  * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
 | |
|  *
 | |
|  * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
 | |
|  * for the BP to release it.
 | |
|  */
 | |
| void cpuhp_ap_sync_alive(void)
 | |
| {
 | |
| 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
 | |
| 
 | |
| 	cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
 | |
| 
 | |
| 	/* Wait for the control CPU to release it. */
 | |
| 	while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
 | |
| 		cpu_relax();
 | |
| }
 | |
| 
 | |
| static bool cpuhp_can_boot_ap(unsigned int cpu)
 | |
| {
 | |
| 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
 | |
| 	int sync = atomic_read(st);
 | |
| 
 | |
| again:
 | |
| 	switch (sync) {
 | |
| 	case SYNC_STATE_DEAD:
 | |
| 		/* CPU is properly dead */
 | |
| 		break;
 | |
| 	case SYNC_STATE_KICKED:
 | |
| 		/* CPU did not come up in previous attempt */
 | |
| 		break;
 | |
| 	case SYNC_STATE_ALIVE:
 | |
| 		/* CPU is stuck cpuhp_ap_sync_alive(). */
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* CPU failed to report online or dead and is in limbo state. */
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* Prepare for booting */
 | |
| 	if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
 | |
| 		goto again;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
 | |
| 
 | |
| /*
 | |
|  * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
 | |
|  * because the AP cannot issue complete() so early in the bringup.
 | |
|  */
 | |
| static int cpuhp_bp_sync_alive(unsigned int cpu)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
 | |
| 		pr_err("CPU%u failed to report alive state\n", cpu);
 | |
| 		ret = -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* Let the architecture cleanup the kick alive mechanics. */
 | |
| 	arch_cpuhp_cleanup_kick_cpu(cpu);
 | |
| 	return ret;
 | |
| }
 | |
| #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
 | |
| static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
 | |
| static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
 | |
| #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
 | |
| 
 | |
| /* Serializes the updates to cpu_online_mask, cpu_present_mask */
 | |
| static DEFINE_MUTEX(cpu_add_remove_lock);
 | |
| bool cpuhp_tasks_frozen;
 | |
| EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
 | |
| 
 | |
| /*
 | |
|  * The following two APIs (cpu_maps_update_begin/done) must be used when
 | |
|  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
 | |
|  */
 | |
| void cpu_maps_update_begin(void)
 | |
| {
 | |
| 	mutex_lock(&cpu_add_remove_lock);
 | |
| }
 | |
| 
 | |
| void cpu_maps_update_done(void)
 | |
| {
 | |
| 	mutex_unlock(&cpu_add_remove_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 | |
|  * Should always be manipulated under cpu_add_remove_lock
 | |
|  */
 | |
| static int cpu_hotplug_disabled;
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 
 | |
| DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
 | |
| 
 | |
| void cpus_read_lock(void)
 | |
| {
 | |
| 	percpu_down_read(&cpu_hotplug_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cpus_read_lock);
 | |
| 
 | |
| int cpus_read_trylock(void)
 | |
| {
 | |
| 	return percpu_down_read_trylock(&cpu_hotplug_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cpus_read_trylock);
 | |
| 
 | |
| void cpus_read_unlock(void)
 | |
| {
 | |
| 	percpu_up_read(&cpu_hotplug_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cpus_read_unlock);
 | |
| 
 | |
| void cpus_write_lock(void)
 | |
| {
 | |
| 	percpu_down_write(&cpu_hotplug_lock);
 | |
| }
 | |
| 
 | |
| void cpus_write_unlock(void)
 | |
| {
 | |
| 	percpu_up_write(&cpu_hotplug_lock);
 | |
| }
 | |
| 
 | |
| void lockdep_assert_cpus_held(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * We can't have hotplug operations before userspace starts running,
 | |
| 	 * and some init codepaths will knowingly not take the hotplug lock.
 | |
| 	 * This is all valid, so mute lockdep until it makes sense to report
 | |
| 	 * unheld locks.
 | |
| 	 */
 | |
| 	if (system_state < SYSTEM_RUNNING)
 | |
| 		return;
 | |
| 
 | |
| 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_LOCKDEP
 | |
| int lockdep_is_cpus_held(void)
 | |
| {
 | |
| 	return percpu_rwsem_is_held(&cpu_hotplug_lock);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void lockdep_acquire_cpus_lock(void)
 | |
| {
 | |
| 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
 | |
| }
 | |
| 
 | |
| static void lockdep_release_cpus_lock(void)
 | |
| {
 | |
| 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wait for currently running CPU hotplug operations to complete (if any) and
 | |
|  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
 | |
|  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
 | |
|  * hotplug path before performing hotplug operations. So acquiring that lock
 | |
|  * guarantees mutual exclusion from any currently running hotplug operations.
 | |
|  */
 | |
| void cpu_hotplug_disable(void)
 | |
| {
 | |
| 	cpu_maps_update_begin();
 | |
| 	cpu_hotplug_disabled++;
 | |
| 	cpu_maps_update_done();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
 | |
| 
 | |
| static void __cpu_hotplug_enable(void)
 | |
| {
 | |
| 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
 | |
| 		return;
 | |
| 	cpu_hotplug_disabled--;
 | |
| }
 | |
| 
 | |
| void cpu_hotplug_enable(void)
 | |
| {
 | |
| 	cpu_maps_update_begin();
 | |
| 	__cpu_hotplug_enable();
 | |
| 	cpu_maps_update_done();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
 | |
| 
 | |
| #else
 | |
| 
 | |
| static void lockdep_acquire_cpus_lock(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void lockdep_release_cpus_lock(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| /*
 | |
|  * Architectures that need SMT-specific errata handling during SMT hotplug
 | |
|  * should override this.
 | |
|  */
 | |
| void __weak arch_smt_update(void) { }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_SMT
 | |
| 
 | |
| enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
 | |
| static unsigned int cpu_smt_max_threads __ro_after_init;
 | |
| unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
 | |
| 
 | |
| void __init cpu_smt_disable(bool force)
 | |
| {
 | |
| 	if (!cpu_smt_possible())
 | |
| 		return;
 | |
| 
 | |
| 	if (force) {
 | |
| 		pr_info("SMT: Force disabled\n");
 | |
| 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
 | |
| 	} else {
 | |
| 		pr_info("SMT: disabled\n");
 | |
| 		cpu_smt_control = CPU_SMT_DISABLED;
 | |
| 	}
 | |
| 	cpu_smt_num_threads = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The decision whether SMT is supported can only be done after the full
 | |
|  * CPU identification. Called from architecture code.
 | |
|  */
 | |
| void __init cpu_smt_set_num_threads(unsigned int num_threads,
 | |
| 				    unsigned int max_threads)
 | |
| {
 | |
| 	WARN_ON(!num_threads || (num_threads > max_threads));
 | |
| 
 | |
| 	if (max_threads == 1)
 | |
| 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
 | |
| 
 | |
| 	cpu_smt_max_threads = max_threads;
 | |
| 
 | |
| 	/*
 | |
| 	 * If SMT has been disabled via the kernel command line or SMT is
 | |
| 	 * not supported, set cpu_smt_num_threads to 1 for consistency.
 | |
| 	 * If enabled, take the architecture requested number of threads
 | |
| 	 * to bring up into account.
 | |
| 	 */
 | |
| 	if (cpu_smt_control != CPU_SMT_ENABLED)
 | |
| 		cpu_smt_num_threads = 1;
 | |
| 	else if (num_threads < cpu_smt_num_threads)
 | |
| 		cpu_smt_num_threads = num_threads;
 | |
| }
 | |
| 
 | |
| static int __init smt_cmdline_disable(char *str)
 | |
| {
 | |
| 	cpu_smt_disable(str && !strcmp(str, "force"));
 | |
| 	return 0;
 | |
| }
 | |
| early_param("nosmt", smt_cmdline_disable);
 | |
| 
 | |
| /*
 | |
|  * For Archicture supporting partial SMT states check if the thread is allowed.
 | |
|  * Otherwise this has already been checked through cpu_smt_max_threads when
 | |
|  * setting the SMT level.
 | |
|  */
 | |
| static inline bool cpu_smt_thread_allowed(unsigned int cpu)
 | |
| {
 | |
| #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
 | |
| 	return topology_smt_thread_allowed(cpu);
 | |
| #else
 | |
| 	return true;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline bool cpu_smt_allowed(unsigned int cpu)
 | |
| {
 | |
| 	if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
 | |
| 		return true;
 | |
| 
 | |
| 	if (topology_is_primary_thread(cpu))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * On x86 it's required to boot all logical CPUs at least once so
 | |
| 	 * that the init code can get a chance to set CR4.MCE on each
 | |
| 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
 | |
| 	 * core will shutdown the machine.
 | |
| 	 */
 | |
| 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
 | |
| }
 | |
| 
 | |
| /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
 | |
| bool cpu_smt_possible(void)
 | |
| {
 | |
| 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
 | |
| 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cpu_smt_possible);
 | |
| 
 | |
| #else
 | |
| static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
 | |
| #endif
 | |
| 
 | |
| static inline enum cpuhp_state
 | |
| cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
 | |
| {
 | |
| 	enum cpuhp_state prev_state = st->state;
 | |
| 	bool bringup = st->state < target;
 | |
| 
 | |
| 	st->rollback = false;
 | |
| 	st->last = NULL;
 | |
| 
 | |
| 	st->target = target;
 | |
| 	st->single = false;
 | |
| 	st->bringup = bringup;
 | |
| 	if (cpu_dying(cpu) != !bringup)
 | |
| 		set_cpu_dying(cpu, !bringup);
 | |
| 
 | |
| 	return prev_state;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
 | |
| 		  enum cpuhp_state prev_state)
 | |
| {
 | |
| 	bool bringup = !st->bringup;
 | |
| 
 | |
| 	st->target = prev_state;
 | |
| 
 | |
| 	/*
 | |
| 	 * Already rolling back. No need invert the bringup value or to change
 | |
| 	 * the current state.
 | |
| 	 */
 | |
| 	if (st->rollback)
 | |
| 		return;
 | |
| 
 | |
| 	st->rollback = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have st->last we need to undo partial multi_instance of this
 | |
| 	 * state first. Otherwise start undo at the previous state.
 | |
| 	 */
 | |
| 	if (!st->last) {
 | |
| 		if (st->bringup)
 | |
| 			st->state--;
 | |
| 		else
 | |
| 			st->state++;
 | |
| 	}
 | |
| 
 | |
| 	st->bringup = bringup;
 | |
| 	if (cpu_dying(cpu) != !bringup)
 | |
| 		set_cpu_dying(cpu, !bringup);
 | |
| }
 | |
| 
 | |
| /* Regular hotplug invocation of the AP hotplug thread */
 | |
| static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
 | |
| {
 | |
| 	if (!st->single && st->state == st->target)
 | |
| 		return;
 | |
| 
 | |
| 	st->result = 0;
 | |
| 	/*
 | |
| 	 * Make sure the above stores are visible before should_run becomes
 | |
| 	 * true. Paired with the mb() above in cpuhp_thread_fun()
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	st->should_run = true;
 | |
| 	wake_up_process(st->thread);
 | |
| 	wait_for_ap_thread(st, st->bringup);
 | |
| }
 | |
| 
 | |
| static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
 | |
| 			 enum cpuhp_state target)
 | |
| {
 | |
| 	enum cpuhp_state prev_state;
 | |
| 	int ret;
 | |
| 
 | |
| 	prev_state = cpuhp_set_state(cpu, st, target);
 | |
| 	__cpuhp_kick_ap(st);
 | |
| 	if ((ret = st->result)) {
 | |
| 		cpuhp_reset_state(cpu, st, prev_state);
 | |
| 		__cpuhp_kick_ap(st);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int bringup_wait_for_ap_online(unsigned int cpu)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 | |
| 
 | |
| 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
 | |
| 	wait_for_ap_thread(st, true);
 | |
| 	if (WARN_ON_ONCE((!cpu_online(cpu))))
 | |
| 		return -ECANCELED;
 | |
| 
 | |
| 	/* Unpark the hotplug thread of the target cpu */
 | |
| 	kthread_unpark(st->thread);
 | |
| 
 | |
| 	/*
 | |
| 	 * SMT soft disabling on X86 requires to bring the CPU out of the
 | |
| 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
 | |
| 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
 | |
| 	 * cpu_smt_allowed() check will now return false if this is not the
 | |
| 	 * primary sibling.
 | |
| 	 */
 | |
| 	if (!cpu_smt_allowed(cpu))
 | |
| 		return -ECANCELED;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
 | |
| static int cpuhp_kick_ap_alive(unsigned int cpu)
 | |
| {
 | |
| 	if (!cpuhp_can_boot_ap(cpu))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
 | |
| }
 | |
| 
 | |
| static int cpuhp_bringup_ap(unsigned int cpu)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Some architectures have to walk the irq descriptors to
 | |
| 	 * setup the vector space for the cpu which comes online.
 | |
| 	 * Prevent irq alloc/free across the bringup.
 | |
| 	 */
 | |
| 	irq_lock_sparse();
 | |
| 
 | |
| 	ret = cpuhp_bp_sync_alive(cpu);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	ret = bringup_wait_for_ap_online(cpu);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	irq_unlock_sparse();
 | |
| 
 | |
| 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
 | |
| 		return 0;
 | |
| 
 | |
| 	return cpuhp_kick_ap(cpu, st, st->target);
 | |
| 
 | |
| out_unlock:
 | |
| 	irq_unlock_sparse();
 | |
| 	return ret;
 | |
| }
 | |
| #else
 | |
| static int bringup_cpu(unsigned int cpu)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 | |
| 	struct task_struct *idle = idle_thread_get(cpu);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!cpuhp_can_boot_ap(cpu))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	/*
 | |
| 	 * Some architectures have to walk the irq descriptors to
 | |
| 	 * setup the vector space for the cpu which comes online.
 | |
| 	 *
 | |
| 	 * Prevent irq alloc/free across the bringup by acquiring the
 | |
| 	 * sparse irq lock. Hold it until the upcoming CPU completes the
 | |
| 	 * startup in cpuhp_online_idle() which allows to avoid
 | |
| 	 * intermediate synchronization points in the architecture code.
 | |
| 	 */
 | |
| 	irq_lock_sparse();
 | |
| 
 | |
| 	ret = __cpu_up(cpu, idle);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	ret = cpuhp_bp_sync_alive(cpu);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	ret = bringup_wait_for_ap_online(cpu);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	irq_unlock_sparse();
 | |
| 
 | |
| 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
 | |
| 		return 0;
 | |
| 
 | |
| 	return cpuhp_kick_ap(cpu, st, st->target);
 | |
| 
 | |
| out_unlock:
 | |
| 	irq_unlock_sparse();
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int finish_cpu(unsigned int cpu)
 | |
| {
 | |
| 	struct task_struct *idle = idle_thread_get(cpu);
 | |
| 	struct mm_struct *mm = idle->active_mm;
 | |
| 
 | |
| 	/*
 | |
| 	 * idle_task_exit() will have switched to &init_mm, now
 | |
| 	 * clean up any remaining active_mm state.
 | |
| 	 */
 | |
| 	if (mm != &init_mm)
 | |
| 		idle->active_mm = &init_mm;
 | |
| 	mmdrop_lazy_tlb(mm);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Hotplug state machine related functions
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Get the next state to run. Empty ones will be skipped. Returns true if a
 | |
|  * state must be run.
 | |
|  *
 | |
|  * st->state will be modified ahead of time, to match state_to_run, as if it
 | |
|  * has already ran.
 | |
|  */
 | |
| static bool cpuhp_next_state(bool bringup,
 | |
| 			     enum cpuhp_state *state_to_run,
 | |
| 			     struct cpuhp_cpu_state *st,
 | |
| 			     enum cpuhp_state target)
 | |
| {
 | |
| 	do {
 | |
| 		if (bringup) {
 | |
| 			if (st->state >= target)
 | |
| 				return false;
 | |
| 
 | |
| 			*state_to_run = ++st->state;
 | |
| 		} else {
 | |
| 			if (st->state <= target)
 | |
| 				return false;
 | |
| 
 | |
| 			*state_to_run = st->state--;
 | |
| 		}
 | |
| 
 | |
| 		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
 | |
| 			break;
 | |
| 	} while (true);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int __cpuhp_invoke_callback_range(bool bringup,
 | |
| 					 unsigned int cpu,
 | |
| 					 struct cpuhp_cpu_state *st,
 | |
| 					 enum cpuhp_state target,
 | |
| 					 bool nofail)
 | |
| {
 | |
| 	enum cpuhp_state state;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	while (cpuhp_next_state(bringup, &state, st, target)) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
 | |
| 		if (!err)
 | |
| 			continue;
 | |
| 
 | |
| 		if (nofail) {
 | |
| 			pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
 | |
| 				cpu, bringup ? "UP" : "DOWN",
 | |
| 				cpuhp_get_step(st->state)->name,
 | |
| 				st->state, err);
 | |
| 			ret = -1;
 | |
| 		} else {
 | |
| 			ret = err;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int cpuhp_invoke_callback_range(bool bringup,
 | |
| 					      unsigned int cpu,
 | |
| 					      struct cpuhp_cpu_state *st,
 | |
| 					      enum cpuhp_state target)
 | |
| {
 | |
| 	return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
 | |
| }
 | |
| 
 | |
| static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
 | |
| 						      unsigned int cpu,
 | |
| 						      struct cpuhp_cpu_state *st,
 | |
| 						      enum cpuhp_state target)
 | |
| {
 | |
| 	__cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
 | |
| }
 | |
| 
 | |
| static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
 | |
| 		return true;
 | |
| 	/*
 | |
| 	 * When CPU hotplug is disabled, then taking the CPU down is not
 | |
| 	 * possible because takedown_cpu() and the architecture and
 | |
| 	 * subsystem specific mechanisms are not available. So the CPU
 | |
| 	 * which would be completely unplugged again needs to stay around
 | |
| 	 * in the current state.
 | |
| 	 */
 | |
| 	return st->state <= CPUHP_BRINGUP_CPU;
 | |
| }
 | |
| 
 | |
| static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 | |
| 			      enum cpuhp_state target)
 | |
| {
 | |
| 	enum cpuhp_state prev_state = st->state;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
 | |
| 	if (ret) {
 | |
| 		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
 | |
| 			 ret, cpu, cpuhp_get_step(st->state)->name,
 | |
| 			 st->state);
 | |
| 
 | |
| 		cpuhp_reset_state(cpu, st, prev_state);
 | |
| 		if (can_rollback_cpu(st))
 | |
| 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
 | |
| 							    prev_state));
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The cpu hotplug threads manage the bringup and teardown of the cpus
 | |
|  */
 | |
| static int cpuhp_should_run(unsigned int cpu)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 | |
| 
 | |
| 	return st->should_run;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
 | |
|  * callbacks when a state gets [un]installed at runtime.
 | |
|  *
 | |
|  * Each invocation of this function by the smpboot thread does a single AP
 | |
|  * state callback.
 | |
|  *
 | |
|  * It has 3 modes of operation:
 | |
|  *  - single: runs st->cb_state
 | |
|  *  - up:     runs ++st->state, while st->state < st->target
 | |
|  *  - down:   runs st->state--, while st->state > st->target
 | |
|  *
 | |
|  * When complete or on error, should_run is cleared and the completion is fired.
 | |
|  */
 | |
| static void cpuhp_thread_fun(unsigned int cpu)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 | |
| 	bool bringup = st->bringup;
 | |
| 	enum cpuhp_state state;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!st->should_run))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
 | |
| 	 * that if we see ->should_run we also see the rest of the state.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	/*
 | |
| 	 * The BP holds the hotplug lock, but we're now running on the AP,
 | |
| 	 * ensure that anybody asserting the lock is held, will actually find
 | |
| 	 * it so.
 | |
| 	 */
 | |
| 	lockdep_acquire_cpus_lock();
 | |
| 	cpuhp_lock_acquire(bringup);
 | |
| 
 | |
| 	if (st->single) {
 | |
| 		state = st->cb_state;
 | |
| 		st->should_run = false;
 | |
| 	} else {
 | |
| 		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
 | |
| 		if (!st->should_run)
 | |
| 			goto end;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
 | |
| 
 | |
| 	if (cpuhp_is_atomic_state(state)) {
 | |
| 		local_irq_disable();
 | |
| 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 | |
| 		local_irq_enable();
 | |
| 
 | |
| 		/*
 | |
| 		 * STARTING/DYING must not fail!
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(st->result);
 | |
| 	} else {
 | |
| 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 | |
| 	}
 | |
| 
 | |
| 	if (st->result) {
 | |
| 		/*
 | |
| 		 * If we fail on a rollback, we're up a creek without no
 | |
| 		 * paddle, no way forward, no way back. We loose, thanks for
 | |
| 		 * playing.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(st->rollback);
 | |
| 		st->should_run = false;
 | |
| 	}
 | |
| 
 | |
| end:
 | |
| 	cpuhp_lock_release(bringup);
 | |
| 	lockdep_release_cpus_lock();
 | |
| 
 | |
| 	if (!st->should_run)
 | |
| 		complete_ap_thread(st, bringup);
 | |
| }
 | |
| 
 | |
| /* Invoke a single callback on a remote cpu */
 | |
| static int
 | |
| cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
 | |
| 			 struct hlist_node *node)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!cpu_online(cpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	cpuhp_lock_acquire(false);
 | |
| 	cpuhp_lock_release(false);
 | |
| 
 | |
| 	cpuhp_lock_acquire(true);
 | |
| 	cpuhp_lock_release(true);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are up and running, use the hotplug thread. For early calls
 | |
| 	 * we invoke the thread function directly.
 | |
| 	 */
 | |
| 	if (!st->thread)
 | |
| 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
 | |
| 
 | |
| 	st->rollback = false;
 | |
| 	st->last = NULL;
 | |
| 
 | |
| 	st->node = node;
 | |
| 	st->bringup = bringup;
 | |
| 	st->cb_state = state;
 | |
| 	st->single = true;
 | |
| 
 | |
| 	__cpuhp_kick_ap(st);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we failed and did a partial, do a rollback.
 | |
| 	 */
 | |
| 	if ((ret = st->result) && st->last) {
 | |
| 		st->rollback = true;
 | |
| 		st->bringup = !bringup;
 | |
| 
 | |
| 		__cpuhp_kick_ap(st);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Clean up the leftovers so the next hotplug operation wont use stale
 | |
| 	 * data.
 | |
| 	 */
 | |
| 	st->node = st->last = NULL;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int cpuhp_kick_ap_work(unsigned int cpu)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 | |
| 	enum cpuhp_state prev_state = st->state;
 | |
| 	int ret;
 | |
| 
 | |
| 	cpuhp_lock_acquire(false);
 | |
| 	cpuhp_lock_release(false);
 | |
| 
 | |
| 	cpuhp_lock_acquire(true);
 | |
| 	cpuhp_lock_release(true);
 | |
| 
 | |
| 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
 | |
| 	ret = cpuhp_kick_ap(cpu, st, st->target);
 | |
| 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct smp_hotplug_thread cpuhp_threads = {
 | |
| 	.store			= &cpuhp_state.thread,
 | |
| 	.thread_should_run	= cpuhp_should_run,
 | |
| 	.thread_fn		= cpuhp_thread_fun,
 | |
| 	.thread_comm		= "cpuhp/%u",
 | |
| 	.selfparking		= true,
 | |
| };
 | |
| 
 | |
| static __init void cpuhp_init_state(void)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		st = per_cpu_ptr(&cpuhp_state, cpu);
 | |
| 		init_completion(&st->done_up);
 | |
| 		init_completion(&st->done_down);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init cpuhp_threads_init(void)
 | |
| {
 | |
| 	cpuhp_init_state();
 | |
| 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
 | |
| 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
 | |
|  * protected region.
 | |
|  *
 | |
|  * The operation is still serialized against concurrent CPU hotplug via
 | |
|  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
 | |
|  * serialized against other hotplug related activity like adding or
 | |
|  * removing of state callbacks and state instances, which invoke either the
 | |
|  * startup or the teardown callback of the affected state.
 | |
|  *
 | |
|  * This is required for subsystems which are unfixable vs. CPU hotplug and
 | |
|  * evade lock inversion problems by scheduling work which has to be
 | |
|  * completed _before_ cpu_up()/_cpu_down() returns.
 | |
|  *
 | |
|  * Don't even think about adding anything to this for any new code or even
 | |
|  * drivers. It's only purpose is to keep existing lock order trainwrecks
 | |
|  * working.
 | |
|  *
 | |
|  * For cpu_down() there might be valid reasons to finish cleanups which are
 | |
|  * not required to be done under cpu_hotplug_lock, but that's a different
 | |
|  * story and would be not invoked via this.
 | |
|  */
 | |
| static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
 | |
| {
 | |
| 	/*
 | |
| 	 * cpusets delegate hotplug operations to a worker to "solve" the
 | |
| 	 * lock order problems. Wait for the worker, but only if tasks are
 | |
| 	 * _not_ frozen (suspend, hibernate) as that would wait forever.
 | |
| 	 *
 | |
| 	 * The wait is required because otherwise the hotplug operation
 | |
| 	 * returns with inconsistent state, which could even be observed in
 | |
| 	 * user space when a new CPU is brought up. The CPU plug uevent
 | |
| 	 * would be delivered and user space reacting on it would fail to
 | |
| 	 * move tasks to the newly plugged CPU up to the point where the
 | |
| 	 * work has finished because up to that point the newly plugged CPU
 | |
| 	 * is not assignable in cpusets/cgroups. On unplug that's not
 | |
| 	 * necessarily a visible issue, but it is still inconsistent state,
 | |
| 	 * which is the real problem which needs to be "fixed". This can't
 | |
| 	 * prevent the transient state between scheduling the work and
 | |
| 	 * returning from waiting for it.
 | |
| 	 */
 | |
| 	if (!tasks_frozen)
 | |
| 		cpuset_wait_for_hotplug();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| #ifndef arch_clear_mm_cpumask_cpu
 | |
| #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
 | |
|  * @cpu: a CPU id
 | |
|  *
 | |
|  * This function walks all processes, finds a valid mm struct for each one and
 | |
|  * then clears a corresponding bit in mm's cpumask.  While this all sounds
 | |
|  * trivial, there are various non-obvious corner cases, which this function
 | |
|  * tries to solve in a safe manner.
 | |
|  *
 | |
|  * Also note that the function uses a somewhat relaxed locking scheme, so it may
 | |
|  * be called only for an already offlined CPU.
 | |
|  */
 | |
| void clear_tasks_mm_cpumask(int cpu)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	/*
 | |
| 	 * This function is called after the cpu is taken down and marked
 | |
| 	 * offline, so its not like new tasks will ever get this cpu set in
 | |
| 	 * their mm mask. -- Peter Zijlstra
 | |
| 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
 | |
| 	 * full-fledged tasklist_lock.
 | |
| 	 */
 | |
| 	WARN_ON(cpu_online(cpu));
 | |
| 	rcu_read_lock();
 | |
| 	for_each_process(p) {
 | |
| 		struct task_struct *t;
 | |
| 
 | |
| 		/*
 | |
| 		 * Main thread might exit, but other threads may still have
 | |
| 		 * a valid mm. Find one.
 | |
| 		 */
 | |
| 		t = find_lock_task_mm(p);
 | |
| 		if (!t)
 | |
| 			continue;
 | |
| 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
 | |
| 		task_unlock(t);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /* Take this CPU down. */
 | |
| static int take_cpu_down(void *_param)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 | |
| 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
 | |
| 	int err, cpu = smp_processor_id();
 | |
| 
 | |
| 	/* Ensure this CPU doesn't handle any more interrupts. */
 | |
| 	err = __cpu_disable();
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	/*
 | |
| 	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
 | |
| 	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
 | |
| 	 */
 | |
| 	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
 | |
| 
 | |
| 	/*
 | |
| 	 * Invoke the former CPU_DYING callbacks. DYING must not fail!
 | |
| 	 */
 | |
| 	cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
 | |
| 
 | |
| 	/* Give up timekeeping duties */
 | |
| 	tick_handover_do_timer();
 | |
| 	/* Remove CPU from timer broadcasting */
 | |
| 	tick_offline_cpu(cpu);
 | |
| 	/* Park the stopper thread */
 | |
| 	stop_machine_park(cpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int takedown_cpu(unsigned int cpu)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 | |
| 	int err;
 | |
| 
 | |
| 	/* Park the smpboot threads */
 | |
| 	kthread_park(st->thread);
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent irq alloc/free while the dying cpu reorganizes the
 | |
| 	 * interrupt affinities.
 | |
| 	 */
 | |
| 	irq_lock_sparse();
 | |
| 
 | |
| 	/*
 | |
| 	 * So now all preempt/rcu users must observe !cpu_active().
 | |
| 	 */
 | |
| 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
 | |
| 	if (err) {
 | |
| 		/* CPU refused to die */
 | |
| 		irq_unlock_sparse();
 | |
| 		/* Unpark the hotplug thread so we can rollback there */
 | |
| 		kthread_unpark(st->thread);
 | |
| 		return err;
 | |
| 	}
 | |
| 	BUG_ON(cpu_online(cpu));
 | |
| 
 | |
| 	/*
 | |
| 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
 | |
| 	 * all runnable tasks from the CPU, there's only the idle task left now
 | |
| 	 * that the migration thread is done doing the stop_machine thing.
 | |
| 	 *
 | |
| 	 * Wait for the stop thread to go away.
 | |
| 	 */
 | |
| 	wait_for_ap_thread(st, false);
 | |
| 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
 | |
| 
 | |
| 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
 | |
| 	irq_unlock_sparse();
 | |
| 
 | |
| 	hotplug_cpu__broadcast_tick_pull(cpu);
 | |
| 	/* This actually kills the CPU. */
 | |
| 	__cpu_die(cpu);
 | |
| 
 | |
| 	cpuhp_bp_sync_dead(cpu);
 | |
| 
 | |
| 	tick_cleanup_dead_cpu(cpu);
 | |
| 	rcutree_migrate_callbacks(cpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cpuhp_complete_idle_dead(void *arg)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = arg;
 | |
| 
 | |
| 	complete_ap_thread(st, false);
 | |
| }
 | |
| 
 | |
| void cpuhp_report_idle_dead(void)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 | |
| 
 | |
| 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
 | |
| 	rcutree_report_cpu_dead();
 | |
| 	st->state = CPUHP_AP_IDLE_DEAD;
 | |
| 	/*
 | |
| 	 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it
 | |
| 	 * to an online cpu.
 | |
| 	 */
 | |
| 	smp_call_function_single(cpumask_first(cpu_online_mask),
 | |
| 				 cpuhp_complete_idle_dead, st, 0);
 | |
| }
 | |
| 
 | |
| static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 | |
| 				enum cpuhp_state target)
 | |
| {
 | |
| 	enum cpuhp_state prev_state = st->state;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
 | |
| 	if (ret) {
 | |
| 		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
 | |
| 			 ret, cpu, cpuhp_get_step(st->state)->name,
 | |
| 			 st->state);
 | |
| 
 | |
| 		cpuhp_reset_state(cpu, st, prev_state);
 | |
| 
 | |
| 		if (st->state < prev_state)
 | |
| 			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
 | |
| 							    prev_state));
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Requires cpu_add_remove_lock to be held */
 | |
| static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
 | |
| 			   enum cpuhp_state target)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 | |
| 	int prev_state, ret = 0;
 | |
| 
 | |
| 	if (num_online_cpus() == 1)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (!cpu_present(cpu))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cpus_write_lock();
 | |
| 
 | |
| 	cpuhp_tasks_frozen = tasks_frozen;
 | |
| 
 | |
| 	prev_state = cpuhp_set_state(cpu, st, target);
 | |
| 	/*
 | |
| 	 * If the current CPU state is in the range of the AP hotplug thread,
 | |
| 	 * then we need to kick the thread.
 | |
| 	 */
 | |
| 	if (st->state > CPUHP_TEARDOWN_CPU) {
 | |
| 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
 | |
| 		ret = cpuhp_kick_ap_work(cpu);
 | |
| 		/*
 | |
| 		 * The AP side has done the error rollback already. Just
 | |
| 		 * return the error code..
 | |
| 		 */
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		/*
 | |
| 		 * We might have stopped still in the range of the AP hotplug
 | |
| 		 * thread. Nothing to do anymore.
 | |
| 		 */
 | |
| 		if (st->state > CPUHP_TEARDOWN_CPU)
 | |
| 			goto out;
 | |
| 
 | |
| 		st->target = target;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
 | |
| 	 * to do the further cleanups.
 | |
| 	 */
 | |
| 	ret = cpuhp_down_callbacks(cpu, st, target);
 | |
| 	if (ret && st->state < prev_state) {
 | |
| 		if (st->state == CPUHP_TEARDOWN_CPU) {
 | |
| 			cpuhp_reset_state(cpu, st, prev_state);
 | |
| 			__cpuhp_kick_ap(st);
 | |
| 		} else {
 | |
| 			WARN(1, "DEAD callback error for CPU%d", cpu);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	cpus_write_unlock();
 | |
| 	/*
 | |
| 	 * Do post unplug cleanup. This is still protected against
 | |
| 	 * concurrent CPU hotplug via cpu_add_remove_lock.
 | |
| 	 */
 | |
| 	lockup_detector_cleanup();
 | |
| 	arch_smt_update();
 | |
| 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct cpu_down_work {
 | |
| 	unsigned int		cpu;
 | |
| 	enum cpuhp_state	target;
 | |
| };
 | |
| 
 | |
| static long __cpu_down_maps_locked(void *arg)
 | |
| {
 | |
| 	struct cpu_down_work *work = arg;
 | |
| 
 | |
| 	return _cpu_down(work->cpu, 0, work->target);
 | |
| }
 | |
| 
 | |
| static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
 | |
| {
 | |
| 	struct cpu_down_work work = { .cpu = cpu, .target = target, };
 | |
| 
 | |
| 	/*
 | |
| 	 * If the platform does not support hotplug, report it explicitly to
 | |
| 	 * differentiate it from a transient offlining failure.
 | |
| 	 */
 | |
| 	if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
 | |
| 		return -EOPNOTSUPP;
 | |
| 	if (cpu_hotplug_disabled)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that the control task does not run on the to be offlined
 | |
| 	 * CPU to prevent a deadlock against cfs_b->period_timer.
 | |
| 	 */
 | |
| 	cpu = cpumask_any_but(cpu_online_mask, cpu);
 | |
| 	if (cpu >= nr_cpu_ids)
 | |
| 		return -EBUSY;
 | |
| 	return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
 | |
| }
 | |
| 
 | |
| static int cpu_down(unsigned int cpu, enum cpuhp_state target)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	cpu_maps_update_begin();
 | |
| 	err = cpu_down_maps_locked(cpu, target);
 | |
| 	cpu_maps_update_done();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpu_device_down - Bring down a cpu device
 | |
|  * @dev: Pointer to the cpu device to offline
 | |
|  *
 | |
|  * This function is meant to be used by device core cpu subsystem only.
 | |
|  *
 | |
|  * Other subsystems should use remove_cpu() instead.
 | |
|  *
 | |
|  * Return: %0 on success or a negative errno code
 | |
|  */
 | |
| int cpu_device_down(struct device *dev)
 | |
| {
 | |
| 	return cpu_down(dev->id, CPUHP_OFFLINE);
 | |
| }
 | |
| 
 | |
| int remove_cpu(unsigned int cpu)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	lock_device_hotplug();
 | |
| 	ret = device_offline(get_cpu_device(cpu));
 | |
| 	unlock_device_hotplug();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(remove_cpu);
 | |
| 
 | |
| void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 	int error;
 | |
| 
 | |
| 	cpu_maps_update_begin();
 | |
| 
 | |
| 	/*
 | |
| 	 * Make certain the cpu I'm about to reboot on is online.
 | |
| 	 *
 | |
| 	 * This is inline to what migrate_to_reboot_cpu() already do.
 | |
| 	 */
 | |
| 	if (!cpu_online(primary_cpu))
 | |
| 		primary_cpu = cpumask_first(cpu_online_mask);
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (cpu == primary_cpu)
 | |
| 			continue;
 | |
| 
 | |
| 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
 | |
| 		if (error) {
 | |
| 			pr_err("Failed to offline CPU%d - error=%d",
 | |
| 				cpu, error);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure all but the reboot CPU are offline.
 | |
| 	 */
 | |
| 	BUG_ON(num_online_cpus() > 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure the CPUs won't be enabled by someone else after this
 | |
| 	 * point. Kexec will reboot to a new kernel shortly resetting
 | |
| 	 * everything along the way.
 | |
| 	 */
 | |
| 	cpu_hotplug_disabled++;
 | |
| 
 | |
| 	cpu_maps_update_done();
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define takedown_cpu		NULL
 | |
| #endif /*CONFIG_HOTPLUG_CPU*/
 | |
| 
 | |
| /**
 | |
|  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
 | |
|  * @cpu: cpu that just started
 | |
|  *
 | |
|  * It must be called by the arch code on the new cpu, before the new cpu
 | |
|  * enables interrupts and before the "boot" cpu returns from __cpu_up().
 | |
|  */
 | |
| void notify_cpu_starting(unsigned int cpu)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 | |
| 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
 | |
| 
 | |
| 	rcutree_report_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
 | |
| 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * STARTING must not fail!
 | |
| 	 */
 | |
| 	cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from the idle task. Wake up the controlling task which brings the
 | |
|  * hotplug thread of the upcoming CPU up and then delegates the rest of the
 | |
|  * online bringup to the hotplug thread.
 | |
|  */
 | |
| void cpuhp_online_idle(enum cpuhp_state state)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 | |
| 
 | |
| 	/* Happens for the boot cpu */
 | |
| 	if (state != CPUHP_AP_ONLINE_IDLE)
 | |
| 		return;
 | |
| 
 | |
| 	cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Unpark the stopper thread before we start the idle loop (and start
 | |
| 	 * scheduling); this ensures the stopper task is always available.
 | |
| 	 */
 | |
| 	stop_machine_unpark(smp_processor_id());
 | |
| 
 | |
| 	st->state = CPUHP_AP_ONLINE_IDLE;
 | |
| 	complete_ap_thread(st, true);
 | |
| }
 | |
| 
 | |
| /* Requires cpu_add_remove_lock to be held */
 | |
| static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 | |
| 	struct task_struct *idle;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	cpus_write_lock();
 | |
| 
 | |
| 	if (!cpu_present(cpu)) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The caller of cpu_up() might have raced with another
 | |
| 	 * caller. Nothing to do.
 | |
| 	 */
 | |
| 	if (st->state >= target)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (st->state == CPUHP_OFFLINE) {
 | |
| 		/* Let it fail before we try to bring the cpu up */
 | |
| 		idle = idle_thread_get(cpu);
 | |
| 		if (IS_ERR(idle)) {
 | |
| 			ret = PTR_ERR(idle);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Reset stale stack state from the last time this CPU was online.
 | |
| 		 */
 | |
| 		scs_task_reset(idle);
 | |
| 		kasan_unpoison_task_stack(idle);
 | |
| 	}
 | |
| 
 | |
| 	cpuhp_tasks_frozen = tasks_frozen;
 | |
| 
 | |
| 	cpuhp_set_state(cpu, st, target);
 | |
| 	/*
 | |
| 	 * If the current CPU state is in the range of the AP hotplug thread,
 | |
| 	 * then we need to kick the thread once more.
 | |
| 	 */
 | |
| 	if (st->state > CPUHP_BRINGUP_CPU) {
 | |
| 		ret = cpuhp_kick_ap_work(cpu);
 | |
| 		/*
 | |
| 		 * The AP side has done the error rollback already. Just
 | |
| 		 * return the error code..
 | |
| 		 */
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to reach the target state. We max out on the BP at
 | |
| 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
 | |
| 	 * responsible for bringing it up to the target state.
 | |
| 	 */
 | |
| 	target = min((int)target, CPUHP_BRINGUP_CPU);
 | |
| 	ret = cpuhp_up_callbacks(cpu, st, target);
 | |
| out:
 | |
| 	cpus_write_unlock();
 | |
| 	arch_smt_update();
 | |
| 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int cpu_up(unsigned int cpu, enum cpuhp_state target)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (!cpu_possible(cpu)) {
 | |
| 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
 | |
| 		       cpu);
 | |
| #if defined(CONFIG_IA64)
 | |
| 		pr_err("please check additional_cpus= boot parameter\n");
 | |
| #endif
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	err = try_online_node(cpu_to_node(cpu));
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	cpu_maps_update_begin();
 | |
| 
 | |
| 	if (cpu_hotplug_disabled) {
 | |
| 		err = -EBUSY;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (!cpu_smt_allowed(cpu)) {
 | |
| 		err = -EPERM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	err = _cpu_up(cpu, 0, target);
 | |
| out:
 | |
| 	cpu_maps_update_done();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpu_device_up - Bring up a cpu device
 | |
|  * @dev: Pointer to the cpu device to online
 | |
|  *
 | |
|  * This function is meant to be used by device core cpu subsystem only.
 | |
|  *
 | |
|  * Other subsystems should use add_cpu() instead.
 | |
|  *
 | |
|  * Return: %0 on success or a negative errno code
 | |
|  */
 | |
| int cpu_device_up(struct device *dev)
 | |
| {
 | |
| 	return cpu_up(dev->id, CPUHP_ONLINE);
 | |
| }
 | |
| 
 | |
| int add_cpu(unsigned int cpu)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	lock_device_hotplug();
 | |
| 	ret = device_online(get_cpu_device(cpu));
 | |
| 	unlock_device_hotplug();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(add_cpu);
 | |
| 
 | |
| /**
 | |
|  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
 | |
|  * @sleep_cpu: The cpu we hibernated on and should be brought up.
 | |
|  *
 | |
|  * On some architectures like arm64, we can hibernate on any CPU, but on
 | |
|  * wake up the CPU we hibernated on might be offline as a side effect of
 | |
|  * using maxcpus= for example.
 | |
|  *
 | |
|  * Return: %0 on success or a negative errno code
 | |
|  */
 | |
| int bringup_hibernate_cpu(unsigned int sleep_cpu)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!cpu_online(sleep_cpu)) {
 | |
| 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
 | |
| 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
 | |
| 		if (ret) {
 | |
| 			pr_err("Failed to bring hibernate-CPU up!\n");
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
 | |
| 				      enum cpuhp_state target)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	for_each_cpu(cpu, mask) {
 | |
| 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 | |
| 
 | |
| 		if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
 | |
| 			/*
 | |
| 			 * If this failed then cpu_up() might have only
 | |
| 			 * rolled back to CPUHP_BP_KICK_AP for the final
 | |
| 			 * online. Clean it up. NOOP if already rolled back.
 | |
| 			 */
 | |
| 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
 | |
| 		}
 | |
| 
 | |
| 		if (!--ncpus)
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_PARALLEL
 | |
| static bool __cpuhp_parallel_bringup __ro_after_init = true;
 | |
| 
 | |
| static int __init parallel_bringup_parse_param(char *arg)
 | |
| {
 | |
| 	return kstrtobool(arg, &__cpuhp_parallel_bringup);
 | |
| }
 | |
| early_param("cpuhp.parallel", parallel_bringup_parse_param);
 | |
| 
 | |
| static inline bool cpuhp_smt_aware(void)
 | |
| {
 | |
| 	return cpu_smt_max_threads > 1;
 | |
| }
 | |
| 
 | |
| static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
 | |
| {
 | |
| 	return cpu_primary_thread_mask;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On architectures which have enabled parallel bringup this invokes all BP
 | |
|  * prepare states for each of the to be onlined APs first. The last state
 | |
|  * sends the startup IPI to the APs. The APs proceed through the low level
 | |
|  * bringup code in parallel and then wait for the control CPU to release
 | |
|  * them one by one for the final onlining procedure.
 | |
|  *
 | |
|  * This avoids waiting for each AP to respond to the startup IPI in
 | |
|  * CPUHP_BRINGUP_CPU.
 | |
|  */
 | |
| static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
 | |
| {
 | |
| 	const struct cpumask *mask = cpu_present_mask;
 | |
| 
 | |
| 	if (__cpuhp_parallel_bringup)
 | |
| 		__cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
 | |
| 	if (!__cpuhp_parallel_bringup)
 | |
| 		return false;
 | |
| 
 | |
| 	if (cpuhp_smt_aware()) {
 | |
| 		const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
 | |
| 		static struct cpumask tmp_mask __initdata;
 | |
| 
 | |
| 		/*
 | |
| 		 * X86 requires to prevent that SMT siblings stopped while
 | |
| 		 * the primary thread does a microcode update for various
 | |
| 		 * reasons. Bring the primary threads up first.
 | |
| 		 */
 | |
| 		cpumask_and(&tmp_mask, mask, pmask);
 | |
| 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
 | |
| 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
 | |
| 		/* Account for the online CPUs */
 | |
| 		ncpus -= num_online_cpus();
 | |
| 		if (!ncpus)
 | |
| 			return true;
 | |
| 		/* Create the mask for secondary CPUs */
 | |
| 		cpumask_andnot(&tmp_mask, mask, pmask);
 | |
| 		mask = &tmp_mask;
 | |
| 	}
 | |
| 
 | |
| 	/* Bring the not-yet started CPUs up */
 | |
| 	cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
 | |
| 	cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
 | |
| 	return true;
 | |
| }
 | |
| #else
 | |
| static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
 | |
| #endif /* CONFIG_HOTPLUG_PARALLEL */
 | |
| 
 | |
| void __init bringup_nonboot_cpus(unsigned int setup_max_cpus)
 | |
| {
 | |
| 	/* Try parallel bringup optimization if enabled */
 | |
| 	if (cpuhp_bringup_cpus_parallel(setup_max_cpus))
 | |
| 		return;
 | |
| 
 | |
| 	/* Full per CPU serialized bringup */
 | |
| 	cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM_SLEEP_SMP
 | |
| static cpumask_var_t frozen_cpus;
 | |
| 
 | |
| int freeze_secondary_cpus(int primary)
 | |
| {
 | |
| 	int cpu, error = 0;
 | |
| 
 | |
| 	cpu_maps_update_begin();
 | |
| 	if (primary == -1) {
 | |
| 		primary = cpumask_first(cpu_online_mask);
 | |
| 		if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
 | |
| 			primary = housekeeping_any_cpu(HK_TYPE_TIMER);
 | |
| 	} else {
 | |
| 		if (!cpu_online(primary))
 | |
| 			primary = cpumask_first(cpu_online_mask);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We take down all of the non-boot CPUs in one shot to avoid races
 | |
| 	 * with the userspace trying to use the CPU hotplug at the same time
 | |
| 	 */
 | |
| 	cpumask_clear(frozen_cpus);
 | |
| 
 | |
| 	pr_info("Disabling non-boot CPUs ...\n");
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (cpu == primary)
 | |
| 			continue;
 | |
| 
 | |
| 		if (pm_wakeup_pending()) {
 | |
| 			pr_info("Wakeup pending. Abort CPU freeze\n");
 | |
| 			error = -EBUSY;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
 | |
| 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
 | |
| 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
 | |
| 		if (!error)
 | |
| 			cpumask_set_cpu(cpu, frozen_cpus);
 | |
| 		else {
 | |
| 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!error)
 | |
| 		BUG_ON(num_online_cpus() > 1);
 | |
| 	else
 | |
| 		pr_err("Non-boot CPUs are not disabled\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure the CPUs won't be enabled by someone else. We need to do
 | |
| 	 * this even in case of failure as all freeze_secondary_cpus() users are
 | |
| 	 * supposed to do thaw_secondary_cpus() on the failure path.
 | |
| 	 */
 | |
| 	cpu_hotplug_disabled++;
 | |
| 
 | |
| 	cpu_maps_update_done();
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| void __weak arch_thaw_secondary_cpus_begin(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| void __weak arch_thaw_secondary_cpus_end(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| void thaw_secondary_cpus(void)
 | |
| {
 | |
| 	int cpu, error;
 | |
| 
 | |
| 	/* Allow everyone to use the CPU hotplug again */
 | |
| 	cpu_maps_update_begin();
 | |
| 	__cpu_hotplug_enable();
 | |
| 	if (cpumask_empty(frozen_cpus))
 | |
| 		goto out;
 | |
| 
 | |
| 	pr_info("Enabling non-boot CPUs ...\n");
 | |
| 
 | |
| 	arch_thaw_secondary_cpus_begin();
 | |
| 
 | |
| 	for_each_cpu(cpu, frozen_cpus) {
 | |
| 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
 | |
| 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
 | |
| 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
 | |
| 		if (!error) {
 | |
| 			pr_info("CPU%d is up\n", cpu);
 | |
| 			continue;
 | |
| 		}
 | |
| 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
 | |
| 	}
 | |
| 
 | |
| 	arch_thaw_secondary_cpus_end();
 | |
| 
 | |
| 	cpumask_clear(frozen_cpus);
 | |
| out:
 | |
| 	cpu_maps_update_done();
 | |
| }
 | |
| 
 | |
| static int __init alloc_frozen_cpus(void)
 | |
| {
 | |
| 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| core_initcall(alloc_frozen_cpus);
 | |
| 
 | |
| /*
 | |
|  * When callbacks for CPU hotplug notifications are being executed, we must
 | |
|  * ensure that the state of the system with respect to the tasks being frozen
 | |
|  * or not, as reported by the notification, remains unchanged *throughout the
 | |
|  * duration* of the execution of the callbacks.
 | |
|  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
 | |
|  *
 | |
|  * This synchronization is implemented by mutually excluding regular CPU
 | |
|  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
 | |
|  * Hibernate notifications.
 | |
|  */
 | |
| static int
 | |
| cpu_hotplug_pm_callback(struct notifier_block *nb,
 | |
| 			unsigned long action, void *ptr)
 | |
| {
 | |
| 	switch (action) {
 | |
| 
 | |
| 	case PM_SUSPEND_PREPARE:
 | |
| 	case PM_HIBERNATION_PREPARE:
 | |
| 		cpu_hotplug_disable();
 | |
| 		break;
 | |
| 
 | |
| 	case PM_POST_SUSPEND:
 | |
| 	case PM_POST_HIBERNATION:
 | |
| 		cpu_hotplug_enable();
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return NOTIFY_DONE;
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int __init cpu_hotplug_pm_sync_init(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * cpu_hotplug_pm_callback has higher priority than x86
 | |
| 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
 | |
| 	 * to disable cpu hotplug to avoid cpu hotplug race.
 | |
| 	 */
 | |
| 	pm_notifier(cpu_hotplug_pm_callback, 0);
 | |
| 	return 0;
 | |
| }
 | |
| core_initcall(cpu_hotplug_pm_sync_init);
 | |
| 
 | |
| #endif /* CONFIG_PM_SLEEP_SMP */
 | |
| 
 | |
| int __boot_cpu_id;
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| /* Boot processor state steps */
 | |
| static struct cpuhp_step cpuhp_hp_states[] = {
 | |
| 	[CPUHP_OFFLINE] = {
 | |
| 		.name			= "offline",
 | |
| 		.startup.single		= NULL,
 | |
| 		.teardown.single	= NULL,
 | |
| 	},
 | |
| #ifdef CONFIG_SMP
 | |
| 	[CPUHP_CREATE_THREADS]= {
 | |
| 		.name			= "threads:prepare",
 | |
| 		.startup.single		= smpboot_create_threads,
 | |
| 		.teardown.single	= NULL,
 | |
| 		.cant_stop		= true,
 | |
| 	},
 | |
| 	[CPUHP_PERF_PREPARE] = {
 | |
| 		.name			= "perf:prepare",
 | |
| 		.startup.single		= perf_event_init_cpu,
 | |
| 		.teardown.single	= perf_event_exit_cpu,
 | |
| 	},
 | |
| 	[CPUHP_RANDOM_PREPARE] = {
 | |
| 		.name			= "random:prepare",
 | |
| 		.startup.single		= random_prepare_cpu,
 | |
| 		.teardown.single	= NULL,
 | |
| 	},
 | |
| 	[CPUHP_WORKQUEUE_PREP] = {
 | |
| 		.name			= "workqueue:prepare",
 | |
| 		.startup.single		= workqueue_prepare_cpu,
 | |
| 		.teardown.single	= NULL,
 | |
| 	},
 | |
| 	[CPUHP_HRTIMERS_PREPARE] = {
 | |
| 		.name			= "hrtimers:prepare",
 | |
| 		.startup.single		= hrtimers_prepare_cpu,
 | |
| 		.teardown.single	= hrtimers_dead_cpu,
 | |
| 	},
 | |
| 	[CPUHP_SMPCFD_PREPARE] = {
 | |
| 		.name			= "smpcfd:prepare",
 | |
| 		.startup.single		= smpcfd_prepare_cpu,
 | |
| 		.teardown.single	= smpcfd_dead_cpu,
 | |
| 	},
 | |
| 	[CPUHP_RELAY_PREPARE] = {
 | |
| 		.name			= "relay:prepare",
 | |
| 		.startup.single		= relay_prepare_cpu,
 | |
| 		.teardown.single	= NULL,
 | |
| 	},
 | |
| 	[CPUHP_SLAB_PREPARE] = {
 | |
| 		.name			= "slab:prepare",
 | |
| 		.startup.single		= slab_prepare_cpu,
 | |
| 		.teardown.single	= slab_dead_cpu,
 | |
| 	},
 | |
| 	[CPUHP_RCUTREE_PREP] = {
 | |
| 		.name			= "RCU/tree:prepare",
 | |
| 		.startup.single		= rcutree_prepare_cpu,
 | |
| 		.teardown.single	= rcutree_dead_cpu,
 | |
| 	},
 | |
| 	/*
 | |
| 	 * On the tear-down path, timers_dead_cpu() must be invoked
 | |
| 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
 | |
| 	 * otherwise a RCU stall occurs.
 | |
| 	 */
 | |
| 	[CPUHP_TIMERS_PREPARE] = {
 | |
| 		.name			= "timers:prepare",
 | |
| 		.startup.single		= timers_prepare_cpu,
 | |
| 		.teardown.single	= timers_dead_cpu,
 | |
| 	},
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
 | |
| 	/*
 | |
| 	 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
 | |
| 	 * the next step will release it.
 | |
| 	 */
 | |
| 	[CPUHP_BP_KICK_AP] = {
 | |
| 		.name			= "cpu:kick_ap",
 | |
| 		.startup.single		= cpuhp_kick_ap_alive,
 | |
| 	},
 | |
| 
 | |
| 	/*
 | |
| 	 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
 | |
| 	 * releases it for the complete bringup.
 | |
| 	 */
 | |
| 	[CPUHP_BRINGUP_CPU] = {
 | |
| 		.name			= "cpu:bringup",
 | |
| 		.startup.single		= cpuhp_bringup_ap,
 | |
| 		.teardown.single	= finish_cpu,
 | |
| 		.cant_stop		= true,
 | |
| 	},
 | |
| #else
 | |
| 	/*
 | |
| 	 * All-in-one CPU bringup state which includes the kick alive.
 | |
| 	 */
 | |
| 	[CPUHP_BRINGUP_CPU] = {
 | |
| 		.name			= "cpu:bringup",
 | |
| 		.startup.single		= bringup_cpu,
 | |
| 		.teardown.single	= finish_cpu,
 | |
| 		.cant_stop		= true,
 | |
| 	},
 | |
| #endif
 | |
| 	/* Final state before CPU kills itself */
 | |
| 	[CPUHP_AP_IDLE_DEAD] = {
 | |
| 		.name			= "idle:dead",
 | |
| 	},
 | |
| 	/*
 | |
| 	 * Last state before CPU enters the idle loop to die. Transient state
 | |
| 	 * for synchronization.
 | |
| 	 */
 | |
| 	[CPUHP_AP_OFFLINE] = {
 | |
| 		.name			= "ap:offline",
 | |
| 		.cant_stop		= true,
 | |
| 	},
 | |
| 	/* First state is scheduler control. Interrupts are disabled */
 | |
| 	[CPUHP_AP_SCHED_STARTING] = {
 | |
| 		.name			= "sched:starting",
 | |
| 		.startup.single		= sched_cpu_starting,
 | |
| 		.teardown.single	= sched_cpu_dying,
 | |
| 	},
 | |
| 	[CPUHP_AP_RCUTREE_DYING] = {
 | |
| 		.name			= "RCU/tree:dying",
 | |
| 		.startup.single		= NULL,
 | |
| 		.teardown.single	= rcutree_dying_cpu,
 | |
| 	},
 | |
| 	[CPUHP_AP_SMPCFD_DYING] = {
 | |
| 		.name			= "smpcfd:dying",
 | |
| 		.startup.single		= NULL,
 | |
| 		.teardown.single	= smpcfd_dying_cpu,
 | |
| 	},
 | |
| 	/* Entry state on starting. Interrupts enabled from here on. Transient
 | |
| 	 * state for synchronsization */
 | |
| 	[CPUHP_AP_ONLINE] = {
 | |
| 		.name			= "ap:online",
 | |
| 	},
 | |
| 	/*
 | |
| 	 * Handled on control processor until the plugged processor manages
 | |
| 	 * this itself.
 | |
| 	 */
 | |
| 	[CPUHP_TEARDOWN_CPU] = {
 | |
| 		.name			= "cpu:teardown",
 | |
| 		.startup.single		= NULL,
 | |
| 		.teardown.single	= takedown_cpu,
 | |
| 		.cant_stop		= true,
 | |
| 	},
 | |
| 
 | |
| 	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
 | |
| 		.name			= "sched:waitempty",
 | |
| 		.startup.single		= NULL,
 | |
| 		.teardown.single	= sched_cpu_wait_empty,
 | |
| 	},
 | |
| 
 | |
| 	/* Handle smpboot threads park/unpark */
 | |
| 	[CPUHP_AP_SMPBOOT_THREADS] = {
 | |
| 		.name			= "smpboot/threads:online",
 | |
| 		.startup.single		= smpboot_unpark_threads,
 | |
| 		.teardown.single	= smpboot_park_threads,
 | |
| 	},
 | |
| 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
 | |
| 		.name			= "irq/affinity:online",
 | |
| 		.startup.single		= irq_affinity_online_cpu,
 | |
| 		.teardown.single	= NULL,
 | |
| 	},
 | |
| 	[CPUHP_AP_PERF_ONLINE] = {
 | |
| 		.name			= "perf:online",
 | |
| 		.startup.single		= perf_event_init_cpu,
 | |
| 		.teardown.single	= perf_event_exit_cpu,
 | |
| 	},
 | |
| 	[CPUHP_AP_WATCHDOG_ONLINE] = {
 | |
| 		.name			= "lockup_detector:online",
 | |
| 		.startup.single		= lockup_detector_online_cpu,
 | |
| 		.teardown.single	= lockup_detector_offline_cpu,
 | |
| 	},
 | |
| 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
 | |
| 		.name			= "workqueue:online",
 | |
| 		.startup.single		= workqueue_online_cpu,
 | |
| 		.teardown.single	= workqueue_offline_cpu,
 | |
| 	},
 | |
| 	[CPUHP_AP_RANDOM_ONLINE] = {
 | |
| 		.name			= "random:online",
 | |
| 		.startup.single		= random_online_cpu,
 | |
| 		.teardown.single	= NULL,
 | |
| 	},
 | |
| 	[CPUHP_AP_RCUTREE_ONLINE] = {
 | |
| 		.name			= "RCU/tree:online",
 | |
| 		.startup.single		= rcutree_online_cpu,
 | |
| 		.teardown.single	= rcutree_offline_cpu,
 | |
| 	},
 | |
| #endif
 | |
| 	/*
 | |
| 	 * The dynamically registered state space is here
 | |
| 	 */
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/* Last state is scheduler control setting the cpu active */
 | |
| 	[CPUHP_AP_ACTIVE] = {
 | |
| 		.name			= "sched:active",
 | |
| 		.startup.single		= sched_cpu_activate,
 | |
| 		.teardown.single	= sched_cpu_deactivate,
 | |
| 	},
 | |
| #endif
 | |
| 
 | |
| 	/* CPU is fully up and running. */
 | |
| 	[CPUHP_ONLINE] = {
 | |
| 		.name			= "online",
 | |
| 		.startup.single		= NULL,
 | |
| 		.teardown.single	= NULL,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| /* Sanity check for callbacks */
 | |
| static int cpuhp_cb_check(enum cpuhp_state state)
 | |
| {
 | |
| 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns a free for dynamic slot assignment of the Online state. The states
 | |
|  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
 | |
|  * by having no name assigned.
 | |
|  */
 | |
| static int cpuhp_reserve_state(enum cpuhp_state state)
 | |
| {
 | |
| 	enum cpuhp_state i, end;
 | |
| 	struct cpuhp_step *step;
 | |
| 
 | |
| 	switch (state) {
 | |
| 	case CPUHP_AP_ONLINE_DYN:
 | |
| 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
 | |
| 		end = CPUHP_AP_ONLINE_DYN_END;
 | |
| 		break;
 | |
| 	case CPUHP_BP_PREPARE_DYN:
 | |
| 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
 | |
| 		end = CPUHP_BP_PREPARE_DYN_END;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = state; i <= end; i++, step++) {
 | |
| 		if (!step->name)
 | |
| 			return i;
 | |
| 	}
 | |
| 	WARN(1, "No more dynamic states available for CPU hotplug\n");
 | |
| 	return -ENOSPC;
 | |
| }
 | |
| 
 | |
| static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
 | |
| 				 int (*startup)(unsigned int cpu),
 | |
| 				 int (*teardown)(unsigned int cpu),
 | |
| 				 bool multi_instance)
 | |
| {
 | |
| 	/* (Un)Install the callbacks for further cpu hotplug operations */
 | |
| 	struct cpuhp_step *sp;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If name is NULL, then the state gets removed.
 | |
| 	 *
 | |
| 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
 | |
| 	 * the first allocation from these dynamic ranges, so the removal
 | |
| 	 * would trigger a new allocation and clear the wrong (already
 | |
| 	 * empty) state, leaving the callbacks of the to be cleared state
 | |
| 	 * dangling, which causes wreckage on the next hotplug operation.
 | |
| 	 */
 | |
| 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
 | |
| 		     state == CPUHP_BP_PREPARE_DYN)) {
 | |
| 		ret = cpuhp_reserve_state(state);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		state = ret;
 | |
| 	}
 | |
| 	sp = cpuhp_get_step(state);
 | |
| 	if (name && sp->name)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	sp->startup.single = startup;
 | |
| 	sp->teardown.single = teardown;
 | |
| 	sp->name = name;
 | |
| 	sp->multi_instance = multi_instance;
 | |
| 	INIT_HLIST_HEAD(&sp->list);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
 | |
| {
 | |
| 	return cpuhp_get_step(state)->teardown.single;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Call the startup/teardown function for a step either on the AP or
 | |
|  * on the current CPU.
 | |
|  */
 | |
| static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
 | |
| 			    struct hlist_node *node)
 | |
| {
 | |
| 	struct cpuhp_step *sp = cpuhp_get_step(state);
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there's nothing to do, we done.
 | |
| 	 * Relies on the union for multi_instance.
 | |
| 	 */
 | |
| 	if (cpuhp_step_empty(bringup, sp))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * The non AP bound callbacks can fail on bringup. On teardown
 | |
| 	 * e.g. module removal we crash for now.
 | |
| 	 */
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (cpuhp_is_ap_state(state))
 | |
| 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
 | |
| 	else
 | |
| 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
 | |
| #else
 | |
| 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
 | |
| #endif
 | |
| 	BUG_ON(ret && !bringup);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from __cpuhp_setup_state on a recoverable failure.
 | |
|  *
 | |
|  * Note: The teardown callbacks for rollback are not allowed to fail!
 | |
|  */
 | |
| static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
 | |
| 				   struct hlist_node *node)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	/* Roll back the already executed steps on the other cpus */
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 | |
| 		int cpustate = st->state;
 | |
| 
 | |
| 		if (cpu >= failedcpu)
 | |
| 			break;
 | |
| 
 | |
| 		/* Did we invoke the startup call on that cpu ? */
 | |
| 		if (cpustate >= state)
 | |
| 			cpuhp_issue_call(cpu, state, false, node);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
 | |
| 					  struct hlist_node *node,
 | |
| 					  bool invoke)
 | |
| {
 | |
| 	struct cpuhp_step *sp;
 | |
| 	int cpu;
 | |
| 	int ret;
 | |
| 
 | |
| 	lockdep_assert_cpus_held();
 | |
| 
 | |
| 	sp = cpuhp_get_step(state);
 | |
| 	if (sp->multi_instance == false)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&cpuhp_state_mutex);
 | |
| 
 | |
| 	if (!invoke || !sp->startup.multi)
 | |
| 		goto add_node;
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to call the startup callback for each present cpu
 | |
| 	 * depending on the hotplug state of the cpu.
 | |
| 	 */
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 | |
| 		int cpustate = st->state;
 | |
| 
 | |
| 		if (cpustate < state)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = cpuhp_issue_call(cpu, state, true, node);
 | |
| 		if (ret) {
 | |
| 			if (sp->teardown.multi)
 | |
| 				cpuhp_rollback_install(cpu, state, node);
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 	}
 | |
| add_node:
 | |
| 	ret = 0;
 | |
| 	hlist_add_head(node, &sp->list);
 | |
| unlock:
 | |
| 	mutex_unlock(&cpuhp_state_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
 | |
| 			       bool invoke)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	cpus_read_lock();
 | |
| 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
 | |
| 	cpus_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
 | |
| 
 | |
| /**
 | |
|  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
 | |
|  * @state:		The state to setup
 | |
|  * @name:		Name of the step
 | |
|  * @invoke:		If true, the startup function is invoked for cpus where
 | |
|  *			cpu state >= @state
 | |
|  * @startup:		startup callback function
 | |
|  * @teardown:		teardown callback function
 | |
|  * @multi_instance:	State is set up for multiple instances which get
 | |
|  *			added afterwards.
 | |
|  *
 | |
|  * The caller needs to hold cpus read locked while calling this function.
 | |
|  * Return:
 | |
|  *   On success:
 | |
|  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
 | |
|  *      0 for all other states
 | |
|  *   On failure: proper (negative) error code
 | |
|  */
 | |
| int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
 | |
| 				   const char *name, bool invoke,
 | |
| 				   int (*startup)(unsigned int cpu),
 | |
| 				   int (*teardown)(unsigned int cpu),
 | |
| 				   bool multi_instance)
 | |
| {
 | |
| 	int cpu, ret = 0;
 | |
| 	bool dynstate;
 | |
| 
 | |
| 	lockdep_assert_cpus_held();
 | |
| 
 | |
| 	if (cpuhp_cb_check(state) || !name)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&cpuhp_state_mutex);
 | |
| 
 | |
| 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
 | |
| 				    multi_instance);
 | |
| 
 | |
| 	dynstate = state == CPUHP_AP_ONLINE_DYN;
 | |
| 	if (ret > 0 && dynstate) {
 | |
| 		state = ret;
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (ret || !invoke || !startup)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to call the startup callback for each present cpu
 | |
| 	 * depending on the hotplug state of the cpu.
 | |
| 	 */
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 | |
| 		int cpustate = st->state;
 | |
| 
 | |
| 		if (cpustate < state)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = cpuhp_issue_call(cpu, state, true, NULL);
 | |
| 		if (ret) {
 | |
| 			if (teardown)
 | |
| 				cpuhp_rollback_install(cpu, state, NULL);
 | |
| 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	mutex_unlock(&cpuhp_state_mutex);
 | |
| 	/*
 | |
| 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
 | |
| 	 * dynamically allocated state in case of success.
 | |
| 	 */
 | |
| 	if (!ret && dynstate)
 | |
| 		return state;
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
 | |
| 
 | |
| int __cpuhp_setup_state(enum cpuhp_state state,
 | |
| 			const char *name, bool invoke,
 | |
| 			int (*startup)(unsigned int cpu),
 | |
| 			int (*teardown)(unsigned int cpu),
 | |
| 			bool multi_instance)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	cpus_read_lock();
 | |
| 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
 | |
| 					     teardown, multi_instance);
 | |
| 	cpus_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(__cpuhp_setup_state);
 | |
| 
 | |
| int __cpuhp_state_remove_instance(enum cpuhp_state state,
 | |
| 				  struct hlist_node *node, bool invoke)
 | |
| {
 | |
| 	struct cpuhp_step *sp = cpuhp_get_step(state);
 | |
| 	int cpu;
 | |
| 
 | |
| 	BUG_ON(cpuhp_cb_check(state));
 | |
| 
 | |
| 	if (!sp->multi_instance)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cpus_read_lock();
 | |
| 	mutex_lock(&cpuhp_state_mutex);
 | |
| 
 | |
| 	if (!invoke || !cpuhp_get_teardown_cb(state))
 | |
| 		goto remove;
 | |
| 	/*
 | |
| 	 * Call the teardown callback for each present cpu depending
 | |
| 	 * on the hotplug state of the cpu. This function is not
 | |
| 	 * allowed to fail currently!
 | |
| 	 */
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 | |
| 		int cpustate = st->state;
 | |
| 
 | |
| 		if (cpustate >= state)
 | |
| 			cpuhp_issue_call(cpu, state, false, node);
 | |
| 	}
 | |
| 
 | |
| remove:
 | |
| 	hlist_del(node);
 | |
| 	mutex_unlock(&cpuhp_state_mutex);
 | |
| 	cpus_read_unlock();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
 | |
| 
 | |
| /**
 | |
|  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
 | |
|  * @state:	The state to remove
 | |
|  * @invoke:	If true, the teardown function is invoked for cpus where
 | |
|  *		cpu state >= @state
 | |
|  *
 | |
|  * The caller needs to hold cpus read locked while calling this function.
 | |
|  * The teardown callback is currently not allowed to fail. Think
 | |
|  * about module removal!
 | |
|  */
 | |
| void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
 | |
| {
 | |
| 	struct cpuhp_step *sp = cpuhp_get_step(state);
 | |
| 	int cpu;
 | |
| 
 | |
| 	BUG_ON(cpuhp_cb_check(state));
 | |
| 
 | |
| 	lockdep_assert_cpus_held();
 | |
| 
 | |
| 	mutex_lock(&cpuhp_state_mutex);
 | |
| 	if (sp->multi_instance) {
 | |
| 		WARN(!hlist_empty(&sp->list),
 | |
| 		     "Error: Removing state %d which has instances left.\n",
 | |
| 		     state);
 | |
| 		goto remove;
 | |
| 	}
 | |
| 
 | |
| 	if (!invoke || !cpuhp_get_teardown_cb(state))
 | |
| 		goto remove;
 | |
| 
 | |
| 	/*
 | |
| 	 * Call the teardown callback for each present cpu depending
 | |
| 	 * on the hotplug state of the cpu. This function is not
 | |
| 	 * allowed to fail currently!
 | |
| 	 */
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 | |
| 		int cpustate = st->state;
 | |
| 
 | |
| 		if (cpustate >= state)
 | |
| 			cpuhp_issue_call(cpu, state, false, NULL);
 | |
| 	}
 | |
| remove:
 | |
| 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
 | |
| 	mutex_unlock(&cpuhp_state_mutex);
 | |
| }
 | |
| EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
 | |
| 
 | |
| void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
 | |
| {
 | |
| 	cpus_read_lock();
 | |
| 	__cpuhp_remove_state_cpuslocked(state, invoke);
 | |
| 	cpus_read_unlock();
 | |
| }
 | |
| EXPORT_SYMBOL(__cpuhp_remove_state);
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_SMT
 | |
| static void cpuhp_offline_cpu_device(unsigned int cpu)
 | |
| {
 | |
| 	struct device *dev = get_cpu_device(cpu);
 | |
| 
 | |
| 	dev->offline = true;
 | |
| 	/* Tell user space about the state change */
 | |
| 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
 | |
| }
 | |
| 
 | |
| static void cpuhp_online_cpu_device(unsigned int cpu)
 | |
| {
 | |
| 	struct device *dev = get_cpu_device(cpu);
 | |
| 
 | |
| 	dev->offline = false;
 | |
| 	/* Tell user space about the state change */
 | |
| 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
 | |
| }
 | |
| 
 | |
| int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
 | |
| {
 | |
| 	int cpu, ret = 0;
 | |
| 
 | |
| 	cpu_maps_update_begin();
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (topology_is_primary_thread(cpu))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * Disable can be called with CPU_SMT_ENABLED when changing
 | |
| 		 * from a higher to lower number of SMT threads per core.
 | |
| 		 */
 | |
| 		if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
 | |
| 			continue;
 | |
| 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		/*
 | |
| 		 * As this needs to hold the cpu maps lock it's impossible
 | |
| 		 * to call device_offline() because that ends up calling
 | |
| 		 * cpu_down() which takes cpu maps lock. cpu maps lock
 | |
| 		 * needs to be held as this might race against in kernel
 | |
| 		 * abusers of the hotplug machinery (thermal management).
 | |
| 		 *
 | |
| 		 * So nothing would update device:offline state. That would
 | |
| 		 * leave the sysfs entry stale and prevent onlining after
 | |
| 		 * smt control has been changed to 'off' again. This is
 | |
| 		 * called under the sysfs hotplug lock, so it is properly
 | |
| 		 * serialized against the regular offline usage.
 | |
| 		 */
 | |
| 		cpuhp_offline_cpu_device(cpu);
 | |
| 	}
 | |
| 	if (!ret)
 | |
| 		cpu_smt_control = ctrlval;
 | |
| 	cpu_maps_update_done();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int cpuhp_smt_enable(void)
 | |
| {
 | |
| 	int cpu, ret = 0;
 | |
| 
 | |
| 	cpu_maps_update_begin();
 | |
| 	cpu_smt_control = CPU_SMT_ENABLED;
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		/* Skip online CPUs and CPUs on offline nodes */
 | |
| 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
 | |
| 			continue;
 | |
| 		if (!cpu_smt_thread_allowed(cpu))
 | |
| 			continue;
 | |
| 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		/* See comment in cpuhp_smt_disable() */
 | |
| 		cpuhp_online_cpu_device(cpu);
 | |
| 	}
 | |
| 	cpu_maps_update_done();
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
 | |
| static ssize_t state_show(struct device *dev,
 | |
| 			  struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
 | |
| 
 | |
| 	return sprintf(buf, "%d\n", st->state);
 | |
| }
 | |
| static DEVICE_ATTR_RO(state);
 | |
| 
 | |
| static ssize_t target_store(struct device *dev, struct device_attribute *attr,
 | |
| 			    const char *buf, size_t count)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
 | |
| 	struct cpuhp_step *sp;
 | |
| 	int target, ret;
 | |
| 
 | |
| 	ret = kstrtoint(buf, 10, &target);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
 | |
| 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
 | |
| 		return -EINVAL;
 | |
| #else
 | |
| 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
 | |
| 		return -EINVAL;
 | |
| #endif
 | |
| 
 | |
| 	ret = lock_device_hotplug_sysfs();
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	mutex_lock(&cpuhp_state_mutex);
 | |
| 	sp = cpuhp_get_step(target);
 | |
| 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
 | |
| 	mutex_unlock(&cpuhp_state_mutex);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (st->state < target)
 | |
| 		ret = cpu_up(dev->id, target);
 | |
| 	else if (st->state > target)
 | |
| 		ret = cpu_down(dev->id, target);
 | |
| 	else if (WARN_ON(st->target != target))
 | |
| 		st->target = target;
 | |
| out:
 | |
| 	unlock_device_hotplug();
 | |
| 	return ret ? ret : count;
 | |
| }
 | |
| 
 | |
| static ssize_t target_show(struct device *dev,
 | |
| 			   struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
 | |
| 
 | |
| 	return sprintf(buf, "%d\n", st->target);
 | |
| }
 | |
| static DEVICE_ATTR_RW(target);
 | |
| 
 | |
| static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
 | |
| 			  const char *buf, size_t count)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
 | |
| 	struct cpuhp_step *sp;
 | |
| 	int fail, ret;
 | |
| 
 | |
| 	ret = kstrtoint(buf, 10, &fail);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (fail == CPUHP_INVALID) {
 | |
| 		st->fail = fail;
 | |
| 		return count;
 | |
| 	}
 | |
| 
 | |
| 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Cannot fail STARTING/DYING callbacks.
 | |
| 	 */
 | |
| 	if (cpuhp_is_atomic_state(fail))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * DEAD callbacks cannot fail...
 | |
| 	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
 | |
| 	 * triggering STARTING callbacks, a failure in this state would
 | |
| 	 * hinder rollback.
 | |
| 	 */
 | |
| 	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Cannot fail anything that doesn't have callbacks.
 | |
| 	 */
 | |
| 	mutex_lock(&cpuhp_state_mutex);
 | |
| 	sp = cpuhp_get_step(fail);
 | |
| 	if (!sp->startup.single && !sp->teardown.single)
 | |
| 		ret = -EINVAL;
 | |
| 	mutex_unlock(&cpuhp_state_mutex);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	st->fail = fail;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t fail_show(struct device *dev,
 | |
| 			 struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
 | |
| 
 | |
| 	return sprintf(buf, "%d\n", st->fail);
 | |
| }
 | |
| 
 | |
| static DEVICE_ATTR_RW(fail);
 | |
| 
 | |
| static struct attribute *cpuhp_cpu_attrs[] = {
 | |
| 	&dev_attr_state.attr,
 | |
| 	&dev_attr_target.attr,
 | |
| 	&dev_attr_fail.attr,
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static const struct attribute_group cpuhp_cpu_attr_group = {
 | |
| 	.attrs = cpuhp_cpu_attrs,
 | |
| 	.name = "hotplug",
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static ssize_t states_show(struct device *dev,
 | |
| 				 struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	ssize_t cur, res = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	mutex_lock(&cpuhp_state_mutex);
 | |
| 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
 | |
| 		struct cpuhp_step *sp = cpuhp_get_step(i);
 | |
| 
 | |
| 		if (sp->name) {
 | |
| 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
 | |
| 			buf += cur;
 | |
| 			res += cur;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&cpuhp_state_mutex);
 | |
| 	return res;
 | |
| }
 | |
| static DEVICE_ATTR_RO(states);
 | |
| 
 | |
| static struct attribute *cpuhp_cpu_root_attrs[] = {
 | |
| 	&dev_attr_states.attr,
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static const struct attribute_group cpuhp_cpu_root_attr_group = {
 | |
| 	.attrs = cpuhp_cpu_root_attrs,
 | |
| 	.name = "hotplug",
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_SMT
 | |
| 
 | |
| static bool cpu_smt_num_threads_valid(unsigned int threads)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
 | |
| 		return threads >= 1 && threads <= cpu_smt_max_threads;
 | |
| 	return threads == 1 || threads == cpu_smt_max_threads;
 | |
| }
 | |
| 
 | |
| static ssize_t
 | |
| __store_smt_control(struct device *dev, struct device_attribute *attr,
 | |
| 		    const char *buf, size_t count)
 | |
| {
 | |
| 	int ctrlval, ret, num_threads, orig_threads;
 | |
| 	bool force_off;
 | |
| 
 | |
| 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (sysfs_streq(buf, "on")) {
 | |
| 		ctrlval = CPU_SMT_ENABLED;
 | |
| 		num_threads = cpu_smt_max_threads;
 | |
| 	} else if (sysfs_streq(buf, "off")) {
 | |
| 		ctrlval = CPU_SMT_DISABLED;
 | |
| 		num_threads = 1;
 | |
| 	} else if (sysfs_streq(buf, "forceoff")) {
 | |
| 		ctrlval = CPU_SMT_FORCE_DISABLED;
 | |
| 		num_threads = 1;
 | |
| 	} else if (kstrtoint(buf, 10, &num_threads) == 0) {
 | |
| 		if (num_threads == 1)
 | |
| 			ctrlval = CPU_SMT_DISABLED;
 | |
| 		else if (cpu_smt_num_threads_valid(num_threads))
 | |
| 			ctrlval = CPU_SMT_ENABLED;
 | |
| 		else
 | |
| 			return -EINVAL;
 | |
| 	} else {
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ret = lock_device_hotplug_sysfs();
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	orig_threads = cpu_smt_num_threads;
 | |
| 	cpu_smt_num_threads = num_threads;
 | |
| 
 | |
| 	force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
 | |
| 
 | |
| 	if (num_threads > orig_threads)
 | |
| 		ret = cpuhp_smt_enable();
 | |
| 	else if (num_threads < orig_threads || force_off)
 | |
| 		ret = cpuhp_smt_disable(ctrlval);
 | |
| 
 | |
| 	unlock_device_hotplug();
 | |
| 	return ret ? ret : count;
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_HOTPLUG_SMT */
 | |
| static ssize_t
 | |
| __store_smt_control(struct device *dev, struct device_attribute *attr,
 | |
| 		    const char *buf, size_t count)
 | |
| {
 | |
| 	return -ENODEV;
 | |
| }
 | |
| #endif /* CONFIG_HOTPLUG_SMT */
 | |
| 
 | |
| static const char *smt_states[] = {
 | |
| 	[CPU_SMT_ENABLED]		= "on",
 | |
| 	[CPU_SMT_DISABLED]		= "off",
 | |
| 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
 | |
| 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
 | |
| 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
 | |
| };
 | |
| 
 | |
| static ssize_t control_show(struct device *dev,
 | |
| 			    struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	const char *state = smt_states[cpu_smt_control];
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_SMT
 | |
| 	/*
 | |
| 	 * If SMT is enabled but not all threads are enabled then show the
 | |
| 	 * number of threads. If all threads are enabled show "on". Otherwise
 | |
| 	 * show the state name.
 | |
| 	 */
 | |
| 	if (cpu_smt_control == CPU_SMT_ENABLED &&
 | |
| 	    cpu_smt_num_threads != cpu_smt_max_threads)
 | |
| 		return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
 | |
| #endif
 | |
| 
 | |
| 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
 | |
| }
 | |
| 
 | |
| static ssize_t control_store(struct device *dev, struct device_attribute *attr,
 | |
| 			     const char *buf, size_t count)
 | |
| {
 | |
| 	return __store_smt_control(dev, attr, buf, count);
 | |
| }
 | |
| static DEVICE_ATTR_RW(control);
 | |
| 
 | |
| static ssize_t active_show(struct device *dev,
 | |
| 			   struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
 | |
| }
 | |
| static DEVICE_ATTR_RO(active);
 | |
| 
 | |
| static struct attribute *cpuhp_smt_attrs[] = {
 | |
| 	&dev_attr_control.attr,
 | |
| 	&dev_attr_active.attr,
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static const struct attribute_group cpuhp_smt_attr_group = {
 | |
| 	.attrs = cpuhp_smt_attrs,
 | |
| 	.name = "smt",
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static int __init cpu_smt_sysfs_init(void)
 | |
| {
 | |
| 	struct device *dev_root;
 | |
| 	int ret = -ENODEV;
 | |
| 
 | |
| 	dev_root = bus_get_dev_root(&cpu_subsys);
 | |
| 	if (dev_root) {
 | |
| 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
 | |
| 		put_device(dev_root);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __init cpuhp_sysfs_init(void)
 | |
| {
 | |
| 	struct device *dev_root;
 | |
| 	int cpu, ret;
 | |
| 
 | |
| 	ret = cpu_smt_sysfs_init();
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	dev_root = bus_get_dev_root(&cpu_subsys);
 | |
| 	if (dev_root) {
 | |
| 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
 | |
| 		put_device(dev_root);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct device *dev = get_cpu_device(cpu);
 | |
| 
 | |
| 		if (!dev)
 | |
| 			continue;
 | |
| 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| device_initcall(cpuhp_sysfs_init);
 | |
| #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| /*
 | |
|  * cpu_bit_bitmap[] is a special, "compressed" data structure that
 | |
|  * represents all NR_CPUS bits binary values of 1<<nr.
 | |
|  *
 | |
|  * It is used by cpumask_of() to get a constant address to a CPU
 | |
|  * mask value that has a single bit set only.
 | |
|  */
 | |
| 
 | |
| /* cpu_bit_bitmap[0] is empty - so we can back into it */
 | |
| #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
 | |
| #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
 | |
| #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
 | |
| #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
 | |
| 
 | |
| const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
 | |
| 
 | |
| 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
 | |
| 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
 | |
| #if BITS_PER_LONG > 32
 | |
| 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
 | |
| 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
 | |
| #endif
 | |
| };
 | |
| EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
 | |
| 
 | |
| const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
 | |
| EXPORT_SYMBOL(cpu_all_bits);
 | |
| 
 | |
| #ifdef CONFIG_INIT_ALL_POSSIBLE
 | |
| struct cpumask __cpu_possible_mask __read_mostly
 | |
| 	= {CPU_BITS_ALL};
 | |
| #else
 | |
| struct cpumask __cpu_possible_mask __read_mostly;
 | |
| #endif
 | |
| EXPORT_SYMBOL(__cpu_possible_mask);
 | |
| 
 | |
| struct cpumask __cpu_online_mask __read_mostly;
 | |
| EXPORT_SYMBOL(__cpu_online_mask);
 | |
| 
 | |
| struct cpumask __cpu_present_mask __read_mostly;
 | |
| EXPORT_SYMBOL(__cpu_present_mask);
 | |
| 
 | |
| struct cpumask __cpu_active_mask __read_mostly;
 | |
| EXPORT_SYMBOL(__cpu_active_mask);
 | |
| 
 | |
| struct cpumask __cpu_dying_mask __read_mostly;
 | |
| EXPORT_SYMBOL(__cpu_dying_mask);
 | |
| 
 | |
| atomic_t __num_online_cpus __read_mostly;
 | |
| EXPORT_SYMBOL(__num_online_cpus);
 | |
| 
 | |
| void init_cpu_present(const struct cpumask *src)
 | |
| {
 | |
| 	cpumask_copy(&__cpu_present_mask, src);
 | |
| }
 | |
| 
 | |
| void init_cpu_possible(const struct cpumask *src)
 | |
| {
 | |
| 	cpumask_copy(&__cpu_possible_mask, src);
 | |
| }
 | |
| 
 | |
| void init_cpu_online(const struct cpumask *src)
 | |
| {
 | |
| 	cpumask_copy(&__cpu_online_mask, src);
 | |
| }
 | |
| 
 | |
| void set_cpu_online(unsigned int cpu, bool online)
 | |
| {
 | |
| 	/*
 | |
| 	 * atomic_inc/dec() is required to handle the horrid abuse of this
 | |
| 	 * function by the reboot and kexec code which invoke it from
 | |
| 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
 | |
| 	 * regular CPU hotplug is properly serialized.
 | |
| 	 *
 | |
| 	 * Note, that the fact that __num_online_cpus is of type atomic_t
 | |
| 	 * does not protect readers which are not serialized against
 | |
| 	 * concurrent hotplug operations.
 | |
| 	 */
 | |
| 	if (online) {
 | |
| 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
 | |
| 			atomic_inc(&__num_online_cpus);
 | |
| 	} else {
 | |
| 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
 | |
| 			atomic_dec(&__num_online_cpus);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Activate the first processor.
 | |
|  */
 | |
| void __init boot_cpu_init(void)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
 | |
| 	set_cpu_online(cpu, true);
 | |
| 	set_cpu_active(cpu, true);
 | |
| 	set_cpu_present(cpu, true);
 | |
| 	set_cpu_possible(cpu, true);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	__boot_cpu_id = cpu;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Must be called _AFTER_ setting up the per_cpu areas
 | |
|  */
 | |
| void __init boot_cpu_hotplug_init(void)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
 | |
| 	atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
 | |
| #endif
 | |
| 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
 | |
| 	this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are used for a global "mitigations=" cmdline option for toggling
 | |
|  * optional CPU mitigations.
 | |
|  */
 | |
| enum cpu_mitigations {
 | |
| 	CPU_MITIGATIONS_OFF,
 | |
| 	CPU_MITIGATIONS_AUTO,
 | |
| 	CPU_MITIGATIONS_AUTO_NOSMT,
 | |
| };
 | |
| 
 | |
| static enum cpu_mitigations cpu_mitigations __ro_after_init =
 | |
| 	CPU_MITIGATIONS_AUTO;
 | |
| 
 | |
| static int __init mitigations_parse_cmdline(char *arg)
 | |
| {
 | |
| 	if (!strcmp(arg, "off"))
 | |
| 		cpu_mitigations = CPU_MITIGATIONS_OFF;
 | |
| 	else if (!strcmp(arg, "auto"))
 | |
| 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
 | |
| 	else if (!strcmp(arg, "auto,nosmt"))
 | |
| 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
 | |
| 	else
 | |
| 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
 | |
| 			arg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_param("mitigations", mitigations_parse_cmdline);
 | |
| 
 | |
| /* mitigations=off */
 | |
| bool cpu_mitigations_off(void)
 | |
| {
 | |
| 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cpu_mitigations_off);
 | |
| 
 | |
| /* mitigations=auto,nosmt */
 | |
| bool cpu_mitigations_auto_nosmt(void)
 | |
| {
 | |
| 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
 |