mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-01 00:58:39 +02:00 
			
		
		
		
	 468e2f64d2
			
		
	
	
		468e2f64d2
		
	
	
	
	
		
			
			introduce BPF_PROG_QUERY command to retrieve a set of either attached programs to given cgroup or a set of effective programs that will execute for events within a cgroup Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> for cgroup bits Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			1571 lines
		
	
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1571 lines
		
	
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Linux Socket Filter - Kernel level socket filtering
 | |
|  *
 | |
|  * Based on the design of the Berkeley Packet Filter. The new
 | |
|  * internal format has been designed by PLUMgrid:
 | |
|  *
 | |
|  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
 | |
|  *
 | |
|  * Authors:
 | |
|  *
 | |
|  *	Jay Schulist <jschlst@samba.org>
 | |
|  *	Alexei Starovoitov <ast@plumgrid.com>
 | |
|  *	Daniel Borkmann <dborkman@redhat.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Andi Kleen - Fix a few bad bugs and races.
 | |
|  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
 | |
|  */
 | |
| 
 | |
| #include <linux/filter.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/moduleloader.h>
 | |
| #include <linux/bpf.h>
 | |
| #include <linux/frame.h>
 | |
| #include <linux/rbtree_latch.h>
 | |
| #include <linux/kallsyms.h>
 | |
| #include <linux/rcupdate.h>
 | |
| 
 | |
| #include <asm/unaligned.h>
 | |
| 
 | |
| /* Registers */
 | |
| #define BPF_R0	regs[BPF_REG_0]
 | |
| #define BPF_R1	regs[BPF_REG_1]
 | |
| #define BPF_R2	regs[BPF_REG_2]
 | |
| #define BPF_R3	regs[BPF_REG_3]
 | |
| #define BPF_R4	regs[BPF_REG_4]
 | |
| #define BPF_R5	regs[BPF_REG_5]
 | |
| #define BPF_R6	regs[BPF_REG_6]
 | |
| #define BPF_R7	regs[BPF_REG_7]
 | |
| #define BPF_R8	regs[BPF_REG_8]
 | |
| #define BPF_R9	regs[BPF_REG_9]
 | |
| #define BPF_R10	regs[BPF_REG_10]
 | |
| 
 | |
| /* Named registers */
 | |
| #define DST	regs[insn->dst_reg]
 | |
| #define SRC	regs[insn->src_reg]
 | |
| #define FP	regs[BPF_REG_FP]
 | |
| #define ARG1	regs[BPF_REG_ARG1]
 | |
| #define CTX	regs[BPF_REG_CTX]
 | |
| #define IMM	insn->imm
 | |
| 
 | |
| /* No hurry in this branch
 | |
|  *
 | |
|  * Exported for the bpf jit load helper.
 | |
|  */
 | |
| void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
 | |
| {
 | |
| 	u8 *ptr = NULL;
 | |
| 
 | |
| 	if (k >= SKF_NET_OFF)
 | |
| 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
 | |
| 	else if (k >= SKF_LL_OFF)
 | |
| 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
 | |
| 
 | |
| 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
 | |
| 		return ptr;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
 | |
| {
 | |
| 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
 | |
| 	struct bpf_prog_aux *aux;
 | |
| 	struct bpf_prog *fp;
 | |
| 
 | |
| 	size = round_up(size, PAGE_SIZE);
 | |
| 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
 | |
| 	if (fp == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	kmemcheck_annotate_bitfield(fp, meta);
 | |
| 
 | |
| 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
 | |
| 	if (aux == NULL) {
 | |
| 		vfree(fp);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	fp->pages = size / PAGE_SIZE;
 | |
| 	fp->aux = aux;
 | |
| 	fp->aux->prog = fp;
 | |
| 
 | |
| 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
 | |
| 
 | |
| 	return fp;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(bpf_prog_alloc);
 | |
| 
 | |
| struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 | |
| 				  gfp_t gfp_extra_flags)
 | |
| {
 | |
| 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
 | |
| 	struct bpf_prog *fp;
 | |
| 	u32 pages, delta;
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(fp_old == NULL);
 | |
| 
 | |
| 	size = round_up(size, PAGE_SIZE);
 | |
| 	pages = size / PAGE_SIZE;
 | |
| 	if (pages <= fp_old->pages)
 | |
| 		return fp_old;
 | |
| 
 | |
| 	delta = pages - fp_old->pages;
 | |
| 	ret = __bpf_prog_charge(fp_old->aux->user, delta);
 | |
| 	if (ret)
 | |
| 		return NULL;
 | |
| 
 | |
| 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
 | |
| 	if (fp == NULL) {
 | |
| 		__bpf_prog_uncharge(fp_old->aux->user, delta);
 | |
| 	} else {
 | |
| 		kmemcheck_annotate_bitfield(fp, meta);
 | |
| 
 | |
| 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
 | |
| 		fp->pages = pages;
 | |
| 		fp->aux->prog = fp;
 | |
| 
 | |
| 		/* We keep fp->aux from fp_old around in the new
 | |
| 		 * reallocated structure.
 | |
| 		 */
 | |
| 		fp_old->aux = NULL;
 | |
| 		__bpf_prog_free(fp_old);
 | |
| 	}
 | |
| 
 | |
| 	return fp;
 | |
| }
 | |
| 
 | |
| void __bpf_prog_free(struct bpf_prog *fp)
 | |
| {
 | |
| 	kfree(fp->aux);
 | |
| 	vfree(fp);
 | |
| }
 | |
| 
 | |
| int bpf_prog_calc_tag(struct bpf_prog *fp)
 | |
| {
 | |
| 	const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
 | |
| 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
 | |
| 	u32 digest[SHA_DIGEST_WORDS];
 | |
| 	u32 ws[SHA_WORKSPACE_WORDS];
 | |
| 	u32 i, bsize, psize, blocks;
 | |
| 	struct bpf_insn *dst;
 | |
| 	bool was_ld_map;
 | |
| 	u8 *raw, *todo;
 | |
| 	__be32 *result;
 | |
| 	__be64 *bits;
 | |
| 
 | |
| 	raw = vmalloc(raw_size);
 | |
| 	if (!raw)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	sha_init(digest);
 | |
| 	memset(ws, 0, sizeof(ws));
 | |
| 
 | |
| 	/* We need to take out the map fd for the digest calculation
 | |
| 	 * since they are unstable from user space side.
 | |
| 	 */
 | |
| 	dst = (void *)raw;
 | |
| 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
 | |
| 		dst[i] = fp->insnsi[i];
 | |
| 		if (!was_ld_map &&
 | |
| 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 | |
| 		    dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
 | |
| 			was_ld_map = true;
 | |
| 			dst[i].imm = 0;
 | |
| 		} else if (was_ld_map &&
 | |
| 			   dst[i].code == 0 &&
 | |
| 			   dst[i].dst_reg == 0 &&
 | |
| 			   dst[i].src_reg == 0 &&
 | |
| 			   dst[i].off == 0) {
 | |
| 			was_ld_map = false;
 | |
| 			dst[i].imm = 0;
 | |
| 		} else {
 | |
| 			was_ld_map = false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	psize = bpf_prog_insn_size(fp);
 | |
| 	memset(&raw[psize], 0, raw_size - psize);
 | |
| 	raw[psize++] = 0x80;
 | |
| 
 | |
| 	bsize  = round_up(psize, SHA_MESSAGE_BYTES);
 | |
| 	blocks = bsize / SHA_MESSAGE_BYTES;
 | |
| 	todo   = raw;
 | |
| 	if (bsize - psize >= sizeof(__be64)) {
 | |
| 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
 | |
| 	} else {
 | |
| 		bits = (__be64 *)(todo + bsize + bits_offset);
 | |
| 		blocks++;
 | |
| 	}
 | |
| 	*bits = cpu_to_be64((psize - 1) << 3);
 | |
| 
 | |
| 	while (blocks--) {
 | |
| 		sha_transform(digest, todo, ws);
 | |
| 		todo += SHA_MESSAGE_BYTES;
 | |
| 	}
 | |
| 
 | |
| 	result = (__force __be32 *)digest;
 | |
| 	for (i = 0; i < SHA_DIGEST_WORDS; i++)
 | |
| 		result[i] = cpu_to_be32(digest[i]);
 | |
| 	memcpy(fp->tag, result, sizeof(fp->tag));
 | |
| 
 | |
| 	vfree(raw);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
 | |
| {
 | |
| 	return BPF_CLASS(insn->code) == BPF_JMP  &&
 | |
| 	       /* Call and Exit are both special jumps with no
 | |
| 		* target inside the BPF instruction image.
 | |
| 		*/
 | |
| 	       BPF_OP(insn->code) != BPF_CALL &&
 | |
| 	       BPF_OP(insn->code) != BPF_EXIT;
 | |
| }
 | |
| 
 | |
| static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
 | |
| {
 | |
| 	struct bpf_insn *insn = prog->insnsi;
 | |
| 	u32 i, insn_cnt = prog->len;
 | |
| 
 | |
| 	for (i = 0; i < insn_cnt; i++, insn++) {
 | |
| 		if (!bpf_is_jmp_and_has_target(insn))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Adjust offset of jmps if we cross boundaries. */
 | |
| 		if (i < pos && i + insn->off + 1 > pos)
 | |
| 			insn->off += delta;
 | |
| 		else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
 | |
| 			insn->off -= delta;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 | |
| 				       const struct bpf_insn *patch, u32 len)
 | |
| {
 | |
| 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
 | |
| 	struct bpf_prog *prog_adj;
 | |
| 
 | |
| 	/* Since our patchlet doesn't expand the image, we're done. */
 | |
| 	if (insn_delta == 0) {
 | |
| 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
 | |
| 		return prog;
 | |
| 	}
 | |
| 
 | |
| 	insn_adj_cnt = prog->len + insn_delta;
 | |
| 
 | |
| 	/* Several new instructions need to be inserted. Make room
 | |
| 	 * for them. Likely, there's no need for a new allocation as
 | |
| 	 * last page could have large enough tailroom.
 | |
| 	 */
 | |
| 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
 | |
| 				    GFP_USER);
 | |
| 	if (!prog_adj)
 | |
| 		return NULL;
 | |
| 
 | |
| 	prog_adj->len = insn_adj_cnt;
 | |
| 
 | |
| 	/* Patching happens in 3 steps:
 | |
| 	 *
 | |
| 	 * 1) Move over tail of insnsi from next instruction onwards,
 | |
| 	 *    so we can patch the single target insn with one or more
 | |
| 	 *    new ones (patching is always from 1 to n insns, n > 0).
 | |
| 	 * 2) Inject new instructions at the target location.
 | |
| 	 * 3) Adjust branch offsets if necessary.
 | |
| 	 */
 | |
| 	insn_rest = insn_adj_cnt - off - len;
 | |
| 
 | |
| 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
 | |
| 		sizeof(*patch) * insn_rest);
 | |
| 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
 | |
| 
 | |
| 	bpf_adj_branches(prog_adj, off, insn_delta);
 | |
| 
 | |
| 	return prog_adj;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BPF_JIT
 | |
| static __always_inline void
 | |
| bpf_get_prog_addr_region(const struct bpf_prog *prog,
 | |
| 			 unsigned long *symbol_start,
 | |
| 			 unsigned long *symbol_end)
 | |
| {
 | |
| 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
 | |
| 	unsigned long addr = (unsigned long)hdr;
 | |
| 
 | |
| 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
 | |
| 
 | |
| 	*symbol_start = addr;
 | |
| 	*symbol_end   = addr + hdr->pages * PAGE_SIZE;
 | |
| }
 | |
| 
 | |
| static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
 | |
| {
 | |
| 	BUILD_BUG_ON(sizeof("bpf_prog_") +
 | |
| 		     sizeof(prog->tag) * 2 + 1 > KSYM_NAME_LEN);
 | |
| 
 | |
| 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
 | |
| 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
 | |
| 	*sym = 0;
 | |
| }
 | |
| 
 | |
| static __always_inline unsigned long
 | |
| bpf_get_prog_addr_start(struct latch_tree_node *n)
 | |
| {
 | |
| 	unsigned long symbol_start, symbol_end;
 | |
| 	const struct bpf_prog_aux *aux;
 | |
| 
 | |
| 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
 | |
| 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
 | |
| 
 | |
| 	return symbol_start;
 | |
| }
 | |
| 
 | |
| static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
 | |
| 					  struct latch_tree_node *b)
 | |
| {
 | |
| 	return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
 | |
| }
 | |
| 
 | |
| static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
 | |
| {
 | |
| 	unsigned long val = (unsigned long)key;
 | |
| 	unsigned long symbol_start, symbol_end;
 | |
| 	const struct bpf_prog_aux *aux;
 | |
| 
 | |
| 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
 | |
| 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
 | |
| 
 | |
| 	if (val < symbol_start)
 | |
| 		return -1;
 | |
| 	if (val >= symbol_end)
 | |
| 		return  1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct latch_tree_ops bpf_tree_ops = {
 | |
| 	.less	= bpf_tree_less,
 | |
| 	.comp	= bpf_tree_comp,
 | |
| };
 | |
| 
 | |
| static DEFINE_SPINLOCK(bpf_lock);
 | |
| static LIST_HEAD(bpf_kallsyms);
 | |
| static struct latch_tree_root bpf_tree __cacheline_aligned;
 | |
| 
 | |
| int bpf_jit_kallsyms __read_mostly;
 | |
| 
 | |
| static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
 | |
| {
 | |
| 	WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
 | |
| 	list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
 | |
| 	latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
 | |
| }
 | |
| 
 | |
| static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
 | |
| {
 | |
| 	if (list_empty(&aux->ksym_lnode))
 | |
| 		return;
 | |
| 
 | |
| 	latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
 | |
| 	list_del_rcu(&aux->ksym_lnode);
 | |
| }
 | |
| 
 | |
| static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
 | |
| {
 | |
| 	return fp->jited && !bpf_prog_was_classic(fp);
 | |
| }
 | |
| 
 | |
| static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
 | |
| {
 | |
| 	return list_empty(&fp->aux->ksym_lnode) ||
 | |
| 	       fp->aux->ksym_lnode.prev == LIST_POISON2;
 | |
| }
 | |
| 
 | |
| void bpf_prog_kallsyms_add(struct bpf_prog *fp)
 | |
| {
 | |
| 	if (!bpf_prog_kallsyms_candidate(fp) ||
 | |
| 	    !capable(CAP_SYS_ADMIN))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_bh(&bpf_lock);
 | |
| 	bpf_prog_ksym_node_add(fp->aux);
 | |
| 	spin_unlock_bh(&bpf_lock);
 | |
| }
 | |
| 
 | |
| void bpf_prog_kallsyms_del(struct bpf_prog *fp)
 | |
| {
 | |
| 	if (!bpf_prog_kallsyms_candidate(fp))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_bh(&bpf_lock);
 | |
| 	bpf_prog_ksym_node_del(fp->aux);
 | |
| 	spin_unlock_bh(&bpf_lock);
 | |
| }
 | |
| 
 | |
| static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
 | |
| {
 | |
| 	struct latch_tree_node *n;
 | |
| 
 | |
| 	if (!bpf_jit_kallsyms_enabled())
 | |
| 		return NULL;
 | |
| 
 | |
| 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
 | |
| 	return n ?
 | |
| 	       container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
 | |
| 	       NULL;
 | |
| }
 | |
| 
 | |
| const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
 | |
| 				 unsigned long *off, char *sym)
 | |
| {
 | |
| 	unsigned long symbol_start, symbol_end;
 | |
| 	struct bpf_prog *prog;
 | |
| 	char *ret = NULL;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	prog = bpf_prog_kallsyms_find(addr);
 | |
| 	if (prog) {
 | |
| 		bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
 | |
| 		bpf_get_prog_name(prog, sym);
 | |
| 
 | |
| 		ret = sym;
 | |
| 		if (size)
 | |
| 			*size = symbol_end - symbol_start;
 | |
| 		if (off)
 | |
| 			*off  = addr - symbol_start;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| bool is_bpf_text_address(unsigned long addr)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	ret = bpf_prog_kallsyms_find(addr) != NULL;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
 | |
| 		    char *sym)
 | |
| {
 | |
| 	unsigned long symbol_start, symbol_end;
 | |
| 	struct bpf_prog_aux *aux;
 | |
| 	unsigned int it = 0;
 | |
| 	int ret = -ERANGE;
 | |
| 
 | |
| 	if (!bpf_jit_kallsyms_enabled())
 | |
| 		return ret;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
 | |
| 		if (it++ != symnum)
 | |
| 			continue;
 | |
| 
 | |
| 		bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
 | |
| 		bpf_get_prog_name(aux->prog, sym);
 | |
| 
 | |
| 		*value = symbol_start;
 | |
| 		*type  = BPF_SYM_ELF_TYPE;
 | |
| 
 | |
| 		ret = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct bpf_binary_header *
 | |
| bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
 | |
| 		     unsigned int alignment,
 | |
| 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
 | |
| {
 | |
| 	struct bpf_binary_header *hdr;
 | |
| 	unsigned int size, hole, start;
 | |
| 
 | |
| 	/* Most of BPF filters are really small, but if some of them
 | |
| 	 * fill a page, allow at least 128 extra bytes to insert a
 | |
| 	 * random section of illegal instructions.
 | |
| 	 */
 | |
| 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
 | |
| 	hdr = module_alloc(size);
 | |
| 	if (hdr == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Fill space with illegal/arch-dep instructions. */
 | |
| 	bpf_fill_ill_insns(hdr, size);
 | |
| 
 | |
| 	hdr->pages = size / PAGE_SIZE;
 | |
| 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
 | |
| 		     PAGE_SIZE - sizeof(*hdr));
 | |
| 	start = (get_random_int() % hole) & ~(alignment - 1);
 | |
| 
 | |
| 	/* Leave a random number of instructions before BPF code. */
 | |
| 	*image_ptr = &hdr->image[start];
 | |
| 
 | |
| 	return hdr;
 | |
| }
 | |
| 
 | |
| void bpf_jit_binary_free(struct bpf_binary_header *hdr)
 | |
| {
 | |
| 	module_memfree(hdr);
 | |
| }
 | |
| 
 | |
| /* This symbol is only overridden by archs that have different
 | |
|  * requirements than the usual eBPF JITs, f.e. when they only
 | |
|  * implement cBPF JIT, do not set images read-only, etc.
 | |
|  */
 | |
| void __weak bpf_jit_free(struct bpf_prog *fp)
 | |
| {
 | |
| 	if (fp->jited) {
 | |
| 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
 | |
| 
 | |
| 		bpf_jit_binary_unlock_ro(hdr);
 | |
| 		bpf_jit_binary_free(hdr);
 | |
| 
 | |
| 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
 | |
| 	}
 | |
| 
 | |
| 	bpf_prog_unlock_free(fp);
 | |
| }
 | |
| 
 | |
| int bpf_jit_harden __read_mostly;
 | |
| 
 | |
| static int bpf_jit_blind_insn(const struct bpf_insn *from,
 | |
| 			      const struct bpf_insn *aux,
 | |
| 			      struct bpf_insn *to_buff)
 | |
| {
 | |
| 	struct bpf_insn *to = to_buff;
 | |
| 	u32 imm_rnd = get_random_int();
 | |
| 	s16 off;
 | |
| 
 | |
| 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
 | |
| 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
 | |
| 
 | |
| 	if (from->imm == 0 &&
 | |
| 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
 | |
| 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
 | |
| 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	switch (from->code) {
 | |
| 	case BPF_ALU | BPF_ADD | BPF_K:
 | |
| 	case BPF_ALU | BPF_SUB | BPF_K:
 | |
| 	case BPF_ALU | BPF_AND | BPF_K:
 | |
| 	case BPF_ALU | BPF_OR  | BPF_K:
 | |
| 	case BPF_ALU | BPF_XOR | BPF_K:
 | |
| 	case BPF_ALU | BPF_MUL | BPF_K:
 | |
| 	case BPF_ALU | BPF_MOV | BPF_K:
 | |
| 	case BPF_ALU | BPF_DIV | BPF_K:
 | |
| 	case BPF_ALU | BPF_MOD | BPF_K:
 | |
| 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 | |
| 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 | |
| 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
 | |
| 		break;
 | |
| 
 | |
| 	case BPF_ALU64 | BPF_ADD | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_SUB | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_AND | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_OR  | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_XOR | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_MUL | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_MOV | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_DIV | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_MOD | BPF_K:
 | |
| 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 | |
| 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 | |
| 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
 | |
| 		break;
 | |
| 
 | |
| 	case BPF_JMP | BPF_JEQ  | BPF_K:
 | |
| 	case BPF_JMP | BPF_JNE  | BPF_K:
 | |
| 	case BPF_JMP | BPF_JGT  | BPF_K:
 | |
| 	case BPF_JMP | BPF_JLT  | BPF_K:
 | |
| 	case BPF_JMP | BPF_JGE  | BPF_K:
 | |
| 	case BPF_JMP | BPF_JLE  | BPF_K:
 | |
| 	case BPF_JMP | BPF_JSGT | BPF_K:
 | |
| 	case BPF_JMP | BPF_JSLT | BPF_K:
 | |
| 	case BPF_JMP | BPF_JSGE | BPF_K:
 | |
| 	case BPF_JMP | BPF_JSLE | BPF_K:
 | |
| 	case BPF_JMP | BPF_JSET | BPF_K:
 | |
| 		/* Accommodate for extra offset in case of a backjump. */
 | |
| 		off = from->off;
 | |
| 		if (off < 0)
 | |
| 			off -= 2;
 | |
| 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 | |
| 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 | |
| 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
 | |
| 		break;
 | |
| 
 | |
| 	case BPF_LD | BPF_ABS | BPF_W:
 | |
| 	case BPF_LD | BPF_ABS | BPF_H:
 | |
| 	case BPF_LD | BPF_ABS | BPF_B:
 | |
| 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 | |
| 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 | |
| 		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
 | |
| 		break;
 | |
| 
 | |
| 	case BPF_LD | BPF_IND | BPF_W:
 | |
| 	case BPF_LD | BPF_IND | BPF_H:
 | |
| 	case BPF_LD | BPF_IND | BPF_B:
 | |
| 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 | |
| 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 | |
| 		*to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
 | |
| 		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
 | |
| 		break;
 | |
| 
 | |
| 	case BPF_LD | BPF_IMM | BPF_DW:
 | |
| 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
 | |
| 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 | |
| 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
 | |
| 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
 | |
| 		break;
 | |
| 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
 | |
| 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
 | |
| 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 | |
| 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
 | |
| 		break;
 | |
| 
 | |
| 	case BPF_ST | BPF_MEM | BPF_DW:
 | |
| 	case BPF_ST | BPF_MEM | BPF_W:
 | |
| 	case BPF_ST | BPF_MEM | BPF_H:
 | |
| 	case BPF_ST | BPF_MEM | BPF_B:
 | |
| 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 | |
| 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 | |
| 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
 | |
| 		break;
 | |
| 	}
 | |
| out:
 | |
| 	return to - to_buff;
 | |
| }
 | |
| 
 | |
| static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
 | |
| 					      gfp_t gfp_extra_flags)
 | |
| {
 | |
| 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
 | |
| 	struct bpf_prog *fp;
 | |
| 
 | |
| 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
 | |
| 	if (fp != NULL) {
 | |
| 		kmemcheck_annotate_bitfield(fp, meta);
 | |
| 
 | |
| 		/* aux->prog still points to the fp_other one, so
 | |
| 		 * when promoting the clone to the real program,
 | |
| 		 * this still needs to be adapted.
 | |
| 		 */
 | |
| 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
 | |
| 	}
 | |
| 
 | |
| 	return fp;
 | |
| }
 | |
| 
 | |
| static void bpf_prog_clone_free(struct bpf_prog *fp)
 | |
| {
 | |
| 	/* aux was stolen by the other clone, so we cannot free
 | |
| 	 * it from this path! It will be freed eventually by the
 | |
| 	 * other program on release.
 | |
| 	 *
 | |
| 	 * At this point, we don't need a deferred release since
 | |
| 	 * clone is guaranteed to not be locked.
 | |
| 	 */
 | |
| 	fp->aux = NULL;
 | |
| 	__bpf_prog_free(fp);
 | |
| }
 | |
| 
 | |
| void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
 | |
| {
 | |
| 	/* We have to repoint aux->prog to self, as we don't
 | |
| 	 * know whether fp here is the clone or the original.
 | |
| 	 */
 | |
| 	fp->aux->prog = fp;
 | |
| 	bpf_prog_clone_free(fp_other);
 | |
| }
 | |
| 
 | |
| struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
 | |
| {
 | |
| 	struct bpf_insn insn_buff[16], aux[2];
 | |
| 	struct bpf_prog *clone, *tmp;
 | |
| 	int insn_delta, insn_cnt;
 | |
| 	struct bpf_insn *insn;
 | |
| 	int i, rewritten;
 | |
| 
 | |
| 	if (!bpf_jit_blinding_enabled())
 | |
| 		return prog;
 | |
| 
 | |
| 	clone = bpf_prog_clone_create(prog, GFP_USER);
 | |
| 	if (!clone)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	insn_cnt = clone->len;
 | |
| 	insn = clone->insnsi;
 | |
| 
 | |
| 	for (i = 0; i < insn_cnt; i++, insn++) {
 | |
| 		/* We temporarily need to hold the original ld64 insn
 | |
| 		 * so that we can still access the first part in the
 | |
| 		 * second blinding run.
 | |
| 		 */
 | |
| 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 | |
| 		    insn[1].code == 0)
 | |
| 			memcpy(aux, insn, sizeof(aux));
 | |
| 
 | |
| 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
 | |
| 		if (!rewritten)
 | |
| 			continue;
 | |
| 
 | |
| 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
 | |
| 		if (!tmp) {
 | |
| 			/* Patching may have repointed aux->prog during
 | |
| 			 * realloc from the original one, so we need to
 | |
| 			 * fix it up here on error.
 | |
| 			 */
 | |
| 			bpf_jit_prog_release_other(prog, clone);
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 		}
 | |
| 
 | |
| 		clone = tmp;
 | |
| 		insn_delta = rewritten - 1;
 | |
| 
 | |
| 		/* Walk new program and skip insns we just inserted. */
 | |
| 		insn = clone->insnsi + i + insn_delta;
 | |
| 		insn_cnt += insn_delta;
 | |
| 		i        += insn_delta;
 | |
| 	}
 | |
| 
 | |
| 	return clone;
 | |
| }
 | |
| #endif /* CONFIG_BPF_JIT */
 | |
| 
 | |
| /* Base function for offset calculation. Needs to go into .text section,
 | |
|  * therefore keeping it non-static as well; will also be used by JITs
 | |
|  * anyway later on, so do not let the compiler omit it.
 | |
|  */
 | |
| noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__bpf_call_base);
 | |
| 
 | |
| /**
 | |
|  *	__bpf_prog_run - run eBPF program on a given context
 | |
|  *	@ctx: is the data we are operating on
 | |
|  *	@insn: is the array of eBPF instructions
 | |
|  *
 | |
|  * Decode and execute eBPF instructions.
 | |
|  */
 | |
| static unsigned int ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn,
 | |
| 				    u64 *stack)
 | |
| {
 | |
| 	u64 tmp;
 | |
| 	static const void *jumptable[256] = {
 | |
| 		[0 ... 255] = &&default_label,
 | |
| 		/* Now overwrite non-defaults ... */
 | |
| 		/* 32 bit ALU operations */
 | |
| 		[BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
 | |
| 		[BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
 | |
| 		[BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
 | |
| 		[BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
 | |
| 		[BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
 | |
| 		[BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
 | |
| 		[BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
 | |
| 		[BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
 | |
| 		[BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
 | |
| 		[BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
 | |
| 		[BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
 | |
| 		[BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
 | |
| 		[BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
 | |
| 		[BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
 | |
| 		[BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
 | |
| 		[BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
 | |
| 		[BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
 | |
| 		[BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
 | |
| 		[BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
 | |
| 		[BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
 | |
| 		[BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
 | |
| 		[BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
 | |
| 		[BPF_ALU | BPF_NEG] = &&ALU_NEG,
 | |
| 		[BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
 | |
| 		[BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
 | |
| 		/* 64 bit ALU operations */
 | |
| 		[BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
 | |
| 		[BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
 | |
| 		[BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
 | |
| 		[BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
 | |
| 		[BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
 | |
| 		[BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
 | |
| 		[BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
 | |
| 		[BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
 | |
| 		[BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
 | |
| 		[BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
 | |
| 		[BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
 | |
| 		[BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
 | |
| 		[BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
 | |
| 		[BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
 | |
| 		[BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
 | |
| 		[BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
 | |
| 		[BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
 | |
| 		[BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
 | |
| 		[BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
 | |
| 		[BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
 | |
| 		[BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
 | |
| 		[BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
 | |
| 		[BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
 | |
| 		[BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
 | |
| 		[BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
 | |
| 		/* Call instruction */
 | |
| 		[BPF_JMP | BPF_CALL] = &&JMP_CALL,
 | |
| 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
 | |
| 		/* Jumps */
 | |
| 		[BPF_JMP | BPF_JA] = &&JMP_JA,
 | |
| 		[BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
 | |
| 		[BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
 | |
| 		[BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
 | |
| 		[BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
 | |
| 		[BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
 | |
| 		[BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
 | |
| 		[BPF_JMP | BPF_JLT | BPF_X] = &&JMP_JLT_X,
 | |
| 		[BPF_JMP | BPF_JLT | BPF_K] = &&JMP_JLT_K,
 | |
| 		[BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
 | |
| 		[BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
 | |
| 		[BPF_JMP | BPF_JLE | BPF_X] = &&JMP_JLE_X,
 | |
| 		[BPF_JMP | BPF_JLE | BPF_K] = &&JMP_JLE_K,
 | |
| 		[BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
 | |
| 		[BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
 | |
| 		[BPF_JMP | BPF_JSLT | BPF_X] = &&JMP_JSLT_X,
 | |
| 		[BPF_JMP | BPF_JSLT | BPF_K] = &&JMP_JSLT_K,
 | |
| 		[BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
 | |
| 		[BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
 | |
| 		[BPF_JMP | BPF_JSLE | BPF_X] = &&JMP_JSLE_X,
 | |
| 		[BPF_JMP | BPF_JSLE | BPF_K] = &&JMP_JSLE_K,
 | |
| 		[BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
 | |
| 		[BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
 | |
| 		/* Program return */
 | |
| 		[BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
 | |
| 		/* Store instructions */
 | |
| 		[BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
 | |
| 		[BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
 | |
| 		[BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
 | |
| 		[BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
 | |
| 		[BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
 | |
| 		[BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
 | |
| 		[BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
 | |
| 		[BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
 | |
| 		[BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
 | |
| 		[BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
 | |
| 		/* Load instructions */
 | |
| 		[BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
 | |
| 		[BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
 | |
| 		[BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
 | |
| 		[BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
 | |
| 		[BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
 | |
| 		[BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
 | |
| 		[BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
 | |
| 		[BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
 | |
| 		[BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
 | |
| 		[BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
 | |
| 		[BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
 | |
| 	};
 | |
| 	u32 tail_call_cnt = 0;
 | |
| 	void *ptr;
 | |
| 	int off;
 | |
| 
 | |
| #define CONT	 ({ insn++; goto select_insn; })
 | |
| #define CONT_JMP ({ insn++; goto select_insn; })
 | |
| 
 | |
| select_insn:
 | |
| 	goto *jumptable[insn->code];
 | |
| 
 | |
| 	/* ALU */
 | |
| #define ALU(OPCODE, OP)			\
 | |
| 	ALU64_##OPCODE##_X:		\
 | |
| 		DST = DST OP SRC;	\
 | |
| 		CONT;			\
 | |
| 	ALU_##OPCODE##_X:		\
 | |
| 		DST = (u32) DST OP (u32) SRC;	\
 | |
| 		CONT;			\
 | |
| 	ALU64_##OPCODE##_K:		\
 | |
| 		DST = DST OP IMM;		\
 | |
| 		CONT;			\
 | |
| 	ALU_##OPCODE##_K:		\
 | |
| 		DST = (u32) DST OP (u32) IMM;	\
 | |
| 		CONT;
 | |
| 
 | |
| 	ALU(ADD,  +)
 | |
| 	ALU(SUB,  -)
 | |
| 	ALU(AND,  &)
 | |
| 	ALU(OR,   |)
 | |
| 	ALU(LSH, <<)
 | |
| 	ALU(RSH, >>)
 | |
| 	ALU(XOR,  ^)
 | |
| 	ALU(MUL,  *)
 | |
| #undef ALU
 | |
| 	ALU_NEG:
 | |
| 		DST = (u32) -DST;
 | |
| 		CONT;
 | |
| 	ALU64_NEG:
 | |
| 		DST = -DST;
 | |
| 		CONT;
 | |
| 	ALU_MOV_X:
 | |
| 		DST = (u32) SRC;
 | |
| 		CONT;
 | |
| 	ALU_MOV_K:
 | |
| 		DST = (u32) IMM;
 | |
| 		CONT;
 | |
| 	ALU64_MOV_X:
 | |
| 		DST = SRC;
 | |
| 		CONT;
 | |
| 	ALU64_MOV_K:
 | |
| 		DST = IMM;
 | |
| 		CONT;
 | |
| 	LD_IMM_DW:
 | |
| 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
 | |
| 		insn++;
 | |
| 		CONT;
 | |
| 	ALU64_ARSH_X:
 | |
| 		(*(s64 *) &DST) >>= SRC;
 | |
| 		CONT;
 | |
| 	ALU64_ARSH_K:
 | |
| 		(*(s64 *) &DST) >>= IMM;
 | |
| 		CONT;
 | |
| 	ALU64_MOD_X:
 | |
| 		if (unlikely(SRC == 0))
 | |
| 			return 0;
 | |
| 		div64_u64_rem(DST, SRC, &tmp);
 | |
| 		DST = tmp;
 | |
| 		CONT;
 | |
| 	ALU_MOD_X:
 | |
| 		if (unlikely(SRC == 0))
 | |
| 			return 0;
 | |
| 		tmp = (u32) DST;
 | |
| 		DST = do_div(tmp, (u32) SRC);
 | |
| 		CONT;
 | |
| 	ALU64_MOD_K:
 | |
| 		div64_u64_rem(DST, IMM, &tmp);
 | |
| 		DST = tmp;
 | |
| 		CONT;
 | |
| 	ALU_MOD_K:
 | |
| 		tmp = (u32) DST;
 | |
| 		DST = do_div(tmp, (u32) IMM);
 | |
| 		CONT;
 | |
| 	ALU64_DIV_X:
 | |
| 		if (unlikely(SRC == 0))
 | |
| 			return 0;
 | |
| 		DST = div64_u64(DST, SRC);
 | |
| 		CONT;
 | |
| 	ALU_DIV_X:
 | |
| 		if (unlikely(SRC == 0))
 | |
| 			return 0;
 | |
| 		tmp = (u32) DST;
 | |
| 		do_div(tmp, (u32) SRC);
 | |
| 		DST = (u32) tmp;
 | |
| 		CONT;
 | |
| 	ALU64_DIV_K:
 | |
| 		DST = div64_u64(DST, IMM);
 | |
| 		CONT;
 | |
| 	ALU_DIV_K:
 | |
| 		tmp = (u32) DST;
 | |
| 		do_div(tmp, (u32) IMM);
 | |
| 		DST = (u32) tmp;
 | |
| 		CONT;
 | |
| 	ALU_END_TO_BE:
 | |
| 		switch (IMM) {
 | |
| 		case 16:
 | |
| 			DST = (__force u16) cpu_to_be16(DST);
 | |
| 			break;
 | |
| 		case 32:
 | |
| 			DST = (__force u32) cpu_to_be32(DST);
 | |
| 			break;
 | |
| 		case 64:
 | |
| 			DST = (__force u64) cpu_to_be64(DST);
 | |
| 			break;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	ALU_END_TO_LE:
 | |
| 		switch (IMM) {
 | |
| 		case 16:
 | |
| 			DST = (__force u16) cpu_to_le16(DST);
 | |
| 			break;
 | |
| 		case 32:
 | |
| 			DST = (__force u32) cpu_to_le32(DST);
 | |
| 			break;
 | |
| 		case 64:
 | |
| 			DST = (__force u64) cpu_to_le64(DST);
 | |
| 			break;
 | |
| 		}
 | |
| 		CONT;
 | |
| 
 | |
| 	/* CALL */
 | |
| 	JMP_CALL:
 | |
| 		/* Function call scratches BPF_R1-BPF_R5 registers,
 | |
| 		 * preserves BPF_R6-BPF_R9, and stores return value
 | |
| 		 * into BPF_R0.
 | |
| 		 */
 | |
| 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
 | |
| 						       BPF_R4, BPF_R5);
 | |
| 		CONT;
 | |
| 
 | |
| 	JMP_TAIL_CALL: {
 | |
| 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
 | |
| 		struct bpf_array *array = container_of(map, struct bpf_array, map);
 | |
| 		struct bpf_prog *prog;
 | |
| 		u64 index = BPF_R3;
 | |
| 
 | |
| 		if (unlikely(index >= array->map.max_entries))
 | |
| 			goto out;
 | |
| 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
 | |
| 			goto out;
 | |
| 
 | |
| 		tail_call_cnt++;
 | |
| 
 | |
| 		prog = READ_ONCE(array->ptrs[index]);
 | |
| 		if (!prog)
 | |
| 			goto out;
 | |
| 
 | |
| 		/* ARG1 at this point is guaranteed to point to CTX from
 | |
| 		 * the verifier side due to the fact that the tail call is
 | |
| 		 * handeled like a helper, that is, bpf_tail_call_proto,
 | |
| 		 * where arg1_type is ARG_PTR_TO_CTX.
 | |
| 		 */
 | |
| 		insn = prog->insnsi;
 | |
| 		goto select_insn;
 | |
| out:
 | |
| 		CONT;
 | |
| 	}
 | |
| 	/* JMP */
 | |
| 	JMP_JA:
 | |
| 		insn += insn->off;
 | |
| 		CONT;
 | |
| 	JMP_JEQ_X:
 | |
| 		if (DST == SRC) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JEQ_K:
 | |
| 		if (DST == IMM) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JNE_X:
 | |
| 		if (DST != SRC) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JNE_K:
 | |
| 		if (DST != IMM) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JGT_X:
 | |
| 		if (DST > SRC) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JGT_K:
 | |
| 		if (DST > IMM) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JLT_X:
 | |
| 		if (DST < SRC) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JLT_K:
 | |
| 		if (DST < IMM) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JGE_X:
 | |
| 		if (DST >= SRC) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JGE_K:
 | |
| 		if (DST >= IMM) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JLE_X:
 | |
| 		if (DST <= SRC) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JLE_K:
 | |
| 		if (DST <= IMM) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JSGT_X:
 | |
| 		if (((s64) DST) > ((s64) SRC)) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JSGT_K:
 | |
| 		if (((s64) DST) > ((s64) IMM)) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JSLT_X:
 | |
| 		if (((s64) DST) < ((s64) SRC)) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JSLT_K:
 | |
| 		if (((s64) DST) < ((s64) IMM)) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JSGE_X:
 | |
| 		if (((s64) DST) >= ((s64) SRC)) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JSGE_K:
 | |
| 		if (((s64) DST) >= ((s64) IMM)) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JSLE_X:
 | |
| 		if (((s64) DST) <= ((s64) SRC)) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JSLE_K:
 | |
| 		if (((s64) DST) <= ((s64) IMM)) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JSET_X:
 | |
| 		if (DST & SRC) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_JSET_K:
 | |
| 		if (DST & IMM) {
 | |
| 			insn += insn->off;
 | |
| 			CONT_JMP;
 | |
| 		}
 | |
| 		CONT;
 | |
| 	JMP_EXIT:
 | |
| 		return BPF_R0;
 | |
| 
 | |
| 	/* STX and ST and LDX*/
 | |
| #define LDST(SIZEOP, SIZE)						\
 | |
| 	STX_MEM_##SIZEOP:						\
 | |
| 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
 | |
| 		CONT;							\
 | |
| 	ST_MEM_##SIZEOP:						\
 | |
| 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
 | |
| 		CONT;							\
 | |
| 	LDX_MEM_##SIZEOP:						\
 | |
| 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
 | |
| 		CONT;
 | |
| 
 | |
| 	LDST(B,   u8)
 | |
| 	LDST(H,  u16)
 | |
| 	LDST(W,  u32)
 | |
| 	LDST(DW, u64)
 | |
| #undef LDST
 | |
| 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
 | |
| 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
 | |
| 			   (DST + insn->off));
 | |
| 		CONT;
 | |
| 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
 | |
| 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
 | |
| 			     (DST + insn->off));
 | |
| 		CONT;
 | |
| 	LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
 | |
| 		off = IMM;
 | |
| load_word:
 | |
| 		/* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
 | |
| 		 * appearing in the programs where ctx == skb
 | |
| 		 * (see may_access_skb() in the verifier). All programs
 | |
| 		 * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
 | |
| 		 * bpf_convert_filter() saves it in BPF_R6, internal BPF
 | |
| 		 * verifier will check that BPF_R6 == ctx.
 | |
| 		 *
 | |
| 		 * BPF_ABS and BPF_IND are wrappers of function calls,
 | |
| 		 * so they scratch BPF_R1-BPF_R5 registers, preserve
 | |
| 		 * BPF_R6-BPF_R9, and store return value into BPF_R0.
 | |
| 		 *
 | |
| 		 * Implicit input:
 | |
| 		 *   ctx == skb == BPF_R6 == CTX
 | |
| 		 *
 | |
| 		 * Explicit input:
 | |
| 		 *   SRC == any register
 | |
| 		 *   IMM == 32-bit immediate
 | |
| 		 *
 | |
| 		 * Output:
 | |
| 		 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
 | |
| 		 */
 | |
| 
 | |
| 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
 | |
| 		if (likely(ptr != NULL)) {
 | |
| 			BPF_R0 = get_unaligned_be32(ptr);
 | |
| 			CONT;
 | |
| 		}
 | |
| 
 | |
| 		return 0;
 | |
| 	LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
 | |
| 		off = IMM;
 | |
| load_half:
 | |
| 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
 | |
| 		if (likely(ptr != NULL)) {
 | |
| 			BPF_R0 = get_unaligned_be16(ptr);
 | |
| 			CONT;
 | |
| 		}
 | |
| 
 | |
| 		return 0;
 | |
| 	LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
 | |
| 		off = IMM;
 | |
| load_byte:
 | |
| 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
 | |
| 		if (likely(ptr != NULL)) {
 | |
| 			BPF_R0 = *(u8 *)ptr;
 | |
| 			CONT;
 | |
| 		}
 | |
| 
 | |
| 		return 0;
 | |
| 	LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
 | |
| 		off = IMM + SRC;
 | |
| 		goto load_word;
 | |
| 	LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
 | |
| 		off = IMM + SRC;
 | |
| 		goto load_half;
 | |
| 	LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
 | |
| 		off = IMM + SRC;
 | |
| 		goto load_byte;
 | |
| 
 | |
| 	default_label:
 | |
| 		/* If we ever reach this, we have a bug somewhere. */
 | |
| 		WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
 | |
| 		return 0;
 | |
| }
 | |
| STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
 | |
| 
 | |
| #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
 | |
| #define DEFINE_BPF_PROG_RUN(stack_size) \
 | |
| static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
 | |
| { \
 | |
| 	u64 stack[stack_size / sizeof(u64)]; \
 | |
| 	u64 regs[MAX_BPF_REG]; \
 | |
| \
 | |
| 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
 | |
| 	ARG1 = (u64) (unsigned long) ctx; \
 | |
| 	return ___bpf_prog_run(regs, insn, stack); \
 | |
| }
 | |
| 
 | |
| #define EVAL1(FN, X) FN(X)
 | |
| #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
 | |
| #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
 | |
| #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
 | |
| #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
 | |
| #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
 | |
| 
 | |
| EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
 | |
| EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
 | |
| EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
 | |
| 
 | |
| #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
 | |
| 
 | |
| static unsigned int (*interpreters[])(const void *ctx,
 | |
| 				      const struct bpf_insn *insn) = {
 | |
| EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
 | |
| EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
 | |
| EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
 | |
| };
 | |
| 
 | |
| bool bpf_prog_array_compatible(struct bpf_array *array,
 | |
| 			       const struct bpf_prog *fp)
 | |
| {
 | |
| 	if (!array->owner_prog_type) {
 | |
| 		/* There's no owner yet where we could check for
 | |
| 		 * compatibility.
 | |
| 		 */
 | |
| 		array->owner_prog_type = fp->type;
 | |
| 		array->owner_jited = fp->jited;
 | |
| 
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return array->owner_prog_type == fp->type &&
 | |
| 	       array->owner_jited == fp->jited;
 | |
| }
 | |
| 
 | |
| static int bpf_check_tail_call(const struct bpf_prog *fp)
 | |
| {
 | |
| 	struct bpf_prog_aux *aux = fp->aux;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < aux->used_map_cnt; i++) {
 | |
| 		struct bpf_map *map = aux->used_maps[i];
 | |
| 		struct bpf_array *array;
 | |
| 
 | |
| 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
 | |
| 			continue;
 | |
| 
 | |
| 		array = container_of(map, struct bpf_array, map);
 | |
| 		if (!bpf_prog_array_compatible(array, fp))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	bpf_prog_select_runtime - select exec runtime for BPF program
 | |
|  *	@fp: bpf_prog populated with internal BPF program
 | |
|  *	@err: pointer to error variable
 | |
|  *
 | |
|  * Try to JIT eBPF program, if JIT is not available, use interpreter.
 | |
|  * The BPF program will be executed via BPF_PROG_RUN() macro.
 | |
|  */
 | |
| struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
 | |
| {
 | |
| 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
 | |
| 
 | |
| 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
 | |
| 
 | |
| 	/* eBPF JITs can rewrite the program in case constant
 | |
| 	 * blinding is active. However, in case of error during
 | |
| 	 * blinding, bpf_int_jit_compile() must always return a
 | |
| 	 * valid program, which in this case would simply not
 | |
| 	 * be JITed, but falls back to the interpreter.
 | |
| 	 */
 | |
| 	fp = bpf_int_jit_compile(fp);
 | |
| 	bpf_prog_lock_ro(fp);
 | |
| 
 | |
| 	/* The tail call compatibility check can only be done at
 | |
| 	 * this late stage as we need to determine, if we deal
 | |
| 	 * with JITed or non JITed program concatenations and not
 | |
| 	 * all eBPF JITs might immediately support all features.
 | |
| 	 */
 | |
| 	*err = bpf_check_tail_call(fp);
 | |
| 
 | |
| 	return fp;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
 | |
| 
 | |
| /* to avoid allocating empty bpf_prog_array for cgroups that
 | |
|  * don't have bpf program attached use one global 'empty_prog_array'
 | |
|  * It will not be modified the caller of bpf_prog_array_alloc()
 | |
|  * (since caller requested prog_cnt == 0)
 | |
|  * that pointer should be 'freed' by bpf_prog_array_free()
 | |
|  */
 | |
| static struct {
 | |
| 	struct bpf_prog_array hdr;
 | |
| 	struct bpf_prog *null_prog;
 | |
| } empty_prog_array = {
 | |
| 	.null_prog = NULL,
 | |
| };
 | |
| 
 | |
| struct bpf_prog_array __rcu *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
 | |
| {
 | |
| 	if (prog_cnt)
 | |
| 		return kzalloc(sizeof(struct bpf_prog_array) +
 | |
| 			       sizeof(struct bpf_prog *) * (prog_cnt + 1),
 | |
| 			       flags);
 | |
| 
 | |
| 	return &empty_prog_array.hdr;
 | |
| }
 | |
| 
 | |
| void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
 | |
| {
 | |
| 	if (!progs ||
 | |
| 	    progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
 | |
| 		return;
 | |
| 	kfree_rcu(progs, rcu);
 | |
| }
 | |
| 
 | |
| int bpf_prog_array_length(struct bpf_prog_array __rcu *progs)
 | |
| {
 | |
| 	struct bpf_prog **prog;
 | |
| 	u32 cnt = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	prog = rcu_dereference(progs)->progs;
 | |
| 	for (; *prog; prog++)
 | |
| 		cnt++;
 | |
| 	rcu_read_unlock();
 | |
| 	return cnt;
 | |
| }
 | |
| 
 | |
| int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
 | |
| 				__u32 __user *prog_ids, u32 cnt)
 | |
| {
 | |
| 	struct bpf_prog **prog;
 | |
| 	u32 i = 0, id;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	prog = rcu_dereference(progs)->progs;
 | |
| 	for (; *prog; prog++) {
 | |
| 		id = (*prog)->aux->id;
 | |
| 		if (copy_to_user(prog_ids + i, &id, sizeof(id))) {
 | |
| 			rcu_read_unlock();
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 		if (++i == cnt) {
 | |
| 			prog++;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	if (*prog)
 | |
| 		return -ENOSPC;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void bpf_prog_free_deferred(struct work_struct *work)
 | |
| {
 | |
| 	struct bpf_prog_aux *aux;
 | |
| 
 | |
| 	aux = container_of(work, struct bpf_prog_aux, work);
 | |
| 	bpf_jit_free(aux->prog);
 | |
| }
 | |
| 
 | |
| /* Free internal BPF program */
 | |
| void bpf_prog_free(struct bpf_prog *fp)
 | |
| {
 | |
| 	struct bpf_prog_aux *aux = fp->aux;
 | |
| 
 | |
| 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
 | |
| 	schedule_work(&aux->work);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(bpf_prog_free);
 | |
| 
 | |
| /* RNG for unpriviledged user space with separated state from prandom_u32(). */
 | |
| static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
 | |
| 
 | |
| void bpf_user_rnd_init_once(void)
 | |
| {
 | |
| 	prandom_init_once(&bpf_user_rnd_state);
 | |
| }
 | |
| 
 | |
| BPF_CALL_0(bpf_user_rnd_u32)
 | |
| {
 | |
| 	/* Should someone ever have the rather unwise idea to use some
 | |
| 	 * of the registers passed into this function, then note that
 | |
| 	 * this function is called from native eBPF and classic-to-eBPF
 | |
| 	 * transformations. Register assignments from both sides are
 | |
| 	 * different, f.e. classic always sets fn(ctx, A, X) here.
 | |
| 	 */
 | |
| 	struct rnd_state *state;
 | |
| 	u32 res;
 | |
| 
 | |
| 	state = &get_cpu_var(bpf_user_rnd_state);
 | |
| 	res = prandom_u32_state(state);
 | |
| 	put_cpu_var(bpf_user_rnd_state);
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* Weak definitions of helper functions in case we don't have bpf syscall. */
 | |
| const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
 | |
| const struct bpf_func_proto bpf_map_update_elem_proto __weak;
 | |
| const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
 | |
| 
 | |
| const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
 | |
| const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
 | |
| const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
 | |
| const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
 | |
| 
 | |
| const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
 | |
| const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
 | |
| const struct bpf_func_proto bpf_get_current_comm_proto __weak;
 | |
| const struct bpf_func_proto bpf_sock_map_update_proto __weak;
 | |
| 
 | |
| const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| u64 __weak
 | |
| bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
 | |
| 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
 | |
| {
 | |
| 	return -ENOTSUPP;
 | |
| }
 | |
| 
 | |
| /* Always built-in helper functions. */
 | |
| const struct bpf_func_proto bpf_tail_call_proto = {
 | |
| 	.func		= NULL,
 | |
| 	.gpl_only	= false,
 | |
| 	.ret_type	= RET_VOID,
 | |
| 	.arg1_type	= ARG_PTR_TO_CTX,
 | |
| 	.arg2_type	= ARG_CONST_MAP_PTR,
 | |
| 	.arg3_type	= ARG_ANYTHING,
 | |
| };
 | |
| 
 | |
| /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
 | |
|  * It is encouraged to implement bpf_int_jit_compile() instead, so that
 | |
|  * eBPF and implicitly also cBPF can get JITed!
 | |
|  */
 | |
| struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
 | |
| {
 | |
| 	return prog;
 | |
| }
 | |
| 
 | |
| /* Stub for JITs that support eBPF. All cBPF code gets transformed into
 | |
|  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
 | |
|  */
 | |
| void __weak bpf_jit_compile(struct bpf_prog *prog)
 | |
| {
 | |
| }
 | |
| 
 | |
| bool __weak bpf_helper_changes_pkt_data(void *func)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
 | |
|  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
 | |
|  */
 | |
| int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
 | |
| 			 int len)
 | |
| {
 | |
| 	return -EFAULT;
 | |
| }
 | |
| 
 | |
| /* All definitions of tracepoints related to BPF. */
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <linux/bpf_trace.h>
 | |
| 
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
 | |
| 
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu);
 |