mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-01 00:58:39 +02:00 
			
		
		
		
	 448e9f34d9
			
		
	
	
		448e9f34d9
		
	
	
	
	
		
			
			rcu_report_dead() and rcutree_migrate_callbacks() have their headers in rcupdate.h while those are pure rcutree calls, like the other CPU-hotplug functions. Also rcu_cpu_starting() and rcu_report_dead() have different naming conventions while they mirror each other's effects. Fix the headers and propose a naming that relates both functions and aligns with the prefix of other rcutree CPU-hotplug functions. Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
		
			
				
	
	
		
			5103 lines
		
	
	
	
		
			167 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5103 lines
		
	
	
	
		
			167 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | ||
| /*
 | ||
|  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 | ||
|  *
 | ||
|  * Copyright IBM Corporation, 2008
 | ||
|  *
 | ||
|  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 | ||
|  *	    Manfred Spraul <manfred@colorfullife.com>
 | ||
|  *	    Paul E. McKenney <paulmck@linux.ibm.com>
 | ||
|  *
 | ||
|  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
 | ||
|  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 | ||
|  *
 | ||
|  * For detailed explanation of Read-Copy Update mechanism see -
 | ||
|  *	Documentation/RCU
 | ||
|  */
 | ||
| 
 | ||
| #define pr_fmt(fmt) "rcu: " fmt
 | ||
| 
 | ||
| #include <linux/types.h>
 | ||
| #include <linux/kernel.h>
 | ||
| #include <linux/init.h>
 | ||
| #include <linux/spinlock.h>
 | ||
| #include <linux/smp.h>
 | ||
| #include <linux/rcupdate_wait.h>
 | ||
| #include <linux/interrupt.h>
 | ||
| #include <linux/sched.h>
 | ||
| #include <linux/sched/debug.h>
 | ||
| #include <linux/nmi.h>
 | ||
| #include <linux/atomic.h>
 | ||
| #include <linux/bitops.h>
 | ||
| #include <linux/export.h>
 | ||
| #include <linux/completion.h>
 | ||
| #include <linux/kmemleak.h>
 | ||
| #include <linux/moduleparam.h>
 | ||
| #include <linux/panic.h>
 | ||
| #include <linux/panic_notifier.h>
 | ||
| #include <linux/percpu.h>
 | ||
| #include <linux/notifier.h>
 | ||
| #include <linux/cpu.h>
 | ||
| #include <linux/mutex.h>
 | ||
| #include <linux/time.h>
 | ||
| #include <linux/kernel_stat.h>
 | ||
| #include <linux/wait.h>
 | ||
| #include <linux/kthread.h>
 | ||
| #include <uapi/linux/sched/types.h>
 | ||
| #include <linux/prefetch.h>
 | ||
| #include <linux/delay.h>
 | ||
| #include <linux/random.h>
 | ||
| #include <linux/trace_events.h>
 | ||
| #include <linux/suspend.h>
 | ||
| #include <linux/ftrace.h>
 | ||
| #include <linux/tick.h>
 | ||
| #include <linux/sysrq.h>
 | ||
| #include <linux/kprobes.h>
 | ||
| #include <linux/gfp.h>
 | ||
| #include <linux/oom.h>
 | ||
| #include <linux/smpboot.h>
 | ||
| #include <linux/jiffies.h>
 | ||
| #include <linux/slab.h>
 | ||
| #include <linux/sched/isolation.h>
 | ||
| #include <linux/sched/clock.h>
 | ||
| #include <linux/vmalloc.h>
 | ||
| #include <linux/mm.h>
 | ||
| #include <linux/kasan.h>
 | ||
| #include <linux/context_tracking.h>
 | ||
| #include "../time/tick-internal.h"
 | ||
| 
 | ||
| #include "tree.h"
 | ||
| #include "rcu.h"
 | ||
| 
 | ||
| #ifdef MODULE_PARAM_PREFIX
 | ||
| #undef MODULE_PARAM_PREFIX
 | ||
| #endif
 | ||
| #define MODULE_PARAM_PREFIX "rcutree."
 | ||
| 
 | ||
| /* Data structures. */
 | ||
| 
 | ||
| static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
 | ||
| 	.gpwrap = true,
 | ||
| #ifdef CONFIG_RCU_NOCB_CPU
 | ||
| 	.cblist.flags = SEGCBLIST_RCU_CORE,
 | ||
| #endif
 | ||
| };
 | ||
| static struct rcu_state rcu_state = {
 | ||
| 	.level = { &rcu_state.node[0] },
 | ||
| 	.gp_state = RCU_GP_IDLE,
 | ||
| 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
 | ||
| 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
 | ||
| 	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
 | ||
| 	.name = RCU_NAME,
 | ||
| 	.abbr = RCU_ABBR,
 | ||
| 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
 | ||
| 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
 | ||
| 	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
 | ||
| };
 | ||
| 
 | ||
| /* Dump rcu_node combining tree at boot to verify correct setup. */
 | ||
| static bool dump_tree;
 | ||
| module_param(dump_tree, bool, 0444);
 | ||
| /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
 | ||
| static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
 | ||
| #ifndef CONFIG_PREEMPT_RT
 | ||
| module_param(use_softirq, bool, 0444);
 | ||
| #endif
 | ||
| /* Control rcu_node-tree auto-balancing at boot time. */
 | ||
| static bool rcu_fanout_exact;
 | ||
| module_param(rcu_fanout_exact, bool, 0444);
 | ||
| /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 | ||
| static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 | ||
| module_param(rcu_fanout_leaf, int, 0444);
 | ||
| int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 | ||
| /* Number of rcu_nodes at specified level. */
 | ||
| int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 | ||
| int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 | ||
| 
 | ||
| /*
 | ||
|  * The rcu_scheduler_active variable is initialized to the value
 | ||
|  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 | ||
|  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 | ||
|  * RCU can assume that there is but one task, allowing RCU to (for example)
 | ||
|  * optimize synchronize_rcu() to a simple barrier().  When this variable
 | ||
|  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 | ||
|  * to detect real grace periods.  This variable is also used to suppress
 | ||
|  * boot-time false positives from lockdep-RCU error checking.  Finally, it
 | ||
|  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 | ||
|  * is fully initialized, including all of its kthreads having been spawned.
 | ||
|  */
 | ||
| int rcu_scheduler_active __read_mostly;
 | ||
| EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 | ||
| 
 | ||
| /*
 | ||
|  * The rcu_scheduler_fully_active variable transitions from zero to one
 | ||
|  * during the early_initcall() processing, which is after the scheduler
 | ||
|  * is capable of creating new tasks.  So RCU processing (for example,
 | ||
|  * creating tasks for RCU priority boosting) must be delayed until after
 | ||
|  * rcu_scheduler_fully_active transitions from zero to one.  We also
 | ||
|  * currently delay invocation of any RCU callbacks until after this point.
 | ||
|  *
 | ||
|  * It might later prove better for people registering RCU callbacks during
 | ||
|  * early boot to take responsibility for these callbacks, but one step at
 | ||
|  * a time.
 | ||
|  */
 | ||
| static int rcu_scheduler_fully_active __read_mostly;
 | ||
| 
 | ||
| static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 | ||
| 			      unsigned long gps, unsigned long flags);
 | ||
| static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 | ||
| static void invoke_rcu_core(void);
 | ||
| static void rcu_report_exp_rdp(struct rcu_data *rdp);
 | ||
| static void sync_sched_exp_online_cleanup(int cpu);
 | ||
| static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
 | ||
| static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
 | ||
| static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
 | ||
| static bool rcu_init_invoked(void);
 | ||
| static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 | ||
| static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 | ||
| 
 | ||
| /*
 | ||
|  * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
 | ||
|  * real-time priority(enabling/disabling) is controlled by
 | ||
|  * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
 | ||
|  */
 | ||
| static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 | ||
| module_param(kthread_prio, int, 0444);
 | ||
| 
 | ||
| /* Delay in jiffies for grace-period initialization delays, debug only. */
 | ||
| 
 | ||
| static int gp_preinit_delay;
 | ||
| module_param(gp_preinit_delay, int, 0444);
 | ||
| static int gp_init_delay;
 | ||
| module_param(gp_init_delay, int, 0444);
 | ||
| static int gp_cleanup_delay;
 | ||
| module_param(gp_cleanup_delay, int, 0444);
 | ||
| 
 | ||
| // Add delay to rcu_read_unlock() for strict grace periods.
 | ||
| static int rcu_unlock_delay;
 | ||
| #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
 | ||
| module_param(rcu_unlock_delay, int, 0444);
 | ||
| #endif
 | ||
| 
 | ||
| /*
 | ||
|  * This rcu parameter is runtime-read-only. It reflects
 | ||
|  * a minimum allowed number of objects which can be cached
 | ||
|  * per-CPU. Object size is equal to one page. This value
 | ||
|  * can be changed at boot time.
 | ||
|  */
 | ||
| static int rcu_min_cached_objs = 5;
 | ||
| module_param(rcu_min_cached_objs, int, 0444);
 | ||
| 
 | ||
| // A page shrinker can ask for pages to be freed to make them
 | ||
| // available for other parts of the system. This usually happens
 | ||
| // under low memory conditions, and in that case we should also
 | ||
| // defer page-cache filling for a short time period.
 | ||
| //
 | ||
| // The default value is 5 seconds, which is long enough to reduce
 | ||
| // interference with the shrinker while it asks other systems to
 | ||
| // drain their caches.
 | ||
| static int rcu_delay_page_cache_fill_msec = 5000;
 | ||
| module_param(rcu_delay_page_cache_fill_msec, int, 0444);
 | ||
| 
 | ||
| /* Retrieve RCU kthreads priority for rcutorture */
 | ||
| int rcu_get_gp_kthreads_prio(void)
 | ||
| {
 | ||
| 	return kthread_prio;
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
 | ||
| 
 | ||
| /*
 | ||
|  * Number of grace periods between delays, normalized by the duration of
 | ||
|  * the delay.  The longer the delay, the more the grace periods between
 | ||
|  * each delay.  The reason for this normalization is that it means that,
 | ||
|  * for non-zero delays, the overall slowdown of grace periods is constant
 | ||
|  * regardless of the duration of the delay.  This arrangement balances
 | ||
|  * the need for long delays to increase some race probabilities with the
 | ||
|  * need for fast grace periods to increase other race probabilities.
 | ||
|  */
 | ||
| #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
 | ||
| 
 | ||
| /*
 | ||
|  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 | ||
|  * permit this function to be invoked without holding the root rcu_node
 | ||
|  * structure's ->lock, but of course results can be subject to change.
 | ||
|  */
 | ||
| static int rcu_gp_in_progress(void)
 | ||
| {
 | ||
| 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Return the number of callbacks queued on the specified CPU.
 | ||
|  * Handles both the nocbs and normal cases.
 | ||
|  */
 | ||
| static long rcu_get_n_cbs_cpu(int cpu)
 | ||
| {
 | ||
| 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | ||
| 
 | ||
| 	if (rcu_segcblist_is_enabled(&rdp->cblist))
 | ||
| 		return rcu_segcblist_n_cbs(&rdp->cblist);
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| void rcu_softirq_qs(void)
 | ||
| {
 | ||
| 	rcu_qs();
 | ||
| 	rcu_preempt_deferred_qs(current);
 | ||
| 	rcu_tasks_qs(current, false);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Reset the current CPU's ->dynticks counter to indicate that the
 | ||
|  * newly onlined CPU is no longer in an extended quiescent state.
 | ||
|  * This will either leave the counter unchanged, or increment it
 | ||
|  * to the next non-quiescent value.
 | ||
|  *
 | ||
|  * The non-atomic test/increment sequence works because the upper bits
 | ||
|  * of the ->dynticks counter are manipulated only by the corresponding CPU,
 | ||
|  * or when the corresponding CPU is offline.
 | ||
|  */
 | ||
| static void rcu_dynticks_eqs_online(void)
 | ||
| {
 | ||
| 	if (ct_dynticks() & RCU_DYNTICKS_IDX)
 | ||
| 		return;
 | ||
| 	ct_state_inc(RCU_DYNTICKS_IDX);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Snapshot the ->dynticks counter with full ordering so as to allow
 | ||
|  * stable comparison of this counter with past and future snapshots.
 | ||
|  */
 | ||
| static int rcu_dynticks_snap(int cpu)
 | ||
| {
 | ||
| 	smp_mb();  // Fundamental RCU ordering guarantee.
 | ||
| 	return ct_dynticks_cpu_acquire(cpu);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Return true if the snapshot returned from rcu_dynticks_snap()
 | ||
|  * indicates that RCU is in an extended quiescent state.
 | ||
|  */
 | ||
| static bool rcu_dynticks_in_eqs(int snap)
 | ||
| {
 | ||
| 	return !(snap & RCU_DYNTICKS_IDX);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Return true if the CPU corresponding to the specified rcu_data
 | ||
|  * structure has spent some time in an extended quiescent state since
 | ||
|  * rcu_dynticks_snap() returned the specified snapshot.
 | ||
|  */
 | ||
| static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
 | ||
| {
 | ||
| 	return snap != rcu_dynticks_snap(rdp->cpu);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Return true if the referenced integer is zero while the specified
 | ||
|  * CPU remains within a single extended quiescent state.
 | ||
|  */
 | ||
| bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
 | ||
| {
 | ||
| 	int snap;
 | ||
| 
 | ||
| 	// If not quiescent, force back to earlier extended quiescent state.
 | ||
| 	snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
 | ||
| 	smp_rmb(); // Order ->dynticks and *vp reads.
 | ||
| 	if (READ_ONCE(*vp))
 | ||
| 		return false;  // Non-zero, so report failure;
 | ||
| 	smp_rmb(); // Order *vp read and ->dynticks re-read.
 | ||
| 
 | ||
| 	// If still in the same extended quiescent state, we are good!
 | ||
| 	return snap == ct_dynticks_cpu(cpu);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Let the RCU core know that this CPU has gone through the scheduler,
 | ||
|  * which is a quiescent state.  This is called when the need for a
 | ||
|  * quiescent state is urgent, so we burn an atomic operation and full
 | ||
|  * memory barriers to let the RCU core know about it, regardless of what
 | ||
|  * this CPU might (or might not) do in the near future.
 | ||
|  *
 | ||
|  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 | ||
|  *
 | ||
|  * The caller must have disabled interrupts and must not be idle.
 | ||
|  */
 | ||
| notrace void rcu_momentary_dyntick_idle(void)
 | ||
| {
 | ||
| 	int seq;
 | ||
| 
 | ||
| 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
 | ||
| 	seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
 | ||
| 	/* It is illegal to call this from idle state. */
 | ||
| 	WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
 | ||
| 	rcu_preempt_deferred_qs(current);
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
 | ||
| 
 | ||
| /**
 | ||
|  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
 | ||
|  *
 | ||
|  * If the current CPU is idle and running at a first-level (not nested)
 | ||
|  * interrupt, or directly, from idle, return true.
 | ||
|  *
 | ||
|  * The caller must have at least disabled IRQs.
 | ||
|  */
 | ||
| static int rcu_is_cpu_rrupt_from_idle(void)
 | ||
| {
 | ||
| 	long nesting;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Usually called from the tick; but also used from smp_function_call()
 | ||
| 	 * for expedited grace periods. This latter can result in running from
 | ||
| 	 * the idle task, instead of an actual IPI.
 | ||
| 	 */
 | ||
| 	lockdep_assert_irqs_disabled();
 | ||
| 
 | ||
| 	/* Check for counter underflows */
 | ||
| 	RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
 | ||
| 			 "RCU dynticks_nesting counter underflow!");
 | ||
| 	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
 | ||
| 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
 | ||
| 
 | ||
| 	/* Are we at first interrupt nesting level? */
 | ||
| 	nesting = ct_dynticks_nmi_nesting();
 | ||
| 	if (nesting > 1)
 | ||
| 		return false;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If we're not in an interrupt, we must be in the idle task!
 | ||
| 	 */
 | ||
| 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
 | ||
| 
 | ||
| 	/* Does CPU appear to be idle from an RCU standpoint? */
 | ||
| 	return ct_dynticks_nesting() == 0;
 | ||
| }
 | ||
| 
 | ||
| #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
 | ||
| 				// Maximum callbacks per rcu_do_batch ...
 | ||
| #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
 | ||
| static long blimit = DEFAULT_RCU_BLIMIT;
 | ||
| #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
 | ||
| static long qhimark = DEFAULT_RCU_QHIMARK;
 | ||
| #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
 | ||
| static long qlowmark = DEFAULT_RCU_QLOMARK;
 | ||
| #define DEFAULT_RCU_QOVLD_MULT 2
 | ||
| #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
 | ||
| static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
 | ||
| static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
 | ||
| 
 | ||
| module_param(blimit, long, 0444);
 | ||
| module_param(qhimark, long, 0444);
 | ||
| module_param(qlowmark, long, 0444);
 | ||
| module_param(qovld, long, 0444);
 | ||
| 
 | ||
| static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
 | ||
| static ulong jiffies_till_next_fqs = ULONG_MAX;
 | ||
| static bool rcu_kick_kthreads;
 | ||
| static int rcu_divisor = 7;
 | ||
| module_param(rcu_divisor, int, 0644);
 | ||
| 
 | ||
| /* Force an exit from rcu_do_batch() after 3 milliseconds. */
 | ||
| static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
 | ||
| module_param(rcu_resched_ns, long, 0644);
 | ||
| 
 | ||
| /*
 | ||
|  * How long the grace period must be before we start recruiting
 | ||
|  * quiescent-state help from rcu_note_context_switch().
 | ||
|  */
 | ||
| static ulong jiffies_till_sched_qs = ULONG_MAX;
 | ||
| module_param(jiffies_till_sched_qs, ulong, 0444);
 | ||
| static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
 | ||
| module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
 | ||
| 
 | ||
| /*
 | ||
|  * Make sure that we give the grace-period kthread time to detect any
 | ||
|  * idle CPUs before taking active measures to force quiescent states.
 | ||
|  * However, don't go below 100 milliseconds, adjusted upwards for really
 | ||
|  * large systems.
 | ||
|  */
 | ||
| static void adjust_jiffies_till_sched_qs(void)
 | ||
| {
 | ||
| 	unsigned long j;
 | ||
| 
 | ||
| 	/* If jiffies_till_sched_qs was specified, respect the request. */
 | ||
| 	if (jiffies_till_sched_qs != ULONG_MAX) {
 | ||
| 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 	/* Otherwise, set to third fqs scan, but bound below on large system. */
 | ||
| 	j = READ_ONCE(jiffies_till_first_fqs) +
 | ||
| 		      2 * READ_ONCE(jiffies_till_next_fqs);
 | ||
| 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
 | ||
| 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 | ||
| 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
 | ||
| 	WRITE_ONCE(jiffies_to_sched_qs, j);
 | ||
| }
 | ||
| 
 | ||
| static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
 | ||
| {
 | ||
| 	ulong j;
 | ||
| 	int ret = kstrtoul(val, 0, &j);
 | ||
| 
 | ||
| 	if (!ret) {
 | ||
| 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
 | ||
| 		adjust_jiffies_till_sched_qs();
 | ||
| 	}
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
 | ||
| {
 | ||
| 	ulong j;
 | ||
| 	int ret = kstrtoul(val, 0, &j);
 | ||
| 
 | ||
| 	if (!ret) {
 | ||
| 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
 | ||
| 		adjust_jiffies_till_sched_qs();
 | ||
| 	}
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| static const struct kernel_param_ops first_fqs_jiffies_ops = {
 | ||
| 	.set = param_set_first_fqs_jiffies,
 | ||
| 	.get = param_get_ulong,
 | ||
| };
 | ||
| 
 | ||
| static const struct kernel_param_ops next_fqs_jiffies_ops = {
 | ||
| 	.set = param_set_next_fqs_jiffies,
 | ||
| 	.get = param_get_ulong,
 | ||
| };
 | ||
| 
 | ||
| module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
 | ||
| module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
 | ||
| module_param(rcu_kick_kthreads, bool, 0644);
 | ||
| 
 | ||
| static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
 | ||
| static int rcu_pending(int user);
 | ||
| 
 | ||
| /*
 | ||
|  * Return the number of RCU GPs completed thus far for debug & stats.
 | ||
|  */
 | ||
| unsigned long rcu_get_gp_seq(void)
 | ||
| {
 | ||
| 	return READ_ONCE(rcu_state.gp_seq);
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
 | ||
| 
 | ||
| /*
 | ||
|  * Return the number of RCU expedited batches completed thus far for
 | ||
|  * debug & stats.  Odd numbers mean that a batch is in progress, even
 | ||
|  * numbers mean idle.  The value returned will thus be roughly double
 | ||
|  * the cumulative batches since boot.
 | ||
|  */
 | ||
| unsigned long rcu_exp_batches_completed(void)
 | ||
| {
 | ||
| 	return rcu_state.expedited_sequence;
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 | ||
| 
 | ||
| /*
 | ||
|  * Return the root node of the rcu_state structure.
 | ||
|  */
 | ||
| static struct rcu_node *rcu_get_root(void)
 | ||
| {
 | ||
| 	return &rcu_state.node[0];
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Send along grace-period-related data for rcutorture diagnostics.
 | ||
|  */
 | ||
| void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 | ||
| 			    unsigned long *gp_seq)
 | ||
| {
 | ||
| 	switch (test_type) {
 | ||
| 	case RCU_FLAVOR:
 | ||
| 		*flags = READ_ONCE(rcu_state.gp_flags);
 | ||
| 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
 | ||
| 		break;
 | ||
| 	default:
 | ||
| 		break;
 | ||
| 	}
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 | ||
| 
 | ||
| #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
 | ||
| /*
 | ||
|  * An empty function that will trigger a reschedule on
 | ||
|  * IRQ tail once IRQs get re-enabled on userspace/guest resume.
 | ||
|  */
 | ||
| static void late_wakeup_func(struct irq_work *work)
 | ||
| {
 | ||
| }
 | ||
| 
 | ||
| static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
 | ||
| 	IRQ_WORK_INIT(late_wakeup_func);
 | ||
| 
 | ||
| /*
 | ||
|  * If either:
 | ||
|  *
 | ||
|  * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
 | ||
|  * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
 | ||
|  *
 | ||
|  * In these cases the late RCU wake ups aren't supported in the resched loops and our
 | ||
|  * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
 | ||
|  * get re-enabled again.
 | ||
|  */
 | ||
| noinstr void rcu_irq_work_resched(void)
 | ||
| {
 | ||
| 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | ||
| 
 | ||
| 	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
 | ||
| 		return;
 | ||
| 
 | ||
| 	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
 | ||
| 		return;
 | ||
| 
 | ||
| 	instrumentation_begin();
 | ||
| 	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
 | ||
| 		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
 | ||
| 	}
 | ||
| 	instrumentation_end();
 | ||
| }
 | ||
| #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
 | ||
| 
 | ||
| #ifdef CONFIG_PROVE_RCU
 | ||
| /**
 | ||
|  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
 | ||
|  */
 | ||
| void rcu_irq_exit_check_preempt(void)
 | ||
| {
 | ||
| 	lockdep_assert_irqs_disabled();
 | ||
| 
 | ||
| 	RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
 | ||
| 			 "RCU dynticks_nesting counter underflow/zero!");
 | ||
| 	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
 | ||
| 			 DYNTICK_IRQ_NONIDLE,
 | ||
| 			 "Bad RCU  dynticks_nmi_nesting counter\n");
 | ||
| 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
 | ||
| 			 "RCU in extended quiescent state!");
 | ||
| }
 | ||
| #endif /* #ifdef CONFIG_PROVE_RCU */
 | ||
| 
 | ||
| #ifdef CONFIG_NO_HZ_FULL
 | ||
| /**
 | ||
|  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
 | ||
|  *
 | ||
|  * The scheduler tick is not normally enabled when CPUs enter the kernel
 | ||
|  * from nohz_full userspace execution.  After all, nohz_full userspace
 | ||
|  * execution is an RCU quiescent state and the time executing in the kernel
 | ||
|  * is quite short.  Except of course when it isn't.  And it is not hard to
 | ||
|  * cause a large system to spend tens of seconds or even minutes looping
 | ||
|  * in the kernel, which can cause a number of problems, include RCU CPU
 | ||
|  * stall warnings.
 | ||
|  *
 | ||
|  * Therefore, if a nohz_full CPU fails to report a quiescent state
 | ||
|  * in a timely manner, the RCU grace-period kthread sets that CPU's
 | ||
|  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
 | ||
|  * exception will invoke this function, which will turn on the scheduler
 | ||
|  * tick, which will enable RCU to detect that CPU's quiescent states,
 | ||
|  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
 | ||
|  * The tick will be disabled once a quiescent state is reported for
 | ||
|  * this CPU.
 | ||
|  *
 | ||
|  * Of course, in carefully tuned systems, there might never be an
 | ||
|  * interrupt or exception.  In that case, the RCU grace-period kthread
 | ||
|  * will eventually cause one to happen.  However, in less carefully
 | ||
|  * controlled environments, this function allows RCU to get what it
 | ||
|  * needs without creating otherwise useless interruptions.
 | ||
|  */
 | ||
| void __rcu_irq_enter_check_tick(void)
 | ||
| {
 | ||
| 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | ||
| 
 | ||
| 	// If we're here from NMI there's nothing to do.
 | ||
| 	if (in_nmi())
 | ||
| 		return;
 | ||
| 
 | ||
| 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
 | ||
| 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
 | ||
| 
 | ||
| 	if (!tick_nohz_full_cpu(rdp->cpu) ||
 | ||
| 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
 | ||
| 	    READ_ONCE(rdp->rcu_forced_tick)) {
 | ||
| 		// RCU doesn't need nohz_full help from this CPU, or it is
 | ||
| 		// already getting that help.
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	// We get here only when not in an extended quiescent state and
 | ||
| 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
 | ||
| 	// already watching and (2) The fact that we are in an interrupt
 | ||
| 	// handler and that the rcu_node lock is an irq-disabled lock
 | ||
| 	// prevents self-deadlock.  So we can safely recheck under the lock.
 | ||
| 	// Note that the nohz_full state currently cannot change.
 | ||
| 	raw_spin_lock_rcu_node(rdp->mynode);
 | ||
| 	if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
 | ||
| 		// A nohz_full CPU is in the kernel and RCU needs a
 | ||
| 		// quiescent state.  Turn on the tick!
 | ||
| 		WRITE_ONCE(rdp->rcu_forced_tick, true);
 | ||
| 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
 | ||
| 	}
 | ||
| 	raw_spin_unlock_rcu_node(rdp->mynode);
 | ||
| }
 | ||
| NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
 | ||
| #endif /* CONFIG_NO_HZ_FULL */
 | ||
| 
 | ||
| /*
 | ||
|  * Check to see if any future non-offloaded RCU-related work will need
 | ||
|  * to be done by the current CPU, even if none need be done immediately,
 | ||
|  * returning 1 if so.  This function is part of the RCU implementation;
 | ||
|  * it is -not- an exported member of the RCU API.  This is used by
 | ||
|  * the idle-entry code to figure out whether it is safe to disable the
 | ||
|  * scheduler-clock interrupt.
 | ||
|  *
 | ||
|  * Just check whether or not this CPU has non-offloaded RCU callbacks
 | ||
|  * queued.
 | ||
|  */
 | ||
| int rcu_needs_cpu(void)
 | ||
| {
 | ||
| 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
 | ||
| 		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * If any sort of urgency was applied to the current CPU (for example,
 | ||
|  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
 | ||
|  * to get to a quiescent state, disable it.
 | ||
|  */
 | ||
| static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
 | ||
| {
 | ||
| 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
 | ||
| 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
 | ||
| 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
 | ||
| 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
 | ||
| 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
 | ||
| 		WRITE_ONCE(rdp->rcu_forced_tick, false);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
 | ||
|  *
 | ||
|  * Return @true if RCU is watching the running CPU and @false otherwise.
 | ||
|  * An @true return means that this CPU can safely enter RCU read-side
 | ||
|  * critical sections.
 | ||
|  *
 | ||
|  * Although calls to rcu_is_watching() from most parts of the kernel
 | ||
|  * will return @true, there are important exceptions.  For example, if the
 | ||
|  * current CPU is deep within its idle loop, in kernel entry/exit code,
 | ||
|  * or offline, rcu_is_watching() will return @false.
 | ||
|  *
 | ||
|  * Make notrace because it can be called by the internal functions of
 | ||
|  * ftrace, and making this notrace removes unnecessary recursion calls.
 | ||
|  */
 | ||
| notrace bool rcu_is_watching(void)
 | ||
| {
 | ||
| 	bool ret;
 | ||
| 
 | ||
| 	preempt_disable_notrace();
 | ||
| 	ret = !rcu_dynticks_curr_cpu_in_eqs();
 | ||
| 	preempt_enable_notrace();
 | ||
| 	return ret;
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(rcu_is_watching);
 | ||
| 
 | ||
| /*
 | ||
|  * If a holdout task is actually running, request an urgent quiescent
 | ||
|  * state from its CPU.  This is unsynchronized, so migrations can cause
 | ||
|  * the request to go to the wrong CPU.  Which is OK, all that will happen
 | ||
|  * is that the CPU's next context switch will be a bit slower and next
 | ||
|  * time around this task will generate another request.
 | ||
|  */
 | ||
| void rcu_request_urgent_qs_task(struct task_struct *t)
 | ||
| {
 | ||
| 	int cpu;
 | ||
| 
 | ||
| 	barrier();
 | ||
| 	cpu = task_cpu(t);
 | ||
| 	if (!task_curr(t))
 | ||
| 		return; /* This task is not running on that CPU. */
 | ||
| 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * When trying to report a quiescent state on behalf of some other CPU,
 | ||
|  * it is our responsibility to check for and handle potential overflow
 | ||
|  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
 | ||
|  * After all, the CPU might be in deep idle state, and thus executing no
 | ||
|  * code whatsoever.
 | ||
|  */
 | ||
| static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
 | ||
| {
 | ||
| 	raw_lockdep_assert_held_rcu_node(rnp);
 | ||
| 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
 | ||
| 			 rnp->gp_seq))
 | ||
| 		WRITE_ONCE(rdp->gpwrap, true);
 | ||
| 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
 | ||
| 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Snapshot the specified CPU's dynticks counter so that we can later
 | ||
|  * credit them with an implicit quiescent state.  Return 1 if this CPU
 | ||
|  * is in dynticks idle mode, which is an extended quiescent state.
 | ||
|  */
 | ||
| static int dyntick_save_progress_counter(struct rcu_data *rdp)
 | ||
| {
 | ||
| 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
 | ||
| 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
 | ||
| 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 | ||
| 		rcu_gpnum_ovf(rdp->mynode, rdp);
 | ||
| 		return 1;
 | ||
| 	}
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Return true if the specified CPU has passed through a quiescent
 | ||
|  * state by virtue of being in or having passed through an dynticks
 | ||
|  * idle state since the last call to dyntick_save_progress_counter()
 | ||
|  * for this same CPU, or by virtue of having been offline.
 | ||
|  */
 | ||
| static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
 | ||
| {
 | ||
| 	unsigned long jtsq;
 | ||
| 	struct rcu_node *rnp = rdp->mynode;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If the CPU passed through or entered a dynticks idle phase with
 | ||
| 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
 | ||
| 	 * already acknowledged the request to pass through a quiescent
 | ||
| 	 * state.  Either way, that CPU cannot possibly be in an RCU
 | ||
| 	 * read-side critical section that started before the beginning
 | ||
| 	 * of the current RCU grace period.
 | ||
| 	 */
 | ||
| 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
 | ||
| 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 | ||
| 		rcu_gpnum_ovf(rnp, rdp);
 | ||
| 		return 1;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Complain if a CPU that is considered to be offline from RCU's
 | ||
| 	 * perspective has not yet reported a quiescent state.  After all,
 | ||
| 	 * the offline CPU should have reported a quiescent state during
 | ||
| 	 * the CPU-offline process, or, failing that, by rcu_gp_init()
 | ||
| 	 * if it ran concurrently with either the CPU going offline or the
 | ||
| 	 * last task on a leaf rcu_node structure exiting its RCU read-side
 | ||
| 	 * critical section while all CPUs corresponding to that structure
 | ||
| 	 * are offline.  This added warning detects bugs in any of these
 | ||
| 	 * code paths.
 | ||
| 	 *
 | ||
| 	 * The rcu_node structure's ->lock is held here, which excludes
 | ||
| 	 * the relevant portions the CPU-hotplug code, the grace-period
 | ||
| 	 * initialization code, and the rcu_read_unlock() code paths.
 | ||
| 	 *
 | ||
| 	 * For more detail, please refer to the "Hotplug CPU" section
 | ||
| 	 * of RCU's Requirements documentation.
 | ||
| 	 */
 | ||
| 	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
 | ||
| 		struct rcu_node *rnp1;
 | ||
| 
 | ||
| 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 | ||
| 			__func__, rnp->grplo, rnp->grphi, rnp->level,
 | ||
| 			(long)rnp->gp_seq, (long)rnp->completedqs);
 | ||
| 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 | ||
| 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
 | ||
| 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
 | ||
| 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
 | ||
| 			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
 | ||
| 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
 | ||
| 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
 | ||
| 		return 1; /* Break things loose after complaining. */
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * A CPU running for an extended time within the kernel can
 | ||
| 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
 | ||
| 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
 | ||
| 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
 | ||
| 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
 | ||
| 	 * variable are safe because the assignments are repeated if this
 | ||
| 	 * CPU failed to pass through a quiescent state.  This code
 | ||
| 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
 | ||
| 	 * is set way high.
 | ||
| 	 */
 | ||
| 	jtsq = READ_ONCE(jiffies_to_sched_qs);
 | ||
| 	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
 | ||
| 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
 | ||
| 	     time_after(jiffies, rcu_state.jiffies_resched) ||
 | ||
| 	     rcu_state.cbovld)) {
 | ||
| 		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
 | ||
| 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
 | ||
| 		smp_store_release(&rdp->rcu_urgent_qs, true);
 | ||
| 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
 | ||
| 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
 | ||
| 	 * The above code handles this, but only for straight cond_resched().
 | ||
| 	 * And some in-kernel loops check need_resched() before calling
 | ||
| 	 * cond_resched(), which defeats the above code for CPUs that are
 | ||
| 	 * running in-kernel with scheduling-clock interrupts disabled.
 | ||
| 	 * So hit them over the head with the resched_cpu() hammer!
 | ||
| 	 */
 | ||
| 	if (tick_nohz_full_cpu(rdp->cpu) &&
 | ||
| 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
 | ||
| 	     rcu_state.cbovld)) {
 | ||
| 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
 | ||
| 		resched_cpu(rdp->cpu);
 | ||
| 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If more than halfway to RCU CPU stall-warning time, invoke
 | ||
| 	 * resched_cpu() more frequently to try to loosen things up a bit.
 | ||
| 	 * Also check to see if the CPU is getting hammered with interrupts,
 | ||
| 	 * but only once per grace period, just to keep the IPIs down to
 | ||
| 	 * a dull roar.
 | ||
| 	 */
 | ||
| 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
 | ||
| 		if (time_after(jiffies,
 | ||
| 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
 | ||
| 			resched_cpu(rdp->cpu);
 | ||
| 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 | ||
| 		}
 | ||
| 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
 | ||
| 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
 | ||
| 		    (rnp->ffmask & rdp->grpmask)) {
 | ||
| 			rdp->rcu_iw_pending = true;
 | ||
| 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
 | ||
| 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
 | ||
| 		}
 | ||
| 
 | ||
| 		if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
 | ||
| 			int cpu = rdp->cpu;
 | ||
| 			struct rcu_snap_record *rsrp;
 | ||
| 			struct kernel_cpustat *kcsp;
 | ||
| 
 | ||
| 			kcsp = &kcpustat_cpu(cpu);
 | ||
| 
 | ||
| 			rsrp = &rdp->snap_record;
 | ||
| 			rsrp->cputime_irq     = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
 | ||
| 			rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
 | ||
| 			rsrp->cputime_system  = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
 | ||
| 			rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu);
 | ||
| 			rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu);
 | ||
| 			rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu);
 | ||
| 			rsrp->jiffies = jiffies;
 | ||
| 			rsrp->gp_seq = rdp->gp_seq;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
 | ||
| static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
 | ||
| 			      unsigned long gp_seq_req, const char *s)
 | ||
| {
 | ||
| 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
 | ||
| 				      gp_seq_req, rnp->level,
 | ||
| 				      rnp->grplo, rnp->grphi, s);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * rcu_start_this_gp - Request the start of a particular grace period
 | ||
|  * @rnp_start: The leaf node of the CPU from which to start.
 | ||
|  * @rdp: The rcu_data corresponding to the CPU from which to start.
 | ||
|  * @gp_seq_req: The gp_seq of the grace period to start.
 | ||
|  *
 | ||
|  * Start the specified grace period, as needed to handle newly arrived
 | ||
|  * callbacks.  The required future grace periods are recorded in each
 | ||
|  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
 | ||
|  * is reason to awaken the grace-period kthread.
 | ||
|  *
 | ||
|  * The caller must hold the specified rcu_node structure's ->lock, which
 | ||
|  * is why the caller is responsible for waking the grace-period kthread.
 | ||
|  *
 | ||
|  * Returns true if the GP thread needs to be awakened else false.
 | ||
|  */
 | ||
| static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
 | ||
| 			      unsigned long gp_seq_req)
 | ||
| {
 | ||
| 	bool ret = false;
 | ||
| 	struct rcu_node *rnp;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Use funnel locking to either acquire the root rcu_node
 | ||
| 	 * structure's lock or bail out if the need for this grace period
 | ||
| 	 * has already been recorded -- or if that grace period has in
 | ||
| 	 * fact already started.  If there is already a grace period in
 | ||
| 	 * progress in a non-leaf node, no recording is needed because the
 | ||
| 	 * end of the grace period will scan the leaf rcu_node structures.
 | ||
| 	 * Note that rnp_start->lock must not be released.
 | ||
| 	 */
 | ||
| 	raw_lockdep_assert_held_rcu_node(rnp_start);
 | ||
| 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
 | ||
| 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
 | ||
| 		if (rnp != rnp_start)
 | ||
| 			raw_spin_lock_rcu_node(rnp);
 | ||
| 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
 | ||
| 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
 | ||
| 		    (rnp != rnp_start &&
 | ||
| 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
 | ||
| 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
 | ||
| 					  TPS("Prestarted"));
 | ||
| 			goto unlock_out;
 | ||
| 		}
 | ||
| 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
 | ||
| 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
 | ||
| 			/*
 | ||
| 			 * We just marked the leaf or internal node, and a
 | ||
| 			 * grace period is in progress, which means that
 | ||
| 			 * rcu_gp_cleanup() will see the marking.  Bail to
 | ||
| 			 * reduce contention.
 | ||
| 			 */
 | ||
| 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
 | ||
| 					  TPS("Startedleaf"));
 | ||
| 			goto unlock_out;
 | ||
| 		}
 | ||
| 		if (rnp != rnp_start && rnp->parent != NULL)
 | ||
| 			raw_spin_unlock_rcu_node(rnp);
 | ||
| 		if (!rnp->parent)
 | ||
| 			break;  /* At root, and perhaps also leaf. */
 | ||
| 	}
 | ||
| 
 | ||
| 	/* If GP already in progress, just leave, otherwise start one. */
 | ||
| 	if (rcu_gp_in_progress()) {
 | ||
| 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
 | ||
| 		goto unlock_out;
 | ||
| 	}
 | ||
| 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
 | ||
| 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
 | ||
| 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
 | ||
| 	if (!READ_ONCE(rcu_state.gp_kthread)) {
 | ||
| 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
 | ||
| 		goto unlock_out;
 | ||
| 	}
 | ||
| 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
 | ||
| 	ret = true;  /* Caller must wake GP kthread. */
 | ||
| unlock_out:
 | ||
| 	/* Push furthest requested GP to leaf node and rcu_data structure. */
 | ||
| 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
 | ||
| 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
 | ||
| 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
 | ||
| 	}
 | ||
| 	if (rnp != rnp_start)
 | ||
| 		raw_spin_unlock_rcu_node(rnp);
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Clean up any old requests for the just-ended grace period.  Also return
 | ||
|  * whether any additional grace periods have been requested.
 | ||
|  */
 | ||
| static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
 | ||
| {
 | ||
| 	bool needmore;
 | ||
| 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | ||
| 
 | ||
| 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
 | ||
| 	if (!needmore)
 | ||
| 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
 | ||
| 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
 | ||
| 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
 | ||
| 	return needmore;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
 | ||
|  * interrupt or softirq handler, in which case we just might immediately
 | ||
|  * sleep upon return, resulting in a grace-period hang), and don't bother
 | ||
|  * awakening when there is nothing for the grace-period kthread to do
 | ||
|  * (as in several CPUs raced to awaken, we lost), and finally don't try
 | ||
|  * to awaken a kthread that has not yet been created.  If all those checks
 | ||
|  * are passed, track some debug information and awaken.
 | ||
|  *
 | ||
|  * So why do the self-wakeup when in an interrupt or softirq handler
 | ||
|  * in the grace-period kthread's context?  Because the kthread might have
 | ||
|  * been interrupted just as it was going to sleep, and just after the final
 | ||
|  * pre-sleep check of the awaken condition.  In this case, a wakeup really
 | ||
|  * is required, and is therefore supplied.
 | ||
|  */
 | ||
| static void rcu_gp_kthread_wake(void)
 | ||
| {
 | ||
| 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
 | ||
| 
 | ||
| 	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
 | ||
| 	    !READ_ONCE(rcu_state.gp_flags) || !t)
 | ||
| 		return;
 | ||
| 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
 | ||
| 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
 | ||
| 	swake_up_one(&rcu_state.gp_wq);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * If there is room, assign a ->gp_seq number to any callbacks on this
 | ||
|  * CPU that have not already been assigned.  Also accelerate any callbacks
 | ||
|  * that were previously assigned a ->gp_seq number that has since proven
 | ||
|  * to be too conservative, which can happen if callbacks get assigned a
 | ||
|  * ->gp_seq number while RCU is idle, but with reference to a non-root
 | ||
|  * rcu_node structure.  This function is idempotent, so it does not hurt
 | ||
|  * to call it repeatedly.  Returns an flag saying that we should awaken
 | ||
|  * the RCU grace-period kthread.
 | ||
|  *
 | ||
|  * The caller must hold rnp->lock with interrupts disabled.
 | ||
|  */
 | ||
| static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
 | ||
| {
 | ||
| 	unsigned long gp_seq_req;
 | ||
| 	bool ret = false;
 | ||
| 
 | ||
| 	rcu_lockdep_assert_cblist_protected(rdp);
 | ||
| 	raw_lockdep_assert_held_rcu_node(rnp);
 | ||
| 
 | ||
| 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
 | ||
| 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
 | ||
| 		return false;
 | ||
| 
 | ||
| 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Callbacks are often registered with incomplete grace-period
 | ||
| 	 * information.  Something about the fact that getting exact
 | ||
| 	 * information requires acquiring a global lock...  RCU therefore
 | ||
| 	 * makes a conservative estimate of the grace period number at which
 | ||
| 	 * a given callback will become ready to invoke.	The following
 | ||
| 	 * code checks this estimate and improves it when possible, thus
 | ||
| 	 * accelerating callback invocation to an earlier grace-period
 | ||
| 	 * number.
 | ||
| 	 */
 | ||
| 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
 | ||
| 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
 | ||
| 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
 | ||
| 
 | ||
| 	/* Trace depending on how much we were able to accelerate. */
 | ||
| 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
 | ||
| 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
 | ||
| 	else
 | ||
| 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
 | ||
| 
 | ||
| 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
 | ||
| 
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
 | ||
|  * rcu_node structure's ->lock be held.  It consults the cached value
 | ||
|  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
 | ||
|  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
 | ||
|  * while holding the leaf rcu_node structure's ->lock.
 | ||
|  */
 | ||
| static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
 | ||
| 					struct rcu_data *rdp)
 | ||
| {
 | ||
| 	unsigned long c;
 | ||
| 	bool needwake;
 | ||
| 
 | ||
| 	rcu_lockdep_assert_cblist_protected(rdp);
 | ||
| 	c = rcu_seq_snap(&rcu_state.gp_seq);
 | ||
| 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
 | ||
| 		/* Old request still live, so mark recent callbacks. */
 | ||
| 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 | ||
| 	needwake = rcu_accelerate_cbs(rnp, rdp);
 | ||
| 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
 | ||
| 	if (needwake)
 | ||
| 		rcu_gp_kthread_wake();
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Move any callbacks whose grace period has completed to the
 | ||
|  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 | ||
|  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
 | ||
|  * sublist.  This function is idempotent, so it does not hurt to
 | ||
|  * invoke it repeatedly.  As long as it is not invoked -too- often...
 | ||
|  * Returns true if the RCU grace-period kthread needs to be awakened.
 | ||
|  *
 | ||
|  * The caller must hold rnp->lock with interrupts disabled.
 | ||
|  */
 | ||
| static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
 | ||
| {
 | ||
| 	rcu_lockdep_assert_cblist_protected(rdp);
 | ||
| 	raw_lockdep_assert_held_rcu_node(rnp);
 | ||
| 
 | ||
| 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
 | ||
| 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
 | ||
| 		return false;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Find all callbacks whose ->gp_seq numbers indicate that they
 | ||
| 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
 | ||
| 	 */
 | ||
| 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
 | ||
| 
 | ||
| 	/* Classify any remaining callbacks. */
 | ||
| 	return rcu_accelerate_cbs(rnp, rdp);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Move and classify callbacks, but only if doing so won't require
 | ||
|  * that the RCU grace-period kthread be awakened.
 | ||
|  */
 | ||
| static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
 | ||
| 						  struct rcu_data *rdp)
 | ||
| {
 | ||
| 	rcu_lockdep_assert_cblist_protected(rdp);
 | ||
| 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
 | ||
| 		return;
 | ||
| 	// The grace period cannot end while we hold the rcu_node lock.
 | ||
| 	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
 | ||
| 		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
 | ||
| 	raw_spin_unlock_rcu_node(rnp);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
 | ||
|  * quiescent state.  This is intended to be invoked when the CPU notices
 | ||
|  * a new grace period.
 | ||
|  */
 | ||
| static void rcu_strict_gp_check_qs(void)
 | ||
| {
 | ||
| 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
 | ||
| 		rcu_read_lock();
 | ||
| 		rcu_read_unlock();
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Update CPU-local rcu_data state to record the beginnings and ends of
 | ||
|  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 | ||
|  * structure corresponding to the current CPU, and must have irqs disabled.
 | ||
|  * Returns true if the grace-period kthread needs to be awakened.
 | ||
|  */
 | ||
| static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
 | ||
| {
 | ||
| 	bool ret = false;
 | ||
| 	bool need_qs;
 | ||
| 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
 | ||
| 
 | ||
| 	raw_lockdep_assert_held_rcu_node(rnp);
 | ||
| 
 | ||
| 	if (rdp->gp_seq == rnp->gp_seq)
 | ||
| 		return false; /* Nothing to do. */
 | ||
| 
 | ||
| 	/* Handle the ends of any preceding grace periods first. */
 | ||
| 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
 | ||
| 	    unlikely(READ_ONCE(rdp->gpwrap))) {
 | ||
| 		if (!offloaded)
 | ||
| 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
 | ||
| 		rdp->core_needs_qs = false;
 | ||
| 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
 | ||
| 	} else {
 | ||
| 		if (!offloaded)
 | ||
| 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
 | ||
| 		if (rdp->core_needs_qs)
 | ||
| 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
 | ||
| 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
 | ||
| 	    unlikely(READ_ONCE(rdp->gpwrap))) {
 | ||
| 		/*
 | ||
| 		 * If the current grace period is waiting for this CPU,
 | ||
| 		 * set up to detect a quiescent state, otherwise don't
 | ||
| 		 * go looking for one.
 | ||
| 		 */
 | ||
| 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
 | ||
| 		need_qs = !!(rnp->qsmask & rdp->grpmask);
 | ||
| 		rdp->cpu_no_qs.b.norm = need_qs;
 | ||
| 		rdp->core_needs_qs = need_qs;
 | ||
| 		zero_cpu_stall_ticks(rdp);
 | ||
| 	}
 | ||
| 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
 | ||
| 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
 | ||
| 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
 | ||
| 	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
 | ||
| 		WRITE_ONCE(rdp->last_sched_clock, jiffies);
 | ||
| 	WRITE_ONCE(rdp->gpwrap, false);
 | ||
| 	rcu_gpnum_ovf(rnp, rdp);
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| static void note_gp_changes(struct rcu_data *rdp)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	bool needwake;
 | ||
| 	struct rcu_node *rnp;
 | ||
| 
 | ||
| 	local_irq_save(flags);
 | ||
| 	rnp = rdp->mynode;
 | ||
| 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
 | ||
| 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
 | ||
| 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
 | ||
| 		local_irq_restore(flags);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 	needwake = __note_gp_changes(rnp, rdp);
 | ||
| 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | ||
| 	rcu_strict_gp_check_qs();
 | ||
| 	if (needwake)
 | ||
| 		rcu_gp_kthread_wake();
 | ||
| }
 | ||
| 
 | ||
| static atomic_t *rcu_gp_slow_suppress;
 | ||
| 
 | ||
| /* Register a counter to suppress debugging grace-period delays. */
 | ||
| void rcu_gp_slow_register(atomic_t *rgssp)
 | ||
| {
 | ||
| 	WARN_ON_ONCE(rcu_gp_slow_suppress);
 | ||
| 
 | ||
| 	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
 | ||
| 
 | ||
| /* Unregister a counter, with NULL for not caring which. */
 | ||
| void rcu_gp_slow_unregister(atomic_t *rgssp)
 | ||
| {
 | ||
| 	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
 | ||
| 
 | ||
| 	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
 | ||
| 
 | ||
| static bool rcu_gp_slow_is_suppressed(void)
 | ||
| {
 | ||
| 	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
 | ||
| 
 | ||
| 	return rgssp && atomic_read(rgssp);
 | ||
| }
 | ||
| 
 | ||
| static void rcu_gp_slow(int delay)
 | ||
| {
 | ||
| 	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
 | ||
| 	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
 | ||
| 		schedule_timeout_idle(delay);
 | ||
| }
 | ||
| 
 | ||
| static unsigned long sleep_duration;
 | ||
| 
 | ||
| /* Allow rcutorture to stall the grace-period kthread. */
 | ||
| void rcu_gp_set_torture_wait(int duration)
 | ||
| {
 | ||
| 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
 | ||
| 		WRITE_ONCE(sleep_duration, duration);
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
 | ||
| 
 | ||
| /* Actually implement the aforementioned wait. */
 | ||
| static void rcu_gp_torture_wait(void)
 | ||
| {
 | ||
| 	unsigned long duration;
 | ||
| 
 | ||
| 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
 | ||
| 		return;
 | ||
| 	duration = xchg(&sleep_duration, 0UL);
 | ||
| 	if (duration > 0) {
 | ||
| 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
 | ||
| 		schedule_timeout_idle(duration);
 | ||
| 		pr_alert("%s: Wait complete\n", __func__);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Handler for on_each_cpu() to invoke the target CPU's RCU core
 | ||
|  * processing.
 | ||
|  */
 | ||
| static void rcu_strict_gp_boundary(void *unused)
 | ||
| {
 | ||
| 	invoke_rcu_core();
 | ||
| }
 | ||
| 
 | ||
| // Make the polled API aware of the beginning of a grace period.
 | ||
| static void rcu_poll_gp_seq_start(unsigned long *snap)
 | ||
| {
 | ||
| 	struct rcu_node *rnp = rcu_get_root();
 | ||
| 
 | ||
| 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
 | ||
| 		raw_lockdep_assert_held_rcu_node(rnp);
 | ||
| 
 | ||
| 	// If RCU was idle, note beginning of GP.
 | ||
| 	if (!rcu_seq_state(rcu_state.gp_seq_polled))
 | ||
| 		rcu_seq_start(&rcu_state.gp_seq_polled);
 | ||
| 
 | ||
| 	// Either way, record current state.
 | ||
| 	*snap = rcu_state.gp_seq_polled;
 | ||
| }
 | ||
| 
 | ||
| // Make the polled API aware of the end of a grace period.
 | ||
| static void rcu_poll_gp_seq_end(unsigned long *snap)
 | ||
| {
 | ||
| 	struct rcu_node *rnp = rcu_get_root();
 | ||
| 
 | ||
| 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
 | ||
| 		raw_lockdep_assert_held_rcu_node(rnp);
 | ||
| 
 | ||
| 	// If the previously noted GP is still in effect, record the
 | ||
| 	// end of that GP.  Either way, zero counter to avoid counter-wrap
 | ||
| 	// problems.
 | ||
| 	if (*snap && *snap == rcu_state.gp_seq_polled) {
 | ||
| 		rcu_seq_end(&rcu_state.gp_seq_polled);
 | ||
| 		rcu_state.gp_seq_polled_snap = 0;
 | ||
| 		rcu_state.gp_seq_polled_exp_snap = 0;
 | ||
| 	} else {
 | ||
| 		*snap = 0;
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // Make the polled API aware of the beginning of a grace period, but
 | ||
| // where caller does not hold the root rcu_node structure's lock.
 | ||
| static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	struct rcu_node *rnp = rcu_get_root();
 | ||
| 
 | ||
| 	if (rcu_init_invoked()) {
 | ||
| 		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
 | ||
| 			lockdep_assert_irqs_enabled();
 | ||
| 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | ||
| 	}
 | ||
| 	rcu_poll_gp_seq_start(snap);
 | ||
| 	if (rcu_init_invoked())
 | ||
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | ||
| }
 | ||
| 
 | ||
| // Make the polled API aware of the end of a grace period, but where
 | ||
| // caller does not hold the root rcu_node structure's lock.
 | ||
| static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	struct rcu_node *rnp = rcu_get_root();
 | ||
| 
 | ||
| 	if (rcu_init_invoked()) {
 | ||
| 		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
 | ||
| 			lockdep_assert_irqs_enabled();
 | ||
| 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | ||
| 	}
 | ||
| 	rcu_poll_gp_seq_end(snap);
 | ||
| 	if (rcu_init_invoked())
 | ||
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Initialize a new grace period.  Return false if no grace period required.
 | ||
|  */
 | ||
| static noinline_for_stack bool rcu_gp_init(void)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	unsigned long oldmask;
 | ||
| 	unsigned long mask;
 | ||
| 	struct rcu_data *rdp;
 | ||
| 	struct rcu_node *rnp = rcu_get_root();
 | ||
| 
 | ||
| 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
 | ||
| 	raw_spin_lock_irq_rcu_node(rnp);
 | ||
| 	if (!READ_ONCE(rcu_state.gp_flags)) {
 | ||
| 		/* Spurious wakeup, tell caller to go back to sleep.  */
 | ||
| 		raw_spin_unlock_irq_rcu_node(rnp);
 | ||
| 		return false;
 | ||
| 	}
 | ||
| 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
 | ||
| 
 | ||
| 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
 | ||
| 		/*
 | ||
| 		 * Grace period already in progress, don't start another.
 | ||
| 		 * Not supposed to be able to happen.
 | ||
| 		 */
 | ||
| 		raw_spin_unlock_irq_rcu_node(rnp);
 | ||
| 		return false;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Advance to a new grace period and initialize state. */
 | ||
| 	record_gp_stall_check_time();
 | ||
| 	/* Record GP times before starting GP, hence rcu_seq_start(). */
 | ||
| 	rcu_seq_start(&rcu_state.gp_seq);
 | ||
| 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
 | ||
| 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
 | ||
| 	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
 | ||
| 	raw_spin_unlock_irq_rcu_node(rnp);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Apply per-leaf buffered online and offline operations to
 | ||
| 	 * the rcu_node tree. Note that this new grace period need not
 | ||
| 	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
 | ||
| 	 * offlining path, when combined with checks in this function,
 | ||
| 	 * will handle CPUs that are currently going offline or that will
 | ||
| 	 * go offline later.  Please also refer to "Hotplug CPU" section
 | ||
| 	 * of RCU's Requirements documentation.
 | ||
| 	 */
 | ||
| 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
 | ||
| 	/* Exclude CPU hotplug operations. */
 | ||
| 	rcu_for_each_leaf_node(rnp) {
 | ||
| 		local_irq_save(flags);
 | ||
| 		arch_spin_lock(&rcu_state.ofl_lock);
 | ||
| 		raw_spin_lock_rcu_node(rnp);
 | ||
| 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
 | ||
| 		    !rnp->wait_blkd_tasks) {
 | ||
| 			/* Nothing to do on this leaf rcu_node structure. */
 | ||
| 			raw_spin_unlock_rcu_node(rnp);
 | ||
| 			arch_spin_unlock(&rcu_state.ofl_lock);
 | ||
| 			local_irq_restore(flags);
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 
 | ||
| 		/* Record old state, apply changes to ->qsmaskinit field. */
 | ||
| 		oldmask = rnp->qsmaskinit;
 | ||
| 		rnp->qsmaskinit = rnp->qsmaskinitnext;
 | ||
| 
 | ||
| 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
 | ||
| 		if (!oldmask != !rnp->qsmaskinit) {
 | ||
| 			if (!oldmask) { /* First online CPU for rcu_node. */
 | ||
| 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
 | ||
| 					rcu_init_new_rnp(rnp);
 | ||
| 			} else if (rcu_preempt_has_tasks(rnp)) {
 | ||
| 				rnp->wait_blkd_tasks = true; /* blocked tasks */
 | ||
| 			} else { /* Last offline CPU and can propagate. */
 | ||
| 				rcu_cleanup_dead_rnp(rnp);
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * If all waited-on tasks from prior grace period are
 | ||
| 		 * done, and if all this rcu_node structure's CPUs are
 | ||
| 		 * still offline, propagate up the rcu_node tree and
 | ||
| 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
 | ||
| 		 * rcu_node structure's CPUs has since come back online,
 | ||
| 		 * simply clear ->wait_blkd_tasks.
 | ||
| 		 */
 | ||
| 		if (rnp->wait_blkd_tasks &&
 | ||
| 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
 | ||
| 			rnp->wait_blkd_tasks = false;
 | ||
| 			if (!rnp->qsmaskinit)
 | ||
| 				rcu_cleanup_dead_rnp(rnp);
 | ||
| 		}
 | ||
| 
 | ||
| 		raw_spin_unlock_rcu_node(rnp);
 | ||
| 		arch_spin_unlock(&rcu_state.ofl_lock);
 | ||
| 		local_irq_restore(flags);
 | ||
| 	}
 | ||
| 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Set the quiescent-state-needed bits in all the rcu_node
 | ||
| 	 * structures for all currently online CPUs in breadth-first
 | ||
| 	 * order, starting from the root rcu_node structure, relying on the
 | ||
| 	 * layout of the tree within the rcu_state.node[] array.  Note that
 | ||
| 	 * other CPUs will access only the leaves of the hierarchy, thus
 | ||
| 	 * seeing that no grace period is in progress, at least until the
 | ||
| 	 * corresponding leaf node has been initialized.
 | ||
| 	 *
 | ||
| 	 * The grace period cannot complete until the initialization
 | ||
| 	 * process finishes, because this kthread handles both.
 | ||
| 	 */
 | ||
| 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
 | ||
| 	rcu_for_each_node_breadth_first(rnp) {
 | ||
| 		rcu_gp_slow(gp_init_delay);
 | ||
| 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | ||
| 		rdp = this_cpu_ptr(&rcu_data);
 | ||
| 		rcu_preempt_check_blocked_tasks(rnp);
 | ||
| 		rnp->qsmask = rnp->qsmaskinit;
 | ||
| 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
 | ||
| 		if (rnp == rdp->mynode)
 | ||
| 			(void)__note_gp_changes(rnp, rdp);
 | ||
| 		rcu_preempt_boost_start_gp(rnp);
 | ||
| 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
 | ||
| 					    rnp->level, rnp->grplo,
 | ||
| 					    rnp->grphi, rnp->qsmask);
 | ||
| 		/* Quiescent states for tasks on any now-offline CPUs. */
 | ||
| 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
 | ||
| 		rnp->rcu_gp_init_mask = mask;
 | ||
| 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
 | ||
| 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
 | ||
| 		else
 | ||
| 			raw_spin_unlock_irq_rcu_node(rnp);
 | ||
| 		cond_resched_tasks_rcu_qs();
 | ||
| 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
 | ||
| 	}
 | ||
| 
 | ||
| 	// If strict, make all CPUs aware of new grace period.
 | ||
| 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
 | ||
| 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
 | ||
| 
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
 | ||
|  * time.
 | ||
|  */
 | ||
| static bool rcu_gp_fqs_check_wake(int *gfp)
 | ||
| {
 | ||
| 	struct rcu_node *rnp = rcu_get_root();
 | ||
| 
 | ||
| 	// If under overload conditions, force an immediate FQS scan.
 | ||
| 	if (*gfp & RCU_GP_FLAG_OVLD)
 | ||
| 		return true;
 | ||
| 
 | ||
| 	// Someone like call_rcu() requested a force-quiescent-state scan.
 | ||
| 	*gfp = READ_ONCE(rcu_state.gp_flags);
 | ||
| 	if (*gfp & RCU_GP_FLAG_FQS)
 | ||
| 		return true;
 | ||
| 
 | ||
| 	// The current grace period has completed.
 | ||
| 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
 | ||
| 		return true;
 | ||
| 
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Do one round of quiescent-state forcing.
 | ||
|  */
 | ||
| static void rcu_gp_fqs(bool first_time)
 | ||
| {
 | ||
| 	struct rcu_node *rnp = rcu_get_root();
 | ||
| 
 | ||
| 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
 | ||
| 	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
 | ||
| 	if (first_time) {
 | ||
| 		/* Collect dyntick-idle snapshots. */
 | ||
| 		force_qs_rnp(dyntick_save_progress_counter);
 | ||
| 	} else {
 | ||
| 		/* Handle dyntick-idle and offline CPUs. */
 | ||
| 		force_qs_rnp(rcu_implicit_dynticks_qs);
 | ||
| 	}
 | ||
| 	/* Clear flag to prevent immediate re-entry. */
 | ||
| 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
 | ||
| 		raw_spin_lock_irq_rcu_node(rnp);
 | ||
| 		WRITE_ONCE(rcu_state.gp_flags,
 | ||
| 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
 | ||
| 		raw_spin_unlock_irq_rcu_node(rnp);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Loop doing repeated quiescent-state forcing until the grace period ends.
 | ||
|  */
 | ||
| static noinline_for_stack void rcu_gp_fqs_loop(void)
 | ||
| {
 | ||
| 	bool first_gp_fqs = true;
 | ||
| 	int gf = 0;
 | ||
| 	unsigned long j;
 | ||
| 	int ret;
 | ||
| 	struct rcu_node *rnp = rcu_get_root();
 | ||
| 
 | ||
| 	j = READ_ONCE(jiffies_till_first_fqs);
 | ||
| 	if (rcu_state.cbovld)
 | ||
| 		gf = RCU_GP_FLAG_OVLD;
 | ||
| 	ret = 0;
 | ||
| 	for (;;) {
 | ||
| 		if (rcu_state.cbovld) {
 | ||
| 			j = (j + 2) / 3;
 | ||
| 			if (j <= 0)
 | ||
| 				j = 1;
 | ||
| 		}
 | ||
| 		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
 | ||
| 			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
 | ||
| 			/*
 | ||
| 			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
 | ||
| 			 * update; required for stall checks.
 | ||
| 			 */
 | ||
| 			smp_wmb();
 | ||
| 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
 | ||
| 				   jiffies + (j ? 3 * j : 2));
 | ||
| 		}
 | ||
| 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 | ||
| 				       TPS("fqswait"));
 | ||
| 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
 | ||
| 		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
 | ||
| 				 rcu_gp_fqs_check_wake(&gf), j);
 | ||
| 		rcu_gp_torture_wait();
 | ||
| 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
 | ||
| 		/* Locking provides needed memory barriers. */
 | ||
| 		/*
 | ||
| 		 * Exit the loop if the root rcu_node structure indicates that the grace period
 | ||
| 		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
 | ||
| 		 * is required only for single-node rcu_node trees because readers blocking
 | ||
| 		 * the current grace period are queued only on leaf rcu_node structures.
 | ||
| 		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
 | ||
| 		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
 | ||
| 		 * the corresponding leaf nodes have passed through their quiescent state.
 | ||
| 		 */
 | ||
| 		if (!READ_ONCE(rnp->qsmask) &&
 | ||
| 		    !rcu_preempt_blocked_readers_cgp(rnp))
 | ||
| 			break;
 | ||
| 		/* If time for quiescent-state forcing, do it. */
 | ||
| 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
 | ||
| 		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
 | ||
| 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 | ||
| 					       TPS("fqsstart"));
 | ||
| 			rcu_gp_fqs(first_gp_fqs);
 | ||
| 			gf = 0;
 | ||
| 			if (first_gp_fqs) {
 | ||
| 				first_gp_fqs = false;
 | ||
| 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
 | ||
| 			}
 | ||
| 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 | ||
| 					       TPS("fqsend"));
 | ||
| 			cond_resched_tasks_rcu_qs();
 | ||
| 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
 | ||
| 			ret = 0; /* Force full wait till next FQS. */
 | ||
| 			j = READ_ONCE(jiffies_till_next_fqs);
 | ||
| 		} else {
 | ||
| 			/* Deal with stray signal. */
 | ||
| 			cond_resched_tasks_rcu_qs();
 | ||
| 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
 | ||
| 			WARN_ON(signal_pending(current));
 | ||
| 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 | ||
| 					       TPS("fqswaitsig"));
 | ||
| 			ret = 1; /* Keep old FQS timing. */
 | ||
| 			j = jiffies;
 | ||
| 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
 | ||
| 				j = 1;
 | ||
| 			else
 | ||
| 				j = rcu_state.jiffies_force_qs - j;
 | ||
| 			gf = 0;
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Clean up after the old grace period.
 | ||
|  */
 | ||
| static noinline void rcu_gp_cleanup(void)
 | ||
| {
 | ||
| 	int cpu;
 | ||
| 	bool needgp = false;
 | ||
| 	unsigned long gp_duration;
 | ||
| 	unsigned long new_gp_seq;
 | ||
| 	bool offloaded;
 | ||
| 	struct rcu_data *rdp;
 | ||
| 	struct rcu_node *rnp = rcu_get_root();
 | ||
| 	struct swait_queue_head *sq;
 | ||
| 
 | ||
| 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
 | ||
| 	raw_spin_lock_irq_rcu_node(rnp);
 | ||
| 	rcu_state.gp_end = jiffies;
 | ||
| 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
 | ||
| 	if (gp_duration > rcu_state.gp_max)
 | ||
| 		rcu_state.gp_max = gp_duration;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * We know the grace period is complete, but to everyone else
 | ||
| 	 * it appears to still be ongoing.  But it is also the case
 | ||
| 	 * that to everyone else it looks like there is nothing that
 | ||
| 	 * they can do to advance the grace period.  It is therefore
 | ||
| 	 * safe for us to drop the lock in order to mark the grace
 | ||
| 	 * period as completed in all of the rcu_node structures.
 | ||
| 	 */
 | ||
| 	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
 | ||
| 	raw_spin_unlock_irq_rcu_node(rnp);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Propagate new ->gp_seq value to rcu_node structures so that
 | ||
| 	 * other CPUs don't have to wait until the start of the next grace
 | ||
| 	 * period to process their callbacks.  This also avoids some nasty
 | ||
| 	 * RCU grace-period initialization races by forcing the end of
 | ||
| 	 * the current grace period to be completely recorded in all of
 | ||
| 	 * the rcu_node structures before the beginning of the next grace
 | ||
| 	 * period is recorded in any of the rcu_node structures.
 | ||
| 	 */
 | ||
| 	new_gp_seq = rcu_state.gp_seq;
 | ||
| 	rcu_seq_end(&new_gp_seq);
 | ||
| 	rcu_for_each_node_breadth_first(rnp) {
 | ||
| 		raw_spin_lock_irq_rcu_node(rnp);
 | ||
| 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
 | ||
| 			dump_blkd_tasks(rnp, 10);
 | ||
| 		WARN_ON_ONCE(rnp->qsmask);
 | ||
| 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
 | ||
| 		if (!rnp->parent)
 | ||
| 			smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
 | ||
| 		rdp = this_cpu_ptr(&rcu_data);
 | ||
| 		if (rnp == rdp->mynode)
 | ||
| 			needgp = __note_gp_changes(rnp, rdp) || needgp;
 | ||
| 		/* smp_mb() provided by prior unlock-lock pair. */
 | ||
| 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
 | ||
| 		// Reset overload indication for CPUs no longer overloaded
 | ||
| 		if (rcu_is_leaf_node(rnp))
 | ||
| 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
 | ||
| 				rdp = per_cpu_ptr(&rcu_data, cpu);
 | ||
| 				check_cb_ovld_locked(rdp, rnp);
 | ||
| 			}
 | ||
| 		sq = rcu_nocb_gp_get(rnp);
 | ||
| 		raw_spin_unlock_irq_rcu_node(rnp);
 | ||
| 		rcu_nocb_gp_cleanup(sq);
 | ||
| 		cond_resched_tasks_rcu_qs();
 | ||
| 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
 | ||
| 		rcu_gp_slow(gp_cleanup_delay);
 | ||
| 	}
 | ||
| 	rnp = rcu_get_root();
 | ||
| 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
 | ||
| 
 | ||
| 	/* Declare grace period done, trace first to use old GP number. */
 | ||
| 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
 | ||
| 	rcu_seq_end(&rcu_state.gp_seq);
 | ||
| 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
 | ||
| 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
 | ||
| 	/* Check for GP requests since above loop. */
 | ||
| 	rdp = this_cpu_ptr(&rcu_data);
 | ||
| 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
 | ||
| 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
 | ||
| 				  TPS("CleanupMore"));
 | ||
| 		needgp = true;
 | ||
| 	}
 | ||
| 	/* Advance CBs to reduce false positives below. */
 | ||
| 	offloaded = rcu_rdp_is_offloaded(rdp);
 | ||
| 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
 | ||
| 
 | ||
| 		// We get here if a grace period was needed (“needgp”)
 | ||
| 		// and the above call to rcu_accelerate_cbs() did not set
 | ||
| 		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
 | ||
| 		// the need for another grace period).  The purpose
 | ||
| 		// of the “offloaded” check is to avoid invoking
 | ||
| 		// rcu_accelerate_cbs() on an offloaded CPU because we do not
 | ||
| 		// hold the ->nocb_lock needed to safely access an offloaded
 | ||
| 		// ->cblist.  We do not want to acquire that lock because
 | ||
| 		// it can be heavily contended during callback floods.
 | ||
| 
 | ||
| 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
 | ||
| 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
 | ||
| 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
 | ||
| 	} else {
 | ||
| 
 | ||
| 		// We get here either if there is no need for an
 | ||
| 		// additional grace period or if rcu_accelerate_cbs() has
 | ||
| 		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
 | ||
| 		// So all we need to do is to clear all of the other
 | ||
| 		// ->gp_flags bits.
 | ||
| 
 | ||
| 		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
 | ||
| 	}
 | ||
| 	raw_spin_unlock_irq_rcu_node(rnp);
 | ||
| 
 | ||
| 	// If strict, make all CPUs aware of the end of the old grace period.
 | ||
| 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
 | ||
| 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Body of kthread that handles grace periods.
 | ||
|  */
 | ||
| static int __noreturn rcu_gp_kthread(void *unused)
 | ||
| {
 | ||
| 	rcu_bind_gp_kthread();
 | ||
| 	for (;;) {
 | ||
| 
 | ||
| 		/* Handle grace-period start. */
 | ||
| 		for (;;) {
 | ||
| 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 | ||
| 					       TPS("reqwait"));
 | ||
| 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
 | ||
| 			swait_event_idle_exclusive(rcu_state.gp_wq,
 | ||
| 					 READ_ONCE(rcu_state.gp_flags) &
 | ||
| 					 RCU_GP_FLAG_INIT);
 | ||
| 			rcu_gp_torture_wait();
 | ||
| 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
 | ||
| 			/* Locking provides needed memory barrier. */
 | ||
| 			if (rcu_gp_init())
 | ||
| 				break;
 | ||
| 			cond_resched_tasks_rcu_qs();
 | ||
| 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
 | ||
| 			WARN_ON(signal_pending(current));
 | ||
| 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 | ||
| 					       TPS("reqwaitsig"));
 | ||
| 		}
 | ||
| 
 | ||
| 		/* Handle quiescent-state forcing. */
 | ||
| 		rcu_gp_fqs_loop();
 | ||
| 
 | ||
| 		/* Handle grace-period end. */
 | ||
| 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
 | ||
| 		rcu_gp_cleanup();
 | ||
| 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Report a full set of quiescent states to the rcu_state data structure.
 | ||
|  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
 | ||
|  * another grace period is required.  Whether we wake the grace-period
 | ||
|  * kthread or it awakens itself for the next round of quiescent-state
 | ||
|  * forcing, that kthread will clean up after the just-completed grace
 | ||
|  * period.  Note that the caller must hold rnp->lock, which is released
 | ||
|  * before return.
 | ||
|  */
 | ||
| static void rcu_report_qs_rsp(unsigned long flags)
 | ||
| 	__releases(rcu_get_root()->lock)
 | ||
| {
 | ||
| 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
 | ||
| 	WARN_ON_ONCE(!rcu_gp_in_progress());
 | ||
| 	WRITE_ONCE(rcu_state.gp_flags,
 | ||
| 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
 | ||
| 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
 | ||
| 	rcu_gp_kthread_wake();
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 | ||
|  * Allows quiescent states for a group of CPUs to be reported at one go
 | ||
|  * to the specified rcu_node structure, though all the CPUs in the group
 | ||
|  * must be represented by the same rcu_node structure (which need not be a
 | ||
|  * leaf rcu_node structure, though it often will be).  The gps parameter
 | ||
|  * is the grace-period snapshot, which means that the quiescent states
 | ||
|  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
 | ||
|  * must be held upon entry, and it is released before return.
 | ||
|  *
 | ||
|  * As a special case, if mask is zero, the bit-already-cleared check is
 | ||
|  * disabled.  This allows propagating quiescent state due to resumed tasks
 | ||
|  * during grace-period initialization.
 | ||
|  */
 | ||
| static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 | ||
| 			      unsigned long gps, unsigned long flags)
 | ||
| 	__releases(rnp->lock)
 | ||
| {
 | ||
| 	unsigned long oldmask = 0;
 | ||
| 	struct rcu_node *rnp_c;
 | ||
| 
 | ||
| 	raw_lockdep_assert_held_rcu_node(rnp);
 | ||
| 
 | ||
| 	/* Walk up the rcu_node hierarchy. */
 | ||
| 	for (;;) {
 | ||
| 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
 | ||
| 
 | ||
| 			/*
 | ||
| 			 * Our bit has already been cleared, or the
 | ||
| 			 * relevant grace period is already over, so done.
 | ||
| 			 */
 | ||
| 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | ||
| 			return;
 | ||
| 		}
 | ||
| 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
 | ||
| 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
 | ||
| 			     rcu_preempt_blocked_readers_cgp(rnp));
 | ||
| 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
 | ||
| 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
 | ||
| 						 mask, rnp->qsmask, rnp->level,
 | ||
| 						 rnp->grplo, rnp->grphi,
 | ||
| 						 !!rnp->gp_tasks);
 | ||
| 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
 | ||
| 
 | ||
| 			/* Other bits still set at this level, so done. */
 | ||
| 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | ||
| 			return;
 | ||
| 		}
 | ||
| 		rnp->completedqs = rnp->gp_seq;
 | ||
| 		mask = rnp->grpmask;
 | ||
| 		if (rnp->parent == NULL) {
 | ||
| 
 | ||
| 			/* No more levels.  Exit loop holding root lock. */
 | ||
| 
 | ||
| 			break;
 | ||
| 		}
 | ||
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | ||
| 		rnp_c = rnp;
 | ||
| 		rnp = rnp->parent;
 | ||
| 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | ||
| 		oldmask = READ_ONCE(rnp_c->qsmask);
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Get here if we are the last CPU to pass through a quiescent
 | ||
| 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
 | ||
| 	 * to clean up and start the next grace period if one is needed.
 | ||
| 	 */
 | ||
| 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Record a quiescent state for all tasks that were previously queued
 | ||
|  * on the specified rcu_node structure and that were blocking the current
 | ||
|  * RCU grace period.  The caller must hold the corresponding rnp->lock with
 | ||
|  * irqs disabled, and this lock is released upon return, but irqs remain
 | ||
|  * disabled.
 | ||
|  */
 | ||
| static void __maybe_unused
 | ||
| rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
 | ||
| 	__releases(rnp->lock)
 | ||
| {
 | ||
| 	unsigned long gps;
 | ||
| 	unsigned long mask;
 | ||
| 	struct rcu_node *rnp_p;
 | ||
| 
 | ||
| 	raw_lockdep_assert_held_rcu_node(rnp);
 | ||
| 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
 | ||
| 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
 | ||
| 	    rnp->qsmask != 0) {
 | ||
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | ||
| 		return;  /* Still need more quiescent states! */
 | ||
| 	}
 | ||
| 
 | ||
| 	rnp->completedqs = rnp->gp_seq;
 | ||
| 	rnp_p = rnp->parent;
 | ||
| 	if (rnp_p == NULL) {
 | ||
| 		/*
 | ||
| 		 * Only one rcu_node structure in the tree, so don't
 | ||
| 		 * try to report up to its nonexistent parent!
 | ||
| 		 */
 | ||
| 		rcu_report_qs_rsp(flags);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
 | ||
| 	gps = rnp->gp_seq;
 | ||
| 	mask = rnp->grpmask;
 | ||
| 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
 | ||
| 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
 | ||
| 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Record a quiescent state for the specified CPU to that CPU's rcu_data
 | ||
|  * structure.  This must be called from the specified CPU.
 | ||
|  */
 | ||
| static void
 | ||
| rcu_report_qs_rdp(struct rcu_data *rdp)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	unsigned long mask;
 | ||
| 	bool needacc = false;
 | ||
| 	struct rcu_node *rnp;
 | ||
| 
 | ||
| 	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
 | ||
| 	rnp = rdp->mynode;
 | ||
| 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | ||
| 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
 | ||
| 	    rdp->gpwrap) {
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * The grace period in which this quiescent state was
 | ||
| 		 * recorded has ended, so don't report it upwards.
 | ||
| 		 * We will instead need a new quiescent state that lies
 | ||
| 		 * within the current grace period.
 | ||
| 		 */
 | ||
| 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
 | ||
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 	mask = rdp->grpmask;
 | ||
| 	rdp->core_needs_qs = false;
 | ||
| 	if ((rnp->qsmask & mask) == 0) {
 | ||
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | ||
| 	} else {
 | ||
| 		/*
 | ||
| 		 * This GP can't end until cpu checks in, so all of our
 | ||
| 		 * callbacks can be processed during the next GP.
 | ||
| 		 *
 | ||
| 		 * NOCB kthreads have their own way to deal with that...
 | ||
| 		 */
 | ||
| 		if (!rcu_rdp_is_offloaded(rdp)) {
 | ||
| 			/*
 | ||
| 			 * The current GP has not yet ended, so it
 | ||
| 			 * should not be possible for rcu_accelerate_cbs()
 | ||
| 			 * to return true.  So complain, but don't awaken.
 | ||
| 			 */
 | ||
| 			WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
 | ||
| 		} else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
 | ||
| 			/*
 | ||
| 			 * ...but NOCB kthreads may miss or delay callbacks acceleration
 | ||
| 			 * if in the middle of a (de-)offloading process.
 | ||
| 			 */
 | ||
| 			needacc = true;
 | ||
| 		}
 | ||
| 
 | ||
| 		rcu_disable_urgency_upon_qs(rdp);
 | ||
| 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
 | ||
| 		/* ^^^ Released rnp->lock */
 | ||
| 
 | ||
| 		if (needacc) {
 | ||
| 			rcu_nocb_lock_irqsave(rdp, flags);
 | ||
| 			rcu_accelerate_cbs_unlocked(rnp, rdp);
 | ||
| 			rcu_nocb_unlock_irqrestore(rdp, flags);
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Check to see if there is a new grace period of which this CPU
 | ||
|  * is not yet aware, and if so, set up local rcu_data state for it.
 | ||
|  * Otherwise, see if this CPU has just passed through its first
 | ||
|  * quiescent state for this grace period, and record that fact if so.
 | ||
|  */
 | ||
| static void
 | ||
| rcu_check_quiescent_state(struct rcu_data *rdp)
 | ||
| {
 | ||
| 	/* Check for grace-period ends and beginnings. */
 | ||
| 	note_gp_changes(rdp);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Does this CPU still need to do its part for current grace period?
 | ||
| 	 * If no, return and let the other CPUs do their part as well.
 | ||
| 	 */
 | ||
| 	if (!rdp->core_needs_qs)
 | ||
| 		return;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Was there a quiescent state since the beginning of the grace
 | ||
| 	 * period? If no, then exit and wait for the next call.
 | ||
| 	 */
 | ||
| 	if (rdp->cpu_no_qs.b.norm)
 | ||
| 		return;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
 | ||
| 	 * judge of that).
 | ||
| 	 */
 | ||
| 	rcu_report_qs_rdp(rdp);
 | ||
| }
 | ||
| 
 | ||
| /* Return true if callback-invocation time limit exceeded. */
 | ||
| static bool rcu_do_batch_check_time(long count, long tlimit,
 | ||
| 				    bool jlimit_check, unsigned long jlimit)
 | ||
| {
 | ||
| 	// Invoke local_clock() only once per 32 consecutive callbacks.
 | ||
| 	return unlikely(tlimit) &&
 | ||
| 	       (!likely(count & 31) ||
 | ||
| 		(IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
 | ||
| 		 jlimit_check && time_after(jiffies, jlimit))) &&
 | ||
| 	       local_clock() >= tlimit;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Invoke any RCU callbacks that have made it to the end of their grace
 | ||
|  * period.  Throttle as specified by rdp->blimit.
 | ||
|  */
 | ||
| static void rcu_do_batch(struct rcu_data *rdp)
 | ||
| {
 | ||
| 	long bl;
 | ||
| 	long count = 0;
 | ||
| 	int div;
 | ||
| 	bool __maybe_unused empty;
 | ||
| 	unsigned long flags;
 | ||
| 	unsigned long jlimit;
 | ||
| 	bool jlimit_check = false;
 | ||
| 	long pending;
 | ||
| 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
 | ||
| 	struct rcu_head *rhp;
 | ||
| 	long tlimit = 0;
 | ||
| 
 | ||
| 	/* If no callbacks are ready, just return. */
 | ||
| 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
 | ||
| 		trace_rcu_batch_start(rcu_state.name,
 | ||
| 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
 | ||
| 		trace_rcu_batch_end(rcu_state.name, 0,
 | ||
| 				    !rcu_segcblist_empty(&rdp->cblist),
 | ||
| 				    need_resched(), is_idle_task(current),
 | ||
| 				    rcu_is_callbacks_kthread(rdp));
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Extract the list of ready callbacks, disabling IRQs to prevent
 | ||
| 	 * races with call_rcu() from interrupt handlers.  Leave the
 | ||
| 	 * callback counts, as rcu_barrier() needs to be conservative.
 | ||
| 	 */
 | ||
| 	rcu_nocb_lock_irqsave(rdp, flags);
 | ||
| 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
 | ||
| 	pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
 | ||
| 	div = READ_ONCE(rcu_divisor);
 | ||
| 	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
 | ||
| 	bl = max(rdp->blimit, pending >> div);
 | ||
| 	if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
 | ||
| 	    (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
 | ||
| 		const long npj = NSEC_PER_SEC / HZ;
 | ||
| 		long rrn = READ_ONCE(rcu_resched_ns);
 | ||
| 
 | ||
| 		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
 | ||
| 		tlimit = local_clock() + rrn;
 | ||
| 		jlimit = jiffies + (rrn + npj + 1) / npj;
 | ||
| 		jlimit_check = true;
 | ||
| 	}
 | ||
| 	trace_rcu_batch_start(rcu_state.name,
 | ||
| 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
 | ||
| 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
 | ||
| 	if (rcu_rdp_is_offloaded(rdp))
 | ||
| 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
 | ||
| 
 | ||
| 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
 | ||
| 	rcu_nocb_unlock_irqrestore(rdp, flags);
 | ||
| 
 | ||
| 	/* Invoke callbacks. */
 | ||
| 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
 | ||
| 	rhp = rcu_cblist_dequeue(&rcl);
 | ||
| 
 | ||
| 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
 | ||
| 		rcu_callback_t f;
 | ||
| 
 | ||
| 		count++;
 | ||
| 		debug_rcu_head_unqueue(rhp);
 | ||
| 
 | ||
| 		rcu_lock_acquire(&rcu_callback_map);
 | ||
| 		trace_rcu_invoke_callback(rcu_state.name, rhp);
 | ||
| 
 | ||
| 		f = rhp->func;
 | ||
| 		debug_rcu_head_callback(rhp);
 | ||
| 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
 | ||
| 		f(rhp);
 | ||
| 
 | ||
| 		rcu_lock_release(&rcu_callback_map);
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Stop only if limit reached and CPU has something to do.
 | ||
| 		 */
 | ||
| 		if (in_serving_softirq()) {
 | ||
| 			if (count >= bl && (need_resched() || !is_idle_task(current)))
 | ||
| 				break;
 | ||
| 			/*
 | ||
| 			 * Make sure we don't spend too much time here and deprive other
 | ||
| 			 * softirq vectors of CPU cycles.
 | ||
| 			 */
 | ||
| 			if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
 | ||
| 				break;
 | ||
| 		} else {
 | ||
| 			// In rcuc/rcuoc context, so no worries about
 | ||
| 			// depriving other softirq vectors of CPU cycles.
 | ||
| 			local_bh_enable();
 | ||
| 			lockdep_assert_irqs_enabled();
 | ||
| 			cond_resched_tasks_rcu_qs();
 | ||
| 			lockdep_assert_irqs_enabled();
 | ||
| 			local_bh_disable();
 | ||
| 			// But rcuc kthreads can delay quiescent-state
 | ||
| 			// reporting, so check time limits for them.
 | ||
| 			if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
 | ||
| 			    rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
 | ||
| 				rdp->rcu_cpu_has_work = 1;
 | ||
| 				break;
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	rcu_nocb_lock_irqsave(rdp, flags);
 | ||
| 	rdp->n_cbs_invoked += count;
 | ||
| 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
 | ||
| 			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
 | ||
| 
 | ||
| 	/* Update counts and requeue any remaining callbacks. */
 | ||
| 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
 | ||
| 	rcu_segcblist_add_len(&rdp->cblist, -count);
 | ||
| 
 | ||
| 	/* Reinstate batch limit if we have worked down the excess. */
 | ||
| 	count = rcu_segcblist_n_cbs(&rdp->cblist);
 | ||
| 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
 | ||
| 		rdp->blimit = blimit;
 | ||
| 
 | ||
| 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
 | ||
| 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
 | ||
| 		rdp->qlen_last_fqs_check = 0;
 | ||
| 		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
 | ||
| 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
 | ||
| 		rdp->qlen_last_fqs_check = count;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * The following usually indicates a double call_rcu().  To track
 | ||
| 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
 | ||
| 	 */
 | ||
| 	empty = rcu_segcblist_empty(&rdp->cblist);
 | ||
| 	WARN_ON_ONCE(count == 0 && !empty);
 | ||
| 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
 | ||
| 		     count != 0 && empty);
 | ||
| 	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
 | ||
| 	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
 | ||
| 
 | ||
| 	rcu_nocb_unlock_irqrestore(rdp, flags);
 | ||
| 
 | ||
| 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * This function is invoked from each scheduling-clock interrupt,
 | ||
|  * and checks to see if this CPU is in a non-context-switch quiescent
 | ||
|  * state, for example, user mode or idle loop.  It also schedules RCU
 | ||
|  * core processing.  If the current grace period has gone on too long,
 | ||
|  * it will ask the scheduler to manufacture a context switch for the sole
 | ||
|  * purpose of providing the needed quiescent state.
 | ||
|  */
 | ||
| void rcu_sched_clock_irq(int user)
 | ||
| {
 | ||
| 	unsigned long j;
 | ||
| 
 | ||
| 	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
 | ||
| 		j = jiffies;
 | ||
| 		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
 | ||
| 		__this_cpu_write(rcu_data.last_sched_clock, j);
 | ||
| 	}
 | ||
| 	trace_rcu_utilization(TPS("Start scheduler-tick"));
 | ||
| 	lockdep_assert_irqs_disabled();
 | ||
| 	raw_cpu_inc(rcu_data.ticks_this_gp);
 | ||
| 	/* The load-acquire pairs with the store-release setting to true. */
 | ||
| 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
 | ||
| 		/* Idle and userspace execution already are quiescent states. */
 | ||
| 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
 | ||
| 			set_tsk_need_resched(current);
 | ||
| 			set_preempt_need_resched();
 | ||
| 		}
 | ||
| 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
 | ||
| 	}
 | ||
| 	rcu_flavor_sched_clock_irq(user);
 | ||
| 	if (rcu_pending(user))
 | ||
| 		invoke_rcu_core();
 | ||
| 	if (user || rcu_is_cpu_rrupt_from_idle())
 | ||
| 		rcu_note_voluntary_context_switch(current);
 | ||
| 	lockdep_assert_irqs_disabled();
 | ||
| 
 | ||
| 	trace_rcu_utilization(TPS("End scheduler-tick"));
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Scan the leaf rcu_node structures.  For each structure on which all
 | ||
|  * CPUs have reported a quiescent state and on which there are tasks
 | ||
|  * blocking the current grace period, initiate RCU priority boosting.
 | ||
|  * Otherwise, invoke the specified function to check dyntick state for
 | ||
|  * each CPU that has not yet reported a quiescent state.
 | ||
|  */
 | ||
| static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
 | ||
| {
 | ||
| 	int cpu;
 | ||
| 	unsigned long flags;
 | ||
| 	unsigned long mask;
 | ||
| 	struct rcu_data *rdp;
 | ||
| 	struct rcu_node *rnp;
 | ||
| 
 | ||
| 	rcu_state.cbovld = rcu_state.cbovldnext;
 | ||
| 	rcu_state.cbovldnext = false;
 | ||
| 	rcu_for_each_leaf_node(rnp) {
 | ||
| 		cond_resched_tasks_rcu_qs();
 | ||
| 		mask = 0;
 | ||
| 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | ||
| 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
 | ||
| 		if (rnp->qsmask == 0) {
 | ||
| 			if (rcu_preempt_blocked_readers_cgp(rnp)) {
 | ||
| 				/*
 | ||
| 				 * No point in scanning bits because they
 | ||
| 				 * are all zero.  But we might need to
 | ||
| 				 * priority-boost blocked readers.
 | ||
| 				 */
 | ||
| 				rcu_initiate_boost(rnp, flags);
 | ||
| 				/* rcu_initiate_boost() releases rnp->lock */
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
 | ||
| 			rdp = per_cpu_ptr(&rcu_data, cpu);
 | ||
| 			if (f(rdp)) {
 | ||
| 				mask |= rdp->grpmask;
 | ||
| 				rcu_disable_urgency_upon_qs(rdp);
 | ||
| 			}
 | ||
| 		}
 | ||
| 		if (mask != 0) {
 | ||
| 			/* Idle/offline CPUs, report (releases rnp->lock). */
 | ||
| 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
 | ||
| 		} else {
 | ||
| 			/* Nothing to do here, so just drop the lock. */
 | ||
| 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Force quiescent states on reluctant CPUs, and also detect which
 | ||
|  * CPUs are in dyntick-idle mode.
 | ||
|  */
 | ||
| void rcu_force_quiescent_state(void)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	bool ret;
 | ||
| 	struct rcu_node *rnp;
 | ||
| 	struct rcu_node *rnp_old = NULL;
 | ||
| 
 | ||
| 	/* Funnel through hierarchy to reduce memory contention. */
 | ||
| 	rnp = raw_cpu_read(rcu_data.mynode);
 | ||
| 	for (; rnp != NULL; rnp = rnp->parent) {
 | ||
| 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
 | ||
| 		       !raw_spin_trylock(&rnp->fqslock);
 | ||
| 		if (rnp_old != NULL)
 | ||
| 			raw_spin_unlock(&rnp_old->fqslock);
 | ||
| 		if (ret)
 | ||
| 			return;
 | ||
| 		rnp_old = rnp;
 | ||
| 	}
 | ||
| 	/* rnp_old == rcu_get_root(), rnp == NULL. */
 | ||
| 
 | ||
| 	/* Reached the root of the rcu_node tree, acquire lock. */
 | ||
| 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
 | ||
| 	raw_spin_unlock(&rnp_old->fqslock);
 | ||
| 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
 | ||
| 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
 | ||
| 		return;  /* Someone beat us to it. */
 | ||
| 	}
 | ||
| 	WRITE_ONCE(rcu_state.gp_flags,
 | ||
| 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
 | ||
| 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
 | ||
| 	rcu_gp_kthread_wake();
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 | ||
| 
 | ||
| // Workqueue handler for an RCU reader for kernels enforcing struct RCU
 | ||
| // grace periods.
 | ||
| static void strict_work_handler(struct work_struct *work)
 | ||
| {
 | ||
| 	rcu_read_lock();
 | ||
| 	rcu_read_unlock();
 | ||
| }
 | ||
| 
 | ||
| /* Perform RCU core processing work for the current CPU.  */
 | ||
| static __latent_entropy void rcu_core(void)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
 | ||
| 	struct rcu_node *rnp = rdp->mynode;
 | ||
| 	/*
 | ||
| 	 * On RT rcu_core() can be preempted when IRQs aren't disabled.
 | ||
| 	 * Therefore this function can race with concurrent NOCB (de-)offloading
 | ||
| 	 * on this CPU and the below condition must be considered volatile.
 | ||
| 	 * However if we race with:
 | ||
| 	 *
 | ||
| 	 * _ Offloading:   In the worst case we accelerate or process callbacks
 | ||
| 	 *                 concurrently with NOCB kthreads. We are guaranteed to
 | ||
| 	 *                 call rcu_nocb_lock() if that happens.
 | ||
| 	 *
 | ||
| 	 * _ Deoffloading: In the worst case we miss callbacks acceleration or
 | ||
| 	 *                 processing. This is fine because the early stage
 | ||
| 	 *                 of deoffloading invokes rcu_core() after setting
 | ||
| 	 *                 SEGCBLIST_RCU_CORE. So we guarantee that we'll process
 | ||
| 	 *                 what could have been dismissed without the need to wait
 | ||
| 	 *                 for the next rcu_pending() check in the next jiffy.
 | ||
| 	 */
 | ||
| 	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
 | ||
| 
 | ||
| 	if (cpu_is_offline(smp_processor_id()))
 | ||
| 		return;
 | ||
| 	trace_rcu_utilization(TPS("Start RCU core"));
 | ||
| 	WARN_ON_ONCE(!rdp->beenonline);
 | ||
| 
 | ||
| 	/* Report any deferred quiescent states if preemption enabled. */
 | ||
| 	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
 | ||
| 		rcu_preempt_deferred_qs(current);
 | ||
| 	} else if (rcu_preempt_need_deferred_qs(current)) {
 | ||
| 		set_tsk_need_resched(current);
 | ||
| 		set_preempt_need_resched();
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Update RCU state based on any recent quiescent states. */
 | ||
| 	rcu_check_quiescent_state(rdp);
 | ||
| 
 | ||
| 	/* No grace period and unregistered callbacks? */
 | ||
| 	if (!rcu_gp_in_progress() &&
 | ||
| 	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
 | ||
| 		rcu_nocb_lock_irqsave(rdp, flags);
 | ||
| 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
 | ||
| 			rcu_accelerate_cbs_unlocked(rnp, rdp);
 | ||
| 		rcu_nocb_unlock_irqrestore(rdp, flags);
 | ||
| 	}
 | ||
| 
 | ||
| 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
 | ||
| 
 | ||
| 	/* If there are callbacks ready, invoke them. */
 | ||
| 	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
 | ||
| 	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
 | ||
| 		rcu_do_batch(rdp);
 | ||
| 		/* Re-invoke RCU core processing if there are callbacks remaining. */
 | ||
| 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
 | ||
| 			invoke_rcu_core();
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Do any needed deferred wakeups of rcuo kthreads. */
 | ||
| 	do_nocb_deferred_wakeup(rdp);
 | ||
| 	trace_rcu_utilization(TPS("End RCU core"));
 | ||
| 
 | ||
| 	// If strict GPs, schedule an RCU reader in a clean environment.
 | ||
| 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
 | ||
| 		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
 | ||
| }
 | ||
| 
 | ||
| static void rcu_core_si(struct softirq_action *h)
 | ||
| {
 | ||
| 	rcu_core();
 | ||
| }
 | ||
| 
 | ||
| static void rcu_wake_cond(struct task_struct *t, int status)
 | ||
| {
 | ||
| 	/*
 | ||
| 	 * If the thread is yielding, only wake it when this
 | ||
| 	 * is invoked from idle
 | ||
| 	 */
 | ||
| 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
 | ||
| 		wake_up_process(t);
 | ||
| }
 | ||
| 
 | ||
| static void invoke_rcu_core_kthread(void)
 | ||
| {
 | ||
| 	struct task_struct *t;
 | ||
| 	unsigned long flags;
 | ||
| 
 | ||
| 	local_irq_save(flags);
 | ||
| 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
 | ||
| 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
 | ||
| 	if (t != NULL && t != current)
 | ||
| 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
 | ||
| 	local_irq_restore(flags);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Wake up this CPU's rcuc kthread to do RCU core processing.
 | ||
|  */
 | ||
| static void invoke_rcu_core(void)
 | ||
| {
 | ||
| 	if (!cpu_online(smp_processor_id()))
 | ||
| 		return;
 | ||
| 	if (use_softirq)
 | ||
| 		raise_softirq(RCU_SOFTIRQ);
 | ||
| 	else
 | ||
| 		invoke_rcu_core_kthread();
 | ||
| }
 | ||
| 
 | ||
| static void rcu_cpu_kthread_park(unsigned int cpu)
 | ||
| {
 | ||
| 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
 | ||
| }
 | ||
| 
 | ||
| static int rcu_cpu_kthread_should_run(unsigned int cpu)
 | ||
| {
 | ||
| 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
 | ||
|  * the RCU softirq used in configurations of RCU that do not support RCU
 | ||
|  * priority boosting.
 | ||
|  */
 | ||
| static void rcu_cpu_kthread(unsigned int cpu)
 | ||
| {
 | ||
| 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
 | ||
| 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
 | ||
| 	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
 | ||
| 	int spincnt;
 | ||
| 
 | ||
| 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
 | ||
| 	for (spincnt = 0; spincnt < 10; spincnt++) {
 | ||
| 		WRITE_ONCE(*j, jiffies);
 | ||
| 		local_bh_disable();
 | ||
| 		*statusp = RCU_KTHREAD_RUNNING;
 | ||
| 		local_irq_disable();
 | ||
| 		work = *workp;
 | ||
| 		WRITE_ONCE(*workp, 0);
 | ||
| 		local_irq_enable();
 | ||
| 		if (work)
 | ||
| 			rcu_core();
 | ||
| 		local_bh_enable();
 | ||
| 		if (!READ_ONCE(*workp)) {
 | ||
| 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
 | ||
| 			*statusp = RCU_KTHREAD_WAITING;
 | ||
| 			return;
 | ||
| 		}
 | ||
| 	}
 | ||
| 	*statusp = RCU_KTHREAD_YIELDING;
 | ||
| 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
 | ||
| 	schedule_timeout_idle(2);
 | ||
| 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
 | ||
| 	*statusp = RCU_KTHREAD_WAITING;
 | ||
| 	WRITE_ONCE(*j, jiffies);
 | ||
| }
 | ||
| 
 | ||
| static struct smp_hotplug_thread rcu_cpu_thread_spec = {
 | ||
| 	.store			= &rcu_data.rcu_cpu_kthread_task,
 | ||
| 	.thread_should_run	= rcu_cpu_kthread_should_run,
 | ||
| 	.thread_fn		= rcu_cpu_kthread,
 | ||
| 	.thread_comm		= "rcuc/%u",
 | ||
| 	.setup			= rcu_cpu_kthread_setup,
 | ||
| 	.park			= rcu_cpu_kthread_park,
 | ||
| };
 | ||
| 
 | ||
| /*
 | ||
|  * Spawn per-CPU RCU core processing kthreads.
 | ||
|  */
 | ||
| static int __init rcu_spawn_core_kthreads(void)
 | ||
| {
 | ||
| 	int cpu;
 | ||
| 
 | ||
| 	for_each_possible_cpu(cpu)
 | ||
| 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
 | ||
| 	if (use_softirq)
 | ||
| 		return 0;
 | ||
| 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
 | ||
| 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Handle any core-RCU processing required by a call_rcu() invocation.
 | ||
|  */
 | ||
| static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
 | ||
| 			    unsigned long flags)
 | ||
| {
 | ||
| 	/*
 | ||
| 	 * If called from an extended quiescent state, invoke the RCU
 | ||
| 	 * core in order to force a re-evaluation of RCU's idleness.
 | ||
| 	 */
 | ||
| 	if (!rcu_is_watching())
 | ||
| 		invoke_rcu_core();
 | ||
| 
 | ||
| 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
 | ||
| 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
 | ||
| 		return;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Force the grace period if too many callbacks or too long waiting.
 | ||
| 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
 | ||
| 	 * if some other CPU has recently done so.  Also, don't bother
 | ||
| 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
 | ||
| 	 * is the only one waiting for a grace period to complete.
 | ||
| 	 */
 | ||
| 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
 | ||
| 		     rdp->qlen_last_fqs_check + qhimark)) {
 | ||
| 
 | ||
| 		/* Are we ignoring a completed grace period? */
 | ||
| 		note_gp_changes(rdp);
 | ||
| 
 | ||
| 		/* Start a new grace period if one not already started. */
 | ||
| 		if (!rcu_gp_in_progress()) {
 | ||
| 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
 | ||
| 		} else {
 | ||
| 			/* Give the grace period a kick. */
 | ||
| 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
 | ||
| 			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
 | ||
| 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
 | ||
| 				rcu_force_quiescent_state();
 | ||
| 			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
 | ||
| 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * RCU callback function to leak a callback.
 | ||
|  */
 | ||
| static void rcu_leak_callback(struct rcu_head *rhp)
 | ||
| {
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Check and if necessary update the leaf rcu_node structure's
 | ||
|  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
 | ||
|  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
 | ||
|  * structure's ->lock.
 | ||
|  */
 | ||
| static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
 | ||
| {
 | ||
| 	raw_lockdep_assert_held_rcu_node(rnp);
 | ||
| 	if (qovld_calc <= 0)
 | ||
| 		return; // Early boot and wildcard value set.
 | ||
| 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
 | ||
| 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
 | ||
| 	else
 | ||
| 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Check and if necessary update the leaf rcu_node structure's
 | ||
|  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
 | ||
|  * number of queued RCU callbacks.  No locks need be held, but the
 | ||
|  * caller must have disabled interrupts.
 | ||
|  *
 | ||
|  * Note that this function ignores the possibility that there are a lot
 | ||
|  * of callbacks all of which have already seen the end of their respective
 | ||
|  * grace periods.  This omission is due to the need for no-CBs CPUs to
 | ||
|  * be holding ->nocb_lock to do this check, which is too heavy for a
 | ||
|  * common-case operation.
 | ||
|  */
 | ||
| static void check_cb_ovld(struct rcu_data *rdp)
 | ||
| {
 | ||
| 	struct rcu_node *const rnp = rdp->mynode;
 | ||
| 
 | ||
| 	if (qovld_calc <= 0 ||
 | ||
| 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
 | ||
| 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
 | ||
| 		return; // Early boot wildcard value or already set correctly.
 | ||
| 	raw_spin_lock_rcu_node(rnp);
 | ||
| 	check_cb_ovld_locked(rdp, rnp);
 | ||
| 	raw_spin_unlock_rcu_node(rnp);
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
 | ||
| {
 | ||
| 	static atomic_t doublefrees;
 | ||
| 	unsigned long flags;
 | ||
| 	bool lazy;
 | ||
| 	struct rcu_data *rdp;
 | ||
| 	bool was_alldone;
 | ||
| 
 | ||
| 	/* Misaligned rcu_head! */
 | ||
| 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
 | ||
| 
 | ||
| 	if (debug_rcu_head_queue(head)) {
 | ||
| 		/*
 | ||
| 		 * Probable double call_rcu(), so leak the callback.
 | ||
| 		 * Use rcu:rcu_callback trace event to find the previous
 | ||
| 		 * time callback was passed to call_rcu().
 | ||
| 		 */
 | ||
| 		if (atomic_inc_return(&doublefrees) < 4) {
 | ||
| 			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
 | ||
| 			mem_dump_obj(head);
 | ||
| 		}
 | ||
| 		WRITE_ONCE(head->func, rcu_leak_callback);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 	head->func = func;
 | ||
| 	head->next = NULL;
 | ||
| 	kasan_record_aux_stack_noalloc(head);
 | ||
| 	local_irq_save(flags);
 | ||
| 	rdp = this_cpu_ptr(&rcu_data);
 | ||
| 	lazy = lazy_in && !rcu_async_should_hurry();
 | ||
| 
 | ||
| 	/* Add the callback to our list. */
 | ||
| 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
 | ||
| 		// This can trigger due to call_rcu() from offline CPU:
 | ||
| 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
 | ||
| 		WARN_ON_ONCE(!rcu_is_watching());
 | ||
| 		// Very early boot, before rcu_init().  Initialize if needed
 | ||
| 		// and then drop through to queue the callback.
 | ||
| 		if (rcu_segcblist_empty(&rdp->cblist))
 | ||
| 			rcu_segcblist_init(&rdp->cblist);
 | ||
| 	}
 | ||
| 
 | ||
| 	check_cb_ovld(rdp);
 | ||
| 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy))
 | ||
| 		return; // Enqueued onto ->nocb_bypass, so just leave.
 | ||
| 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
 | ||
| 	rcu_segcblist_enqueue(&rdp->cblist, head);
 | ||
| 	if (__is_kvfree_rcu_offset((unsigned long)func))
 | ||
| 		trace_rcu_kvfree_callback(rcu_state.name, head,
 | ||
| 					 (unsigned long)func,
 | ||
| 					 rcu_segcblist_n_cbs(&rdp->cblist));
 | ||
| 	else
 | ||
| 		trace_rcu_callback(rcu_state.name, head,
 | ||
| 				   rcu_segcblist_n_cbs(&rdp->cblist));
 | ||
| 
 | ||
| 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
 | ||
| 
 | ||
| 	/* Go handle any RCU core processing required. */
 | ||
| 	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
 | ||
| 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
 | ||
| 	} else {
 | ||
| 		__call_rcu_core(rdp, head, flags);
 | ||
| 		local_irq_restore(flags);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| #ifdef CONFIG_RCU_LAZY
 | ||
| /**
 | ||
|  * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
 | ||
|  * flush all lazy callbacks (including the new one) to the main ->cblist while
 | ||
|  * doing so.
 | ||
|  *
 | ||
|  * @head: structure to be used for queueing the RCU updates.
 | ||
|  * @func: actual callback function to be invoked after the grace period
 | ||
|  *
 | ||
|  * The callback function will be invoked some time after a full grace
 | ||
|  * period elapses, in other words after all pre-existing RCU read-side
 | ||
|  * critical sections have completed.
 | ||
|  *
 | ||
|  * Use this API instead of call_rcu() if you don't want the callback to be
 | ||
|  * invoked after very long periods of time, which can happen on systems without
 | ||
|  * memory pressure and on systems which are lightly loaded or mostly idle.
 | ||
|  * This function will cause callbacks to be invoked sooner than later at the
 | ||
|  * expense of extra power. Other than that, this function is identical to, and
 | ||
|  * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
 | ||
|  * ordering and other functionality.
 | ||
|  */
 | ||
| void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
 | ||
| {
 | ||
| 	__call_rcu_common(head, func, false);
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(call_rcu_hurry);
 | ||
| #endif
 | ||
| 
 | ||
| /**
 | ||
|  * call_rcu() - Queue an RCU callback for invocation after a grace period.
 | ||
|  * By default the callbacks are 'lazy' and are kept hidden from the main
 | ||
|  * ->cblist to prevent starting of grace periods too soon.
 | ||
|  * If you desire grace periods to start very soon, use call_rcu_hurry().
 | ||
|  *
 | ||
|  * @head: structure to be used for queueing the RCU updates.
 | ||
|  * @func: actual callback function to be invoked after the grace period
 | ||
|  *
 | ||
|  * The callback function will be invoked some time after a full grace
 | ||
|  * period elapses, in other words after all pre-existing RCU read-side
 | ||
|  * critical sections have completed.  However, the callback function
 | ||
|  * might well execute concurrently with RCU read-side critical sections
 | ||
|  * that started after call_rcu() was invoked.
 | ||
|  *
 | ||
|  * RCU read-side critical sections are delimited by rcu_read_lock()
 | ||
|  * and rcu_read_unlock(), and may be nested.  In addition, but only in
 | ||
|  * v5.0 and later, regions of code across which interrupts, preemption,
 | ||
|  * or softirqs have been disabled also serve as RCU read-side critical
 | ||
|  * sections.  This includes hardware interrupt handlers, softirq handlers,
 | ||
|  * and NMI handlers.
 | ||
|  *
 | ||
|  * Note that all CPUs must agree that the grace period extended beyond
 | ||
|  * all pre-existing RCU read-side critical section.  On systems with more
 | ||
|  * than one CPU, this means that when "func()" is invoked, each CPU is
 | ||
|  * guaranteed to have executed a full memory barrier since the end of its
 | ||
|  * last RCU read-side critical section whose beginning preceded the call
 | ||
|  * to call_rcu().  It also means that each CPU executing an RCU read-side
 | ||
|  * critical section that continues beyond the start of "func()" must have
 | ||
|  * executed a memory barrier after the call_rcu() but before the beginning
 | ||
|  * of that RCU read-side critical section.  Note that these guarantees
 | ||
|  * include CPUs that are offline, idle, or executing in user mode, as
 | ||
|  * well as CPUs that are executing in the kernel.
 | ||
|  *
 | ||
|  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
 | ||
|  * resulting RCU callback function "func()", then both CPU A and CPU B are
 | ||
|  * guaranteed to execute a full memory barrier during the time interval
 | ||
|  * between the call to call_rcu() and the invocation of "func()" -- even
 | ||
|  * if CPU A and CPU B are the same CPU (but again only if the system has
 | ||
|  * more than one CPU).
 | ||
|  *
 | ||
|  * Implementation of these memory-ordering guarantees is described here:
 | ||
|  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
 | ||
|  */
 | ||
| void call_rcu(struct rcu_head *head, rcu_callback_t func)
 | ||
| {
 | ||
| 	__call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY));
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(call_rcu);
 | ||
| 
 | ||
| /* Maximum number of jiffies to wait before draining a batch. */
 | ||
| #define KFREE_DRAIN_JIFFIES (5 * HZ)
 | ||
| #define KFREE_N_BATCHES 2
 | ||
| #define FREE_N_CHANNELS 2
 | ||
| 
 | ||
| /**
 | ||
|  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
 | ||
|  * @list: List node. All blocks are linked between each other
 | ||
|  * @gp_snap: Snapshot of RCU state for objects placed to this bulk
 | ||
|  * @nr_records: Number of active pointers in the array
 | ||
|  * @records: Array of the kvfree_rcu() pointers
 | ||
|  */
 | ||
| struct kvfree_rcu_bulk_data {
 | ||
| 	struct list_head list;
 | ||
| 	struct rcu_gp_oldstate gp_snap;
 | ||
| 	unsigned long nr_records;
 | ||
| 	void *records[];
 | ||
| };
 | ||
| 
 | ||
| /*
 | ||
|  * This macro defines how many entries the "records" array
 | ||
|  * will contain. It is based on the fact that the size of
 | ||
|  * kvfree_rcu_bulk_data structure becomes exactly one page.
 | ||
|  */
 | ||
| #define KVFREE_BULK_MAX_ENTR \
 | ||
| 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
 | ||
| 
 | ||
| /**
 | ||
|  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
 | ||
|  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
 | ||
|  * @head_free: List of kfree_rcu() objects waiting for a grace period
 | ||
|  * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
 | ||
|  * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
 | ||
|  * @krcp: Pointer to @kfree_rcu_cpu structure
 | ||
|  */
 | ||
| 
 | ||
| struct kfree_rcu_cpu_work {
 | ||
| 	struct rcu_work rcu_work;
 | ||
| 	struct rcu_head *head_free;
 | ||
| 	struct rcu_gp_oldstate head_free_gp_snap;
 | ||
| 	struct list_head bulk_head_free[FREE_N_CHANNELS];
 | ||
| 	struct kfree_rcu_cpu *krcp;
 | ||
| };
 | ||
| 
 | ||
| /**
 | ||
|  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
 | ||
|  * @head: List of kfree_rcu() objects not yet waiting for a grace period
 | ||
|  * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
 | ||
|  * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
 | ||
|  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
 | ||
|  * @lock: Synchronize access to this structure
 | ||
|  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
 | ||
|  * @initialized: The @rcu_work fields have been initialized
 | ||
|  * @head_count: Number of objects in rcu_head singular list
 | ||
|  * @bulk_count: Number of objects in bulk-list
 | ||
|  * @bkvcache:
 | ||
|  *	A simple cache list that contains objects for reuse purpose.
 | ||
|  *	In order to save some per-cpu space the list is singular.
 | ||
|  *	Even though it is lockless an access has to be protected by the
 | ||
|  *	per-cpu lock.
 | ||
|  * @page_cache_work: A work to refill the cache when it is empty
 | ||
|  * @backoff_page_cache_fill: Delay cache refills
 | ||
|  * @work_in_progress: Indicates that page_cache_work is running
 | ||
|  * @hrtimer: A hrtimer for scheduling a page_cache_work
 | ||
|  * @nr_bkv_objs: number of allocated objects at @bkvcache.
 | ||
|  *
 | ||
|  * This is a per-CPU structure.  The reason that it is not included in
 | ||
|  * the rcu_data structure is to permit this code to be extracted from
 | ||
|  * the RCU files.  Such extraction could allow further optimization of
 | ||
|  * the interactions with the slab allocators.
 | ||
|  */
 | ||
| struct kfree_rcu_cpu {
 | ||
| 	// Objects queued on a linked list
 | ||
| 	// through their rcu_head structures.
 | ||
| 	struct rcu_head *head;
 | ||
| 	unsigned long head_gp_snap;
 | ||
| 	atomic_t head_count;
 | ||
| 
 | ||
| 	// Objects queued on a bulk-list.
 | ||
| 	struct list_head bulk_head[FREE_N_CHANNELS];
 | ||
| 	atomic_t bulk_count[FREE_N_CHANNELS];
 | ||
| 
 | ||
| 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
 | ||
| 	raw_spinlock_t lock;
 | ||
| 	struct delayed_work monitor_work;
 | ||
| 	bool initialized;
 | ||
| 
 | ||
| 	struct delayed_work page_cache_work;
 | ||
| 	atomic_t backoff_page_cache_fill;
 | ||
| 	atomic_t work_in_progress;
 | ||
| 	struct hrtimer hrtimer;
 | ||
| 
 | ||
| 	struct llist_head bkvcache;
 | ||
| 	int nr_bkv_objs;
 | ||
| };
 | ||
| 
 | ||
| static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
 | ||
| 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
 | ||
| };
 | ||
| 
 | ||
| static __always_inline void
 | ||
| debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
 | ||
| {
 | ||
| #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 | ||
| 	int i;
 | ||
| 
 | ||
| 	for (i = 0; i < bhead->nr_records; i++)
 | ||
| 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
 | ||
| #endif
 | ||
| }
 | ||
| 
 | ||
| static inline struct kfree_rcu_cpu *
 | ||
| krc_this_cpu_lock(unsigned long *flags)
 | ||
| {
 | ||
| 	struct kfree_rcu_cpu *krcp;
 | ||
| 
 | ||
| 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
 | ||
| 	krcp = this_cpu_ptr(&krc);
 | ||
| 	raw_spin_lock(&krcp->lock);
 | ||
| 
 | ||
| 	return krcp;
 | ||
| }
 | ||
| 
 | ||
| static inline void
 | ||
| krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
 | ||
| {
 | ||
| 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
 | ||
| }
 | ||
| 
 | ||
| static inline struct kvfree_rcu_bulk_data *
 | ||
| get_cached_bnode(struct kfree_rcu_cpu *krcp)
 | ||
| {
 | ||
| 	if (!krcp->nr_bkv_objs)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
 | ||
| 	return (struct kvfree_rcu_bulk_data *)
 | ||
| 		llist_del_first(&krcp->bkvcache);
 | ||
| }
 | ||
| 
 | ||
| static inline bool
 | ||
| put_cached_bnode(struct kfree_rcu_cpu *krcp,
 | ||
| 	struct kvfree_rcu_bulk_data *bnode)
 | ||
| {
 | ||
| 	// Check the limit.
 | ||
| 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
 | ||
| 		return false;
 | ||
| 
 | ||
| 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
 | ||
| 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| static int
 | ||
| drain_page_cache(struct kfree_rcu_cpu *krcp)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	struct llist_node *page_list, *pos, *n;
 | ||
| 	int freed = 0;
 | ||
| 
 | ||
| 	if (!rcu_min_cached_objs)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	raw_spin_lock_irqsave(&krcp->lock, flags);
 | ||
| 	page_list = llist_del_all(&krcp->bkvcache);
 | ||
| 	WRITE_ONCE(krcp->nr_bkv_objs, 0);
 | ||
| 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
 | ||
| 
 | ||
| 	llist_for_each_safe(pos, n, page_list) {
 | ||
| 		free_page((unsigned long)pos);
 | ||
| 		freed++;
 | ||
| 	}
 | ||
| 
 | ||
| 	return freed;
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
 | ||
| 	struct kvfree_rcu_bulk_data *bnode, int idx)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	int i;
 | ||
| 
 | ||
| 	if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
 | ||
| 		debug_rcu_bhead_unqueue(bnode);
 | ||
| 		rcu_lock_acquire(&rcu_callback_map);
 | ||
| 		if (idx == 0) { // kmalloc() / kfree().
 | ||
| 			trace_rcu_invoke_kfree_bulk_callback(
 | ||
| 				rcu_state.name, bnode->nr_records,
 | ||
| 				bnode->records);
 | ||
| 
 | ||
| 			kfree_bulk(bnode->nr_records, bnode->records);
 | ||
| 		} else { // vmalloc() / vfree().
 | ||
| 			for (i = 0; i < bnode->nr_records; i++) {
 | ||
| 				trace_rcu_invoke_kvfree_callback(
 | ||
| 					rcu_state.name, bnode->records[i], 0);
 | ||
| 
 | ||
| 				vfree(bnode->records[i]);
 | ||
| 			}
 | ||
| 		}
 | ||
| 		rcu_lock_release(&rcu_callback_map);
 | ||
| 	}
 | ||
| 
 | ||
| 	raw_spin_lock_irqsave(&krcp->lock, flags);
 | ||
| 	if (put_cached_bnode(krcp, bnode))
 | ||
| 		bnode = NULL;
 | ||
| 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
 | ||
| 
 | ||
| 	if (bnode)
 | ||
| 		free_page((unsigned long) bnode);
 | ||
| 
 | ||
| 	cond_resched_tasks_rcu_qs();
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| kvfree_rcu_list(struct rcu_head *head)
 | ||
| {
 | ||
| 	struct rcu_head *next;
 | ||
| 
 | ||
| 	for (; head; head = next) {
 | ||
| 		void *ptr = (void *) head->func;
 | ||
| 		unsigned long offset = (void *) head - ptr;
 | ||
| 
 | ||
| 		next = head->next;
 | ||
| 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
 | ||
| 		rcu_lock_acquire(&rcu_callback_map);
 | ||
| 		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
 | ||
| 
 | ||
| 		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
 | ||
| 			kvfree(ptr);
 | ||
| 
 | ||
| 		rcu_lock_release(&rcu_callback_map);
 | ||
| 		cond_resched_tasks_rcu_qs();
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * This function is invoked in workqueue context after a grace period.
 | ||
|  * It frees all the objects queued on ->bulk_head_free or ->head_free.
 | ||
|  */
 | ||
| static void kfree_rcu_work(struct work_struct *work)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	struct kvfree_rcu_bulk_data *bnode, *n;
 | ||
| 	struct list_head bulk_head[FREE_N_CHANNELS];
 | ||
| 	struct rcu_head *head;
 | ||
| 	struct kfree_rcu_cpu *krcp;
 | ||
| 	struct kfree_rcu_cpu_work *krwp;
 | ||
| 	struct rcu_gp_oldstate head_gp_snap;
 | ||
| 	int i;
 | ||
| 
 | ||
| 	krwp = container_of(to_rcu_work(work),
 | ||
| 		struct kfree_rcu_cpu_work, rcu_work);
 | ||
| 	krcp = krwp->krcp;
 | ||
| 
 | ||
| 	raw_spin_lock_irqsave(&krcp->lock, flags);
 | ||
| 	// Channels 1 and 2.
 | ||
| 	for (i = 0; i < FREE_N_CHANNELS; i++)
 | ||
| 		list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
 | ||
| 
 | ||
| 	// Channel 3.
 | ||
| 	head = krwp->head_free;
 | ||
| 	krwp->head_free = NULL;
 | ||
| 	head_gp_snap = krwp->head_free_gp_snap;
 | ||
| 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
 | ||
| 
 | ||
| 	// Handle the first two channels.
 | ||
| 	for (i = 0; i < FREE_N_CHANNELS; i++) {
 | ||
| 		// Start from the tail page, so a GP is likely passed for it.
 | ||
| 		list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
 | ||
| 			kvfree_rcu_bulk(krcp, bnode, i);
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * This is used when the "bulk" path can not be used for the
 | ||
| 	 * double-argument of kvfree_rcu().  This happens when the
 | ||
| 	 * page-cache is empty, which means that objects are instead
 | ||
| 	 * queued on a linked list through their rcu_head structures.
 | ||
| 	 * This list is named "Channel 3".
 | ||
| 	 */
 | ||
| 	if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
 | ||
| 		kvfree_rcu_list(head);
 | ||
| }
 | ||
| 
 | ||
| static bool
 | ||
| need_offload_krc(struct kfree_rcu_cpu *krcp)
 | ||
| {
 | ||
| 	int i;
 | ||
| 
 | ||
| 	for (i = 0; i < FREE_N_CHANNELS; i++)
 | ||
| 		if (!list_empty(&krcp->bulk_head[i]))
 | ||
| 			return true;
 | ||
| 
 | ||
| 	return !!READ_ONCE(krcp->head);
 | ||
| }
 | ||
| 
 | ||
| static bool
 | ||
| need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
 | ||
| {
 | ||
| 	int i;
 | ||
| 
 | ||
| 	for (i = 0; i < FREE_N_CHANNELS; i++)
 | ||
| 		if (!list_empty(&krwp->bulk_head_free[i]))
 | ||
| 			return true;
 | ||
| 
 | ||
| 	return !!krwp->head_free;
 | ||
| }
 | ||
| 
 | ||
| static int krc_count(struct kfree_rcu_cpu *krcp)
 | ||
| {
 | ||
| 	int sum = atomic_read(&krcp->head_count);
 | ||
| 	int i;
 | ||
| 
 | ||
| 	for (i = 0; i < FREE_N_CHANNELS; i++)
 | ||
| 		sum += atomic_read(&krcp->bulk_count[i]);
 | ||
| 
 | ||
| 	return sum;
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
 | ||
| {
 | ||
| 	long delay, delay_left;
 | ||
| 
 | ||
| 	delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
 | ||
| 	if (delayed_work_pending(&krcp->monitor_work)) {
 | ||
| 		delay_left = krcp->monitor_work.timer.expires - jiffies;
 | ||
| 		if (delay < delay_left)
 | ||
| 			mod_delayed_work(system_wq, &krcp->monitor_work, delay);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 	queue_delayed_work(system_wq, &krcp->monitor_work, delay);
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
 | ||
| {
 | ||
| 	struct list_head bulk_ready[FREE_N_CHANNELS];
 | ||
| 	struct kvfree_rcu_bulk_data *bnode, *n;
 | ||
| 	struct rcu_head *head_ready = NULL;
 | ||
| 	unsigned long flags;
 | ||
| 	int i;
 | ||
| 
 | ||
| 	raw_spin_lock_irqsave(&krcp->lock, flags);
 | ||
| 	for (i = 0; i < FREE_N_CHANNELS; i++) {
 | ||
| 		INIT_LIST_HEAD(&bulk_ready[i]);
 | ||
| 
 | ||
| 		list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
 | ||
| 			if (!poll_state_synchronize_rcu_full(&bnode->gp_snap))
 | ||
| 				break;
 | ||
| 
 | ||
| 			atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
 | ||
| 			list_move(&bnode->list, &bulk_ready[i]);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
 | ||
| 		head_ready = krcp->head;
 | ||
| 		atomic_set(&krcp->head_count, 0);
 | ||
| 		WRITE_ONCE(krcp->head, NULL);
 | ||
| 	}
 | ||
| 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
 | ||
| 
 | ||
| 	for (i = 0; i < FREE_N_CHANNELS; i++) {
 | ||
| 		list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
 | ||
| 			kvfree_rcu_bulk(krcp, bnode, i);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (head_ready)
 | ||
| 		kvfree_rcu_list(head_ready);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
 | ||
|  */
 | ||
| static void kfree_rcu_monitor(struct work_struct *work)
 | ||
| {
 | ||
| 	struct kfree_rcu_cpu *krcp = container_of(work,
 | ||
| 		struct kfree_rcu_cpu, monitor_work.work);
 | ||
| 	unsigned long flags;
 | ||
| 	int i, j;
 | ||
| 
 | ||
| 	// Drain ready for reclaim.
 | ||
| 	kvfree_rcu_drain_ready(krcp);
 | ||
| 
 | ||
| 	raw_spin_lock_irqsave(&krcp->lock, flags);
 | ||
| 
 | ||
| 	// Attempt to start a new batch.
 | ||
| 	for (i = 0; i < KFREE_N_BATCHES; i++) {
 | ||
| 		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
 | ||
| 
 | ||
| 		// Try to detach bulk_head or head and attach it, only when
 | ||
| 		// all channels are free.  Any channel is not free means at krwp
 | ||
| 		// there is on-going rcu work to handle krwp's free business.
 | ||
| 		if (need_wait_for_krwp_work(krwp))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		// kvfree_rcu_drain_ready() might handle this krcp, if so give up.
 | ||
| 		if (need_offload_krc(krcp)) {
 | ||
| 			// Channel 1 corresponds to the SLAB-pointer bulk path.
 | ||
| 			// Channel 2 corresponds to vmalloc-pointer bulk path.
 | ||
| 			for (j = 0; j < FREE_N_CHANNELS; j++) {
 | ||
| 				if (list_empty(&krwp->bulk_head_free[j])) {
 | ||
| 					atomic_set(&krcp->bulk_count[j], 0);
 | ||
| 					list_replace_init(&krcp->bulk_head[j],
 | ||
| 						&krwp->bulk_head_free[j]);
 | ||
| 				}
 | ||
| 			}
 | ||
| 
 | ||
| 			// Channel 3 corresponds to both SLAB and vmalloc
 | ||
| 			// objects queued on the linked list.
 | ||
| 			if (!krwp->head_free) {
 | ||
| 				krwp->head_free = krcp->head;
 | ||
| 				get_state_synchronize_rcu_full(&krwp->head_free_gp_snap);
 | ||
| 				atomic_set(&krcp->head_count, 0);
 | ||
| 				WRITE_ONCE(krcp->head, NULL);
 | ||
| 			}
 | ||
| 
 | ||
| 			// One work is per one batch, so there are three
 | ||
| 			// "free channels", the batch can handle. It can
 | ||
| 			// be that the work is in the pending state when
 | ||
| 			// channels have been detached following by each
 | ||
| 			// other.
 | ||
| 			queue_rcu_work(system_wq, &krwp->rcu_work);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
 | ||
| 
 | ||
| 	// If there is nothing to detach, it means that our job is
 | ||
| 	// successfully done here. In case of having at least one
 | ||
| 	// of the channels that is still busy we should rearm the
 | ||
| 	// work to repeat an attempt. Because previous batches are
 | ||
| 	// still in progress.
 | ||
| 	if (need_offload_krc(krcp))
 | ||
| 		schedule_delayed_monitor_work(krcp);
 | ||
| }
 | ||
| 
 | ||
| static enum hrtimer_restart
 | ||
| schedule_page_work_fn(struct hrtimer *t)
 | ||
| {
 | ||
| 	struct kfree_rcu_cpu *krcp =
 | ||
| 		container_of(t, struct kfree_rcu_cpu, hrtimer);
 | ||
| 
 | ||
| 	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
 | ||
| 	return HRTIMER_NORESTART;
 | ||
| }
 | ||
| 
 | ||
| static void fill_page_cache_func(struct work_struct *work)
 | ||
| {
 | ||
| 	struct kvfree_rcu_bulk_data *bnode;
 | ||
| 	struct kfree_rcu_cpu *krcp =
 | ||
| 		container_of(work, struct kfree_rcu_cpu,
 | ||
| 			page_cache_work.work);
 | ||
| 	unsigned long flags;
 | ||
| 	int nr_pages;
 | ||
| 	bool pushed;
 | ||
| 	int i;
 | ||
| 
 | ||
| 	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
 | ||
| 		1 : rcu_min_cached_objs;
 | ||
| 
 | ||
| 	for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
 | ||
| 		bnode = (struct kvfree_rcu_bulk_data *)
 | ||
| 			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 | ||
| 
 | ||
| 		if (!bnode)
 | ||
| 			break;
 | ||
| 
 | ||
| 		raw_spin_lock_irqsave(&krcp->lock, flags);
 | ||
| 		pushed = put_cached_bnode(krcp, bnode);
 | ||
| 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
 | ||
| 
 | ||
| 		if (!pushed) {
 | ||
| 			free_page((unsigned long) bnode);
 | ||
| 			break;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	atomic_set(&krcp->work_in_progress, 0);
 | ||
| 	atomic_set(&krcp->backoff_page_cache_fill, 0);
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| run_page_cache_worker(struct kfree_rcu_cpu *krcp)
 | ||
| {
 | ||
| 	// If cache disabled, bail out.
 | ||
| 	if (!rcu_min_cached_objs)
 | ||
| 		return;
 | ||
| 
 | ||
| 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
 | ||
| 			!atomic_xchg(&krcp->work_in_progress, 1)) {
 | ||
| 		if (atomic_read(&krcp->backoff_page_cache_fill)) {
 | ||
| 			queue_delayed_work(system_wq,
 | ||
| 				&krcp->page_cache_work,
 | ||
| 					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
 | ||
| 		} else {
 | ||
| 			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 | ||
| 			krcp->hrtimer.function = schedule_page_work_fn;
 | ||
| 			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
 | ||
| // state specified by flags.  If can_alloc is true, the caller must
 | ||
| // be schedulable and not be holding any locks or mutexes that might be
 | ||
| // acquired by the memory allocator or anything that it might invoke.
 | ||
| // Returns true if ptr was successfully recorded, else the caller must
 | ||
| // use a fallback.
 | ||
| static inline bool
 | ||
| add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
 | ||
| 	unsigned long *flags, void *ptr, bool can_alloc)
 | ||
| {
 | ||
| 	struct kvfree_rcu_bulk_data *bnode;
 | ||
| 	int idx;
 | ||
| 
 | ||
| 	*krcp = krc_this_cpu_lock(flags);
 | ||
| 	if (unlikely(!(*krcp)->initialized))
 | ||
| 		return false;
 | ||
| 
 | ||
| 	idx = !!is_vmalloc_addr(ptr);
 | ||
| 	bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
 | ||
| 		struct kvfree_rcu_bulk_data, list);
 | ||
| 
 | ||
| 	/* Check if a new block is required. */
 | ||
| 	if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
 | ||
| 		bnode = get_cached_bnode(*krcp);
 | ||
| 		if (!bnode && can_alloc) {
 | ||
| 			krc_this_cpu_unlock(*krcp, *flags);
 | ||
| 
 | ||
| 			// __GFP_NORETRY - allows a light-weight direct reclaim
 | ||
| 			// what is OK from minimizing of fallback hitting point of
 | ||
| 			// view. Apart of that it forbids any OOM invoking what is
 | ||
| 			// also beneficial since we are about to release memory soon.
 | ||
| 			//
 | ||
| 			// __GFP_NOMEMALLOC - prevents from consuming of all the
 | ||
| 			// memory reserves. Please note we have a fallback path.
 | ||
| 			//
 | ||
| 			// __GFP_NOWARN - it is supposed that an allocation can
 | ||
| 			// be failed under low memory or high memory pressure
 | ||
| 			// scenarios.
 | ||
| 			bnode = (struct kvfree_rcu_bulk_data *)
 | ||
| 				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 | ||
| 			raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
 | ||
| 		}
 | ||
| 
 | ||
| 		if (!bnode)
 | ||
| 			return false;
 | ||
| 
 | ||
| 		// Initialize the new block and attach it.
 | ||
| 		bnode->nr_records = 0;
 | ||
| 		list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
 | ||
| 	}
 | ||
| 
 | ||
| 	// Finally insert and update the GP for this page.
 | ||
| 	bnode->records[bnode->nr_records++] = ptr;
 | ||
| 	get_state_synchronize_rcu_full(&bnode->gp_snap);
 | ||
| 	atomic_inc(&(*krcp)->bulk_count[idx]);
 | ||
| 
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Queue a request for lazy invocation of the appropriate free routine
 | ||
|  * after a grace period.  Please note that three paths are maintained,
 | ||
|  * two for the common case using arrays of pointers and a third one that
 | ||
|  * is used only when the main paths cannot be used, for example, due to
 | ||
|  * memory pressure.
 | ||
|  *
 | ||
|  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
 | ||
|  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
 | ||
|  * be free'd in workqueue context. This allows us to: batch requests together to
 | ||
|  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
 | ||
|  */
 | ||
| void kvfree_call_rcu(struct rcu_head *head, void *ptr)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	struct kfree_rcu_cpu *krcp;
 | ||
| 	bool success;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Please note there is a limitation for the head-less
 | ||
| 	 * variant, that is why there is a clear rule for such
 | ||
| 	 * objects: it can be used from might_sleep() context
 | ||
| 	 * only. For other places please embed an rcu_head to
 | ||
| 	 * your data.
 | ||
| 	 */
 | ||
| 	if (!head)
 | ||
| 		might_sleep();
 | ||
| 
 | ||
| 	// Queue the object but don't yet schedule the batch.
 | ||
| 	if (debug_rcu_head_queue(ptr)) {
 | ||
| 		// Probable double kfree_rcu(), just leak.
 | ||
| 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
 | ||
| 			  __func__, head);
 | ||
| 
 | ||
| 		// Mark as success and leave.
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	kasan_record_aux_stack_noalloc(ptr);
 | ||
| 	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
 | ||
| 	if (!success) {
 | ||
| 		run_page_cache_worker(krcp);
 | ||
| 
 | ||
| 		if (head == NULL)
 | ||
| 			// Inline if kvfree_rcu(one_arg) call.
 | ||
| 			goto unlock_return;
 | ||
| 
 | ||
| 		head->func = ptr;
 | ||
| 		head->next = krcp->head;
 | ||
| 		WRITE_ONCE(krcp->head, head);
 | ||
| 		atomic_inc(&krcp->head_count);
 | ||
| 
 | ||
| 		// Take a snapshot for this krcp.
 | ||
| 		krcp->head_gp_snap = get_state_synchronize_rcu();
 | ||
| 		success = true;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * The kvfree_rcu() caller considers the pointer freed at this point
 | ||
| 	 * and likely removes any references to it. Since the actual slab
 | ||
| 	 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
 | ||
| 	 * this object (no scanning or false positives reporting).
 | ||
| 	 */
 | ||
| 	kmemleak_ignore(ptr);
 | ||
| 
 | ||
| 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
 | ||
| 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
 | ||
| 		schedule_delayed_monitor_work(krcp);
 | ||
| 
 | ||
| unlock_return:
 | ||
| 	krc_this_cpu_unlock(krcp, flags);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Inline kvfree() after synchronize_rcu(). We can do
 | ||
| 	 * it from might_sleep() context only, so the current
 | ||
| 	 * CPU can pass the QS state.
 | ||
| 	 */
 | ||
| 	if (!success) {
 | ||
| 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
 | ||
| 		synchronize_rcu();
 | ||
| 		kvfree(ptr);
 | ||
| 	}
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(kvfree_call_rcu);
 | ||
| 
 | ||
| static unsigned long
 | ||
| kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
 | ||
| {
 | ||
| 	int cpu;
 | ||
| 	unsigned long count = 0;
 | ||
| 
 | ||
| 	/* Snapshot count of all CPUs */
 | ||
| 	for_each_possible_cpu(cpu) {
 | ||
| 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
 | ||
| 
 | ||
| 		count += krc_count(krcp);
 | ||
| 		count += READ_ONCE(krcp->nr_bkv_objs);
 | ||
| 		atomic_set(&krcp->backoff_page_cache_fill, 1);
 | ||
| 	}
 | ||
| 
 | ||
| 	return count == 0 ? SHRINK_EMPTY : count;
 | ||
| }
 | ||
| 
 | ||
| static unsigned long
 | ||
| kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
 | ||
| {
 | ||
| 	int cpu, freed = 0;
 | ||
| 
 | ||
| 	for_each_possible_cpu(cpu) {
 | ||
| 		int count;
 | ||
| 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
 | ||
| 
 | ||
| 		count = krc_count(krcp);
 | ||
| 		count += drain_page_cache(krcp);
 | ||
| 		kfree_rcu_monitor(&krcp->monitor_work.work);
 | ||
| 
 | ||
| 		sc->nr_to_scan -= count;
 | ||
| 		freed += count;
 | ||
| 
 | ||
| 		if (sc->nr_to_scan <= 0)
 | ||
| 			break;
 | ||
| 	}
 | ||
| 
 | ||
| 	return freed == 0 ? SHRINK_STOP : freed;
 | ||
| }
 | ||
| 
 | ||
| static struct shrinker kfree_rcu_shrinker = {
 | ||
| 	.count_objects = kfree_rcu_shrink_count,
 | ||
| 	.scan_objects = kfree_rcu_shrink_scan,
 | ||
| 	.batch = 0,
 | ||
| 	.seeks = DEFAULT_SEEKS,
 | ||
| };
 | ||
| 
 | ||
| void __init kfree_rcu_scheduler_running(void)
 | ||
| {
 | ||
| 	int cpu;
 | ||
| 
 | ||
| 	for_each_possible_cpu(cpu) {
 | ||
| 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
 | ||
| 
 | ||
| 		if (need_offload_krc(krcp))
 | ||
| 			schedule_delayed_monitor_work(krcp);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * During early boot, any blocking grace-period wait automatically
 | ||
|  * implies a grace period.
 | ||
|  *
 | ||
|  * Later on, this could in theory be the case for kernels built with
 | ||
|  * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
 | ||
|  * is not a common case.  Furthermore, this optimization would cause
 | ||
|  * the rcu_gp_oldstate structure to expand by 50%, so this potential
 | ||
|  * grace-period optimization is ignored once the scheduler is running.
 | ||
|  */
 | ||
| static int rcu_blocking_is_gp(void)
 | ||
| {
 | ||
| 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
 | ||
| 		might_sleep();
 | ||
| 		return false;
 | ||
| 	}
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  * synchronize_rcu - wait until a grace period has elapsed.
 | ||
|  *
 | ||
|  * Control will return to the caller some time after a full grace
 | ||
|  * period has elapsed, in other words after all currently executing RCU
 | ||
|  * read-side critical sections have completed.  Note, however, that
 | ||
|  * upon return from synchronize_rcu(), the caller might well be executing
 | ||
|  * concurrently with new RCU read-side critical sections that began while
 | ||
|  * synchronize_rcu() was waiting.
 | ||
|  *
 | ||
|  * RCU read-side critical sections are delimited by rcu_read_lock()
 | ||
|  * and rcu_read_unlock(), and may be nested.  In addition, but only in
 | ||
|  * v5.0 and later, regions of code across which interrupts, preemption,
 | ||
|  * or softirqs have been disabled also serve as RCU read-side critical
 | ||
|  * sections.  This includes hardware interrupt handlers, softirq handlers,
 | ||
|  * and NMI handlers.
 | ||
|  *
 | ||
|  * Note that this guarantee implies further memory-ordering guarantees.
 | ||
|  * On systems with more than one CPU, when synchronize_rcu() returns,
 | ||
|  * each CPU is guaranteed to have executed a full memory barrier since
 | ||
|  * the end of its last RCU read-side critical section whose beginning
 | ||
|  * preceded the call to synchronize_rcu().  In addition, each CPU having
 | ||
|  * an RCU read-side critical section that extends beyond the return from
 | ||
|  * synchronize_rcu() is guaranteed to have executed a full memory barrier
 | ||
|  * after the beginning of synchronize_rcu() and before the beginning of
 | ||
|  * that RCU read-side critical section.  Note that these guarantees include
 | ||
|  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 | ||
|  * that are executing in the kernel.
 | ||
|  *
 | ||
|  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
 | ||
|  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 | ||
|  * to have executed a full memory barrier during the execution of
 | ||
|  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
 | ||
|  * again only if the system has more than one CPU).
 | ||
|  *
 | ||
|  * Implementation of these memory-ordering guarantees is described here:
 | ||
|  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
 | ||
|  */
 | ||
| void synchronize_rcu(void)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	struct rcu_node *rnp;
 | ||
| 
 | ||
| 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
 | ||
| 			 lock_is_held(&rcu_lock_map) ||
 | ||
| 			 lock_is_held(&rcu_sched_lock_map),
 | ||
| 			 "Illegal synchronize_rcu() in RCU read-side critical section");
 | ||
| 	if (!rcu_blocking_is_gp()) {
 | ||
| 		if (rcu_gp_is_expedited())
 | ||
| 			synchronize_rcu_expedited();
 | ||
| 		else
 | ||
| 			wait_rcu_gp(call_rcu_hurry);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	// Context allows vacuous grace periods.
 | ||
| 	// Note well that this code runs with !PREEMPT && !SMP.
 | ||
| 	// In addition, all code that advances grace periods runs at
 | ||
| 	// process level.  Therefore, this normal GP overlaps with other
 | ||
| 	// normal GPs only by being fully nested within them, which allows
 | ||
| 	// reuse of ->gp_seq_polled_snap.
 | ||
| 	rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
 | ||
| 	rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
 | ||
| 
 | ||
| 	// Update the normal grace-period counters to record
 | ||
| 	// this grace period, but only those used by the boot CPU.
 | ||
| 	// The rcu_scheduler_starting() will take care of the rest of
 | ||
| 	// these counters.
 | ||
| 	local_irq_save(flags);
 | ||
| 	WARN_ON_ONCE(num_online_cpus() > 1);
 | ||
| 	rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
 | ||
| 	for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
 | ||
| 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
 | ||
| 	local_irq_restore(flags);
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(synchronize_rcu);
 | ||
| 
 | ||
| /**
 | ||
|  * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
 | ||
|  * @rgosp: Place to put state cookie
 | ||
|  *
 | ||
|  * Stores into @rgosp a value that will always be treated by functions
 | ||
|  * like poll_state_synchronize_rcu_full() as a cookie whose grace period
 | ||
|  * has already completed.
 | ||
|  */
 | ||
| void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
 | ||
| {
 | ||
| 	rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
 | ||
| 	rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
 | ||
| 
 | ||
| /**
 | ||
|  * get_state_synchronize_rcu - Snapshot current RCU state
 | ||
|  *
 | ||
|  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 | ||
|  * or poll_state_synchronize_rcu() to determine whether or not a full
 | ||
|  * grace period has elapsed in the meantime.
 | ||
|  */
 | ||
| unsigned long get_state_synchronize_rcu(void)
 | ||
| {
 | ||
| 	/*
 | ||
| 	 * Any prior manipulation of RCU-protected data must happen
 | ||
| 	 * before the load from ->gp_seq.
 | ||
| 	 */
 | ||
| 	smp_mb();  /* ^^^ */
 | ||
| 	return rcu_seq_snap(&rcu_state.gp_seq_polled);
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
 | ||
| 
 | ||
| /**
 | ||
|  * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
 | ||
|  * @rgosp: location to place combined normal/expedited grace-period state
 | ||
|  *
 | ||
|  * Places the normal and expedited grace-period states in @rgosp.  This
 | ||
|  * state value can be passed to a later call to cond_synchronize_rcu_full()
 | ||
|  * or poll_state_synchronize_rcu_full() to determine whether or not a
 | ||
|  * grace period (whether normal or expedited) has elapsed in the meantime.
 | ||
|  * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
 | ||
|  * long, but is guaranteed to see all grace periods.  In contrast, the
 | ||
|  * combined state occupies less memory, but can sometimes fail to take
 | ||
|  * grace periods into account.
 | ||
|  *
 | ||
|  * This does not guarantee that the needed grace period will actually
 | ||
|  * start.
 | ||
|  */
 | ||
| void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
 | ||
| {
 | ||
| 	struct rcu_node *rnp = rcu_get_root();
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Any prior manipulation of RCU-protected data must happen
 | ||
| 	 * before the loads from ->gp_seq and ->expedited_sequence.
 | ||
| 	 */
 | ||
| 	smp_mb();  /* ^^^ */
 | ||
| 	rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
 | ||
| 	rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
 | ||
| 
 | ||
| /*
 | ||
|  * Helper function for start_poll_synchronize_rcu() and
 | ||
|  * start_poll_synchronize_rcu_full().
 | ||
|  */
 | ||
| static void start_poll_synchronize_rcu_common(void)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	bool needwake;
 | ||
| 	struct rcu_data *rdp;
 | ||
| 	struct rcu_node *rnp;
 | ||
| 
 | ||
| 	lockdep_assert_irqs_enabled();
 | ||
| 	local_irq_save(flags);
 | ||
| 	rdp = this_cpu_ptr(&rcu_data);
 | ||
| 	rnp = rdp->mynode;
 | ||
| 	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
 | ||
| 	// Note it is possible for a grace period to have elapsed between
 | ||
| 	// the above call to get_state_synchronize_rcu() and the below call
 | ||
| 	// to rcu_seq_snap.  This is OK, the worst that happens is that we
 | ||
| 	// get a grace period that no one needed.  These accesses are ordered
 | ||
| 	// by smp_mb(), and we are accessing them in the opposite order
 | ||
| 	// from which they are updated at grace-period start, as required.
 | ||
| 	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
 | ||
| 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | ||
| 	if (needwake)
 | ||
| 		rcu_gp_kthread_wake();
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  * start_poll_synchronize_rcu - Snapshot and start RCU grace period
 | ||
|  *
 | ||
|  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 | ||
|  * or poll_state_synchronize_rcu() to determine whether or not a full
 | ||
|  * grace period has elapsed in the meantime.  If the needed grace period
 | ||
|  * is not already slated to start, notifies RCU core of the need for that
 | ||
|  * grace period.
 | ||
|  *
 | ||
|  * Interrupts must be enabled for the case where it is necessary to awaken
 | ||
|  * the grace-period kthread.
 | ||
|  */
 | ||
| unsigned long start_poll_synchronize_rcu(void)
 | ||
| {
 | ||
| 	unsigned long gp_seq = get_state_synchronize_rcu();
 | ||
| 
 | ||
| 	start_poll_synchronize_rcu_common();
 | ||
| 	return gp_seq;
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
 | ||
| 
 | ||
| /**
 | ||
|  * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
 | ||
|  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
 | ||
|  *
 | ||
|  * Places the normal and expedited grace-period states in *@rgos.  This
 | ||
|  * state value can be passed to a later call to cond_synchronize_rcu_full()
 | ||
|  * or poll_state_synchronize_rcu_full() to determine whether or not a
 | ||
|  * grace period (whether normal or expedited) has elapsed in the meantime.
 | ||
|  * If the needed grace period is not already slated to start, notifies
 | ||
|  * RCU core of the need for that grace period.
 | ||
|  *
 | ||
|  * Interrupts must be enabled for the case where it is necessary to awaken
 | ||
|  * the grace-period kthread.
 | ||
|  */
 | ||
| void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
 | ||
| {
 | ||
| 	get_state_synchronize_rcu_full(rgosp);
 | ||
| 
 | ||
| 	start_poll_synchronize_rcu_common();
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
 | ||
| 
 | ||
| /**
 | ||
|  * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
 | ||
|  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
 | ||
|  *
 | ||
|  * If a full RCU grace period has elapsed since the earlier call from
 | ||
|  * which @oldstate was obtained, return @true, otherwise return @false.
 | ||
|  * If @false is returned, it is the caller's responsibility to invoke this
 | ||
|  * function later on until it does return @true.  Alternatively, the caller
 | ||
|  * can explicitly wait for a grace period, for example, by passing @oldstate
 | ||
|  * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
 | ||
|  * on the one hand or by directly invoking either synchronize_rcu() or
 | ||
|  * synchronize_rcu_expedited() on the other.
 | ||
|  *
 | ||
|  * Yes, this function does not take counter wrap into account.
 | ||
|  * But counter wrap is harmless.  If the counter wraps, we have waited for
 | ||
|  * more than a billion grace periods (and way more on a 64-bit system!).
 | ||
|  * Those needing to keep old state values for very long time periods
 | ||
|  * (many hours even on 32-bit systems) should check them occasionally and
 | ||
|  * either refresh them or set a flag indicating that the grace period has
 | ||
|  * completed.  Alternatively, they can use get_completed_synchronize_rcu()
 | ||
|  * to get a guaranteed-completed grace-period state.
 | ||
|  *
 | ||
|  * In addition, because oldstate compresses the grace-period state for
 | ||
|  * both normal and expedited grace periods into a single unsigned long,
 | ||
|  * it can miss a grace period when synchronize_rcu() runs concurrently
 | ||
|  * with synchronize_rcu_expedited().  If this is unacceptable, please
 | ||
|  * instead use the _full() variant of these polling APIs.
 | ||
|  *
 | ||
|  * This function provides the same memory-ordering guarantees that
 | ||
|  * would be provided by a synchronize_rcu() that was invoked at the call
 | ||
|  * to the function that provided @oldstate, and that returned at the end
 | ||
|  * of this function.
 | ||
|  */
 | ||
| bool poll_state_synchronize_rcu(unsigned long oldstate)
 | ||
| {
 | ||
| 	if (oldstate == RCU_GET_STATE_COMPLETED ||
 | ||
| 	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
 | ||
| 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
 | ||
| 		return true;
 | ||
| 	}
 | ||
| 	return false;
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
 | ||
| 
 | ||
| /**
 | ||
|  * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
 | ||
|  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
 | ||
|  *
 | ||
|  * If a full RCU grace period has elapsed since the earlier call from
 | ||
|  * which *rgosp was obtained, return @true, otherwise return @false.
 | ||
|  * If @false is returned, it is the caller's responsibility to invoke this
 | ||
|  * function later on until it does return @true.  Alternatively, the caller
 | ||
|  * can explicitly wait for a grace period, for example, by passing @rgosp
 | ||
|  * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
 | ||
|  *
 | ||
|  * Yes, this function does not take counter wrap into account.
 | ||
|  * But counter wrap is harmless.  If the counter wraps, we have waited
 | ||
|  * for more than a billion grace periods (and way more on a 64-bit
 | ||
|  * system!).  Those needing to keep rcu_gp_oldstate values for very
 | ||
|  * long time periods (many hours even on 32-bit systems) should check
 | ||
|  * them occasionally and either refresh them or set a flag indicating
 | ||
|  * that the grace period has completed.  Alternatively, they can use
 | ||
|  * get_completed_synchronize_rcu_full() to get a guaranteed-completed
 | ||
|  * grace-period state.
 | ||
|  *
 | ||
|  * This function provides the same memory-ordering guarantees that would
 | ||
|  * be provided by a synchronize_rcu() that was invoked at the call to
 | ||
|  * the function that provided @rgosp, and that returned at the end of this
 | ||
|  * function.  And this guarantee requires that the root rcu_node structure's
 | ||
|  * ->gp_seq field be checked instead of that of the rcu_state structure.
 | ||
|  * The problem is that the just-ending grace-period's callbacks can be
 | ||
|  * invoked between the time that the root rcu_node structure's ->gp_seq
 | ||
|  * field is updated and the time that the rcu_state structure's ->gp_seq
 | ||
|  * field is updated.  Therefore, if a single synchronize_rcu() is to
 | ||
|  * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
 | ||
|  * then the root rcu_node structure is the one that needs to be polled.
 | ||
|  */
 | ||
| bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
 | ||
| {
 | ||
| 	struct rcu_node *rnp = rcu_get_root();
 | ||
| 
 | ||
| 	smp_mb(); // Order against root rcu_node structure grace-period cleanup.
 | ||
| 	if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
 | ||
| 	    rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
 | ||
| 	    rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
 | ||
| 	    rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
 | ||
| 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
 | ||
| 		return true;
 | ||
| 	}
 | ||
| 	return false;
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
 | ||
| 
 | ||
| /**
 | ||
|  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 | ||
|  * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
 | ||
|  *
 | ||
|  * If a full RCU grace period has elapsed since the earlier call to
 | ||
|  * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
 | ||
|  * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
 | ||
|  *
 | ||
|  * Yes, this function does not take counter wrap into account.
 | ||
|  * But counter wrap is harmless.  If the counter wraps, we have waited for
 | ||
|  * more than 2 billion grace periods (and way more on a 64-bit system!),
 | ||
|  * so waiting for a couple of additional grace periods should be just fine.
 | ||
|  *
 | ||
|  * This function provides the same memory-ordering guarantees that
 | ||
|  * would be provided by a synchronize_rcu() that was invoked at the call
 | ||
|  * to the function that provided @oldstate and that returned at the end
 | ||
|  * of this function.
 | ||
|  */
 | ||
| void cond_synchronize_rcu(unsigned long oldstate)
 | ||
| {
 | ||
| 	if (!poll_state_synchronize_rcu(oldstate))
 | ||
| 		synchronize_rcu();
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
 | ||
| 
 | ||
| /**
 | ||
|  * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
 | ||
|  * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
 | ||
|  *
 | ||
|  * If a full RCU grace period has elapsed since the call to
 | ||
|  * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
 | ||
|  * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
 | ||
|  * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
 | ||
|  * for a full grace period.
 | ||
|  *
 | ||
|  * Yes, this function does not take counter wrap into account.
 | ||
|  * But counter wrap is harmless.  If the counter wraps, we have waited for
 | ||
|  * more than 2 billion grace periods (and way more on a 64-bit system!),
 | ||
|  * so waiting for a couple of additional grace periods should be just fine.
 | ||
|  *
 | ||
|  * This function provides the same memory-ordering guarantees that
 | ||
|  * would be provided by a synchronize_rcu() that was invoked at the call
 | ||
|  * to the function that provided @rgosp and that returned at the end of
 | ||
|  * this function.
 | ||
|  */
 | ||
| void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
 | ||
| {
 | ||
| 	if (!poll_state_synchronize_rcu_full(rgosp))
 | ||
| 		synchronize_rcu();
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
 | ||
| 
 | ||
| /*
 | ||
|  * Check to see if there is any immediate RCU-related work to be done by
 | ||
|  * the current CPU, returning 1 if so and zero otherwise.  The checks are
 | ||
|  * in order of increasing expense: checks that can be carried out against
 | ||
|  * CPU-local state are performed first.  However, we must check for CPU
 | ||
|  * stalls first, else we might not get a chance.
 | ||
|  */
 | ||
| static int rcu_pending(int user)
 | ||
| {
 | ||
| 	bool gp_in_progress;
 | ||
| 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | ||
| 	struct rcu_node *rnp = rdp->mynode;
 | ||
| 
 | ||
| 	lockdep_assert_irqs_disabled();
 | ||
| 
 | ||
| 	/* Check for CPU stalls, if enabled. */
 | ||
| 	check_cpu_stall(rdp);
 | ||
| 
 | ||
| 	/* Does this CPU need a deferred NOCB wakeup? */
 | ||
| 	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
 | ||
| 		return 1;
 | ||
| 
 | ||
| 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
 | ||
| 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Is the RCU core waiting for a quiescent state from this CPU? */
 | ||
| 	gp_in_progress = rcu_gp_in_progress();
 | ||
| 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
 | ||
| 		return 1;
 | ||
| 
 | ||
| 	/* Does this CPU have callbacks ready to invoke? */
 | ||
| 	if (!rcu_rdp_is_offloaded(rdp) &&
 | ||
| 	    rcu_segcblist_ready_cbs(&rdp->cblist))
 | ||
| 		return 1;
 | ||
| 
 | ||
| 	/* Has RCU gone idle with this CPU needing another grace period? */
 | ||
| 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
 | ||
| 	    !rcu_rdp_is_offloaded(rdp) &&
 | ||
| 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
 | ||
| 		return 1;
 | ||
| 
 | ||
| 	/* Have RCU grace period completed or started?  */
 | ||
| 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
 | ||
| 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
 | ||
| 		return 1;
 | ||
| 
 | ||
| 	/* nothing to do */
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
 | ||
|  * the compiler is expected to optimize this away.
 | ||
|  */
 | ||
| static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
 | ||
| {
 | ||
| 	trace_rcu_barrier(rcu_state.name, s, cpu,
 | ||
| 			  atomic_read(&rcu_state.barrier_cpu_count), done);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * RCU callback function for rcu_barrier().  If we are last, wake
 | ||
|  * up the task executing rcu_barrier().
 | ||
|  *
 | ||
|  * Note that the value of rcu_state.barrier_sequence must be captured
 | ||
|  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
 | ||
|  * other CPUs might count the value down to zero before this CPU gets
 | ||
|  * around to invoking rcu_barrier_trace(), which might result in bogus
 | ||
|  * data from the next instance of rcu_barrier().
 | ||
|  */
 | ||
| static void rcu_barrier_callback(struct rcu_head *rhp)
 | ||
| {
 | ||
| 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
 | ||
| 
 | ||
| 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
 | ||
| 		rcu_barrier_trace(TPS("LastCB"), -1, s);
 | ||
| 		complete(&rcu_state.barrier_completion);
 | ||
| 	} else {
 | ||
| 		rcu_barrier_trace(TPS("CB"), -1, s);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * If needed, entrain an rcu_barrier() callback on rdp->cblist.
 | ||
|  */
 | ||
| static void rcu_barrier_entrain(struct rcu_data *rdp)
 | ||
| {
 | ||
| 	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
 | ||
| 	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
 | ||
| 	bool wake_nocb = false;
 | ||
| 	bool was_alldone = false;
 | ||
| 
 | ||
| 	lockdep_assert_held(&rcu_state.barrier_lock);
 | ||
| 	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
 | ||
| 		return;
 | ||
| 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
 | ||
| 	rdp->barrier_head.func = rcu_barrier_callback;
 | ||
| 	debug_rcu_head_queue(&rdp->barrier_head);
 | ||
| 	rcu_nocb_lock(rdp);
 | ||
| 	/*
 | ||
| 	 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
 | ||
| 	 * queue. This way we don't wait for bypass timer that can reach seconds
 | ||
| 	 * if it's fully lazy.
 | ||
| 	 */
 | ||
| 	was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
 | ||
| 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
 | ||
| 	wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
 | ||
| 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
 | ||
| 		atomic_inc(&rcu_state.barrier_cpu_count);
 | ||
| 	} else {
 | ||
| 		debug_rcu_head_unqueue(&rdp->barrier_head);
 | ||
| 		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
 | ||
| 	}
 | ||
| 	rcu_nocb_unlock(rdp);
 | ||
| 	if (wake_nocb)
 | ||
| 		wake_nocb_gp(rdp, false);
 | ||
| 	smp_store_release(&rdp->barrier_seq_snap, gseq);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Called with preemption disabled, and from cross-cpu IRQ context.
 | ||
|  */
 | ||
| static void rcu_barrier_handler(void *cpu_in)
 | ||
| {
 | ||
| 	uintptr_t cpu = (uintptr_t)cpu_in;
 | ||
| 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | ||
| 
 | ||
| 	lockdep_assert_irqs_disabled();
 | ||
| 	WARN_ON_ONCE(cpu != rdp->cpu);
 | ||
| 	WARN_ON_ONCE(cpu != smp_processor_id());
 | ||
| 	raw_spin_lock(&rcu_state.barrier_lock);
 | ||
| 	rcu_barrier_entrain(rdp);
 | ||
| 	raw_spin_unlock(&rcu_state.barrier_lock);
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 | ||
|  *
 | ||
|  * Note that this primitive does not necessarily wait for an RCU grace period
 | ||
|  * to complete.  For example, if there are no RCU callbacks queued anywhere
 | ||
|  * in the system, then rcu_barrier() is within its rights to return
 | ||
|  * immediately, without waiting for anything, much less an RCU grace period.
 | ||
|  */
 | ||
| void rcu_barrier(void)
 | ||
| {
 | ||
| 	uintptr_t cpu;
 | ||
| 	unsigned long flags;
 | ||
| 	unsigned long gseq;
 | ||
| 	struct rcu_data *rdp;
 | ||
| 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
 | ||
| 
 | ||
| 	rcu_barrier_trace(TPS("Begin"), -1, s);
 | ||
| 
 | ||
| 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
 | ||
| 	mutex_lock(&rcu_state.barrier_mutex);
 | ||
| 
 | ||
| 	/* Did someone else do our work for us? */
 | ||
| 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
 | ||
| 		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
 | ||
| 		smp_mb(); /* caller's subsequent code after above check. */
 | ||
| 		mutex_unlock(&rcu_state.barrier_mutex);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Mark the start of the barrier operation. */
 | ||
| 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
 | ||
| 	rcu_seq_start(&rcu_state.barrier_sequence);
 | ||
| 	gseq = rcu_state.barrier_sequence;
 | ||
| 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Initialize the count to two rather than to zero in order
 | ||
| 	 * to avoid a too-soon return to zero in case of an immediate
 | ||
| 	 * invocation of the just-enqueued callback (or preemption of
 | ||
| 	 * this task).  Exclude CPU-hotplug operations to ensure that no
 | ||
| 	 * offline non-offloaded CPU has callbacks queued.
 | ||
| 	 */
 | ||
| 	init_completion(&rcu_state.barrier_completion);
 | ||
| 	atomic_set(&rcu_state.barrier_cpu_count, 2);
 | ||
| 	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Force each CPU with callbacks to register a new callback.
 | ||
| 	 * When that callback is invoked, we will know that all of the
 | ||
| 	 * corresponding CPU's preceding callbacks have been invoked.
 | ||
| 	 */
 | ||
| 	for_each_possible_cpu(cpu) {
 | ||
| 		rdp = per_cpu_ptr(&rcu_data, cpu);
 | ||
| retry:
 | ||
| 		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
 | ||
| 			continue;
 | ||
| 		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
 | ||
| 		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
 | ||
| 			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
 | ||
| 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
 | ||
| 			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 		if (!rcu_rdp_cpu_online(rdp)) {
 | ||
| 			rcu_barrier_entrain(rdp);
 | ||
| 			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
 | ||
| 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
 | ||
| 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
 | ||
| 		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
 | ||
| 			schedule_timeout_uninterruptible(1);
 | ||
| 			goto retry;
 | ||
| 		}
 | ||
| 		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
 | ||
| 		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Now that we have an rcu_barrier_callback() callback on each
 | ||
| 	 * CPU, and thus each counted, remove the initial count.
 | ||
| 	 */
 | ||
| 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
 | ||
| 		complete(&rcu_state.barrier_completion);
 | ||
| 
 | ||
| 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
 | ||
| 	wait_for_completion(&rcu_state.barrier_completion);
 | ||
| 
 | ||
| 	/* Mark the end of the barrier operation. */
 | ||
| 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
 | ||
| 	rcu_seq_end(&rcu_state.barrier_sequence);
 | ||
| 	gseq = rcu_state.barrier_sequence;
 | ||
| 	for_each_possible_cpu(cpu) {
 | ||
| 		rdp = per_cpu_ptr(&rcu_data, cpu);
 | ||
| 
 | ||
| 		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Other rcu_barrier() invocations can now safely proceed. */
 | ||
| 	mutex_unlock(&rcu_state.barrier_mutex);
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(rcu_barrier);
 | ||
| 
 | ||
| static unsigned long rcu_barrier_last_throttle;
 | ||
| 
 | ||
| /**
 | ||
|  * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second
 | ||
|  *
 | ||
|  * This can be thought of as guard rails around rcu_barrier() that
 | ||
|  * permits unrestricted userspace use, at least assuming the hardware's
 | ||
|  * try_cmpxchg() is robust.  There will be at most one call per second to
 | ||
|  * rcu_barrier() system-wide from use of this function, which means that
 | ||
|  * callers might needlessly wait a second or three.
 | ||
|  *
 | ||
|  * This is intended for use by test suites to avoid OOM by flushing RCU
 | ||
|  * callbacks from the previous test before starting the next.  See the
 | ||
|  * rcutree.do_rcu_barrier module parameter for more information.
 | ||
|  *
 | ||
|  * Why not simply make rcu_barrier() more scalable?  That might be
 | ||
|  * the eventual endpoint, but let's keep it simple for the time being.
 | ||
|  * Note that the module parameter infrastructure serializes calls to a
 | ||
|  * given .set() function, but should concurrent .set() invocation ever be
 | ||
|  * possible, we are ready!
 | ||
|  */
 | ||
| static void rcu_barrier_throttled(void)
 | ||
| {
 | ||
| 	unsigned long j = jiffies;
 | ||
| 	unsigned long old = READ_ONCE(rcu_barrier_last_throttle);
 | ||
| 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
 | ||
| 
 | ||
| 	while (time_in_range(j, old, old + HZ / 16) ||
 | ||
| 	       !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) {
 | ||
| 		schedule_timeout_idle(HZ / 16);
 | ||
| 		if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
 | ||
| 			smp_mb(); /* caller's subsequent code after above check. */
 | ||
| 			return;
 | ||
| 		}
 | ||
| 		j = jiffies;
 | ||
| 		old = READ_ONCE(rcu_barrier_last_throttle);
 | ||
| 	}
 | ||
| 	rcu_barrier();
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier
 | ||
|  * request arrives.  We insist on a true value to allow for possible
 | ||
|  * future expansion.
 | ||
|  */
 | ||
| static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp)
 | ||
| {
 | ||
| 	bool b;
 | ||
| 	int ret;
 | ||
| 
 | ||
| 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING)
 | ||
| 		return -EAGAIN;
 | ||
| 	ret = kstrtobool(val, &b);
 | ||
| 	if (!ret && b) {
 | ||
| 		atomic_inc((atomic_t *)kp->arg);
 | ||
| 		rcu_barrier_throttled();
 | ||
| 		atomic_dec((atomic_t *)kp->arg);
 | ||
| 	}
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Output the number of outstanding rcutree.do_rcu_barrier requests.
 | ||
|  */
 | ||
| static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp)
 | ||
| {
 | ||
| 	return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg));
 | ||
| }
 | ||
| 
 | ||
| static const struct kernel_param_ops do_rcu_barrier_ops = {
 | ||
| 	.set = param_set_do_rcu_barrier,
 | ||
| 	.get = param_get_do_rcu_barrier,
 | ||
| };
 | ||
| static atomic_t do_rcu_barrier;
 | ||
| module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644);
 | ||
| 
 | ||
| /*
 | ||
|  * Compute the mask of online CPUs for the specified rcu_node structure.
 | ||
|  * This will not be stable unless the rcu_node structure's ->lock is
 | ||
|  * held, but the bit corresponding to the current CPU will be stable
 | ||
|  * in most contexts.
 | ||
|  */
 | ||
| static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 | ||
| {
 | ||
| 	return READ_ONCE(rnp->qsmaskinitnext);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Is the CPU corresponding to the specified rcu_data structure online
 | ||
|  * from RCU's perspective?  This perspective is given by that structure's
 | ||
|  * ->qsmaskinitnext field rather than by the global cpu_online_mask.
 | ||
|  */
 | ||
| static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
 | ||
| {
 | ||
| 	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
 | ||
| }
 | ||
| 
 | ||
| #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
 | ||
| 
 | ||
| /*
 | ||
|  * Is the current CPU online as far as RCU is concerned?
 | ||
|  *
 | ||
|  * Disable preemption to avoid false positives that could otherwise
 | ||
|  * happen due to the current CPU number being sampled, this task being
 | ||
|  * preempted, its old CPU being taken offline, resuming on some other CPU,
 | ||
|  * then determining that its old CPU is now offline.
 | ||
|  *
 | ||
|  * Disable checking if in an NMI handler because we cannot safely
 | ||
|  * report errors from NMI handlers anyway.  In addition, it is OK to use
 | ||
|  * RCU on an offline processor during initial boot, hence the check for
 | ||
|  * rcu_scheduler_fully_active.
 | ||
|  */
 | ||
| bool rcu_lockdep_current_cpu_online(void)
 | ||
| {
 | ||
| 	struct rcu_data *rdp;
 | ||
| 	bool ret = false;
 | ||
| 
 | ||
| 	if (in_nmi() || !rcu_scheduler_fully_active)
 | ||
| 		return true;
 | ||
| 	preempt_disable_notrace();
 | ||
| 	rdp = this_cpu_ptr(&rcu_data);
 | ||
| 	/*
 | ||
| 	 * Strictly, we care here about the case where the current CPU is
 | ||
| 	 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask
 | ||
| 	 * not being up to date. So arch_spin_is_locked() might have a
 | ||
| 	 * false positive if it's held by some *other* CPU, but that's
 | ||
| 	 * OK because that just means a false *negative* on the warning.
 | ||
| 	 */
 | ||
| 	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
 | ||
| 		ret = true;
 | ||
| 	preempt_enable_notrace();
 | ||
| 	return ret;
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
 | ||
| 
 | ||
| #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
 | ||
| 
 | ||
| // Has rcu_init() been invoked?  This is used (for example) to determine
 | ||
| // whether spinlocks may be acquired safely.
 | ||
| static bool rcu_init_invoked(void)
 | ||
| {
 | ||
| 	return !!rcu_state.n_online_cpus;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * All CPUs for the specified rcu_node structure have gone offline,
 | ||
|  * and all tasks that were preempted within an RCU read-side critical
 | ||
|  * section while running on one of those CPUs have since exited their RCU
 | ||
|  * read-side critical section.  Some other CPU is reporting this fact with
 | ||
|  * the specified rcu_node structure's ->lock held and interrupts disabled.
 | ||
|  * This function therefore goes up the tree of rcu_node structures,
 | ||
|  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 | ||
|  * the leaf rcu_node structure's ->qsmaskinit field has already been
 | ||
|  * updated.
 | ||
|  *
 | ||
|  * This function does check that the specified rcu_node structure has
 | ||
|  * all CPUs offline and no blocked tasks, so it is OK to invoke it
 | ||
|  * prematurely.  That said, invoking it after the fact will cost you
 | ||
|  * a needless lock acquisition.  So once it has done its work, don't
 | ||
|  * invoke it again.
 | ||
|  */
 | ||
| static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
 | ||
| {
 | ||
| 	long mask;
 | ||
| 	struct rcu_node *rnp = rnp_leaf;
 | ||
| 
 | ||
| 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
 | ||
| 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
 | ||
| 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
 | ||
| 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
 | ||
| 		return;
 | ||
| 	for (;;) {
 | ||
| 		mask = rnp->grpmask;
 | ||
| 		rnp = rnp->parent;
 | ||
| 		if (!rnp)
 | ||
| 			break;
 | ||
| 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 | ||
| 		rnp->qsmaskinit &= ~mask;
 | ||
| 		/* Between grace periods, so better already be zero! */
 | ||
| 		WARN_ON_ONCE(rnp->qsmask);
 | ||
| 		if (rnp->qsmaskinit) {
 | ||
| 			raw_spin_unlock_rcu_node(rnp);
 | ||
| 			/* irqs remain disabled. */
 | ||
| 			return;
 | ||
| 		}
 | ||
| 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 | ||
|  * first CPU in a given leaf rcu_node structure coming online.  The caller
 | ||
|  * must hold the corresponding leaf rcu_node ->lock with interrupts
 | ||
|  * disabled.
 | ||
|  */
 | ||
| static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
 | ||
| {
 | ||
| 	long mask;
 | ||
| 	long oldmask;
 | ||
| 	struct rcu_node *rnp = rnp_leaf;
 | ||
| 
 | ||
| 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
 | ||
| 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
 | ||
| 	for (;;) {
 | ||
| 		mask = rnp->grpmask;
 | ||
| 		rnp = rnp->parent;
 | ||
| 		if (rnp == NULL)
 | ||
| 			return;
 | ||
| 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
 | ||
| 		oldmask = rnp->qsmaskinit;
 | ||
| 		rnp->qsmaskinit |= mask;
 | ||
| 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
 | ||
| 		if (oldmask)
 | ||
| 			return;
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Do boot-time initialization of a CPU's per-CPU RCU data.
 | ||
|  */
 | ||
| static void __init
 | ||
| rcu_boot_init_percpu_data(int cpu)
 | ||
| {
 | ||
| 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
 | ||
| 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | ||
| 
 | ||
| 	/* Set up local state, ensuring consistent view of global state. */
 | ||
| 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
 | ||
| 	INIT_WORK(&rdp->strict_work, strict_work_handler);
 | ||
| 	WARN_ON_ONCE(ct->dynticks_nesting != 1);
 | ||
| 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
 | ||
| 	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
 | ||
| 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
 | ||
| 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
 | ||
| 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
 | ||
| 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
 | ||
| 	rdp->last_sched_clock = jiffies;
 | ||
| 	rdp->cpu = cpu;
 | ||
| 	rcu_boot_init_nocb_percpu_data(rdp);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Invoked early in the CPU-online process, when pretty much all services
 | ||
|  * are available.  The incoming CPU is not present.
 | ||
|  *
 | ||
|  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
 | ||
|  * offline event can be happening at a given time.  Note also that we can
 | ||
|  * accept some slop in the rsp->gp_seq access due to the fact that this
 | ||
|  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
 | ||
|  * And any offloaded callbacks are being numbered elsewhere.
 | ||
|  */
 | ||
| int rcutree_prepare_cpu(unsigned int cpu)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
 | ||
| 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | ||
| 	struct rcu_node *rnp = rcu_get_root();
 | ||
| 
 | ||
| 	/* Set up local state, ensuring consistent view of global state. */
 | ||
| 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | ||
| 	rdp->qlen_last_fqs_check = 0;
 | ||
| 	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
 | ||
| 	rdp->blimit = blimit;
 | ||
| 	ct->dynticks_nesting = 1;	/* CPU not up, no tearing. */
 | ||
| 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
 | ||
| 	 * (re-)initialized.
 | ||
| 	 */
 | ||
| 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
 | ||
| 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
 | ||
| 	 * propagation up the rcu_node tree will happen at the beginning
 | ||
| 	 * of the next grace period.
 | ||
| 	 */
 | ||
| 	rnp = rdp->mynode;
 | ||
| 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
 | ||
| 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
 | ||
| 	rdp->gp_seq_needed = rdp->gp_seq;
 | ||
| 	rdp->cpu_no_qs.b.norm = true;
 | ||
| 	rdp->core_needs_qs = false;
 | ||
| 	rdp->rcu_iw_pending = false;
 | ||
| 	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
 | ||
| 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
 | ||
| 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
 | ||
| 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | ||
| 	rcu_spawn_one_boost_kthread(rnp);
 | ||
| 	rcu_spawn_cpu_nocb_kthread(cpu);
 | ||
| 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
 | ||
|  */
 | ||
| static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
 | ||
| {
 | ||
| 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | ||
| 
 | ||
| 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Has the specified (known valid) CPU ever been fully online?
 | ||
|  */
 | ||
| bool rcu_cpu_beenfullyonline(int cpu)
 | ||
| {
 | ||
| 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | ||
| 
 | ||
| 	return smp_load_acquire(&rdp->beenonline);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Near the end of the CPU-online process.  Pretty much all services
 | ||
|  * enabled, and the CPU is now very much alive.
 | ||
|  */
 | ||
| int rcutree_online_cpu(unsigned int cpu)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	struct rcu_data *rdp;
 | ||
| 	struct rcu_node *rnp;
 | ||
| 
 | ||
| 	rdp = per_cpu_ptr(&rcu_data, cpu);
 | ||
| 	rnp = rdp->mynode;
 | ||
| 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | ||
| 	rnp->ffmask |= rdp->grpmask;
 | ||
| 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | ||
| 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
 | ||
| 		return 0; /* Too early in boot for scheduler work. */
 | ||
| 	sync_sched_exp_online_cleanup(cpu);
 | ||
| 	rcutree_affinity_setting(cpu, -1);
 | ||
| 
 | ||
| 	// Stop-machine done, so allow nohz_full to disable tick.
 | ||
| 	tick_dep_clear(TICK_DEP_BIT_RCU);
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Mark the specified CPU as being online so that subsequent grace periods
 | ||
|  * (both expedited and normal) will wait on it.  Note that this means that
 | ||
|  * incoming CPUs are not allowed to use RCU read-side critical sections
 | ||
|  * until this function is called.  Failing to observe this restriction
 | ||
|  * will result in lockdep splats.
 | ||
|  *
 | ||
|  * Note that this function is special in that it is invoked directly
 | ||
|  * from the incoming CPU rather than from the cpuhp_step mechanism.
 | ||
|  * This is because this function must be invoked at a precise location.
 | ||
|  * This incoming CPU must not have enabled interrupts yet.
 | ||
|  *
 | ||
|  * This mirrors the effects of rcutree_report_cpu_dead().
 | ||
|  */
 | ||
| void rcutree_report_cpu_starting(unsigned int cpu)
 | ||
| {
 | ||
| 	unsigned long mask;
 | ||
| 	struct rcu_data *rdp;
 | ||
| 	struct rcu_node *rnp;
 | ||
| 	bool newcpu;
 | ||
| 
 | ||
| 	lockdep_assert_irqs_disabled();
 | ||
| 	rdp = per_cpu_ptr(&rcu_data, cpu);
 | ||
| 	if (rdp->cpu_started)
 | ||
| 		return;
 | ||
| 	rdp->cpu_started = true;
 | ||
| 
 | ||
| 	rnp = rdp->mynode;
 | ||
| 	mask = rdp->grpmask;
 | ||
| 	arch_spin_lock(&rcu_state.ofl_lock);
 | ||
| 	rcu_dynticks_eqs_online();
 | ||
| 	raw_spin_lock(&rcu_state.barrier_lock);
 | ||
| 	raw_spin_lock_rcu_node(rnp);
 | ||
| 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
 | ||
| 	raw_spin_unlock(&rcu_state.barrier_lock);
 | ||
| 	newcpu = !(rnp->expmaskinitnext & mask);
 | ||
| 	rnp->expmaskinitnext |= mask;
 | ||
| 	/* Allow lockless access for expedited grace periods. */
 | ||
| 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
 | ||
| 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
 | ||
| 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
 | ||
| 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
 | ||
| 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
 | ||
| 
 | ||
| 	/* An incoming CPU should never be blocking a grace period. */
 | ||
| 	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
 | ||
| 		/* rcu_report_qs_rnp() *really* wants some flags to restore */
 | ||
| 		unsigned long flags;
 | ||
| 
 | ||
| 		local_irq_save(flags);
 | ||
| 		rcu_disable_urgency_upon_qs(rdp);
 | ||
| 		/* Report QS -after- changing ->qsmaskinitnext! */
 | ||
| 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
 | ||
| 	} else {
 | ||
| 		raw_spin_unlock_rcu_node(rnp);
 | ||
| 	}
 | ||
| 	arch_spin_unlock(&rcu_state.ofl_lock);
 | ||
| 	smp_store_release(&rdp->beenonline, true);
 | ||
| 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * The outgoing function has no further need of RCU, so remove it from
 | ||
|  * the rcu_node tree's ->qsmaskinitnext bit masks.
 | ||
|  *
 | ||
|  * Note that this function is special in that it is invoked directly
 | ||
|  * from the outgoing CPU rather than from the cpuhp_step mechanism.
 | ||
|  * This is because this function must be invoked at a precise location.
 | ||
|  *
 | ||
|  * This mirrors the effect of rcutree_report_cpu_starting().
 | ||
|  */
 | ||
| void rcutree_report_cpu_dead(void)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	unsigned long mask;
 | ||
| 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | ||
| 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * IRQS must be disabled from now on and until the CPU dies, or an interrupt
 | ||
| 	 * may introduce a new READ-side while it is actually off the QS masks.
 | ||
| 	 */
 | ||
| 	lockdep_assert_irqs_disabled();
 | ||
| 	// Do any dangling deferred wakeups.
 | ||
| 	do_nocb_deferred_wakeup(rdp);
 | ||
| 
 | ||
| 	rcu_preempt_deferred_qs(current);
 | ||
| 
 | ||
| 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
 | ||
| 	mask = rdp->grpmask;
 | ||
| 	arch_spin_lock(&rcu_state.ofl_lock);
 | ||
| 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
 | ||
| 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
 | ||
| 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
 | ||
| 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
 | ||
| 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
 | ||
| 		rcu_disable_urgency_upon_qs(rdp);
 | ||
| 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
 | ||
| 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | ||
| 	}
 | ||
| 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
 | ||
| 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | ||
| 	arch_spin_unlock(&rcu_state.ofl_lock);
 | ||
| 	rdp->cpu_started = false;
 | ||
| }
 | ||
| 
 | ||
| #ifdef CONFIG_HOTPLUG_CPU
 | ||
| /*
 | ||
|  * The outgoing CPU has just passed through the dying-idle state, and we
 | ||
|  * are being invoked from the CPU that was IPIed to continue the offline
 | ||
|  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
 | ||
|  */
 | ||
| void rcutree_migrate_callbacks(int cpu)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	struct rcu_data *my_rdp;
 | ||
| 	struct rcu_node *my_rnp;
 | ||
| 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | ||
| 	bool needwake;
 | ||
| 
 | ||
| 	if (rcu_rdp_is_offloaded(rdp) ||
 | ||
| 	    rcu_segcblist_empty(&rdp->cblist))
 | ||
| 		return;  /* No callbacks to migrate. */
 | ||
| 
 | ||
| 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
 | ||
| 	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
 | ||
| 	rcu_barrier_entrain(rdp);
 | ||
| 	my_rdp = this_cpu_ptr(&rcu_data);
 | ||
| 	my_rnp = my_rdp->mynode;
 | ||
| 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
 | ||
| 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
 | ||
| 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
 | ||
| 	/* Leverage recent GPs and set GP for new callbacks. */
 | ||
| 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
 | ||
| 		   rcu_advance_cbs(my_rnp, my_rdp);
 | ||
| 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
 | ||
| 	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
 | ||
| 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
 | ||
| 	rcu_segcblist_disable(&rdp->cblist);
 | ||
| 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
 | ||
| 	check_cb_ovld_locked(my_rdp, my_rnp);
 | ||
| 	if (rcu_rdp_is_offloaded(my_rdp)) {
 | ||
| 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
 | ||
| 		__call_rcu_nocb_wake(my_rdp, true, flags);
 | ||
| 	} else {
 | ||
| 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
 | ||
| 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
 | ||
| 	}
 | ||
| 	if (needwake)
 | ||
| 		rcu_gp_kthread_wake();
 | ||
| 	lockdep_assert_irqs_enabled();
 | ||
| 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
 | ||
| 		  !rcu_segcblist_empty(&rdp->cblist),
 | ||
| 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
 | ||
| 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
 | ||
| 		  rcu_segcblist_first_cb(&rdp->cblist));
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * The CPU has been completely removed, and some other CPU is reporting
 | ||
|  * this fact from process context.  Do the remainder of the cleanup.
 | ||
|  * There can only be one CPU hotplug operation at a time, so no need for
 | ||
|  * explicit locking.
 | ||
|  */
 | ||
| int rcutree_dead_cpu(unsigned int cpu)
 | ||
| {
 | ||
| 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
 | ||
| 	// Stop-machine done, so allow nohz_full to disable tick.
 | ||
| 	tick_dep_clear(TICK_DEP_BIT_RCU);
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Near the end of the offline process.  Trace the fact that this CPU
 | ||
|  * is going offline.
 | ||
|  */
 | ||
| int rcutree_dying_cpu(unsigned int cpu)
 | ||
| {
 | ||
| 	bool blkd;
 | ||
| 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | ||
| 	struct rcu_node *rnp = rdp->mynode;
 | ||
| 
 | ||
| 	blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
 | ||
| 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
 | ||
| 			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Near the beginning of the process.  The CPU is still very much alive
 | ||
|  * with pretty much all services enabled.
 | ||
|  */
 | ||
| int rcutree_offline_cpu(unsigned int cpu)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	struct rcu_data *rdp;
 | ||
| 	struct rcu_node *rnp;
 | ||
| 
 | ||
| 	rdp = per_cpu_ptr(&rcu_data, cpu);
 | ||
| 	rnp = rdp->mynode;
 | ||
| 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | ||
| 	rnp->ffmask &= ~rdp->grpmask;
 | ||
| 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | ||
| 
 | ||
| 	rcutree_affinity_setting(cpu, cpu);
 | ||
| 
 | ||
| 	// nohz_full CPUs need the tick for stop-machine to work quickly
 | ||
| 	tick_dep_set(TICK_DEP_BIT_RCU);
 | ||
| 	return 0;
 | ||
| }
 | ||
| #endif /* #ifdef CONFIG_HOTPLUG_CPU */
 | ||
| 
 | ||
| /*
 | ||
|  * On non-huge systems, use expedited RCU grace periods to make suspend
 | ||
|  * and hibernation run faster.
 | ||
|  */
 | ||
| static int rcu_pm_notify(struct notifier_block *self,
 | ||
| 			 unsigned long action, void *hcpu)
 | ||
| {
 | ||
| 	switch (action) {
 | ||
| 	case PM_HIBERNATION_PREPARE:
 | ||
| 	case PM_SUSPEND_PREPARE:
 | ||
| 		rcu_async_hurry();
 | ||
| 		rcu_expedite_gp();
 | ||
| 		break;
 | ||
| 	case PM_POST_HIBERNATION:
 | ||
| 	case PM_POST_SUSPEND:
 | ||
| 		rcu_unexpedite_gp();
 | ||
| 		rcu_async_relax();
 | ||
| 		break;
 | ||
| 	default:
 | ||
| 		break;
 | ||
| 	}
 | ||
| 	return NOTIFY_OK;
 | ||
| }
 | ||
| 
 | ||
| #ifdef CONFIG_RCU_EXP_KTHREAD
 | ||
| struct kthread_worker *rcu_exp_gp_kworker;
 | ||
| struct kthread_worker *rcu_exp_par_gp_kworker;
 | ||
| 
 | ||
| static void __init rcu_start_exp_gp_kworkers(void)
 | ||
| {
 | ||
| 	const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
 | ||
| 	const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
 | ||
| 	struct sched_param param = { .sched_priority = kthread_prio };
 | ||
| 
 | ||
| 	rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
 | ||
| 	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
 | ||
| 		pr_err("Failed to create %s!\n", gp_kworker_name);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
 | ||
| 	if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
 | ||
| 		pr_err("Failed to create %s!\n", par_gp_kworker_name);
 | ||
| 		kthread_destroy_worker(rcu_exp_gp_kworker);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m);
 | ||
| 	sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
 | ||
| 				   ¶m);
 | ||
| }
 | ||
| 
 | ||
| static inline void rcu_alloc_par_gp_wq(void)
 | ||
| {
 | ||
| }
 | ||
| #else /* !CONFIG_RCU_EXP_KTHREAD */
 | ||
| struct workqueue_struct *rcu_par_gp_wq;
 | ||
| 
 | ||
| static void __init rcu_start_exp_gp_kworkers(void)
 | ||
| {
 | ||
| }
 | ||
| 
 | ||
| static inline void rcu_alloc_par_gp_wq(void)
 | ||
| {
 | ||
| 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
 | ||
| 	WARN_ON(!rcu_par_gp_wq);
 | ||
| }
 | ||
| #endif /* CONFIG_RCU_EXP_KTHREAD */
 | ||
| 
 | ||
| /*
 | ||
|  * Spawn the kthreads that handle RCU's grace periods.
 | ||
|  */
 | ||
| static int __init rcu_spawn_gp_kthread(void)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	struct rcu_node *rnp;
 | ||
| 	struct sched_param sp;
 | ||
| 	struct task_struct *t;
 | ||
| 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | ||
| 
 | ||
| 	rcu_scheduler_fully_active = 1;
 | ||
| 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
 | ||
| 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
 | ||
| 		return 0;
 | ||
| 	if (kthread_prio) {
 | ||
| 		sp.sched_priority = kthread_prio;
 | ||
| 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
 | ||
| 	}
 | ||
| 	rnp = rcu_get_root();
 | ||
| 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | ||
| 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
 | ||
| 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
 | ||
| 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
 | ||
| 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
 | ||
| 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | ||
| 	wake_up_process(t);
 | ||
| 	/* This is a pre-SMP initcall, we expect a single CPU */
 | ||
| 	WARN_ON(num_online_cpus() > 1);
 | ||
| 	/*
 | ||
| 	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
 | ||
| 	 * due to rcu_scheduler_fully_active.
 | ||
| 	 */
 | ||
| 	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
 | ||
| 	rcu_spawn_one_boost_kthread(rdp->mynode);
 | ||
| 	rcu_spawn_core_kthreads();
 | ||
| 	/* Create kthread worker for expedited GPs */
 | ||
| 	rcu_start_exp_gp_kworkers();
 | ||
| 	return 0;
 | ||
| }
 | ||
| early_initcall(rcu_spawn_gp_kthread);
 | ||
| 
 | ||
| /*
 | ||
|  * This function is invoked towards the end of the scheduler's
 | ||
|  * initialization process.  Before this is called, the idle task might
 | ||
|  * contain synchronous grace-period primitives (during which time, this idle
 | ||
|  * task is booting the system, and such primitives are no-ops).  After this
 | ||
|  * function is called, any synchronous grace-period primitives are run as
 | ||
|  * expedited, with the requesting task driving the grace period forward.
 | ||
|  * A later core_initcall() rcu_set_runtime_mode() will switch to full
 | ||
|  * runtime RCU functionality.
 | ||
|  */
 | ||
| void rcu_scheduler_starting(void)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	struct rcu_node *rnp;
 | ||
| 
 | ||
| 	WARN_ON(num_online_cpus() != 1);
 | ||
| 	WARN_ON(nr_context_switches() > 0);
 | ||
| 	rcu_test_sync_prims();
 | ||
| 
 | ||
| 	// Fix up the ->gp_seq counters.
 | ||
| 	local_irq_save(flags);
 | ||
| 	rcu_for_each_node_breadth_first(rnp)
 | ||
| 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
 | ||
| 	local_irq_restore(flags);
 | ||
| 
 | ||
| 	// Switch out of early boot mode.
 | ||
| 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
 | ||
| 	rcu_test_sync_prims();
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Helper function for rcu_init() that initializes the rcu_state structure.
 | ||
|  */
 | ||
| static void __init rcu_init_one(void)
 | ||
| {
 | ||
| 	static const char * const buf[] = RCU_NODE_NAME_INIT;
 | ||
| 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
 | ||
| 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
 | ||
| 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
 | ||
| 
 | ||
| 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
 | ||
| 	int cpustride = 1;
 | ||
| 	int i;
 | ||
| 	int j;
 | ||
| 	struct rcu_node *rnp;
 | ||
| 
 | ||
| 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
 | ||
| 
 | ||
| 	/* Silence gcc 4.8 false positive about array index out of range. */
 | ||
| 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
 | ||
| 		panic("rcu_init_one: rcu_num_lvls out of range");
 | ||
| 
 | ||
| 	/* Initialize the level-tracking arrays. */
 | ||
| 
 | ||
| 	for (i = 1; i < rcu_num_lvls; i++)
 | ||
| 		rcu_state.level[i] =
 | ||
| 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
 | ||
| 	rcu_init_levelspread(levelspread, num_rcu_lvl);
 | ||
| 
 | ||
| 	/* Initialize the elements themselves, starting from the leaves. */
 | ||
| 
 | ||
| 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
 | ||
| 		cpustride *= levelspread[i];
 | ||
| 		rnp = rcu_state.level[i];
 | ||
| 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
 | ||
| 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
 | ||
| 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
 | ||
| 						   &rcu_node_class[i], buf[i]);
 | ||
| 			raw_spin_lock_init(&rnp->fqslock);
 | ||
| 			lockdep_set_class_and_name(&rnp->fqslock,
 | ||
| 						   &rcu_fqs_class[i], fqs[i]);
 | ||
| 			rnp->gp_seq = rcu_state.gp_seq;
 | ||
| 			rnp->gp_seq_needed = rcu_state.gp_seq;
 | ||
| 			rnp->completedqs = rcu_state.gp_seq;
 | ||
| 			rnp->qsmask = 0;
 | ||
| 			rnp->qsmaskinit = 0;
 | ||
| 			rnp->grplo = j * cpustride;
 | ||
| 			rnp->grphi = (j + 1) * cpustride - 1;
 | ||
| 			if (rnp->grphi >= nr_cpu_ids)
 | ||
| 				rnp->grphi = nr_cpu_ids - 1;
 | ||
| 			if (i == 0) {
 | ||
| 				rnp->grpnum = 0;
 | ||
| 				rnp->grpmask = 0;
 | ||
| 				rnp->parent = NULL;
 | ||
| 			} else {
 | ||
| 				rnp->grpnum = j % levelspread[i - 1];
 | ||
| 				rnp->grpmask = BIT(rnp->grpnum);
 | ||
| 				rnp->parent = rcu_state.level[i - 1] +
 | ||
| 					      j / levelspread[i - 1];
 | ||
| 			}
 | ||
| 			rnp->level = i;
 | ||
| 			INIT_LIST_HEAD(&rnp->blkd_tasks);
 | ||
| 			rcu_init_one_nocb(rnp);
 | ||
| 			init_waitqueue_head(&rnp->exp_wq[0]);
 | ||
| 			init_waitqueue_head(&rnp->exp_wq[1]);
 | ||
| 			init_waitqueue_head(&rnp->exp_wq[2]);
 | ||
| 			init_waitqueue_head(&rnp->exp_wq[3]);
 | ||
| 			spin_lock_init(&rnp->exp_lock);
 | ||
| 			mutex_init(&rnp->boost_kthread_mutex);
 | ||
| 			raw_spin_lock_init(&rnp->exp_poll_lock);
 | ||
| 			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
 | ||
| 			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	init_swait_queue_head(&rcu_state.gp_wq);
 | ||
| 	init_swait_queue_head(&rcu_state.expedited_wq);
 | ||
| 	rnp = rcu_first_leaf_node();
 | ||
| 	for_each_possible_cpu(i) {
 | ||
| 		while (i > rnp->grphi)
 | ||
| 			rnp++;
 | ||
| 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
 | ||
| 		rcu_boot_init_percpu_data(i);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Force priority from the kernel command-line into range.
 | ||
|  */
 | ||
| static void __init sanitize_kthread_prio(void)
 | ||
| {
 | ||
| 	int kthread_prio_in = kthread_prio;
 | ||
| 
 | ||
| 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
 | ||
| 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
 | ||
| 		kthread_prio = 2;
 | ||
| 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
 | ||
| 		kthread_prio = 1;
 | ||
| 	else if (kthread_prio < 0)
 | ||
| 		kthread_prio = 0;
 | ||
| 	else if (kthread_prio > 99)
 | ||
| 		kthread_prio = 99;
 | ||
| 
 | ||
| 	if (kthread_prio != kthread_prio_in)
 | ||
| 		pr_alert("%s: Limited prio to %d from %d\n",
 | ||
| 			 __func__, kthread_prio, kthread_prio_in);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
 | ||
|  * replace the definitions in tree.h because those are needed to size
 | ||
|  * the ->node array in the rcu_state structure.
 | ||
|  */
 | ||
| void rcu_init_geometry(void)
 | ||
| {
 | ||
| 	ulong d;
 | ||
| 	int i;
 | ||
| 	static unsigned long old_nr_cpu_ids;
 | ||
| 	int rcu_capacity[RCU_NUM_LVLS];
 | ||
| 	static bool initialized;
 | ||
| 
 | ||
| 	if (initialized) {
 | ||
| 		/*
 | ||
| 		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
 | ||
| 		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
 | ||
| 		 */
 | ||
| 		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	old_nr_cpu_ids = nr_cpu_ids;
 | ||
| 	initialized = true;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Initialize any unspecified boot parameters.
 | ||
| 	 * The default values of jiffies_till_first_fqs and
 | ||
| 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
 | ||
| 	 * value, which is a function of HZ, then adding one for each
 | ||
| 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
 | ||
| 	 */
 | ||
| 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 | ||
| 	if (jiffies_till_first_fqs == ULONG_MAX)
 | ||
| 		jiffies_till_first_fqs = d;
 | ||
| 	if (jiffies_till_next_fqs == ULONG_MAX)
 | ||
| 		jiffies_till_next_fqs = d;
 | ||
| 	adjust_jiffies_till_sched_qs();
 | ||
| 
 | ||
| 	/* If the compile-time values are accurate, just leave. */
 | ||
| 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
 | ||
| 	    nr_cpu_ids == NR_CPUS)
 | ||
| 		return;
 | ||
| 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
 | ||
| 		rcu_fanout_leaf, nr_cpu_ids);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * The boot-time rcu_fanout_leaf parameter must be at least two
 | ||
| 	 * and cannot exceed the number of bits in the rcu_node masks.
 | ||
| 	 * Complain and fall back to the compile-time values if this
 | ||
| 	 * limit is exceeded.
 | ||
| 	 */
 | ||
| 	if (rcu_fanout_leaf < 2 ||
 | ||
| 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
 | ||
| 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
 | ||
| 		WARN_ON(1);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Compute number of nodes that can be handled an rcu_node tree
 | ||
| 	 * with the given number of levels.
 | ||
| 	 */
 | ||
| 	rcu_capacity[0] = rcu_fanout_leaf;
 | ||
| 	for (i = 1; i < RCU_NUM_LVLS; i++)
 | ||
| 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * The tree must be able to accommodate the configured number of CPUs.
 | ||
| 	 * If this limit is exceeded, fall back to the compile-time values.
 | ||
| 	 */
 | ||
| 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
 | ||
| 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
 | ||
| 		WARN_ON(1);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Calculate the number of levels in the tree. */
 | ||
| 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
 | ||
| 	}
 | ||
| 	rcu_num_lvls = i + 1;
 | ||
| 
 | ||
| 	/* Calculate the number of rcu_nodes at each level of the tree. */
 | ||
| 	for (i = 0; i < rcu_num_lvls; i++) {
 | ||
| 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
 | ||
| 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Calculate the total number of rcu_node structures. */
 | ||
| 	rcu_num_nodes = 0;
 | ||
| 	for (i = 0; i < rcu_num_lvls; i++)
 | ||
| 		rcu_num_nodes += num_rcu_lvl[i];
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Dump out the structure of the rcu_node combining tree associated
 | ||
|  * with the rcu_state structure.
 | ||
|  */
 | ||
| static void __init rcu_dump_rcu_node_tree(void)
 | ||
| {
 | ||
| 	int level = 0;
 | ||
| 	struct rcu_node *rnp;
 | ||
| 
 | ||
| 	pr_info("rcu_node tree layout dump\n");
 | ||
| 	pr_info(" ");
 | ||
| 	rcu_for_each_node_breadth_first(rnp) {
 | ||
| 		if (rnp->level != level) {
 | ||
| 			pr_cont("\n");
 | ||
| 			pr_info(" ");
 | ||
| 			level = rnp->level;
 | ||
| 		}
 | ||
| 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
 | ||
| 	}
 | ||
| 	pr_cont("\n");
 | ||
| }
 | ||
| 
 | ||
| struct workqueue_struct *rcu_gp_wq;
 | ||
| 
 | ||
| static void __init kfree_rcu_batch_init(void)
 | ||
| {
 | ||
| 	int cpu;
 | ||
| 	int i, j;
 | ||
| 
 | ||
| 	/* Clamp it to [0:100] seconds interval. */
 | ||
| 	if (rcu_delay_page_cache_fill_msec < 0 ||
 | ||
| 		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
 | ||
| 
 | ||
| 		rcu_delay_page_cache_fill_msec =
 | ||
| 			clamp(rcu_delay_page_cache_fill_msec, 0,
 | ||
| 				(int) (100 * MSEC_PER_SEC));
 | ||
| 
 | ||
| 		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
 | ||
| 			rcu_delay_page_cache_fill_msec);
 | ||
| 	}
 | ||
| 
 | ||
| 	for_each_possible_cpu(cpu) {
 | ||
| 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
 | ||
| 
 | ||
| 		for (i = 0; i < KFREE_N_BATCHES; i++) {
 | ||
| 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
 | ||
| 			krcp->krw_arr[i].krcp = krcp;
 | ||
| 
 | ||
| 			for (j = 0; j < FREE_N_CHANNELS; j++)
 | ||
| 				INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
 | ||
| 		}
 | ||
| 
 | ||
| 		for (i = 0; i < FREE_N_CHANNELS; i++)
 | ||
| 			INIT_LIST_HEAD(&krcp->bulk_head[i]);
 | ||
| 
 | ||
| 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
 | ||
| 		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
 | ||
| 		krcp->initialized = true;
 | ||
| 	}
 | ||
| 	if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree"))
 | ||
| 		pr_err("Failed to register kfree_rcu() shrinker!\n");
 | ||
| }
 | ||
| 
 | ||
| void __init rcu_init(void)
 | ||
| {
 | ||
| 	int cpu = smp_processor_id();
 | ||
| 
 | ||
| 	rcu_early_boot_tests();
 | ||
| 
 | ||
| 	kfree_rcu_batch_init();
 | ||
| 	rcu_bootup_announce();
 | ||
| 	sanitize_kthread_prio();
 | ||
| 	rcu_init_geometry();
 | ||
| 	rcu_init_one();
 | ||
| 	if (dump_tree)
 | ||
| 		rcu_dump_rcu_node_tree();
 | ||
| 	if (use_softirq)
 | ||
| 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * We don't need protection against CPU-hotplug here because
 | ||
| 	 * this is called early in boot, before either interrupts
 | ||
| 	 * or the scheduler are operational.
 | ||
| 	 */
 | ||
| 	pm_notifier(rcu_pm_notify, 0);
 | ||
| 	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
 | ||
| 	rcutree_prepare_cpu(cpu);
 | ||
| 	rcutree_report_cpu_starting(cpu);
 | ||
| 	rcutree_online_cpu(cpu);
 | ||
| 
 | ||
| 	/* Create workqueue for Tree SRCU and for expedited GPs. */
 | ||
| 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
 | ||
| 	WARN_ON(!rcu_gp_wq);
 | ||
| 	rcu_alloc_par_gp_wq();
 | ||
| 
 | ||
| 	/* Fill in default value for rcutree.qovld boot parameter. */
 | ||
| 	/* -After- the rcu_node ->lock fields are initialized! */
 | ||
| 	if (qovld < 0)
 | ||
| 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
 | ||
| 	else
 | ||
| 		qovld_calc = qovld;
 | ||
| 
 | ||
| 	// Kick-start in case any polled grace periods started early.
 | ||
| 	(void)start_poll_synchronize_rcu_expedited();
 | ||
| 
 | ||
| 	rcu_test_sync_prims();
 | ||
| }
 | ||
| 
 | ||
| #include "tree_stall.h"
 | ||
| #include "tree_exp.h"
 | ||
| #include "tree_nocb.h"
 | ||
| #include "tree_plugin.h"
 |