mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	Because the rcu_cblist_n_cbs() just samples the ->len counter, and because the rcu_cblist structure is quite straightforward, it makes sense to open-code rcu_cblist_n_cbs(p) as p->len, cutting out a level of indirection. This commit makes this change. Reported-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			4215 lines
		
	
	
	
		
			130 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4215 lines
		
	
	
	
		
			130 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Read-Copy Update mechanism for mutual exclusion
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, you can access it online at
 | 
						|
 * http://www.gnu.org/licenses/gpl-2.0.html.
 | 
						|
 *
 | 
						|
 * Copyright IBM Corporation, 2008
 | 
						|
 *
 | 
						|
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 | 
						|
 *	    Manfred Spraul <manfred@colorfullife.com>
 | 
						|
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 | 
						|
 *
 | 
						|
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 | 
						|
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 | 
						|
 *
 | 
						|
 * For detailed explanation of Read-Copy Update mechanism see -
 | 
						|
 *	Documentation/RCU
 | 
						|
 */
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/smp.h>
 | 
						|
#include <linux/rcupdate_wait.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/sched/debug.h>
 | 
						|
#include <linux/nmi.h>
 | 
						|
#include <linux/atomic.h>
 | 
						|
#include <linux/bitops.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/completion.h>
 | 
						|
#include <linux/moduleparam.h>
 | 
						|
#include <linux/percpu.h>
 | 
						|
#include <linux/notifier.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
#include <linux/time.h>
 | 
						|
#include <linux/kernel_stat.h>
 | 
						|
#include <linux/wait.h>
 | 
						|
#include <linux/kthread.h>
 | 
						|
#include <uapi/linux/sched/types.h>
 | 
						|
#include <linux/prefetch.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/stop_machine.h>
 | 
						|
#include <linux/random.h>
 | 
						|
#include <linux/trace_events.h>
 | 
						|
#include <linux/suspend.h>
 | 
						|
 | 
						|
#include "tree.h"
 | 
						|
#include "rcu.h"
 | 
						|
 | 
						|
#ifdef MODULE_PARAM_PREFIX
 | 
						|
#undef MODULE_PARAM_PREFIX
 | 
						|
#endif
 | 
						|
#define MODULE_PARAM_PREFIX "rcutree."
 | 
						|
 | 
						|
/* Data structures. */
 | 
						|
 | 
						|
/*
 | 
						|
 * In order to export the rcu_state name to the tracing tools, it
 | 
						|
 * needs to be added in the __tracepoint_string section.
 | 
						|
 * This requires defining a separate variable tp_<sname>_varname
 | 
						|
 * that points to the string being used, and this will allow
 | 
						|
 * the tracing userspace tools to be able to decipher the string
 | 
						|
 * address to the matching string.
 | 
						|
 */
 | 
						|
#ifdef CONFIG_TRACING
 | 
						|
# define DEFINE_RCU_TPS(sname) \
 | 
						|
static char sname##_varname[] = #sname; \
 | 
						|
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
 | 
						|
# define RCU_STATE_NAME(sname) sname##_varname
 | 
						|
#else
 | 
						|
# define DEFINE_RCU_TPS(sname)
 | 
						|
# define RCU_STATE_NAME(sname) __stringify(sname)
 | 
						|
#endif
 | 
						|
 | 
						|
#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
 | 
						|
DEFINE_RCU_TPS(sname) \
 | 
						|
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
 | 
						|
struct rcu_state sname##_state = { \
 | 
						|
	.level = { &sname##_state.node[0] }, \
 | 
						|
	.rda = &sname##_data, \
 | 
						|
	.call = cr, \
 | 
						|
	.gp_state = RCU_GP_IDLE, \
 | 
						|
	.gpnum = 0UL - 300UL, \
 | 
						|
	.completed = 0UL - 300UL, \
 | 
						|
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
 | 
						|
	.orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
 | 
						|
	.orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
 | 
						|
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
 | 
						|
	.name = RCU_STATE_NAME(sname), \
 | 
						|
	.abbr = sabbr, \
 | 
						|
	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
 | 
						|
	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
 | 
						|
}
 | 
						|
 | 
						|
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
 | 
						|
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
 | 
						|
 | 
						|
static struct rcu_state *const rcu_state_p;
 | 
						|
LIST_HEAD(rcu_struct_flavors);
 | 
						|
 | 
						|
/* Dump rcu_node combining tree at boot to verify correct setup. */
 | 
						|
static bool dump_tree;
 | 
						|
module_param(dump_tree, bool, 0444);
 | 
						|
/* Control rcu_node-tree auto-balancing at boot time. */
 | 
						|
static bool rcu_fanout_exact;
 | 
						|
module_param(rcu_fanout_exact, bool, 0444);
 | 
						|
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 | 
						|
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 | 
						|
module_param(rcu_fanout_leaf, int, 0444);
 | 
						|
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 | 
						|
/* Number of rcu_nodes at specified level. */
 | 
						|
int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 | 
						|
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 | 
						|
/* panic() on RCU Stall sysctl. */
 | 
						|
int sysctl_panic_on_rcu_stall __read_mostly;
 | 
						|
 | 
						|
/*
 | 
						|
 * The rcu_scheduler_active variable is initialized to the value
 | 
						|
 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 | 
						|
 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 | 
						|
 * RCU can assume that there is but one task, allowing RCU to (for example)
 | 
						|
 * optimize synchronize_rcu() to a simple barrier().  When this variable
 | 
						|
 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 | 
						|
 * to detect real grace periods.  This variable is also used to suppress
 | 
						|
 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 | 
						|
 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 | 
						|
 * is fully initialized, including all of its kthreads having been spawned.
 | 
						|
 */
 | 
						|
int rcu_scheduler_active __read_mostly;
 | 
						|
EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 | 
						|
 | 
						|
/*
 | 
						|
 * The rcu_scheduler_fully_active variable transitions from zero to one
 | 
						|
 * during the early_initcall() processing, which is after the scheduler
 | 
						|
 * is capable of creating new tasks.  So RCU processing (for example,
 | 
						|
 * creating tasks for RCU priority boosting) must be delayed until after
 | 
						|
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 | 
						|
 * currently delay invocation of any RCU callbacks until after this point.
 | 
						|
 *
 | 
						|
 * It might later prove better for people registering RCU callbacks during
 | 
						|
 * early boot to take responsibility for these callbacks, but one step at
 | 
						|
 * a time.
 | 
						|
 */
 | 
						|
static int rcu_scheduler_fully_active __read_mostly;
 | 
						|
 | 
						|
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 | 
						|
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 | 
						|
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 | 
						|
static void invoke_rcu_core(void);
 | 
						|
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
 | 
						|
static void rcu_report_exp_rdp(struct rcu_state *rsp,
 | 
						|
			       struct rcu_data *rdp, bool wake);
 | 
						|
static void sync_sched_exp_online_cleanup(int cpu);
 | 
						|
 | 
						|
/* rcuc/rcub kthread realtime priority */
 | 
						|
#ifdef CONFIG_RCU_KTHREAD_PRIO
 | 
						|
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
 | 
						|
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
 | 
						|
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 | 
						|
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
 | 
						|
module_param(kthread_prio, int, 0644);
 | 
						|
 | 
						|
/* Delay in jiffies for grace-period initialization delays, debug only. */
 | 
						|
 | 
						|
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
 | 
						|
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
 | 
						|
module_param(gp_preinit_delay, int, 0644);
 | 
						|
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
 | 
						|
static const int gp_preinit_delay;
 | 
						|
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
 | 
						|
 | 
						|
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
 | 
						|
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
 | 
						|
module_param(gp_init_delay, int, 0644);
 | 
						|
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
 | 
						|
static const int gp_init_delay;
 | 
						|
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
 | 
						|
 | 
						|
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
 | 
						|
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
 | 
						|
module_param(gp_cleanup_delay, int, 0644);
 | 
						|
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
 | 
						|
static const int gp_cleanup_delay;
 | 
						|
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
 | 
						|
 | 
						|
/*
 | 
						|
 * Number of grace periods between delays, normalized by the duration of
 | 
						|
 * the delay.  The longer the delay, the more the grace periods between
 | 
						|
 * each delay.  The reason for this normalization is that it means that,
 | 
						|
 * for non-zero delays, the overall slowdown of grace periods is constant
 | 
						|
 * regardless of the duration of the delay.  This arrangement balances
 | 
						|
 * the need for long delays to increase some race probabilities with the
 | 
						|
 * need for fast grace periods to increase other race probabilities.
 | 
						|
 */
 | 
						|
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
 | 
						|
 | 
						|
/*
 | 
						|
 * Track the rcutorture test sequence number and the update version
 | 
						|
 * number within a given test.  The rcutorture_testseq is incremented
 | 
						|
 * on every rcutorture module load and unload, so has an odd value
 | 
						|
 * when a test is running.  The rcutorture_vernum is set to zero
 | 
						|
 * when rcutorture starts and is incremented on each rcutorture update.
 | 
						|
 * These variables enable correlating rcutorture output with the
 | 
						|
 * RCU tracing information.
 | 
						|
 */
 | 
						|
unsigned long rcutorture_testseq;
 | 
						|
unsigned long rcutorture_vernum;
 | 
						|
 | 
						|
/*
 | 
						|
 * Compute the mask of online CPUs for the specified rcu_node structure.
 | 
						|
 * This will not be stable unless the rcu_node structure's ->lock is
 | 
						|
 * held, but the bit corresponding to the current CPU will be stable
 | 
						|
 * in most contexts.
 | 
						|
 */
 | 
						|
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 | 
						|
{
 | 
						|
	return READ_ONCE(rnp->qsmaskinitnext);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 | 
						|
 * permit this function to be invoked without holding the root rcu_node
 | 
						|
 * structure's ->lock, but of course results can be subject to change.
 | 
						|
 */
 | 
						|
static int rcu_gp_in_progress(struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Note a quiescent state.  Because we do not need to know
 | 
						|
 * how many quiescent states passed, just if there was at least
 | 
						|
 * one since the start of the grace period, this just sets a flag.
 | 
						|
 * The caller must have disabled preemption.
 | 
						|
 */
 | 
						|
void rcu_sched_qs(void)
 | 
						|
{
 | 
						|
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
 | 
						|
		return;
 | 
						|
	trace_rcu_grace_period(TPS("rcu_sched"),
 | 
						|
			       __this_cpu_read(rcu_sched_data.gpnum),
 | 
						|
			       TPS("cpuqs"));
 | 
						|
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
 | 
						|
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
 | 
						|
		return;
 | 
						|
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
 | 
						|
	rcu_report_exp_rdp(&rcu_sched_state,
 | 
						|
			   this_cpu_ptr(&rcu_sched_data), true);
 | 
						|
}
 | 
						|
 | 
						|
void rcu_bh_qs(void)
 | 
						|
{
 | 
						|
	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
 | 
						|
		trace_rcu_grace_period(TPS("rcu_bh"),
 | 
						|
				       __this_cpu_read(rcu_bh_data.gpnum),
 | 
						|
				       TPS("cpuqs"));
 | 
						|
		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Steal a bit from the bottom of ->dynticks for idle entry/exit
 | 
						|
 * control.  Initially this is for TLB flushing.
 | 
						|
 */
 | 
						|
#define RCU_DYNTICK_CTRL_MASK 0x1
 | 
						|
#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
 | 
						|
#ifndef rcu_eqs_special_exit
 | 
						|
#define rcu_eqs_special_exit() do { } while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
 | 
						|
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
 | 
						|
	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
 | 
						|
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
 | 
						|
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
 | 
						|
	.dynticks_idle = ATOMIC_INIT(1),
 | 
						|
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Record entry into an extended quiescent state.  This is only to be
 | 
						|
 * called when not already in an extended quiescent state.
 | 
						|
 */
 | 
						|
static void rcu_dynticks_eqs_enter(void)
 | 
						|
{
 | 
						|
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 | 
						|
	int seq;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * CPUs seeing atomic_add_return() must see prior RCU read-side
 | 
						|
	 * critical sections, and we also must force ordering with the
 | 
						|
	 * next idle sojourn.
 | 
						|
	 */
 | 
						|
	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 | 
						|
	/* Better be in an extended quiescent state! */
 | 
						|
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 | 
						|
		     (seq & RCU_DYNTICK_CTRL_CTR));
 | 
						|
	/* Better not have special action (TLB flush) pending! */
 | 
						|
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 | 
						|
		     (seq & RCU_DYNTICK_CTRL_MASK));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Record exit from an extended quiescent state.  This is only to be
 | 
						|
 * called from an extended quiescent state.
 | 
						|
 */
 | 
						|
static void rcu_dynticks_eqs_exit(void)
 | 
						|
{
 | 
						|
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 | 
						|
	int seq;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
 | 
						|
	 * and we also must force ordering with the next RCU read-side
 | 
						|
	 * critical section.
 | 
						|
	 */
 | 
						|
	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 | 
						|
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 | 
						|
		     !(seq & RCU_DYNTICK_CTRL_CTR));
 | 
						|
	if (seq & RCU_DYNTICK_CTRL_MASK) {
 | 
						|
		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
 | 
						|
		smp_mb__after_atomic(); /* _exit after clearing mask. */
 | 
						|
		/* Prefer duplicate flushes to losing a flush. */
 | 
						|
		rcu_eqs_special_exit();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Reset the current CPU's ->dynticks counter to indicate that the
 | 
						|
 * newly onlined CPU is no longer in an extended quiescent state.
 | 
						|
 * This will either leave the counter unchanged, or increment it
 | 
						|
 * to the next non-quiescent value.
 | 
						|
 *
 | 
						|
 * The non-atomic test/increment sequence works because the upper bits
 | 
						|
 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 | 
						|
 * or when the corresponding CPU is offline.
 | 
						|
 */
 | 
						|
static void rcu_dynticks_eqs_online(void)
 | 
						|
{
 | 
						|
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 | 
						|
 | 
						|
	if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
 | 
						|
		return;
 | 
						|
	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Is the current CPU in an extended quiescent state?
 | 
						|
 *
 | 
						|
 * No ordering, as we are sampling CPU-local information.
 | 
						|
 */
 | 
						|
bool rcu_dynticks_curr_cpu_in_eqs(void)
 | 
						|
{
 | 
						|
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 | 
						|
 | 
						|
	return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Snapshot the ->dynticks counter with full ordering so as to allow
 | 
						|
 * stable comparison of this counter with past and future snapshots.
 | 
						|
 */
 | 
						|
int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
 | 
						|
{
 | 
						|
	int snap = atomic_add_return(0, &rdtp->dynticks);
 | 
						|
 | 
						|
	return snap & ~RCU_DYNTICK_CTRL_MASK;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return true if the snapshot returned from rcu_dynticks_snap()
 | 
						|
 * indicates that RCU is in an extended quiescent state.
 | 
						|
 */
 | 
						|
static bool rcu_dynticks_in_eqs(int snap)
 | 
						|
{
 | 
						|
	return !(snap & RCU_DYNTICK_CTRL_CTR);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return true if the CPU corresponding to the specified rcu_dynticks
 | 
						|
 * structure has spent some time in an extended quiescent state since
 | 
						|
 * rcu_dynticks_snap() returned the specified snapshot.
 | 
						|
 */
 | 
						|
static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
 | 
						|
{
 | 
						|
	return snap != rcu_dynticks_snap(rdtp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Do a double-increment of the ->dynticks counter to emulate a
 | 
						|
 * momentary idle-CPU quiescent state.
 | 
						|
 */
 | 
						|
static void rcu_dynticks_momentary_idle(void)
 | 
						|
{
 | 
						|
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 | 
						|
	int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
 | 
						|
					&rdtp->dynticks);
 | 
						|
 | 
						|
	/* It is illegal to call this from idle state. */
 | 
						|
	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set the special (bottom) bit of the specified CPU so that it
 | 
						|
 * will take special action (such as flushing its TLB) on the
 | 
						|
 * next exit from an extended quiescent state.  Returns true if
 | 
						|
 * the bit was successfully set, or false if the CPU was not in
 | 
						|
 * an extended quiescent state.
 | 
						|
 */
 | 
						|
bool rcu_eqs_special_set(int cpu)
 | 
						|
{
 | 
						|
	int old;
 | 
						|
	int new;
 | 
						|
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
 | 
						|
 | 
						|
	do {
 | 
						|
		old = atomic_read(&rdtp->dynticks);
 | 
						|
		if (old & RCU_DYNTICK_CTRL_CTR)
 | 
						|
			return false;
 | 
						|
		new = old | RCU_DYNTICK_CTRL_MASK;
 | 
						|
	} while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Let the RCU core know that this CPU has gone through the scheduler,
 | 
						|
 * which is a quiescent state.  This is called when the need for a
 | 
						|
 * quiescent state is urgent, so we burn an atomic operation and full
 | 
						|
 * memory barriers to let the RCU core know about it, regardless of what
 | 
						|
 * this CPU might (or might not) do in the near future.
 | 
						|
 *
 | 
						|
 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 | 
						|
 *
 | 
						|
 * The caller must have disabled interrupts.
 | 
						|
 */
 | 
						|
static void rcu_momentary_dyntick_idle(void)
 | 
						|
{
 | 
						|
	raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
 | 
						|
	rcu_dynticks_momentary_idle();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Note a context switch.  This is a quiescent state for RCU-sched,
 | 
						|
 * and requires special handling for preemptible RCU.
 | 
						|
 * The caller must have disabled interrupts.
 | 
						|
 */
 | 
						|
void rcu_note_context_switch(bool preempt)
 | 
						|
{
 | 
						|
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
 | 
						|
	trace_rcu_utilization(TPS("Start context switch"));
 | 
						|
	rcu_sched_qs();
 | 
						|
	rcu_preempt_note_context_switch();
 | 
						|
	/* Load rcu_urgent_qs before other flags. */
 | 
						|
	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
 | 
						|
		goto out;
 | 
						|
	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
 | 
						|
	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
 | 
						|
		rcu_momentary_dyntick_idle();
 | 
						|
	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
 | 
						|
	if (!preempt)
 | 
						|
		rcu_note_voluntary_context_switch_lite(current);
 | 
						|
out:
 | 
						|
	trace_rcu_utilization(TPS("End context switch"));
 | 
						|
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 | 
						|
 | 
						|
/*
 | 
						|
 * Register a quiescent state for all RCU flavors.  If there is an
 | 
						|
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 | 
						|
 * dyntick-idle quiescent state visible to other CPUs (but only for those
 | 
						|
 * RCU flavors in desperate need of a quiescent state, which will normally
 | 
						|
 * be none of them).  Either way, do a lightweight quiescent state for
 | 
						|
 * all RCU flavors.
 | 
						|
 *
 | 
						|
 * The barrier() calls are redundant in the common case when this is
 | 
						|
 * called externally, but just in case this is called from within this
 | 
						|
 * file.
 | 
						|
 *
 | 
						|
 */
 | 
						|
void rcu_all_qs(void)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
 | 
						|
		return;
 | 
						|
	preempt_disable();
 | 
						|
	/* Load rcu_urgent_qs before other flags. */
 | 
						|
	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
 | 
						|
		preempt_enable();
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
 | 
						|
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
 | 
						|
	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
 | 
						|
		local_irq_save(flags);
 | 
						|
		rcu_momentary_dyntick_idle();
 | 
						|
		local_irq_restore(flags);
 | 
						|
	}
 | 
						|
	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
 | 
						|
		rcu_sched_qs();
 | 
						|
	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
 | 
						|
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
 | 
						|
	preempt_enable();
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_all_qs);
 | 
						|
 | 
						|
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
 | 
						|
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
 | 
						|
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
 | 
						|
 | 
						|
module_param(blimit, long, 0444);
 | 
						|
module_param(qhimark, long, 0444);
 | 
						|
module_param(qlowmark, long, 0444);
 | 
						|
 | 
						|
static ulong jiffies_till_first_fqs = ULONG_MAX;
 | 
						|
static ulong jiffies_till_next_fqs = ULONG_MAX;
 | 
						|
static bool rcu_kick_kthreads;
 | 
						|
 | 
						|
module_param(jiffies_till_first_fqs, ulong, 0644);
 | 
						|
module_param(jiffies_till_next_fqs, ulong, 0644);
 | 
						|
module_param(rcu_kick_kthreads, bool, 0644);
 | 
						|
 | 
						|
/*
 | 
						|
 * How long the grace period must be before we start recruiting
 | 
						|
 * quiescent-state help from rcu_note_context_switch().
 | 
						|
 */
 | 
						|
static ulong jiffies_till_sched_qs = HZ / 20;
 | 
						|
module_param(jiffies_till_sched_qs, ulong, 0644);
 | 
						|
 | 
						|
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
 | 
						|
				  struct rcu_data *rdp);
 | 
						|
static void force_qs_rnp(struct rcu_state *rsp,
 | 
						|
			 int (*f)(struct rcu_data *rsp, bool *isidle,
 | 
						|
				  unsigned long *maxj),
 | 
						|
			 bool *isidle, unsigned long *maxj);
 | 
						|
static void force_quiescent_state(struct rcu_state *rsp);
 | 
						|
static int rcu_pending(void);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the number of RCU batches started thus far for debug & stats.
 | 
						|
 */
 | 
						|
unsigned long rcu_batches_started(void)
 | 
						|
{
 | 
						|
	return rcu_state_p->gpnum;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_batches_started);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the number of RCU-sched batches started thus far for debug & stats.
 | 
						|
 */
 | 
						|
unsigned long rcu_batches_started_sched(void)
 | 
						|
{
 | 
						|
	return rcu_sched_state.gpnum;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the number of RCU BH batches started thus far for debug & stats.
 | 
						|
 */
 | 
						|
unsigned long rcu_batches_started_bh(void)
 | 
						|
{
 | 
						|
	return rcu_bh_state.gpnum;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the number of RCU batches completed thus far for debug & stats.
 | 
						|
 */
 | 
						|
unsigned long rcu_batches_completed(void)
 | 
						|
{
 | 
						|
	return rcu_state_p->completed;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_batches_completed);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the number of RCU-sched batches completed thus far for debug & stats.
 | 
						|
 */
 | 
						|
unsigned long rcu_batches_completed_sched(void)
 | 
						|
{
 | 
						|
	return rcu_sched_state.completed;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the number of RCU BH batches completed thus far for debug & stats.
 | 
						|
 */
 | 
						|
unsigned long rcu_batches_completed_bh(void)
 | 
						|
{
 | 
						|
	return rcu_bh_state.completed;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the number of RCU expedited batches completed thus far for
 | 
						|
 * debug & stats.  Odd numbers mean that a batch is in progress, even
 | 
						|
 * numbers mean idle.  The value returned will thus be roughly double
 | 
						|
 * the cumulative batches since boot.
 | 
						|
 */
 | 
						|
unsigned long rcu_exp_batches_completed(void)
 | 
						|
{
 | 
						|
	return rcu_state_p->expedited_sequence;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the number of RCU-sched expedited batches completed thus far
 | 
						|
 * for debug & stats.  Similar to rcu_exp_batches_completed().
 | 
						|
 */
 | 
						|
unsigned long rcu_exp_batches_completed_sched(void)
 | 
						|
{
 | 
						|
	return rcu_sched_state.expedited_sequence;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
 | 
						|
 | 
						|
/*
 | 
						|
 * Force a quiescent state.
 | 
						|
 */
 | 
						|
void rcu_force_quiescent_state(void)
 | 
						|
{
 | 
						|
	force_quiescent_state(rcu_state_p);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 | 
						|
 | 
						|
/*
 | 
						|
 * Force a quiescent state for RCU BH.
 | 
						|
 */
 | 
						|
void rcu_bh_force_quiescent_state(void)
 | 
						|
{
 | 
						|
	force_quiescent_state(&rcu_bh_state);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
 | 
						|
 | 
						|
/*
 | 
						|
 * Force a quiescent state for RCU-sched.
 | 
						|
 */
 | 
						|
void rcu_sched_force_quiescent_state(void)
 | 
						|
{
 | 
						|
	force_quiescent_state(&rcu_sched_state);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
 | 
						|
 | 
						|
/*
 | 
						|
 * Show the state of the grace-period kthreads.
 | 
						|
 */
 | 
						|
void show_rcu_gp_kthreads(void)
 | 
						|
{
 | 
						|
	struct rcu_state *rsp;
 | 
						|
 | 
						|
	for_each_rcu_flavor(rsp) {
 | 
						|
		pr_info("%s: wait state: %d ->state: %#lx\n",
 | 
						|
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
 | 
						|
		/* sched_show_task(rsp->gp_kthread); */
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
 | 
						|
 | 
						|
/*
 | 
						|
 * Record the number of times rcutorture tests have been initiated and
 | 
						|
 * terminated.  This information allows the debugfs tracing stats to be
 | 
						|
 * correlated to the rcutorture messages, even when the rcutorture module
 | 
						|
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 | 
						|
 * store this state in rcutorture itself.
 | 
						|
 */
 | 
						|
void rcutorture_record_test_transition(void)
 | 
						|
{
 | 
						|
	rcutorture_testseq++;
 | 
						|
	rcutorture_vernum = 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
 | 
						|
 | 
						|
/*
 | 
						|
 * Send along grace-period-related data for rcutorture diagnostics.
 | 
						|
 */
 | 
						|
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 | 
						|
			    unsigned long *gpnum, unsigned long *completed)
 | 
						|
{
 | 
						|
	struct rcu_state *rsp = NULL;
 | 
						|
 | 
						|
	switch (test_type) {
 | 
						|
	case RCU_FLAVOR:
 | 
						|
		rsp = rcu_state_p;
 | 
						|
		break;
 | 
						|
	case RCU_BH_FLAVOR:
 | 
						|
		rsp = &rcu_bh_state;
 | 
						|
		break;
 | 
						|
	case RCU_SCHED_FLAVOR:
 | 
						|
		rsp = &rcu_sched_state;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	if (rsp == NULL)
 | 
						|
		return;
 | 
						|
	*flags = READ_ONCE(rsp->gp_flags);
 | 
						|
	*gpnum = READ_ONCE(rsp->gpnum);
 | 
						|
	*completed = READ_ONCE(rsp->completed);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 | 
						|
 | 
						|
/*
 | 
						|
 * Record the number of writer passes through the current rcutorture test.
 | 
						|
 * This is also used to correlate debugfs tracing stats with the rcutorture
 | 
						|
 * messages.
 | 
						|
 */
 | 
						|
void rcutorture_record_progress(unsigned long vernum)
 | 
						|
{
 | 
						|
	rcutorture_vernum++;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcutorture_record_progress);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the root node of the specified rcu_state structure.
 | 
						|
 */
 | 
						|
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	return &rsp->node[0];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Is there any need for future grace periods?
 | 
						|
 * Interrupts must be disabled.  If the caller does not hold the root
 | 
						|
 * rnp_node structure's ->lock, the results are advisory only.
 | 
						|
 */
 | 
						|
static int rcu_future_needs_gp(struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	struct rcu_node *rnp = rcu_get_root(rsp);
 | 
						|
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
 | 
						|
	int *fp = &rnp->need_future_gp[idx];
 | 
						|
 | 
						|
	return READ_ONCE(*fp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Does the current CPU require a not-yet-started grace period?
 | 
						|
 * The caller must have disabled interrupts to prevent races with
 | 
						|
 * normal callback registry.
 | 
						|
 */
 | 
						|
static bool
 | 
						|
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	if (rcu_gp_in_progress(rsp))
 | 
						|
		return false;  /* No, a grace period is already in progress. */
 | 
						|
	if (rcu_future_needs_gp(rsp))
 | 
						|
		return true;  /* Yes, a no-CBs CPU needs one. */
 | 
						|
	if (!rcu_segcblist_is_enabled(&rdp->cblist))
 | 
						|
		return false;  /* No, this is a no-CBs (or offline) CPU. */
 | 
						|
	if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
 | 
						|
		return true;  /* Yes, CPU has newly registered callbacks. */
 | 
						|
	if (rcu_segcblist_future_gp_needed(&rdp->cblist,
 | 
						|
					   READ_ONCE(rsp->completed)))
 | 
						|
		return true;  /* Yes, CBs for future grace period. */
 | 
						|
	return false; /* No grace period needed. */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
 | 
						|
 *
 | 
						|
 * If the new value of the ->dynticks_nesting counter now is zero,
 | 
						|
 * we really have entered idle, and must do the appropriate accounting.
 | 
						|
 * The caller must have disabled interrupts.
 | 
						|
 */
 | 
						|
static void rcu_eqs_enter_common(long long oldval, bool user)
 | 
						|
{
 | 
						|
	struct rcu_state *rsp;
 | 
						|
	struct rcu_data *rdp;
 | 
						|
	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
 | 
						|
 | 
						|
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
 | 
						|
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 | 
						|
	    !user && !is_idle_task(current)) {
 | 
						|
		struct task_struct *idle __maybe_unused =
 | 
						|
			idle_task(smp_processor_id());
 | 
						|
 | 
						|
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
 | 
						|
		rcu_ftrace_dump(DUMP_ORIG);
 | 
						|
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 | 
						|
			  current->pid, current->comm,
 | 
						|
			  idle->pid, idle->comm); /* must be idle task! */
 | 
						|
	}
 | 
						|
	for_each_rcu_flavor(rsp) {
 | 
						|
		rdp = this_cpu_ptr(rsp->rda);
 | 
						|
		do_nocb_deferred_wakeup(rdp);
 | 
						|
	}
 | 
						|
	rcu_prepare_for_idle();
 | 
						|
	rcu_dynticks_eqs_enter();
 | 
						|
	rcu_dynticks_task_enter();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It is illegal to enter an extended quiescent state while
 | 
						|
	 * in an RCU read-side critical section.
 | 
						|
	 */
 | 
						|
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
 | 
						|
			 "Illegal idle entry in RCU read-side critical section.");
 | 
						|
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
 | 
						|
			 "Illegal idle entry in RCU-bh read-side critical section.");
 | 
						|
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
 | 
						|
			 "Illegal idle entry in RCU-sched read-side critical section.");
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Enter an RCU extended quiescent state, which can be either the
 | 
						|
 * idle loop or adaptive-tickless usermode execution.
 | 
						|
 */
 | 
						|
static void rcu_eqs_enter(bool user)
 | 
						|
{
 | 
						|
	long long oldval;
 | 
						|
	struct rcu_dynticks *rdtp;
 | 
						|
 | 
						|
	rdtp = this_cpu_ptr(&rcu_dynticks);
 | 
						|
	oldval = rdtp->dynticks_nesting;
 | 
						|
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 | 
						|
		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
 | 
						|
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
 | 
						|
		rdtp->dynticks_nesting = 0;
 | 
						|
		rcu_eqs_enter_common(oldval, user);
 | 
						|
	} else {
 | 
						|
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 | 
						|
 *
 | 
						|
 * Enter idle mode, in other words, -leave- the mode in which RCU
 | 
						|
 * read-side critical sections can occur.  (Though RCU read-side
 | 
						|
 * critical sections can occur in irq handlers in idle, a possibility
 | 
						|
 * handled by irq_enter() and irq_exit().)
 | 
						|
 *
 | 
						|
 * We crowbar the ->dynticks_nesting field to zero to allow for
 | 
						|
 * the possibility of usermode upcalls having messed up our count
 | 
						|
 * of interrupt nesting level during the prior busy period.
 | 
						|
 */
 | 
						|
void rcu_idle_enter(void)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	rcu_eqs_enter(false);
 | 
						|
	rcu_sysidle_enter(0);
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_idle_enter);
 | 
						|
 | 
						|
#ifdef CONFIG_NO_HZ_FULL
 | 
						|
/**
 | 
						|
 * rcu_user_enter - inform RCU that we are resuming userspace.
 | 
						|
 *
 | 
						|
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 | 
						|
 * is permitted between this call and rcu_user_exit(). This way the
 | 
						|
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 | 
						|
 * when the CPU runs in userspace.
 | 
						|
 */
 | 
						|
void rcu_user_enter(void)
 | 
						|
{
 | 
						|
	rcu_eqs_enter(1);
 | 
						|
}
 | 
						|
#endif /* CONFIG_NO_HZ_FULL */
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 | 
						|
 *
 | 
						|
 * Exit from an interrupt handler, which might possibly result in entering
 | 
						|
 * idle mode, in other words, leaving the mode in which read-side critical
 | 
						|
 * sections can occur.  The caller must have disabled interrupts.
 | 
						|
 *
 | 
						|
 * This code assumes that the idle loop never does anything that might
 | 
						|
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 | 
						|
 * architecture violates this assumption, RCU will give you what you
 | 
						|
 * deserve, good and hard.  But very infrequently and irreproducibly.
 | 
						|
 *
 | 
						|
 * Use things like work queues to work around this limitation.
 | 
						|
 *
 | 
						|
 * You have been warned.
 | 
						|
 */
 | 
						|
void rcu_irq_exit(void)
 | 
						|
{
 | 
						|
	long long oldval;
 | 
						|
	struct rcu_dynticks *rdtp;
 | 
						|
 | 
						|
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
 | 
						|
	rdtp = this_cpu_ptr(&rcu_dynticks);
 | 
						|
	oldval = rdtp->dynticks_nesting;
 | 
						|
	rdtp->dynticks_nesting--;
 | 
						|
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 | 
						|
		     rdtp->dynticks_nesting < 0);
 | 
						|
	if (rdtp->dynticks_nesting)
 | 
						|
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
 | 
						|
	else
 | 
						|
		rcu_eqs_enter_common(oldval, true);
 | 
						|
	rcu_sysidle_enter(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 | 
						|
 */
 | 
						|
void rcu_irq_exit_irqson(void)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	rcu_irq_exit();
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
 | 
						|
 *
 | 
						|
 * If the new value of the ->dynticks_nesting counter was previously zero,
 | 
						|
 * we really have exited idle, and must do the appropriate accounting.
 | 
						|
 * The caller must have disabled interrupts.
 | 
						|
 */
 | 
						|
static void rcu_eqs_exit_common(long long oldval, int user)
 | 
						|
{
 | 
						|
	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
 | 
						|
 | 
						|
	rcu_dynticks_task_exit();
 | 
						|
	rcu_dynticks_eqs_exit();
 | 
						|
	rcu_cleanup_after_idle();
 | 
						|
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
 | 
						|
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 | 
						|
	    !user && !is_idle_task(current)) {
 | 
						|
		struct task_struct *idle __maybe_unused =
 | 
						|
			idle_task(smp_processor_id());
 | 
						|
 | 
						|
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
 | 
						|
				  oldval, rdtp->dynticks_nesting);
 | 
						|
		rcu_ftrace_dump(DUMP_ORIG);
 | 
						|
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 | 
						|
			  current->pid, current->comm,
 | 
						|
			  idle->pid, idle->comm); /* must be idle task! */
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Exit an RCU extended quiescent state, which can be either the
 | 
						|
 * idle loop or adaptive-tickless usermode execution.
 | 
						|
 */
 | 
						|
static void rcu_eqs_exit(bool user)
 | 
						|
{
 | 
						|
	struct rcu_dynticks *rdtp;
 | 
						|
	long long oldval;
 | 
						|
 | 
						|
	rdtp = this_cpu_ptr(&rcu_dynticks);
 | 
						|
	oldval = rdtp->dynticks_nesting;
 | 
						|
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 | 
						|
	if (oldval & DYNTICK_TASK_NEST_MASK) {
 | 
						|
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
 | 
						|
	} else {
 | 
						|
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
 | 
						|
		rcu_eqs_exit_common(oldval, user);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 | 
						|
 *
 | 
						|
 * Exit idle mode, in other words, -enter- the mode in which RCU
 | 
						|
 * read-side critical sections can occur.
 | 
						|
 *
 | 
						|
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 | 
						|
 * allow for the possibility of usermode upcalls messing up our count
 | 
						|
 * of interrupt nesting level during the busy period that is just
 | 
						|
 * now starting.
 | 
						|
 */
 | 
						|
void rcu_idle_exit(void)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	rcu_eqs_exit(false);
 | 
						|
	rcu_sysidle_exit(0);
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_idle_exit);
 | 
						|
 | 
						|
#ifdef CONFIG_NO_HZ_FULL
 | 
						|
/**
 | 
						|
 * rcu_user_exit - inform RCU that we are exiting userspace.
 | 
						|
 *
 | 
						|
 * Exit RCU idle mode while entering the kernel because it can
 | 
						|
 * run a RCU read side critical section anytime.
 | 
						|
 */
 | 
						|
void rcu_user_exit(void)
 | 
						|
{
 | 
						|
	rcu_eqs_exit(1);
 | 
						|
}
 | 
						|
#endif /* CONFIG_NO_HZ_FULL */
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 | 
						|
 *
 | 
						|
 * Enter an interrupt handler, which might possibly result in exiting
 | 
						|
 * idle mode, in other words, entering the mode in which read-side critical
 | 
						|
 * sections can occur.  The caller must have disabled interrupts.
 | 
						|
 *
 | 
						|
 * Note that the Linux kernel is fully capable of entering an interrupt
 | 
						|
 * handler that it never exits, for example when doing upcalls to
 | 
						|
 * user mode!  This code assumes that the idle loop never does upcalls to
 | 
						|
 * user mode.  If your architecture does do upcalls from the idle loop (or
 | 
						|
 * does anything else that results in unbalanced calls to the irq_enter()
 | 
						|
 * and irq_exit() functions), RCU will give you what you deserve, good
 | 
						|
 * and hard.  But very infrequently and irreproducibly.
 | 
						|
 *
 | 
						|
 * Use things like work queues to work around this limitation.
 | 
						|
 *
 | 
						|
 * You have been warned.
 | 
						|
 */
 | 
						|
void rcu_irq_enter(void)
 | 
						|
{
 | 
						|
	struct rcu_dynticks *rdtp;
 | 
						|
	long long oldval;
 | 
						|
 | 
						|
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
 | 
						|
	rdtp = this_cpu_ptr(&rcu_dynticks);
 | 
						|
	oldval = rdtp->dynticks_nesting;
 | 
						|
	rdtp->dynticks_nesting++;
 | 
						|
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 | 
						|
		     rdtp->dynticks_nesting == 0);
 | 
						|
	if (oldval)
 | 
						|
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
 | 
						|
	else
 | 
						|
		rcu_eqs_exit_common(oldval, true);
 | 
						|
	rcu_sysidle_exit(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 | 
						|
 */
 | 
						|
void rcu_irq_enter_irqson(void)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	rcu_irq_enter();
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_nmi_enter - inform RCU of entry to NMI context
 | 
						|
 *
 | 
						|
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 | 
						|
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 | 
						|
 * that the CPU is active.  This implementation permits nested NMIs, as
 | 
						|
 * long as the nesting level does not overflow an int.  (You will probably
 | 
						|
 * run out of stack space first.)
 | 
						|
 */
 | 
						|
void rcu_nmi_enter(void)
 | 
						|
{
 | 
						|
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 | 
						|
	int incby = 2;
 | 
						|
 | 
						|
	/* Complain about underflow. */
 | 
						|
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If idle from RCU viewpoint, atomically increment ->dynticks
 | 
						|
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
 | 
						|
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
 | 
						|
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
 | 
						|
	 * to be in the outermost NMI handler that interrupted an RCU-idle
 | 
						|
	 * period (observation due to Andy Lutomirski).
 | 
						|
	 */
 | 
						|
	if (rcu_dynticks_curr_cpu_in_eqs()) {
 | 
						|
		rcu_dynticks_eqs_exit();
 | 
						|
		incby = 1;
 | 
						|
	}
 | 
						|
	rdtp->dynticks_nmi_nesting += incby;
 | 
						|
	barrier();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_nmi_exit - inform RCU of exit from NMI context
 | 
						|
 *
 | 
						|
 * If we are returning from the outermost NMI handler that interrupted an
 | 
						|
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 | 
						|
 * to let the RCU grace-period handling know that the CPU is back to
 | 
						|
 * being RCU-idle.
 | 
						|
 */
 | 
						|
void rcu_nmi_exit(void)
 | 
						|
{
 | 
						|
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
 | 
						|
	 * (We are exiting an NMI handler, so RCU better be paying attention
 | 
						|
	 * to us!)
 | 
						|
	 */
 | 
						|
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
 | 
						|
	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
 | 
						|
	 * leave it in non-RCU-idle state.
 | 
						|
	 */
 | 
						|
	if (rdtp->dynticks_nmi_nesting != 1) {
 | 
						|
		rdtp->dynticks_nmi_nesting -= 2;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
 | 
						|
	rdtp->dynticks_nmi_nesting = 0;
 | 
						|
	rcu_dynticks_eqs_enter();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __rcu_is_watching - are RCU read-side critical sections safe?
 | 
						|
 *
 | 
						|
 * Return true if RCU is watching the running CPU, which means that
 | 
						|
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 | 
						|
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 | 
						|
 * least disabled preemption.
 | 
						|
 */
 | 
						|
bool notrace __rcu_is_watching(void)
 | 
						|
{
 | 
						|
	return !rcu_dynticks_curr_cpu_in_eqs();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
 | 
						|
 *
 | 
						|
 * If the current CPU is in its idle loop and is neither in an interrupt
 | 
						|
 * or NMI handler, return true.
 | 
						|
 */
 | 
						|
bool notrace rcu_is_watching(void)
 | 
						|
{
 | 
						|
	bool ret;
 | 
						|
 | 
						|
	preempt_disable_notrace();
 | 
						|
	ret = __rcu_is_watching();
 | 
						|
	preempt_enable_notrace();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_is_watching);
 | 
						|
 | 
						|
/*
 | 
						|
 * If a holdout task is actually running, request an urgent quiescent
 | 
						|
 * state from its CPU.  This is unsynchronized, so migrations can cause
 | 
						|
 * the request to go to the wrong CPU.  Which is OK, all that will happen
 | 
						|
 * is that the CPU's next context switch will be a bit slower and next
 | 
						|
 * time around this task will generate another request.
 | 
						|
 */
 | 
						|
void rcu_request_urgent_qs_task(struct task_struct *t)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	barrier();
 | 
						|
	cpu = task_cpu(t);
 | 
						|
	if (!task_curr(t))
 | 
						|
		return; /* This task is not running on that CPU. */
 | 
						|
	smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
 | 
						|
 | 
						|
/*
 | 
						|
 * Is the current CPU online?  Disable preemption to avoid false positives
 | 
						|
 * that could otherwise happen due to the current CPU number being sampled,
 | 
						|
 * this task being preempted, its old CPU being taken offline, resuming
 | 
						|
 * on some other CPU, then determining that its old CPU is now offline.
 | 
						|
 * It is OK to use RCU on an offline processor during initial boot, hence
 | 
						|
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 | 
						|
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 | 
						|
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 | 
						|
 * offline to continue to use RCU for one jiffy after marking itself
 | 
						|
 * offline in the cpu_online_mask.  This leniency is necessary given the
 | 
						|
 * non-atomic nature of the online and offline processing, for example,
 | 
						|
 * the fact that a CPU enters the scheduler after completing the teardown
 | 
						|
 * of the CPU.
 | 
						|
 *
 | 
						|
 * This is also why RCU internally marks CPUs online during in the
 | 
						|
 * preparation phase and offline after the CPU has been taken down.
 | 
						|
 *
 | 
						|
 * Disable checking if in an NMI handler because we cannot safely report
 | 
						|
 * errors from NMI handlers anyway.
 | 
						|
 */
 | 
						|
bool rcu_lockdep_current_cpu_online(void)
 | 
						|
{
 | 
						|
	struct rcu_data *rdp;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
	bool ret;
 | 
						|
 | 
						|
	if (in_nmi())
 | 
						|
		return true;
 | 
						|
	preempt_disable();
 | 
						|
	rdp = this_cpu_ptr(&rcu_sched_data);
 | 
						|
	rnp = rdp->mynode;
 | 
						|
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
 | 
						|
	      !rcu_scheduler_fully_active;
 | 
						|
	preempt_enable();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
 | 
						|
 | 
						|
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
 | 
						|
 *
 | 
						|
 * If the current CPU is idle or running at a first-level (not nested)
 | 
						|
 * interrupt from idle, return true.  The caller must have at least
 | 
						|
 * disabled preemption.
 | 
						|
 */
 | 
						|
static int rcu_is_cpu_rrupt_from_idle(void)
 | 
						|
{
 | 
						|
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Snapshot the specified CPU's dynticks counter so that we can later
 | 
						|
 * credit them with an implicit quiescent state.  Return 1 if this CPU
 | 
						|
 * is in dynticks idle mode, which is an extended quiescent state.
 | 
						|
 */
 | 
						|
static int dyntick_save_progress_counter(struct rcu_data *rdp,
 | 
						|
					 bool *isidle, unsigned long *maxj)
 | 
						|
{
 | 
						|
	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
 | 
						|
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
 | 
						|
	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
 | 
						|
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
 | 
						|
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
 | 
						|
				 rdp->mynode->gpnum))
 | 
						|
			WRITE_ONCE(rdp->gpwrap, true);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return true if the specified CPU has passed through a quiescent
 | 
						|
 * state by virtue of being in or having passed through an dynticks
 | 
						|
 * idle state since the last call to dyntick_save_progress_counter()
 | 
						|
 * for this same CPU, or by virtue of having been offline.
 | 
						|
 */
 | 
						|
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
 | 
						|
				    bool *isidle, unsigned long *maxj)
 | 
						|
{
 | 
						|
	unsigned long jtsq;
 | 
						|
	bool *rnhqp;
 | 
						|
	bool *ruqp;
 | 
						|
	unsigned long rjtsc;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the CPU passed through or entered a dynticks idle phase with
 | 
						|
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
 | 
						|
	 * already acknowledged the request to pass through a quiescent
 | 
						|
	 * state.  Either way, that CPU cannot possibly be in an RCU
 | 
						|
	 * read-side critical section that started before the beginning
 | 
						|
	 * of the current RCU grace period.
 | 
						|
	 */
 | 
						|
	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
 | 
						|
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
 | 
						|
		rdp->dynticks_fqs++;
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Compute and saturate jiffies_till_sched_qs. */
 | 
						|
	jtsq = jiffies_till_sched_qs;
 | 
						|
	rjtsc = rcu_jiffies_till_stall_check();
 | 
						|
	if (jtsq > rjtsc / 2) {
 | 
						|
		WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
 | 
						|
		jtsq = rjtsc / 2;
 | 
						|
	} else if (jtsq < 1) {
 | 
						|
		WRITE_ONCE(jiffies_till_sched_qs, 1);
 | 
						|
		jtsq = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Has this CPU encountered a cond_resched_rcu_qs() since the
 | 
						|
	 * beginning of the grace period?  For this to be the case,
 | 
						|
	 * the CPU has to have noticed the current grace period.  This
 | 
						|
	 * might not be the case for nohz_full CPUs looping in the kernel.
 | 
						|
	 */
 | 
						|
	rnp = rdp->mynode;
 | 
						|
	ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
 | 
						|
	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
 | 
						|
	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
 | 
						|
	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
 | 
						|
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
 | 
						|
		return 1;
 | 
						|
	} else {
 | 
						|
		/* Load rcu_qs_ctr before store to rcu_urgent_qs. */
 | 
						|
		smp_store_release(ruqp, true);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Check for the CPU being offline. */
 | 
						|
	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
 | 
						|
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
 | 
						|
		rdp->offline_fqs++;
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A CPU running for an extended time within the kernel can
 | 
						|
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
 | 
						|
	 * even context-switching back and forth between a pair of
 | 
						|
	 * in-kernel CPU-bound tasks cannot advance grace periods.
 | 
						|
	 * So if the grace period is old enough, make the CPU pay attention.
 | 
						|
	 * Note that the unsynchronized assignments to the per-CPU
 | 
						|
	 * rcu_need_heavy_qs variable are safe.  Yes, setting of
 | 
						|
	 * bits can be lost, but they will be set again on the next
 | 
						|
	 * force-quiescent-state pass.  So lost bit sets do not result
 | 
						|
	 * in incorrect behavior, merely in a grace period lasting
 | 
						|
	 * a few jiffies longer than it might otherwise.  Because
 | 
						|
	 * there are at most four threads involved, and because the
 | 
						|
	 * updates are only once every few jiffies, the probability of
 | 
						|
	 * lossage (and thus of slight grace-period extension) is
 | 
						|
	 * quite low.
 | 
						|
	 *
 | 
						|
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
 | 
						|
	 * is set too high, we override with half of the RCU CPU stall
 | 
						|
	 * warning delay.
 | 
						|
	 */
 | 
						|
	rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
 | 
						|
	if (!READ_ONCE(*rnhqp) &&
 | 
						|
	    (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
 | 
						|
	     time_after(jiffies, rdp->rsp->jiffies_resched))) {
 | 
						|
		WRITE_ONCE(*rnhqp, true);
 | 
						|
		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
 | 
						|
		smp_store_release(ruqp, true);
 | 
						|
		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If more than halfway to RCU CPU stall-warning time, do
 | 
						|
	 * a resched_cpu() to try to loosen things up a bit.
 | 
						|
	 */
 | 
						|
	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
 | 
						|
		resched_cpu(rdp->cpu);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void record_gp_stall_check_time(struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	unsigned long j = jiffies;
 | 
						|
	unsigned long j1;
 | 
						|
 | 
						|
	rsp->gp_start = j;
 | 
						|
	smp_wmb(); /* Record start time before stall time. */
 | 
						|
	j1 = rcu_jiffies_till_stall_check();
 | 
						|
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
 | 
						|
	rsp->jiffies_resched = j + j1 / 2;
 | 
						|
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Convert a ->gp_state value to a character string.
 | 
						|
 */
 | 
						|
static const char *gp_state_getname(short gs)
 | 
						|
{
 | 
						|
	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
 | 
						|
		return "???";
 | 
						|
	return gp_state_names[gs];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Complain about starvation of grace-period kthread.
 | 
						|
 */
 | 
						|
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	unsigned long gpa;
 | 
						|
	unsigned long j;
 | 
						|
 | 
						|
	j = jiffies;
 | 
						|
	gpa = READ_ONCE(rsp->gp_activity);
 | 
						|
	if (j - gpa > 2 * HZ) {
 | 
						|
		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
 | 
						|
		       rsp->name, j - gpa,
 | 
						|
		       rsp->gpnum, rsp->completed,
 | 
						|
		       rsp->gp_flags,
 | 
						|
		       gp_state_getname(rsp->gp_state), rsp->gp_state,
 | 
						|
		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
 | 
						|
		if (rsp->gp_kthread) {
 | 
						|
			sched_show_task(rsp->gp_kthread);
 | 
						|
			wake_up_process(rsp->gp_kthread);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Dump stacks of all tasks running on stalled CPUs.  First try using
 | 
						|
 * NMIs, but fall back to manual remote stack tracing on architectures
 | 
						|
 * that don't support NMI-based stack dumps.  The NMI-triggered stack
 | 
						|
 * traces are more accurate because they are printed by the target CPU.
 | 
						|
 */
 | 
						|
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
	unsigned long flags;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
 | 
						|
	rcu_for_each_leaf_node(rsp, rnp) {
 | 
						|
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
		for_each_leaf_node_possible_cpu(rnp, cpu)
 | 
						|
			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
 | 
						|
				if (!trigger_single_cpu_backtrace(cpu))
 | 
						|
					dump_cpu_task(cpu);
 | 
						|
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If too much time has passed in the current grace period, and if
 | 
						|
 * so configured, go kick the relevant kthreads.
 | 
						|
 */
 | 
						|
static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	unsigned long j;
 | 
						|
 | 
						|
	if (!rcu_kick_kthreads)
 | 
						|
		return;
 | 
						|
	j = READ_ONCE(rsp->jiffies_kick_kthreads);
 | 
						|
	if (time_after(jiffies, j) && rsp->gp_kthread &&
 | 
						|
	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
 | 
						|
		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
 | 
						|
		rcu_ftrace_dump(DUMP_ALL);
 | 
						|
		wake_up_process(rsp->gp_kthread);
 | 
						|
		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static inline void panic_on_rcu_stall(void)
 | 
						|
{
 | 
						|
	if (sysctl_panic_on_rcu_stall)
 | 
						|
		panic("RCU Stall\n");
 | 
						|
}
 | 
						|
 | 
						|
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
	long delta;
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long gpa;
 | 
						|
	unsigned long j;
 | 
						|
	int ndetected = 0;
 | 
						|
	struct rcu_node *rnp = rcu_get_root(rsp);
 | 
						|
	long totqlen = 0;
 | 
						|
 | 
						|
	/* Kick and suppress, if so configured. */
 | 
						|
	rcu_stall_kick_kthreads(rsp);
 | 
						|
	if (rcu_cpu_stall_suppress)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Only let one CPU complain about others per time interval. */
 | 
						|
 | 
						|
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
 | 
						|
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
 | 
						|
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	WRITE_ONCE(rsp->jiffies_stall,
 | 
						|
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
 | 
						|
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * OK, time to rat on our buddy...
 | 
						|
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
 | 
						|
	 * RCU CPU stall warnings.
 | 
						|
	 */
 | 
						|
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
 | 
						|
	       rsp->name);
 | 
						|
	print_cpu_stall_info_begin();
 | 
						|
	rcu_for_each_leaf_node(rsp, rnp) {
 | 
						|
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
		ndetected += rcu_print_task_stall(rnp);
 | 
						|
		if (rnp->qsmask != 0) {
 | 
						|
			for_each_leaf_node_possible_cpu(rnp, cpu)
 | 
						|
				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
 | 
						|
					print_cpu_stall_info(rsp, cpu);
 | 
						|
					ndetected++;
 | 
						|
				}
 | 
						|
		}
 | 
						|
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
	}
 | 
						|
 | 
						|
	print_cpu_stall_info_end();
 | 
						|
	for_each_possible_cpu(cpu)
 | 
						|
		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
 | 
						|
							    cpu)->cblist);
 | 
						|
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
 | 
						|
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
 | 
						|
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
 | 
						|
	if (ndetected) {
 | 
						|
		rcu_dump_cpu_stacks(rsp);
 | 
						|
 | 
						|
		/* Complain about tasks blocking the grace period. */
 | 
						|
		rcu_print_detail_task_stall(rsp);
 | 
						|
	} else {
 | 
						|
		if (READ_ONCE(rsp->gpnum) != gpnum ||
 | 
						|
		    READ_ONCE(rsp->completed) == gpnum) {
 | 
						|
			pr_err("INFO: Stall ended before state dump start\n");
 | 
						|
		} else {
 | 
						|
			j = jiffies;
 | 
						|
			gpa = READ_ONCE(rsp->gp_activity);
 | 
						|
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
 | 
						|
			       rsp->name, j - gpa, j, gpa,
 | 
						|
			       jiffies_till_next_fqs,
 | 
						|
			       rcu_get_root(rsp)->qsmask);
 | 
						|
			/* In this case, the current CPU might be at fault. */
 | 
						|
			sched_show_task(current);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	rcu_check_gp_kthread_starvation(rsp);
 | 
						|
 | 
						|
	panic_on_rcu_stall();
 | 
						|
 | 
						|
	force_quiescent_state(rsp);  /* Kick them all. */
 | 
						|
}
 | 
						|
 | 
						|
static void print_cpu_stall(struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
	unsigned long flags;
 | 
						|
	struct rcu_node *rnp = rcu_get_root(rsp);
 | 
						|
	long totqlen = 0;
 | 
						|
 | 
						|
	/* Kick and suppress, if so configured. */
 | 
						|
	rcu_stall_kick_kthreads(rsp);
 | 
						|
	if (rcu_cpu_stall_suppress)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * OK, time to rat on ourselves...
 | 
						|
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
 | 
						|
	 * RCU CPU stall warnings.
 | 
						|
	 */
 | 
						|
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
 | 
						|
	print_cpu_stall_info_begin();
 | 
						|
	print_cpu_stall_info(rsp, smp_processor_id());
 | 
						|
	print_cpu_stall_info_end();
 | 
						|
	for_each_possible_cpu(cpu)
 | 
						|
		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
 | 
						|
							    cpu)->cblist);
 | 
						|
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
 | 
						|
		jiffies - rsp->gp_start,
 | 
						|
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
 | 
						|
 | 
						|
	rcu_check_gp_kthread_starvation(rsp);
 | 
						|
 | 
						|
	rcu_dump_cpu_stacks(rsp);
 | 
						|
 | 
						|
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
 | 
						|
		WRITE_ONCE(rsp->jiffies_stall,
 | 
						|
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
 | 
						|
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
 | 
						|
	panic_on_rcu_stall();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Attempt to revive the RCU machinery by forcing a context switch.
 | 
						|
	 *
 | 
						|
	 * A context switch would normally allow the RCU state machine to make
 | 
						|
	 * progress and it could be we're stuck in kernel space without context
 | 
						|
	 * switches for an entirely unreasonable amount of time.
 | 
						|
	 */
 | 
						|
	resched_cpu(smp_processor_id());
 | 
						|
}
 | 
						|
 | 
						|
static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	unsigned long completed;
 | 
						|
	unsigned long gpnum;
 | 
						|
	unsigned long gps;
 | 
						|
	unsigned long j;
 | 
						|
	unsigned long js;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
 | 
						|
	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
 | 
						|
	    !rcu_gp_in_progress(rsp))
 | 
						|
		return;
 | 
						|
	rcu_stall_kick_kthreads(rsp);
 | 
						|
	j = jiffies;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Lots of memory barriers to reject false positives.
 | 
						|
	 *
 | 
						|
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
 | 
						|
	 * then rsp->gp_start, and finally rsp->completed.  These values
 | 
						|
	 * are updated in the opposite order with memory barriers (or
 | 
						|
	 * equivalent) during grace-period initialization and cleanup.
 | 
						|
	 * Now, a false positive can occur if we get an new value of
 | 
						|
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
 | 
						|
	 * the memory barriers, the only way that this can happen is if one
 | 
						|
	 * grace period ends and another starts between these two fetches.
 | 
						|
	 * Detect this by comparing rsp->completed with the previous fetch
 | 
						|
	 * from rsp->gpnum.
 | 
						|
	 *
 | 
						|
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
 | 
						|
	 * and rsp->gp_start suffice to forestall false positives.
 | 
						|
	 */
 | 
						|
	gpnum = READ_ONCE(rsp->gpnum);
 | 
						|
	smp_rmb(); /* Pick up ->gpnum first... */
 | 
						|
	js = READ_ONCE(rsp->jiffies_stall);
 | 
						|
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
 | 
						|
	gps = READ_ONCE(rsp->gp_start);
 | 
						|
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
 | 
						|
	completed = READ_ONCE(rsp->completed);
 | 
						|
	if (ULONG_CMP_GE(completed, gpnum) ||
 | 
						|
	    ULONG_CMP_LT(j, js) ||
 | 
						|
	    ULONG_CMP_GE(gps, js))
 | 
						|
		return; /* No stall or GP completed since entering function. */
 | 
						|
	rnp = rdp->mynode;
 | 
						|
	if (rcu_gp_in_progress(rsp) &&
 | 
						|
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
 | 
						|
 | 
						|
		/* We haven't checked in, so go dump stack. */
 | 
						|
		print_cpu_stall(rsp);
 | 
						|
 | 
						|
	} else if (rcu_gp_in_progress(rsp) &&
 | 
						|
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
 | 
						|
 | 
						|
		/* They had a few time units to dump stack, so complain. */
 | 
						|
		print_other_cpu_stall(rsp, gpnum);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 | 
						|
 *
 | 
						|
 * Set the stall-warning timeout way off into the future, thus preventing
 | 
						|
 * any RCU CPU stall-warning messages from appearing in the current set of
 | 
						|
 * RCU grace periods.
 | 
						|
 *
 | 
						|
 * The caller must disable hard irqs.
 | 
						|
 */
 | 
						|
void rcu_cpu_stall_reset(void)
 | 
						|
{
 | 
						|
	struct rcu_state *rsp;
 | 
						|
 | 
						|
	for_each_rcu_flavor(rsp)
 | 
						|
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine the value that ->completed will have at the end of the
 | 
						|
 * next subsequent grace period.  This is used to tag callbacks so that
 | 
						|
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 | 
						|
 * been dyntick-idle for an extended period with callbacks under the
 | 
						|
 * influence of RCU_FAST_NO_HZ.
 | 
						|
 *
 | 
						|
 * The caller must hold rnp->lock with interrupts disabled.
 | 
						|
 */
 | 
						|
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
 | 
						|
				       struct rcu_node *rnp)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * If RCU is idle, we just wait for the next grace period.
 | 
						|
	 * But we can only be sure that RCU is idle if we are looking
 | 
						|
	 * at the root rcu_node structure -- otherwise, a new grace
 | 
						|
	 * period might have started, but just not yet gotten around
 | 
						|
	 * to initializing the current non-root rcu_node structure.
 | 
						|
	 */
 | 
						|
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
 | 
						|
		return rnp->completed + 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Otherwise, wait for a possible partial grace period and
 | 
						|
	 * then the subsequent full grace period.
 | 
						|
	 */
 | 
						|
	return rnp->completed + 2;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Trace-event helper function for rcu_start_future_gp() and
 | 
						|
 * rcu_nocb_wait_gp().
 | 
						|
 */
 | 
						|
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
 | 
						|
				unsigned long c, const char *s)
 | 
						|
{
 | 
						|
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
 | 
						|
				      rnp->completed, c, rnp->level,
 | 
						|
				      rnp->grplo, rnp->grphi, s);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Start some future grace period, as needed to handle newly arrived
 | 
						|
 * callbacks.  The required future grace periods are recorded in each
 | 
						|
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 | 
						|
 * is reason to awaken the grace-period kthread.
 | 
						|
 *
 | 
						|
 * The caller must hold the specified rcu_node structure's ->lock.
 | 
						|
 */
 | 
						|
static bool __maybe_unused
 | 
						|
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
 | 
						|
		    unsigned long *c_out)
 | 
						|
{
 | 
						|
	unsigned long c;
 | 
						|
	bool ret = false;
 | 
						|
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Pick up grace-period number for new callbacks.  If this
 | 
						|
	 * grace period is already marked as needed, return to the caller.
 | 
						|
	 */
 | 
						|
	c = rcu_cbs_completed(rdp->rsp, rnp);
 | 
						|
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
 | 
						|
	if (rnp->need_future_gp[c & 0x1]) {
 | 
						|
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If either this rcu_node structure or the root rcu_node structure
 | 
						|
	 * believe that a grace period is in progress, then we must wait
 | 
						|
	 * for the one following, which is in "c".  Because our request
 | 
						|
	 * will be noticed at the end of the current grace period, we don't
 | 
						|
	 * need to explicitly start one.  We only do the lockless check
 | 
						|
	 * of rnp_root's fields if the current rcu_node structure thinks
 | 
						|
	 * there is no grace period in flight, and because we hold rnp->lock,
 | 
						|
	 * the only possible change is when rnp_root's two fields are
 | 
						|
	 * equal, in which case rnp_root->gpnum might be concurrently
 | 
						|
	 * incremented.  But that is OK, as it will just result in our
 | 
						|
	 * doing some extra useless work.
 | 
						|
	 */
 | 
						|
	if (rnp->gpnum != rnp->completed ||
 | 
						|
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
 | 
						|
		rnp->need_future_gp[c & 0x1]++;
 | 
						|
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * There might be no grace period in progress.  If we don't already
 | 
						|
	 * hold it, acquire the root rcu_node structure's lock in order to
 | 
						|
	 * start one (if needed).
 | 
						|
	 */
 | 
						|
	if (rnp != rnp_root)
 | 
						|
		raw_spin_lock_rcu_node(rnp_root);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get a new grace-period number.  If there really is no grace
 | 
						|
	 * period in progress, it will be smaller than the one we obtained
 | 
						|
	 * earlier.  Adjust callbacks as needed.
 | 
						|
	 */
 | 
						|
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
 | 
						|
	if (!rcu_is_nocb_cpu(rdp->cpu))
 | 
						|
		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the needed for the required grace period is already
 | 
						|
	 * recorded, trace and leave.
 | 
						|
	 */
 | 
						|
	if (rnp_root->need_future_gp[c & 0x1]) {
 | 
						|
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
 | 
						|
		goto unlock_out;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Record the need for the future grace period. */
 | 
						|
	rnp_root->need_future_gp[c & 0x1]++;
 | 
						|
 | 
						|
	/* If a grace period is not already in progress, start one. */
 | 
						|
	if (rnp_root->gpnum != rnp_root->completed) {
 | 
						|
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
 | 
						|
	} else {
 | 
						|
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
 | 
						|
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
 | 
						|
	}
 | 
						|
unlock_out:
 | 
						|
	if (rnp != rnp_root)
 | 
						|
		raw_spin_unlock_rcu_node(rnp_root);
 | 
						|
out:
 | 
						|
	if (c_out != NULL)
 | 
						|
		*c_out = c;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Clean up any old requests for the just-ended grace period.  Also return
 | 
						|
 * whether any additional grace periods have been requested.
 | 
						|
 */
 | 
						|
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
 | 
						|
{
 | 
						|
	int c = rnp->completed;
 | 
						|
	int needmore;
 | 
						|
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
 | 
						|
 | 
						|
	rnp->need_future_gp[c & 0x1] = 0;
 | 
						|
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
 | 
						|
	trace_rcu_future_gp(rnp, rdp, c,
 | 
						|
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
 | 
						|
	return needmore;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Awaken the grace-period kthread for the specified flavor of RCU.
 | 
						|
 * Don't do a self-awaken, and don't bother awakening when there is
 | 
						|
 * nothing for the grace-period kthread to do (as in several CPUs
 | 
						|
 * raced to awaken, and we lost), and finally don't try to awaken
 | 
						|
 * a kthread that has not yet been created.
 | 
						|
 */
 | 
						|
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	if (current == rsp->gp_kthread ||
 | 
						|
	    !READ_ONCE(rsp->gp_flags) ||
 | 
						|
	    !rsp->gp_kthread)
 | 
						|
		return;
 | 
						|
	swake_up(&rsp->gp_wq);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If there is room, assign a ->completed number to any callbacks on
 | 
						|
 * this CPU that have not already been assigned.  Also accelerate any
 | 
						|
 * callbacks that were previously assigned a ->completed number that has
 | 
						|
 * since proven to be too conservative, which can happen if callbacks get
 | 
						|
 * assigned a ->completed number while RCU is idle, but with reference to
 | 
						|
 * a non-root rcu_node structure.  This function is idempotent, so it does
 | 
						|
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 | 
						|
 * awaken the RCU grace-period kthread.
 | 
						|
 *
 | 
						|
 * The caller must hold rnp->lock with interrupts disabled.
 | 
						|
 */
 | 
						|
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
 | 
						|
			       struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	bool ret = false;
 | 
						|
 | 
						|
	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
 | 
						|
	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Callbacks are often registered with incomplete grace-period
 | 
						|
	 * information.  Something about the fact that getting exact
 | 
						|
	 * information requires acquiring a global lock...  RCU therefore
 | 
						|
	 * makes a conservative estimate of the grace period number at which
 | 
						|
	 * a given callback will become ready to invoke.	The following
 | 
						|
	 * code checks this estimate and improves it when possible, thus
 | 
						|
	 * accelerating callback invocation to an earlier grace-period
 | 
						|
	 * number.
 | 
						|
	 */
 | 
						|
	if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
 | 
						|
		ret = rcu_start_future_gp(rnp, rdp, NULL);
 | 
						|
 | 
						|
	/* Trace depending on how much we were able to accelerate. */
 | 
						|
	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
 | 
						|
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
 | 
						|
	else
 | 
						|
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Move any callbacks whose grace period has completed to the
 | 
						|
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 | 
						|
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 | 
						|
 * sublist.  This function is idempotent, so it does not hurt to
 | 
						|
 * invoke it repeatedly.  As long as it is not invoked -too- often...
 | 
						|
 * Returns true if the RCU grace-period kthread needs to be awakened.
 | 
						|
 *
 | 
						|
 * The caller must hold rnp->lock with interrupts disabled.
 | 
						|
 */
 | 
						|
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
 | 
						|
			    struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
 | 
						|
	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Find all callbacks whose ->completed numbers indicate that they
 | 
						|
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
 | 
						|
	 */
 | 
						|
	rcu_segcblist_advance(&rdp->cblist, rnp->completed);
 | 
						|
 | 
						|
	/* Classify any remaining callbacks. */
 | 
						|
	return rcu_accelerate_cbs(rsp, rnp, rdp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Update CPU-local rcu_data state to record the beginnings and ends of
 | 
						|
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 | 
						|
 * structure corresponding to the current CPU, and must have irqs disabled.
 | 
						|
 * Returns true if the grace-period kthread needs to be awakened.
 | 
						|
 */
 | 
						|
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
 | 
						|
			      struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	bool ret;
 | 
						|
	bool need_gp;
 | 
						|
 | 
						|
	/* Handle the ends of any preceding grace periods first. */
 | 
						|
	if (rdp->completed == rnp->completed &&
 | 
						|
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
 | 
						|
 | 
						|
		/* No grace period end, so just accelerate recent callbacks. */
 | 
						|
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
 | 
						|
 | 
						|
	} else {
 | 
						|
 | 
						|
		/* Advance callbacks. */
 | 
						|
		ret = rcu_advance_cbs(rsp, rnp, rdp);
 | 
						|
 | 
						|
		/* Remember that we saw this grace-period completion. */
 | 
						|
		rdp->completed = rnp->completed;
 | 
						|
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
 | 
						|
	}
 | 
						|
 | 
						|
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
 | 
						|
		/*
 | 
						|
		 * If the current grace period is waiting for this CPU,
 | 
						|
		 * set up to detect a quiescent state, otherwise don't
 | 
						|
		 * go looking for one.
 | 
						|
		 */
 | 
						|
		rdp->gpnum = rnp->gpnum;
 | 
						|
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
 | 
						|
		need_gp = !!(rnp->qsmask & rdp->grpmask);
 | 
						|
		rdp->cpu_no_qs.b.norm = need_gp;
 | 
						|
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
 | 
						|
		rdp->core_needs_qs = need_gp;
 | 
						|
		zero_cpu_stall_ticks(rdp);
 | 
						|
		WRITE_ONCE(rdp->gpwrap, false);
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	bool needwake;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	rnp = rdp->mynode;
 | 
						|
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
 | 
						|
	     rdp->completed == READ_ONCE(rnp->completed) &&
 | 
						|
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
 | 
						|
	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
 | 
						|
		local_irq_restore(flags);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	needwake = __note_gp_changes(rsp, rnp, rdp);
 | 
						|
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
	if (needwake)
 | 
						|
		rcu_gp_kthread_wake(rsp);
 | 
						|
}
 | 
						|
 | 
						|
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
 | 
						|
{
 | 
						|
	if (delay > 0 &&
 | 
						|
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
 | 
						|
		schedule_timeout_uninterruptible(delay);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize a new grace period.  Return false if no grace period required.
 | 
						|
 */
 | 
						|
static bool rcu_gp_init(struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	unsigned long oldmask;
 | 
						|
	struct rcu_data *rdp;
 | 
						|
	struct rcu_node *rnp = rcu_get_root(rsp);
 | 
						|
 | 
						|
	WRITE_ONCE(rsp->gp_activity, jiffies);
 | 
						|
	raw_spin_lock_irq_rcu_node(rnp);
 | 
						|
	if (!READ_ONCE(rsp->gp_flags)) {
 | 
						|
		/* Spurious wakeup, tell caller to go back to sleep.  */
 | 
						|
		raw_spin_unlock_irq_rcu_node(rnp);
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
 | 
						|
 | 
						|
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
 | 
						|
		/*
 | 
						|
		 * Grace period already in progress, don't start another.
 | 
						|
		 * Not supposed to be able to happen.
 | 
						|
		 */
 | 
						|
		raw_spin_unlock_irq_rcu_node(rnp);
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Advance to a new grace period and initialize state. */
 | 
						|
	record_gp_stall_check_time(rsp);
 | 
						|
	/* Record GP times before starting GP, hence smp_store_release(). */
 | 
						|
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
 | 
						|
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
 | 
						|
	raw_spin_unlock_irq_rcu_node(rnp);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Apply per-leaf buffered online and offline operations to the
 | 
						|
	 * rcu_node tree.  Note that this new grace period need not wait
 | 
						|
	 * for subsequent online CPUs, and that quiescent-state forcing
 | 
						|
	 * will handle subsequent offline CPUs.
 | 
						|
	 */
 | 
						|
	rcu_for_each_leaf_node(rsp, rnp) {
 | 
						|
		rcu_gp_slow(rsp, gp_preinit_delay);
 | 
						|
		raw_spin_lock_irq_rcu_node(rnp);
 | 
						|
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
 | 
						|
		    !rnp->wait_blkd_tasks) {
 | 
						|
			/* Nothing to do on this leaf rcu_node structure. */
 | 
						|
			raw_spin_unlock_irq_rcu_node(rnp);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Record old state, apply changes to ->qsmaskinit field. */
 | 
						|
		oldmask = rnp->qsmaskinit;
 | 
						|
		rnp->qsmaskinit = rnp->qsmaskinitnext;
 | 
						|
 | 
						|
		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
 | 
						|
		if (!oldmask != !rnp->qsmaskinit) {
 | 
						|
			if (!oldmask) /* First online CPU for this rcu_node. */
 | 
						|
				rcu_init_new_rnp(rnp);
 | 
						|
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
 | 
						|
				rnp->wait_blkd_tasks = true;
 | 
						|
			else /* Last offline CPU and can propagate. */
 | 
						|
				rcu_cleanup_dead_rnp(rnp);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If all waited-on tasks from prior grace period are
 | 
						|
		 * done, and if all this rcu_node structure's CPUs are
 | 
						|
		 * still offline, propagate up the rcu_node tree and
 | 
						|
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
 | 
						|
		 * rcu_node structure's CPUs has since come back online,
 | 
						|
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
 | 
						|
		 * checks for this, so just call it unconditionally).
 | 
						|
		 */
 | 
						|
		if (rnp->wait_blkd_tasks &&
 | 
						|
		    (!rcu_preempt_has_tasks(rnp) ||
 | 
						|
		     rnp->qsmaskinit)) {
 | 
						|
			rnp->wait_blkd_tasks = false;
 | 
						|
			rcu_cleanup_dead_rnp(rnp);
 | 
						|
		}
 | 
						|
 | 
						|
		raw_spin_unlock_irq_rcu_node(rnp);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set the quiescent-state-needed bits in all the rcu_node
 | 
						|
	 * structures for all currently online CPUs in breadth-first order,
 | 
						|
	 * starting from the root rcu_node structure, relying on the layout
 | 
						|
	 * of the tree within the rsp->node[] array.  Note that other CPUs
 | 
						|
	 * will access only the leaves of the hierarchy, thus seeing that no
 | 
						|
	 * grace period is in progress, at least until the corresponding
 | 
						|
	 * leaf node has been initialized.
 | 
						|
	 *
 | 
						|
	 * The grace period cannot complete until the initialization
 | 
						|
	 * process finishes, because this kthread handles both.
 | 
						|
	 */
 | 
						|
	rcu_for_each_node_breadth_first(rsp, rnp) {
 | 
						|
		rcu_gp_slow(rsp, gp_init_delay);
 | 
						|
		raw_spin_lock_irq_rcu_node(rnp);
 | 
						|
		rdp = this_cpu_ptr(rsp->rda);
 | 
						|
		rcu_preempt_check_blocked_tasks(rnp);
 | 
						|
		rnp->qsmask = rnp->qsmaskinit;
 | 
						|
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
 | 
						|
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
 | 
						|
			WRITE_ONCE(rnp->completed, rsp->completed);
 | 
						|
		if (rnp == rdp->mynode)
 | 
						|
			(void)__note_gp_changes(rsp, rnp, rdp);
 | 
						|
		rcu_preempt_boost_start_gp(rnp);
 | 
						|
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
 | 
						|
					    rnp->level, rnp->grplo,
 | 
						|
					    rnp->grphi, rnp->qsmask);
 | 
						|
		raw_spin_unlock_irq_rcu_node(rnp);
 | 
						|
		cond_resched_rcu_qs();
 | 
						|
		WRITE_ONCE(rsp->gp_activity, jiffies);
 | 
						|
	}
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Helper function for wait_event_interruptible_timeout() wakeup
 | 
						|
 * at force-quiescent-state time.
 | 
						|
 */
 | 
						|
static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
 | 
						|
{
 | 
						|
	struct rcu_node *rnp = rcu_get_root(rsp);
 | 
						|
 | 
						|
	/* Someone like call_rcu() requested a force-quiescent-state scan. */
 | 
						|
	*gfp = READ_ONCE(rsp->gp_flags);
 | 
						|
	if (*gfp & RCU_GP_FLAG_FQS)
 | 
						|
		return true;
 | 
						|
 | 
						|
	/* The current grace period has completed. */
 | 
						|
	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Do one round of quiescent-state forcing.
 | 
						|
 */
 | 
						|
static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
 | 
						|
{
 | 
						|
	bool isidle = false;
 | 
						|
	unsigned long maxj;
 | 
						|
	struct rcu_node *rnp = rcu_get_root(rsp);
 | 
						|
 | 
						|
	WRITE_ONCE(rsp->gp_activity, jiffies);
 | 
						|
	rsp->n_force_qs++;
 | 
						|
	if (first_time) {
 | 
						|
		/* Collect dyntick-idle snapshots. */
 | 
						|
		if (is_sysidle_rcu_state(rsp)) {
 | 
						|
			isidle = true;
 | 
						|
			maxj = jiffies - ULONG_MAX / 4;
 | 
						|
		}
 | 
						|
		force_qs_rnp(rsp, dyntick_save_progress_counter,
 | 
						|
			     &isidle, &maxj);
 | 
						|
		rcu_sysidle_report_gp(rsp, isidle, maxj);
 | 
						|
	} else {
 | 
						|
		/* Handle dyntick-idle and offline CPUs. */
 | 
						|
		isidle = true;
 | 
						|
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
 | 
						|
	}
 | 
						|
	/* Clear flag to prevent immediate re-entry. */
 | 
						|
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
 | 
						|
		raw_spin_lock_irq_rcu_node(rnp);
 | 
						|
		WRITE_ONCE(rsp->gp_flags,
 | 
						|
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
 | 
						|
		raw_spin_unlock_irq_rcu_node(rnp);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Clean up after the old grace period.
 | 
						|
 */
 | 
						|
static void rcu_gp_cleanup(struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	unsigned long gp_duration;
 | 
						|
	bool needgp = false;
 | 
						|
	int nocb = 0;
 | 
						|
	struct rcu_data *rdp;
 | 
						|
	struct rcu_node *rnp = rcu_get_root(rsp);
 | 
						|
	struct swait_queue_head *sq;
 | 
						|
 | 
						|
	WRITE_ONCE(rsp->gp_activity, jiffies);
 | 
						|
	raw_spin_lock_irq_rcu_node(rnp);
 | 
						|
	gp_duration = jiffies - rsp->gp_start;
 | 
						|
	if (gp_duration > rsp->gp_max)
 | 
						|
		rsp->gp_max = gp_duration;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We know the grace period is complete, but to everyone else
 | 
						|
	 * it appears to still be ongoing.  But it is also the case
 | 
						|
	 * that to everyone else it looks like there is nothing that
 | 
						|
	 * they can do to advance the grace period.  It is therefore
 | 
						|
	 * safe for us to drop the lock in order to mark the grace
 | 
						|
	 * period as completed in all of the rcu_node structures.
 | 
						|
	 */
 | 
						|
	raw_spin_unlock_irq_rcu_node(rnp);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Propagate new ->completed value to rcu_node structures so
 | 
						|
	 * that other CPUs don't have to wait until the start of the next
 | 
						|
	 * grace period to process their callbacks.  This also avoids
 | 
						|
	 * some nasty RCU grace-period initialization races by forcing
 | 
						|
	 * the end of the current grace period to be completely recorded in
 | 
						|
	 * all of the rcu_node structures before the beginning of the next
 | 
						|
	 * grace period is recorded in any of the rcu_node structures.
 | 
						|
	 */
 | 
						|
	rcu_for_each_node_breadth_first(rsp, rnp) {
 | 
						|
		raw_spin_lock_irq_rcu_node(rnp);
 | 
						|
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
 | 
						|
		WARN_ON_ONCE(rnp->qsmask);
 | 
						|
		WRITE_ONCE(rnp->completed, rsp->gpnum);
 | 
						|
		rdp = this_cpu_ptr(rsp->rda);
 | 
						|
		if (rnp == rdp->mynode)
 | 
						|
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
 | 
						|
		/* smp_mb() provided by prior unlock-lock pair. */
 | 
						|
		nocb += rcu_future_gp_cleanup(rsp, rnp);
 | 
						|
		sq = rcu_nocb_gp_get(rnp);
 | 
						|
		raw_spin_unlock_irq_rcu_node(rnp);
 | 
						|
		rcu_nocb_gp_cleanup(sq);
 | 
						|
		cond_resched_rcu_qs();
 | 
						|
		WRITE_ONCE(rsp->gp_activity, jiffies);
 | 
						|
		rcu_gp_slow(rsp, gp_cleanup_delay);
 | 
						|
	}
 | 
						|
	rnp = rcu_get_root(rsp);
 | 
						|
	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
 | 
						|
	rcu_nocb_gp_set(rnp, nocb);
 | 
						|
 | 
						|
	/* Declare grace period done. */
 | 
						|
	WRITE_ONCE(rsp->completed, rsp->gpnum);
 | 
						|
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
 | 
						|
	rsp->gp_state = RCU_GP_IDLE;
 | 
						|
	rdp = this_cpu_ptr(rsp->rda);
 | 
						|
	/* Advance CBs to reduce false positives below. */
 | 
						|
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
 | 
						|
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
 | 
						|
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
 | 
						|
		trace_rcu_grace_period(rsp->name,
 | 
						|
				       READ_ONCE(rsp->gpnum),
 | 
						|
				       TPS("newreq"));
 | 
						|
	}
 | 
						|
	raw_spin_unlock_irq_rcu_node(rnp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Body of kthread that handles grace periods.
 | 
						|
 */
 | 
						|
static int __noreturn rcu_gp_kthread(void *arg)
 | 
						|
{
 | 
						|
	bool first_gp_fqs;
 | 
						|
	int gf;
 | 
						|
	unsigned long j;
 | 
						|
	int ret;
 | 
						|
	struct rcu_state *rsp = arg;
 | 
						|
	struct rcu_node *rnp = rcu_get_root(rsp);
 | 
						|
 | 
						|
	rcu_bind_gp_kthread();
 | 
						|
	for (;;) {
 | 
						|
 | 
						|
		/* Handle grace-period start. */
 | 
						|
		for (;;) {
 | 
						|
			trace_rcu_grace_period(rsp->name,
 | 
						|
					       READ_ONCE(rsp->gpnum),
 | 
						|
					       TPS("reqwait"));
 | 
						|
			rsp->gp_state = RCU_GP_WAIT_GPS;
 | 
						|
			swait_event_interruptible(rsp->gp_wq,
 | 
						|
						 READ_ONCE(rsp->gp_flags) &
 | 
						|
						 RCU_GP_FLAG_INIT);
 | 
						|
			rsp->gp_state = RCU_GP_DONE_GPS;
 | 
						|
			/* Locking provides needed memory barrier. */
 | 
						|
			if (rcu_gp_init(rsp))
 | 
						|
				break;
 | 
						|
			cond_resched_rcu_qs();
 | 
						|
			WRITE_ONCE(rsp->gp_activity, jiffies);
 | 
						|
			WARN_ON(signal_pending(current));
 | 
						|
			trace_rcu_grace_period(rsp->name,
 | 
						|
					       READ_ONCE(rsp->gpnum),
 | 
						|
					       TPS("reqwaitsig"));
 | 
						|
		}
 | 
						|
 | 
						|
		/* Handle quiescent-state forcing. */
 | 
						|
		first_gp_fqs = true;
 | 
						|
		j = jiffies_till_first_fqs;
 | 
						|
		if (j > HZ) {
 | 
						|
			j = HZ;
 | 
						|
			jiffies_till_first_fqs = HZ;
 | 
						|
		}
 | 
						|
		ret = 0;
 | 
						|
		for (;;) {
 | 
						|
			if (!ret) {
 | 
						|
				rsp->jiffies_force_qs = jiffies + j;
 | 
						|
				WRITE_ONCE(rsp->jiffies_kick_kthreads,
 | 
						|
					   jiffies + 3 * j);
 | 
						|
			}
 | 
						|
			trace_rcu_grace_period(rsp->name,
 | 
						|
					       READ_ONCE(rsp->gpnum),
 | 
						|
					       TPS("fqswait"));
 | 
						|
			rsp->gp_state = RCU_GP_WAIT_FQS;
 | 
						|
			ret = swait_event_interruptible_timeout(rsp->gp_wq,
 | 
						|
					rcu_gp_fqs_check_wake(rsp, &gf), j);
 | 
						|
			rsp->gp_state = RCU_GP_DOING_FQS;
 | 
						|
			/* Locking provides needed memory barriers. */
 | 
						|
			/* If grace period done, leave loop. */
 | 
						|
			if (!READ_ONCE(rnp->qsmask) &&
 | 
						|
			    !rcu_preempt_blocked_readers_cgp(rnp))
 | 
						|
				break;
 | 
						|
			/* If time for quiescent-state forcing, do it. */
 | 
						|
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
 | 
						|
			    (gf & RCU_GP_FLAG_FQS)) {
 | 
						|
				trace_rcu_grace_period(rsp->name,
 | 
						|
						       READ_ONCE(rsp->gpnum),
 | 
						|
						       TPS("fqsstart"));
 | 
						|
				rcu_gp_fqs(rsp, first_gp_fqs);
 | 
						|
				first_gp_fqs = false;
 | 
						|
				trace_rcu_grace_period(rsp->name,
 | 
						|
						       READ_ONCE(rsp->gpnum),
 | 
						|
						       TPS("fqsend"));
 | 
						|
				cond_resched_rcu_qs();
 | 
						|
				WRITE_ONCE(rsp->gp_activity, jiffies);
 | 
						|
				ret = 0; /* Force full wait till next FQS. */
 | 
						|
				j = jiffies_till_next_fqs;
 | 
						|
				if (j > HZ) {
 | 
						|
					j = HZ;
 | 
						|
					jiffies_till_next_fqs = HZ;
 | 
						|
				} else if (j < 1) {
 | 
						|
					j = 1;
 | 
						|
					jiffies_till_next_fqs = 1;
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				/* Deal with stray signal. */
 | 
						|
				cond_resched_rcu_qs();
 | 
						|
				WRITE_ONCE(rsp->gp_activity, jiffies);
 | 
						|
				WARN_ON(signal_pending(current));
 | 
						|
				trace_rcu_grace_period(rsp->name,
 | 
						|
						       READ_ONCE(rsp->gpnum),
 | 
						|
						       TPS("fqswaitsig"));
 | 
						|
				ret = 1; /* Keep old FQS timing. */
 | 
						|
				j = jiffies;
 | 
						|
				if (time_after(jiffies, rsp->jiffies_force_qs))
 | 
						|
					j = 1;
 | 
						|
				else
 | 
						|
					j = rsp->jiffies_force_qs - j;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* Handle grace-period end. */
 | 
						|
		rsp->gp_state = RCU_GP_CLEANUP;
 | 
						|
		rcu_gp_cleanup(rsp);
 | 
						|
		rsp->gp_state = RCU_GP_CLEANED;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 | 
						|
 * in preparation for detecting the next grace period.  The caller must hold
 | 
						|
 * the root node's ->lock and hard irqs must be disabled.
 | 
						|
 *
 | 
						|
 * Note that it is legal for a dying CPU (which is marked as offline) to
 | 
						|
 * invoke this function.  This can happen when the dying CPU reports its
 | 
						|
 * quiescent state.
 | 
						|
 *
 | 
						|
 * Returns true if the grace-period kthread must be awakened.
 | 
						|
 */
 | 
						|
static bool
 | 
						|
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
 | 
						|
		      struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
 | 
						|
		/*
 | 
						|
		 * Either we have not yet spawned the grace-period
 | 
						|
		 * task, this CPU does not need another grace period,
 | 
						|
		 * or a grace period is already in progress.
 | 
						|
		 * Either way, don't start a new grace period.
 | 
						|
		 */
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
 | 
						|
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
 | 
						|
			       TPS("newreq"));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We can't do wakeups while holding the rnp->lock, as that
 | 
						|
	 * could cause possible deadlocks with the rq->lock. Defer
 | 
						|
	 * the wakeup to our caller.
 | 
						|
	 */
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 | 
						|
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 | 
						|
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 | 
						|
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 | 
						|
 * that is encountered beforehand.
 | 
						|
 *
 | 
						|
 * Returns true if the grace-period kthread needs to be awakened.
 | 
						|
 */
 | 
						|
static bool rcu_start_gp(struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
 | 
						|
	struct rcu_node *rnp = rcu_get_root(rsp);
 | 
						|
	bool ret = false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If there is no grace period in progress right now, any
 | 
						|
	 * callbacks we have up to this point will be satisfied by the
 | 
						|
	 * next grace period.  Also, advancing the callbacks reduces the
 | 
						|
	 * probability of false positives from cpu_needs_another_gp()
 | 
						|
	 * resulting in pointless grace periods.  So, advance callbacks
 | 
						|
	 * then start the grace period!
 | 
						|
	 */
 | 
						|
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
 | 
						|
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Report a full set of quiescent states to the specified rcu_state data
 | 
						|
 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
 | 
						|
 * kthread if another grace period is required.  Whether we wake
 | 
						|
 * the grace-period kthread or it awakens itself for the next round
 | 
						|
 * of quiescent-state forcing, that kthread will clean up after the
 | 
						|
 * just-completed grace period.  Note that the caller must hold rnp->lock,
 | 
						|
 * which is released before return.
 | 
						|
 */
 | 
						|
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
 | 
						|
	__releases(rcu_get_root(rsp)->lock)
 | 
						|
{
 | 
						|
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
 | 
						|
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
 | 
						|
	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
 | 
						|
	rcu_gp_kthread_wake(rsp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 | 
						|
 * Allows quiescent states for a group of CPUs to be reported at one go
 | 
						|
 * to the specified rcu_node structure, though all the CPUs in the group
 | 
						|
 * must be represented by the same rcu_node structure (which need not be a
 | 
						|
 * leaf rcu_node structure, though it often will be).  The gps parameter
 | 
						|
 * is the grace-period snapshot, which means that the quiescent states
 | 
						|
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 | 
						|
 * must be held upon entry, and it is released before return.
 | 
						|
 */
 | 
						|
static void
 | 
						|
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
 | 
						|
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
 | 
						|
	__releases(rnp->lock)
 | 
						|
{
 | 
						|
	unsigned long oldmask = 0;
 | 
						|
	struct rcu_node *rnp_c;
 | 
						|
 | 
						|
	/* Walk up the rcu_node hierarchy. */
 | 
						|
	for (;;) {
 | 
						|
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Our bit has already been cleared, or the
 | 
						|
			 * relevant grace period is already over, so done.
 | 
						|
			 */
 | 
						|
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
 | 
						|
		rnp->qsmask &= ~mask;
 | 
						|
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
 | 
						|
						 mask, rnp->qsmask, rnp->level,
 | 
						|
						 rnp->grplo, rnp->grphi,
 | 
						|
						 !!rnp->gp_tasks);
 | 
						|
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
 | 
						|
 | 
						|
			/* Other bits still set at this level, so done. */
 | 
						|
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		mask = rnp->grpmask;
 | 
						|
		if (rnp->parent == NULL) {
 | 
						|
 | 
						|
			/* No more levels.  Exit loop holding root lock. */
 | 
						|
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
		rnp_c = rnp;
 | 
						|
		rnp = rnp->parent;
 | 
						|
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
		oldmask = rnp_c->qsmask;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get here if we are the last CPU to pass through a quiescent
 | 
						|
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
 | 
						|
	 * to clean up and start the next grace period if one is needed.
 | 
						|
	 */
 | 
						|
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Record a quiescent state for all tasks that were previously queued
 | 
						|
 * on the specified rcu_node structure and that were blocking the current
 | 
						|
 * RCU grace period.  The caller must hold the specified rnp->lock with
 | 
						|
 * irqs disabled, and this lock is released upon return, but irqs remain
 | 
						|
 * disabled.
 | 
						|
 */
 | 
						|
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
 | 
						|
				      struct rcu_node *rnp, unsigned long flags)
 | 
						|
	__releases(rnp->lock)
 | 
						|
{
 | 
						|
	unsigned long gps;
 | 
						|
	unsigned long mask;
 | 
						|
	struct rcu_node *rnp_p;
 | 
						|
 | 
						|
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
 | 
						|
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
 | 
						|
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
		return;  /* Still need more quiescent states! */
 | 
						|
	}
 | 
						|
 | 
						|
	rnp_p = rnp->parent;
 | 
						|
	if (rnp_p == NULL) {
 | 
						|
		/*
 | 
						|
		 * Only one rcu_node structure in the tree, so don't
 | 
						|
		 * try to report up to its nonexistent parent!
 | 
						|
		 */
 | 
						|
		rcu_report_qs_rsp(rsp, flags);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
 | 
						|
	gps = rnp->gpnum;
 | 
						|
	mask = rnp->grpmask;
 | 
						|
	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
 | 
						|
	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
 | 
						|
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 | 
						|
 * structure.  This must be called from the specified CPU.
 | 
						|
 */
 | 
						|
static void
 | 
						|
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long mask;
 | 
						|
	bool needwake;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
 | 
						|
	rnp = rdp->mynode;
 | 
						|
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
 | 
						|
	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The grace period in which this quiescent state was
 | 
						|
		 * recorded has ended, so don't report it upwards.
 | 
						|
		 * We will instead need a new quiescent state that lies
 | 
						|
		 * within the current grace period.
 | 
						|
		 */
 | 
						|
		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
 | 
						|
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
 | 
						|
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	mask = rdp->grpmask;
 | 
						|
	if ((rnp->qsmask & mask) == 0) {
 | 
						|
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
	} else {
 | 
						|
		rdp->core_needs_qs = false;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * This GP can't end until cpu checks in, so all of our
 | 
						|
		 * callbacks can be processed during the next GP.
 | 
						|
		 */
 | 
						|
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
 | 
						|
 | 
						|
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
 | 
						|
		/* ^^^ Released rnp->lock */
 | 
						|
		if (needwake)
 | 
						|
			rcu_gp_kthread_wake(rsp);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check to see if there is a new grace period of which this CPU
 | 
						|
 * is not yet aware, and if so, set up local rcu_data state for it.
 | 
						|
 * Otherwise, see if this CPU has just passed through its first
 | 
						|
 * quiescent state for this grace period, and record that fact if so.
 | 
						|
 */
 | 
						|
static void
 | 
						|
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	/* Check for grace-period ends and beginnings. */
 | 
						|
	note_gp_changes(rsp, rdp);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Does this CPU still need to do its part for current grace period?
 | 
						|
	 * If no, return and let the other CPUs do their part as well.
 | 
						|
	 */
 | 
						|
	if (!rdp->core_needs_qs)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Was there a quiescent state since the beginning of the grace
 | 
						|
	 * period? If no, then exit and wait for the next call.
 | 
						|
	 */
 | 
						|
	if (rdp->cpu_no_qs.b.norm)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
 | 
						|
	 * judge of that).
 | 
						|
	 */
 | 
						|
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 | 
						|
 * specified CPU must be offline, and the caller must hold the
 | 
						|
 * ->orphan_lock.
 | 
						|
 */
 | 
						|
static void
 | 
						|
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
 | 
						|
			  struct rcu_node *rnp, struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	/* No-CBs CPUs do not have orphanable callbacks. */
 | 
						|
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Orphan the callbacks.  First adjust the counts.  This is safe
 | 
						|
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
 | 
						|
	 * cannot be running now.  Thus no memory barrier is required.
 | 
						|
	 */
 | 
						|
	rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
 | 
						|
	rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Next, move those callbacks still needing a grace period to
 | 
						|
	 * the orphanage, where some other CPU will pick them up.
 | 
						|
	 * Some of the callbacks might have gone partway through a grace
 | 
						|
	 * period, but that is too bad.  They get to start over because we
 | 
						|
	 * cannot assume that grace periods are synchronized across CPUs.
 | 
						|
	 */
 | 
						|
	rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Then move the ready-to-invoke callbacks to the orphanage,
 | 
						|
	 * where some other CPU will pick them up.  These will not be
 | 
						|
	 * required to pass though another grace period: They are done.
 | 
						|
	 */
 | 
						|
	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
 | 
						|
 | 
						|
	/* Finally, disallow further callbacks on this CPU.  */
 | 
						|
	rcu_segcblist_disable(&rdp->cblist);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Adopt the RCU callbacks from the specified rcu_state structure's
 | 
						|
 * orphanage.  The caller must hold the ->orphan_lock.
 | 
						|
 */
 | 
						|
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
 | 
						|
{
 | 
						|
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
 | 
						|
 | 
						|
	/* No-CBs CPUs are handled specially. */
 | 
						|
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
 | 
						|
	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Do the accounting first. */
 | 
						|
	rdp->n_cbs_adopted += rsp->orphan_done.len;
 | 
						|
	if (rcu_cblist_n_lazy_cbs(&rsp->orphan_done) != rsp->orphan_done.len)
 | 
						|
		rcu_idle_count_callbacks_posted();
 | 
						|
	rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We do not need a memory barrier here because the only way we
 | 
						|
	 * can get here if there is an rcu_barrier() in flight is if
 | 
						|
	 * we are the task doing the rcu_barrier().
 | 
						|
	 */
 | 
						|
 | 
						|
	/* First adopt the ready-to-invoke callbacks, then the done ones. */
 | 
						|
	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
 | 
						|
	WARN_ON_ONCE(rsp->orphan_done.head);
 | 
						|
	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
 | 
						|
	WARN_ON_ONCE(rsp->orphan_pend.head);
 | 
						|
	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
 | 
						|
		     !rcu_segcblist_n_cbs(&rdp->cblist));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Trace the fact that this CPU is going offline.
 | 
						|
 */
 | 
						|
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	RCU_TRACE(unsigned long mask;)
 | 
						|
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
 | 
						|
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
 | 
						|
 | 
						|
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
 | 
						|
		return;
 | 
						|
 | 
						|
	RCU_TRACE(mask = rdp->grpmask;)
 | 
						|
	trace_rcu_grace_period(rsp->name,
 | 
						|
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
 | 
						|
			       TPS("cpuofl"));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * All CPUs for the specified rcu_node structure have gone offline,
 | 
						|
 * and all tasks that were preempted within an RCU read-side critical
 | 
						|
 * section while running on one of those CPUs have since exited their RCU
 | 
						|
 * read-side critical section.  Some other CPU is reporting this fact with
 | 
						|
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 | 
						|
 * This function therefore goes up the tree of rcu_node structures,
 | 
						|
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 | 
						|
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 | 
						|
 * updated
 | 
						|
 *
 | 
						|
 * This function does check that the specified rcu_node structure has
 | 
						|
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 | 
						|
 * prematurely.  That said, invoking it after the fact will cost you
 | 
						|
 * a needless lock acquisition.  So once it has done its work, don't
 | 
						|
 * invoke it again.
 | 
						|
 */
 | 
						|
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
 | 
						|
{
 | 
						|
	long mask;
 | 
						|
	struct rcu_node *rnp = rnp_leaf;
 | 
						|
 | 
						|
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
 | 
						|
	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
 | 
						|
		return;
 | 
						|
	for (;;) {
 | 
						|
		mask = rnp->grpmask;
 | 
						|
		rnp = rnp->parent;
 | 
						|
		if (!rnp)
 | 
						|
			break;
 | 
						|
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 | 
						|
		rnp->qsmaskinit &= ~mask;
 | 
						|
		rnp->qsmask &= ~mask;
 | 
						|
		if (rnp->qsmaskinit) {
 | 
						|
			raw_spin_unlock_rcu_node(rnp);
 | 
						|
			/* irqs remain disabled. */
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The CPU has been completely removed, and some other CPU is reporting
 | 
						|
 * this fact from process context.  Do the remainder of the cleanup,
 | 
						|
 * including orphaning the outgoing CPU's RCU callbacks, and also
 | 
						|
 * adopting them.  There can only be one CPU hotplug operation at a time,
 | 
						|
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
 | 
						|
 */
 | 
						|
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
 | 
						|
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
 | 
						|
 | 
						|
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Adjust any no-longer-needed kthreads. */
 | 
						|
	rcu_boost_kthread_setaffinity(rnp, -1);
 | 
						|
 | 
						|
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
 | 
						|
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
 | 
						|
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
 | 
						|
	rcu_adopt_orphan_cbs(rsp, flags);
 | 
						|
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
 | 
						|
 | 
						|
	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
 | 
						|
		  !rcu_segcblist_empty(&rdp->cblist),
 | 
						|
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
 | 
						|
		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
 | 
						|
		  rcu_segcblist_first_cb(&rdp->cblist));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Invoke any RCU callbacks that have made it to the end of their grace
 | 
						|
 * period.  Thottle as specified by rdp->blimit.
 | 
						|
 */
 | 
						|
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	struct rcu_head *rhp;
 | 
						|
	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
 | 
						|
	long bl, count;
 | 
						|
 | 
						|
	/* If no callbacks are ready, just return. */
 | 
						|
	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
 | 
						|
		trace_rcu_batch_start(rsp->name,
 | 
						|
				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
 | 
						|
				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
 | 
						|
		trace_rcu_batch_end(rsp->name, 0,
 | 
						|
				    !rcu_segcblist_empty(&rdp->cblist),
 | 
						|
				    need_resched(), is_idle_task(current),
 | 
						|
				    rcu_is_callbacks_kthread());
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Extract the list of ready callbacks, disabling to prevent
 | 
						|
	 * races with call_rcu() from interrupt handlers.  Leave the
 | 
						|
	 * callback counts, as rcu_barrier() needs to be conservative.
 | 
						|
	 */
 | 
						|
	local_irq_save(flags);
 | 
						|
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
 | 
						|
	bl = rdp->blimit;
 | 
						|
	trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
 | 
						|
			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
 | 
						|
	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
 | 
						|
	local_irq_restore(flags);
 | 
						|
 | 
						|
	/* Invoke callbacks. */
 | 
						|
	rhp = rcu_cblist_dequeue(&rcl);
 | 
						|
	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
 | 
						|
		debug_rcu_head_unqueue(rhp);
 | 
						|
		if (__rcu_reclaim(rsp->name, rhp))
 | 
						|
			rcu_cblist_dequeued_lazy(&rcl);
 | 
						|
		/*
 | 
						|
		 * Stop only if limit reached and CPU has something to do.
 | 
						|
		 * Note: The rcl structure counts down from zero.
 | 
						|
		 */
 | 
						|
		if (-rcl.len >= bl &&
 | 
						|
		    (need_resched() ||
 | 
						|
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	count = -rcl.len;
 | 
						|
	trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
 | 
						|
			    is_idle_task(current), rcu_is_callbacks_kthread());
 | 
						|
 | 
						|
	/* Update counts and requeue any remaining callbacks. */
 | 
						|
	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
 | 
						|
	smp_mb(); /* List handling before counting for rcu_barrier(). */
 | 
						|
	rdp->n_cbs_invoked += count;
 | 
						|
	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
 | 
						|
 | 
						|
	/* Reinstate batch limit if we have worked down the excess. */
 | 
						|
	count = rcu_segcblist_n_cbs(&rdp->cblist);
 | 
						|
	if (rdp->blimit == LONG_MAX && count <= qlowmark)
 | 
						|
		rdp->blimit = blimit;
 | 
						|
 | 
						|
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
 | 
						|
	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
 | 
						|
		rdp->qlen_last_fqs_check = 0;
 | 
						|
		rdp->n_force_qs_snap = rsp->n_force_qs;
 | 
						|
	} else if (count < rdp->qlen_last_fqs_check - qhimark)
 | 
						|
		rdp->qlen_last_fqs_check = count;
 | 
						|
	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
 | 
						|
 | 
						|
	local_irq_restore(flags);
 | 
						|
 | 
						|
	/* Re-invoke RCU core processing if there are callbacks remaining. */
 | 
						|
	if (rcu_segcblist_ready_cbs(&rdp->cblist))
 | 
						|
		invoke_rcu_core();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check to see if this CPU is in a non-context-switch quiescent state
 | 
						|
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
 | 
						|
 * Also schedule RCU core processing.
 | 
						|
 *
 | 
						|
 * This function must be called from hardirq context.  It is normally
 | 
						|
 * invoked from the scheduling-clock interrupt.
 | 
						|
 */
 | 
						|
void rcu_check_callbacks(int user)
 | 
						|
{
 | 
						|
	trace_rcu_utilization(TPS("Start scheduler-tick"));
 | 
						|
	increment_cpu_stall_ticks();
 | 
						|
	if (user || rcu_is_cpu_rrupt_from_idle()) {
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Get here if this CPU took its interrupt from user
 | 
						|
		 * mode or from the idle loop, and if this is not a
 | 
						|
		 * nested interrupt.  In this case, the CPU is in
 | 
						|
		 * a quiescent state, so note it.
 | 
						|
		 *
 | 
						|
		 * No memory barrier is required here because both
 | 
						|
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
 | 
						|
		 * variables that other CPUs neither access nor modify,
 | 
						|
		 * at least not while the corresponding CPU is online.
 | 
						|
		 */
 | 
						|
 | 
						|
		rcu_sched_qs();
 | 
						|
		rcu_bh_qs();
 | 
						|
 | 
						|
	} else if (!in_softirq()) {
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Get here if this CPU did not take its interrupt from
 | 
						|
		 * softirq, in other words, if it is not interrupting
 | 
						|
		 * a rcu_bh read-side critical section.  This is an _bh
 | 
						|
		 * critical section, so note it.
 | 
						|
		 */
 | 
						|
 | 
						|
		rcu_bh_qs();
 | 
						|
	}
 | 
						|
	rcu_preempt_check_callbacks();
 | 
						|
	if (rcu_pending())
 | 
						|
		invoke_rcu_core();
 | 
						|
	if (user)
 | 
						|
		rcu_note_voluntary_context_switch(current);
 | 
						|
	trace_rcu_utilization(TPS("End scheduler-tick"));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 | 
						|
 * have not yet encountered a quiescent state, using the function specified.
 | 
						|
 * Also initiate boosting for any threads blocked on the root rcu_node.
 | 
						|
 *
 | 
						|
 * The caller must have suppressed start of new grace periods.
 | 
						|
 */
 | 
						|
static void force_qs_rnp(struct rcu_state *rsp,
 | 
						|
			 int (*f)(struct rcu_data *rsp, bool *isidle,
 | 
						|
				  unsigned long *maxj),
 | 
						|
			 bool *isidle, unsigned long *maxj)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long mask;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
 | 
						|
	rcu_for_each_leaf_node(rsp, rnp) {
 | 
						|
		cond_resched_rcu_qs();
 | 
						|
		mask = 0;
 | 
						|
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
		if (rnp->qsmask == 0) {
 | 
						|
			if (rcu_state_p == &rcu_sched_state ||
 | 
						|
			    rsp != rcu_state_p ||
 | 
						|
			    rcu_preempt_blocked_readers_cgp(rnp)) {
 | 
						|
				/*
 | 
						|
				 * No point in scanning bits because they
 | 
						|
				 * are all zero.  But we might need to
 | 
						|
				 * priority-boost blocked readers.
 | 
						|
				 */
 | 
						|
				rcu_initiate_boost(rnp, flags);
 | 
						|
				/* rcu_initiate_boost() releases rnp->lock */
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			if (rnp->parent &&
 | 
						|
			    (rnp->parent->qsmask & rnp->grpmask)) {
 | 
						|
				/*
 | 
						|
				 * Race between grace-period
 | 
						|
				 * initialization and task exiting RCU
 | 
						|
				 * read-side critical section: Report.
 | 
						|
				 */
 | 
						|
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
 | 
						|
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		for_each_leaf_node_possible_cpu(rnp, cpu) {
 | 
						|
			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
 | 
						|
			if ((rnp->qsmask & bit) != 0) {
 | 
						|
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
 | 
						|
					mask |= bit;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (mask != 0) {
 | 
						|
			/* Idle/offline CPUs, report (releases rnp->lock. */
 | 
						|
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
 | 
						|
		} else {
 | 
						|
			/* Nothing to do here, so just drop the lock. */
 | 
						|
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Force quiescent states on reluctant CPUs, and also detect which
 | 
						|
 * CPUs are in dyntick-idle mode.
 | 
						|
 */
 | 
						|
static void force_quiescent_state(struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	bool ret;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
	struct rcu_node *rnp_old = NULL;
 | 
						|
 | 
						|
	/* Funnel through hierarchy to reduce memory contention. */
 | 
						|
	rnp = __this_cpu_read(rsp->rda->mynode);
 | 
						|
	for (; rnp != NULL; rnp = rnp->parent) {
 | 
						|
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
 | 
						|
		      !raw_spin_trylock(&rnp->fqslock);
 | 
						|
		if (rnp_old != NULL)
 | 
						|
			raw_spin_unlock(&rnp_old->fqslock);
 | 
						|
		if (ret) {
 | 
						|
			rsp->n_force_qs_lh++;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		rnp_old = rnp;
 | 
						|
	}
 | 
						|
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
 | 
						|
 | 
						|
	/* Reached the root of the rcu_node tree, acquire lock. */
 | 
						|
	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
 | 
						|
	raw_spin_unlock(&rnp_old->fqslock);
 | 
						|
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
 | 
						|
		rsp->n_force_qs_lh++;
 | 
						|
		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
 | 
						|
		return;  /* Someone beat us to it. */
 | 
						|
	}
 | 
						|
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
 | 
						|
	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
 | 
						|
	rcu_gp_kthread_wake(rsp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This does the RCU core processing work for the specified rcu_state
 | 
						|
 * and rcu_data structures.  This may be called only from the CPU to
 | 
						|
 * whom the rdp belongs.
 | 
						|
 */
 | 
						|
static void
 | 
						|
__rcu_process_callbacks(struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	bool needwake;
 | 
						|
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
 | 
						|
 | 
						|
	WARN_ON_ONCE(!rdp->beenonline);
 | 
						|
 | 
						|
	/* Update RCU state based on any recent quiescent states. */
 | 
						|
	rcu_check_quiescent_state(rsp, rdp);
 | 
						|
 | 
						|
	/* Does this CPU require a not-yet-started grace period? */
 | 
						|
	local_irq_save(flags);
 | 
						|
	if (cpu_needs_another_gp(rsp, rdp)) {
 | 
						|
		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
 | 
						|
		needwake = rcu_start_gp(rsp);
 | 
						|
		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
 | 
						|
		if (needwake)
 | 
						|
			rcu_gp_kthread_wake(rsp);
 | 
						|
	} else {
 | 
						|
		local_irq_restore(flags);
 | 
						|
	}
 | 
						|
 | 
						|
	/* If there are callbacks ready, invoke them. */
 | 
						|
	if (rcu_segcblist_ready_cbs(&rdp->cblist))
 | 
						|
		invoke_rcu_callbacks(rsp, rdp);
 | 
						|
 | 
						|
	/* Do any needed deferred wakeups of rcuo kthreads. */
 | 
						|
	do_nocb_deferred_wakeup(rdp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Do RCU core processing for the current CPU.
 | 
						|
 */
 | 
						|
static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
 | 
						|
{
 | 
						|
	struct rcu_state *rsp;
 | 
						|
 | 
						|
	if (cpu_is_offline(smp_processor_id()))
 | 
						|
		return;
 | 
						|
	trace_rcu_utilization(TPS("Start RCU core"));
 | 
						|
	for_each_rcu_flavor(rsp)
 | 
						|
		__rcu_process_callbacks(rsp);
 | 
						|
	trace_rcu_utilization(TPS("End RCU core"));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Schedule RCU callback invocation.  If the specified type of RCU
 | 
						|
 * does not support RCU priority boosting, just do a direct call,
 | 
						|
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 | 
						|
 * are running on the current CPU with softirqs disabled, the
 | 
						|
 * rcu_cpu_kthread_task cannot disappear out from under us.
 | 
						|
 */
 | 
						|
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
 | 
						|
		return;
 | 
						|
	if (likely(!rsp->boost)) {
 | 
						|
		rcu_do_batch(rsp, rdp);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	invoke_rcu_callbacks_kthread();
 | 
						|
}
 | 
						|
 | 
						|
static void invoke_rcu_core(void)
 | 
						|
{
 | 
						|
	if (cpu_online(smp_processor_id()))
 | 
						|
		raise_softirq(RCU_SOFTIRQ);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Handle any core-RCU processing required by a call_rcu() invocation.
 | 
						|
 */
 | 
						|
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
 | 
						|
			    struct rcu_head *head, unsigned long flags)
 | 
						|
{
 | 
						|
	bool needwake;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If called from an extended quiescent state, invoke the RCU
 | 
						|
	 * core in order to force a re-evaluation of RCU's idleness.
 | 
						|
	 */
 | 
						|
	if (!rcu_is_watching())
 | 
						|
		invoke_rcu_core();
 | 
						|
 | 
						|
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
 | 
						|
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Force the grace period if too many callbacks or too long waiting.
 | 
						|
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
 | 
						|
	 * if some other CPU has recently done so.  Also, don't bother
 | 
						|
	 * invoking force_quiescent_state() if the newly enqueued callback
 | 
						|
	 * is the only one waiting for a grace period to complete.
 | 
						|
	 */
 | 
						|
	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
 | 
						|
		     rdp->qlen_last_fqs_check + qhimark)) {
 | 
						|
 | 
						|
		/* Are we ignoring a completed grace period? */
 | 
						|
		note_gp_changes(rsp, rdp);
 | 
						|
 | 
						|
		/* Start a new grace period if one not already started. */
 | 
						|
		if (!rcu_gp_in_progress(rsp)) {
 | 
						|
			struct rcu_node *rnp_root = rcu_get_root(rsp);
 | 
						|
 | 
						|
			raw_spin_lock_rcu_node(rnp_root);
 | 
						|
			needwake = rcu_start_gp(rsp);
 | 
						|
			raw_spin_unlock_rcu_node(rnp_root);
 | 
						|
			if (needwake)
 | 
						|
				rcu_gp_kthread_wake(rsp);
 | 
						|
		} else {
 | 
						|
			/* Give the grace period a kick. */
 | 
						|
			rdp->blimit = LONG_MAX;
 | 
						|
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
 | 
						|
			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
 | 
						|
				force_quiescent_state(rsp);
 | 
						|
			rdp->n_force_qs_snap = rsp->n_force_qs;
 | 
						|
			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * RCU callback function to leak a callback.
 | 
						|
 */
 | 
						|
static void rcu_leak_callback(struct rcu_head *rhp)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Helper function for call_rcu() and friends.  The cpu argument will
 | 
						|
 * normally be -1, indicating "currently running CPU".  It may specify
 | 
						|
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 | 
						|
 * is expected to specify a CPU.
 | 
						|
 */
 | 
						|
static void
 | 
						|
__call_rcu(struct rcu_head *head, rcu_callback_t func,
 | 
						|
	   struct rcu_state *rsp, int cpu, bool lazy)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	struct rcu_data *rdp;
 | 
						|
 | 
						|
	/* Misaligned rcu_head! */
 | 
						|
	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
 | 
						|
 | 
						|
	if (debug_rcu_head_queue(head)) {
 | 
						|
		/* Probable double call_rcu(), so leak the callback. */
 | 
						|
		WRITE_ONCE(head->func, rcu_leak_callback);
 | 
						|
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	head->func = func;
 | 
						|
	head->next = NULL;
 | 
						|
	local_irq_save(flags);
 | 
						|
	rdp = this_cpu_ptr(rsp->rda);
 | 
						|
 | 
						|
	/* Add the callback to our list. */
 | 
						|
	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
 | 
						|
		int offline;
 | 
						|
 | 
						|
		if (cpu != -1)
 | 
						|
			rdp = per_cpu_ptr(rsp->rda, cpu);
 | 
						|
		if (likely(rdp->mynode)) {
 | 
						|
			/* Post-boot, so this should be for a no-CBs CPU. */
 | 
						|
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
 | 
						|
			WARN_ON_ONCE(offline);
 | 
						|
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
 | 
						|
			local_irq_restore(flags);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * Very early boot, before rcu_init().  Initialize if needed
 | 
						|
		 * and then drop through to queue the callback.
 | 
						|
		 */
 | 
						|
		BUG_ON(cpu != -1);
 | 
						|
		WARN_ON_ONCE(!rcu_is_watching());
 | 
						|
		if (rcu_segcblist_empty(&rdp->cblist))
 | 
						|
			rcu_segcblist_init(&rdp->cblist);
 | 
						|
	}
 | 
						|
	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
 | 
						|
	if (!lazy)
 | 
						|
		rcu_idle_count_callbacks_posted();
 | 
						|
 | 
						|
	if (__is_kfree_rcu_offset((unsigned long)func))
 | 
						|
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
 | 
						|
					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
 | 
						|
					 rcu_segcblist_n_cbs(&rdp->cblist));
 | 
						|
	else
 | 
						|
		trace_rcu_callback(rsp->name, head,
 | 
						|
				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
 | 
						|
				   rcu_segcblist_n_cbs(&rdp->cblist));
 | 
						|
 | 
						|
	/* Go handle any RCU core processing required. */
 | 
						|
	__call_rcu_core(rsp, rdp, head, flags);
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Queue an RCU-sched callback for invocation after a grace period.
 | 
						|
 */
 | 
						|
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
 | 
						|
{
 | 
						|
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(call_rcu_sched);
 | 
						|
 | 
						|
/*
 | 
						|
 * Queue an RCU callback for invocation after a quicker grace period.
 | 
						|
 */
 | 
						|
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
 | 
						|
{
 | 
						|
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(call_rcu_bh);
 | 
						|
 | 
						|
/*
 | 
						|
 * Queue an RCU callback for lazy invocation after a grace period.
 | 
						|
 * This will likely be later named something like "call_rcu_lazy()",
 | 
						|
 * but this change will require some way of tagging the lazy RCU
 | 
						|
 * callbacks in the list of pending callbacks. Until then, this
 | 
						|
 * function may only be called from __kfree_rcu().
 | 
						|
 */
 | 
						|
void kfree_call_rcu(struct rcu_head *head,
 | 
						|
		    rcu_callback_t func)
 | 
						|
{
 | 
						|
	__call_rcu(head, func, rcu_state_p, -1, 1);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(kfree_call_rcu);
 | 
						|
 | 
						|
/*
 | 
						|
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 | 
						|
 * any blocking grace-period wait automatically implies a grace period
 | 
						|
 * if there is only one CPU online at any point time during execution
 | 
						|
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 | 
						|
 * occasionally incorrectly indicate that there are multiple CPUs online
 | 
						|
 * when there was in fact only one the whole time, as this just adds
 | 
						|
 * some overhead: RCU still operates correctly.
 | 
						|
 */
 | 
						|
static inline int rcu_blocking_is_gp(void)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	might_sleep();  /* Check for RCU read-side critical section. */
 | 
						|
	preempt_disable();
 | 
						|
	ret = num_online_cpus() <= 1;
 | 
						|
	preempt_enable();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 | 
						|
 *
 | 
						|
 * Control will return to the caller some time after a full rcu-sched
 | 
						|
 * grace period has elapsed, in other words after all currently executing
 | 
						|
 * rcu-sched read-side critical sections have completed.   These read-side
 | 
						|
 * critical sections are delimited by rcu_read_lock_sched() and
 | 
						|
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 | 
						|
 * local_irq_disable(), and so on may be used in place of
 | 
						|
 * rcu_read_lock_sched().
 | 
						|
 *
 | 
						|
 * This means that all preempt_disable code sequences, including NMI and
 | 
						|
 * non-threaded hardware-interrupt handlers, in progress on entry will
 | 
						|
 * have completed before this primitive returns.  However, this does not
 | 
						|
 * guarantee that softirq handlers will have completed, since in some
 | 
						|
 * kernels, these handlers can run in process context, and can block.
 | 
						|
 *
 | 
						|
 * Note that this guarantee implies further memory-ordering guarantees.
 | 
						|
 * On systems with more than one CPU, when synchronize_sched() returns,
 | 
						|
 * each CPU is guaranteed to have executed a full memory barrier since the
 | 
						|
 * end of its last RCU-sched read-side critical section whose beginning
 | 
						|
 * preceded the call to synchronize_sched().  In addition, each CPU having
 | 
						|
 * an RCU read-side critical section that extends beyond the return from
 | 
						|
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 | 
						|
 * after the beginning of synchronize_sched() and before the beginning of
 | 
						|
 * that RCU read-side critical section.  Note that these guarantees include
 | 
						|
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 | 
						|
 * that are executing in the kernel.
 | 
						|
 *
 | 
						|
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 | 
						|
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 | 
						|
 * to have executed a full memory barrier during the execution of
 | 
						|
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 | 
						|
 * again only if the system has more than one CPU).
 | 
						|
 *
 | 
						|
 * This primitive provides the guarantees made by the (now removed)
 | 
						|
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 | 
						|
 * guarantees that rcu_read_lock() sections will have completed.
 | 
						|
 * In "classic RCU", these two guarantees happen to be one and
 | 
						|
 * the same, but can differ in realtime RCU implementations.
 | 
						|
 */
 | 
						|
void synchronize_sched(void)
 | 
						|
{
 | 
						|
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
 | 
						|
			 lock_is_held(&rcu_lock_map) ||
 | 
						|
			 lock_is_held(&rcu_sched_lock_map),
 | 
						|
			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
 | 
						|
	if (rcu_blocking_is_gp())
 | 
						|
		return;
 | 
						|
	if (rcu_gp_is_expedited())
 | 
						|
		synchronize_sched_expedited();
 | 
						|
	else
 | 
						|
		wait_rcu_gp(call_rcu_sched);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(synchronize_sched);
 | 
						|
 | 
						|
/**
 | 
						|
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 | 
						|
 *
 | 
						|
 * Control will return to the caller some time after a full rcu_bh grace
 | 
						|
 * period has elapsed, in other words after all currently executing rcu_bh
 | 
						|
 * read-side critical sections have completed.  RCU read-side critical
 | 
						|
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 | 
						|
 * and may be nested.
 | 
						|
 *
 | 
						|
 * See the description of synchronize_sched() for more detailed information
 | 
						|
 * on memory ordering guarantees.
 | 
						|
 */
 | 
						|
void synchronize_rcu_bh(void)
 | 
						|
{
 | 
						|
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
 | 
						|
			 lock_is_held(&rcu_lock_map) ||
 | 
						|
			 lock_is_held(&rcu_sched_lock_map),
 | 
						|
			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
 | 
						|
	if (rcu_blocking_is_gp())
 | 
						|
		return;
 | 
						|
	if (rcu_gp_is_expedited())
 | 
						|
		synchronize_rcu_bh_expedited();
 | 
						|
	else
 | 
						|
		wait_rcu_gp(call_rcu_bh);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
 | 
						|
 | 
						|
/**
 | 
						|
 * get_state_synchronize_rcu - Snapshot current RCU state
 | 
						|
 *
 | 
						|
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 | 
						|
 * to determine whether or not a full grace period has elapsed in the
 | 
						|
 * meantime.
 | 
						|
 */
 | 
						|
unsigned long get_state_synchronize_rcu(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Any prior manipulation of RCU-protected data must happen
 | 
						|
	 * before the load from ->gpnum.
 | 
						|
	 */
 | 
						|
	smp_mb();  /* ^^^ */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure this load happens before the purportedly
 | 
						|
	 * time-consuming work between get_state_synchronize_rcu()
 | 
						|
	 * and cond_synchronize_rcu().
 | 
						|
	 */
 | 
						|
	return smp_load_acquire(&rcu_state_p->gpnum);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
 | 
						|
 | 
						|
/**
 | 
						|
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 | 
						|
 *
 | 
						|
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 | 
						|
 *
 | 
						|
 * If a full RCU grace period has elapsed since the earlier call to
 | 
						|
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 | 
						|
 * synchronize_rcu() to wait for a full grace period.
 | 
						|
 *
 | 
						|
 * Yes, this function does not take counter wrap into account.  But
 | 
						|
 * counter wrap is harmless.  If the counter wraps, we have waited for
 | 
						|
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 | 
						|
 * so waiting for one additional grace period should be just fine.
 | 
						|
 */
 | 
						|
void cond_synchronize_rcu(unsigned long oldstate)
 | 
						|
{
 | 
						|
	unsigned long newstate;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ensure that this load happens before any RCU-destructive
 | 
						|
	 * actions the caller might carry out after we return.
 | 
						|
	 */
 | 
						|
	newstate = smp_load_acquire(&rcu_state_p->completed);
 | 
						|
	if (ULONG_CMP_GE(oldstate, newstate))
 | 
						|
		synchronize_rcu();
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
 | 
						|
 | 
						|
/**
 | 
						|
 * get_state_synchronize_sched - Snapshot current RCU-sched state
 | 
						|
 *
 | 
						|
 * Returns a cookie that is used by a later call to cond_synchronize_sched()
 | 
						|
 * to determine whether or not a full grace period has elapsed in the
 | 
						|
 * meantime.
 | 
						|
 */
 | 
						|
unsigned long get_state_synchronize_sched(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Any prior manipulation of RCU-protected data must happen
 | 
						|
	 * before the load from ->gpnum.
 | 
						|
	 */
 | 
						|
	smp_mb();  /* ^^^ */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure this load happens before the purportedly
 | 
						|
	 * time-consuming work between get_state_synchronize_sched()
 | 
						|
	 * and cond_synchronize_sched().
 | 
						|
	 */
 | 
						|
	return smp_load_acquire(&rcu_sched_state.gpnum);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
 | 
						|
 | 
						|
/**
 | 
						|
 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 | 
						|
 *
 | 
						|
 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 | 
						|
 *
 | 
						|
 * If a full RCU-sched grace period has elapsed since the earlier call to
 | 
						|
 * get_state_synchronize_sched(), just return.  Otherwise, invoke
 | 
						|
 * synchronize_sched() to wait for a full grace period.
 | 
						|
 *
 | 
						|
 * Yes, this function does not take counter wrap into account.  But
 | 
						|
 * counter wrap is harmless.  If the counter wraps, we have waited for
 | 
						|
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 | 
						|
 * so waiting for one additional grace period should be just fine.
 | 
						|
 */
 | 
						|
void cond_synchronize_sched(unsigned long oldstate)
 | 
						|
{
 | 
						|
	unsigned long newstate;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ensure that this load happens before any RCU-destructive
 | 
						|
	 * actions the caller might carry out after we return.
 | 
						|
	 */
 | 
						|
	newstate = smp_load_acquire(&rcu_sched_state.completed);
 | 
						|
	if (ULONG_CMP_GE(oldstate, newstate))
 | 
						|
		synchronize_sched();
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(cond_synchronize_sched);
 | 
						|
 | 
						|
/*
 | 
						|
 * Check to see if there is any immediate RCU-related work to be done
 | 
						|
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 | 
						|
 * The checks are in order of increasing expense: checks that can be
 | 
						|
 * carried out against CPU-local state are performed first.  However,
 | 
						|
 * we must check for CPU stalls first, else we might not get a chance.
 | 
						|
 */
 | 
						|
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
 | 
						|
{
 | 
						|
	struct rcu_node *rnp = rdp->mynode;
 | 
						|
 | 
						|
	rdp->n_rcu_pending++;
 | 
						|
 | 
						|
	/* Check for CPU stalls, if enabled. */
 | 
						|
	check_cpu_stall(rsp, rdp);
 | 
						|
 | 
						|
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
 | 
						|
	if (rcu_nohz_full_cpu(rsp))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Is the RCU core waiting for a quiescent state from this CPU? */
 | 
						|
	if (rcu_scheduler_fully_active &&
 | 
						|
	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
 | 
						|
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
 | 
						|
		rdp->n_rp_core_needs_qs++;
 | 
						|
	} else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
 | 
						|
		rdp->n_rp_report_qs++;
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Does this CPU have callbacks ready to invoke? */
 | 
						|
	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
 | 
						|
		rdp->n_rp_cb_ready++;
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Has RCU gone idle with this CPU needing another grace period? */
 | 
						|
	if (cpu_needs_another_gp(rsp, rdp)) {
 | 
						|
		rdp->n_rp_cpu_needs_gp++;
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Has another RCU grace period completed?  */
 | 
						|
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
 | 
						|
		rdp->n_rp_gp_completed++;
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Has a new RCU grace period started? */
 | 
						|
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
 | 
						|
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
 | 
						|
		rdp->n_rp_gp_started++;
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Does this CPU need a deferred NOCB wakeup? */
 | 
						|
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
 | 
						|
		rdp->n_rp_nocb_defer_wakeup++;
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* nothing to do */
 | 
						|
	rdp->n_rp_need_nothing++;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check to see if there is any immediate RCU-related work to be done
 | 
						|
 * by the current CPU, returning 1 if so.  This function is part of the
 | 
						|
 * RCU implementation; it is -not- an exported member of the RCU API.
 | 
						|
 */
 | 
						|
static int rcu_pending(void)
 | 
						|
{
 | 
						|
	struct rcu_state *rsp;
 | 
						|
 | 
						|
	for_each_rcu_flavor(rsp)
 | 
						|
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
 | 
						|
			return 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return true if the specified CPU has any callback.  If all_lazy is
 | 
						|
 * non-NULL, store an indication of whether all callbacks are lazy.
 | 
						|
 * (If there are no callbacks, all of them are deemed to be lazy.)
 | 
						|
 */
 | 
						|
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
 | 
						|
{
 | 
						|
	bool al = true;
 | 
						|
	bool hc = false;
 | 
						|
	struct rcu_data *rdp;
 | 
						|
	struct rcu_state *rsp;
 | 
						|
 | 
						|
	for_each_rcu_flavor(rsp) {
 | 
						|
		rdp = this_cpu_ptr(rsp->rda);
 | 
						|
		if (rcu_segcblist_empty(&rdp->cblist))
 | 
						|
			continue;
 | 
						|
		hc = true;
 | 
						|
		if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
 | 
						|
			al = false;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (all_lazy)
 | 
						|
		*all_lazy = al;
 | 
						|
	return hc;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 | 
						|
 * the compiler is expected to optimize this away.
 | 
						|
 */
 | 
						|
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
 | 
						|
			       int cpu, unsigned long done)
 | 
						|
{
 | 
						|
	trace_rcu_barrier(rsp->name, s, cpu,
 | 
						|
			  atomic_read(&rsp->barrier_cpu_count), done);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * RCU callback function for _rcu_barrier().  If we are last, wake
 | 
						|
 * up the task executing _rcu_barrier().
 | 
						|
 */
 | 
						|
static void rcu_barrier_callback(struct rcu_head *rhp)
 | 
						|
{
 | 
						|
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
 | 
						|
	struct rcu_state *rsp = rdp->rsp;
 | 
						|
 | 
						|
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
 | 
						|
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
 | 
						|
		complete(&rsp->barrier_completion);
 | 
						|
	} else {
 | 
						|
		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called with preemption disabled, and from cross-cpu IRQ context.
 | 
						|
 */
 | 
						|
static void rcu_barrier_func(void *type)
 | 
						|
{
 | 
						|
	struct rcu_state *rsp = type;
 | 
						|
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
 | 
						|
 | 
						|
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
 | 
						|
	atomic_inc(&rsp->barrier_cpu_count);
 | 
						|
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Orchestrate the specified type of RCU barrier, waiting for all
 | 
						|
 * RCU callbacks of the specified type to complete.
 | 
						|
 */
 | 
						|
static void _rcu_barrier(struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
	struct rcu_data *rdp;
 | 
						|
	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
 | 
						|
 | 
						|
	_rcu_barrier_trace(rsp, "Begin", -1, s);
 | 
						|
 | 
						|
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
 | 
						|
	mutex_lock(&rsp->barrier_mutex);
 | 
						|
 | 
						|
	/* Did someone else do our work for us? */
 | 
						|
	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
 | 
						|
		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
 | 
						|
		smp_mb(); /* caller's subsequent code after above check. */
 | 
						|
		mutex_unlock(&rsp->barrier_mutex);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Mark the start of the barrier operation. */
 | 
						|
	rcu_seq_start(&rsp->barrier_sequence);
 | 
						|
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initialize the count to one rather than to zero in order to
 | 
						|
	 * avoid a too-soon return to zero in case of a short grace period
 | 
						|
	 * (or preemption of this task).  Exclude CPU-hotplug operations
 | 
						|
	 * to ensure that no offline CPU has callbacks queued.
 | 
						|
	 */
 | 
						|
	init_completion(&rsp->barrier_completion);
 | 
						|
	atomic_set(&rsp->barrier_cpu_count, 1);
 | 
						|
	get_online_cpus();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Force each CPU with callbacks to register a new callback.
 | 
						|
	 * When that callback is invoked, we will know that all of the
 | 
						|
	 * corresponding CPU's preceding callbacks have been invoked.
 | 
						|
	 */
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
 | 
						|
			continue;
 | 
						|
		rdp = per_cpu_ptr(rsp->rda, cpu);
 | 
						|
		if (rcu_is_nocb_cpu(cpu)) {
 | 
						|
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
 | 
						|
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
 | 
						|
						   rsp->barrier_sequence);
 | 
						|
			} else {
 | 
						|
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
 | 
						|
						   rsp->barrier_sequence);
 | 
						|
				smp_mb__before_atomic();
 | 
						|
				atomic_inc(&rsp->barrier_cpu_count);
 | 
						|
				__call_rcu(&rdp->barrier_head,
 | 
						|
					   rcu_barrier_callback, rsp, cpu, 0);
 | 
						|
			}
 | 
						|
		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
 | 
						|
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
 | 
						|
					   rsp->barrier_sequence);
 | 
						|
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
 | 
						|
		} else {
 | 
						|
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
 | 
						|
					   rsp->barrier_sequence);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	put_online_cpus();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now that we have an rcu_barrier_callback() callback on each
 | 
						|
	 * CPU, and thus each counted, remove the initial count.
 | 
						|
	 */
 | 
						|
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
 | 
						|
		complete(&rsp->barrier_completion);
 | 
						|
 | 
						|
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
 | 
						|
	wait_for_completion(&rsp->barrier_completion);
 | 
						|
 | 
						|
	/* Mark the end of the barrier operation. */
 | 
						|
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
 | 
						|
	rcu_seq_end(&rsp->barrier_sequence);
 | 
						|
 | 
						|
	/* Other rcu_barrier() invocations can now safely proceed. */
 | 
						|
	mutex_unlock(&rsp->barrier_mutex);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 | 
						|
 */
 | 
						|
void rcu_barrier_bh(void)
 | 
						|
{
 | 
						|
	_rcu_barrier(&rcu_bh_state);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_barrier_bh);
 | 
						|
 | 
						|
/**
 | 
						|
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 | 
						|
 */
 | 
						|
void rcu_barrier_sched(void)
 | 
						|
{
 | 
						|
	_rcu_barrier(&rcu_sched_state);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rcu_barrier_sched);
 | 
						|
 | 
						|
/*
 | 
						|
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 | 
						|
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 | 
						|
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 | 
						|
 * disabled.
 | 
						|
 */
 | 
						|
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
 | 
						|
{
 | 
						|
	long mask;
 | 
						|
	struct rcu_node *rnp = rnp_leaf;
 | 
						|
 | 
						|
	for (;;) {
 | 
						|
		mask = rnp->grpmask;
 | 
						|
		rnp = rnp->parent;
 | 
						|
		if (rnp == NULL)
 | 
						|
			return;
 | 
						|
		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
 | 
						|
		rnp->qsmaskinit |= mask;
 | 
						|
		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Do boot-time initialization of a CPU's per-CPU RCU data.
 | 
						|
 */
 | 
						|
static void __init
 | 
						|
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
 | 
						|
	struct rcu_node *rnp = rcu_get_root(rsp);
 | 
						|
 | 
						|
	/* Set up local state, ensuring consistent view of global state. */
 | 
						|
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
 | 
						|
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
 | 
						|
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
 | 
						|
	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
 | 
						|
	rdp->cpu = cpu;
 | 
						|
	rdp->rsp = rsp;
 | 
						|
	rcu_boot_init_nocb_percpu_data(rdp);
 | 
						|
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 | 
						|
 * offline event can be happening at a given time.  Note also that we
 | 
						|
 * can accept some slop in the rsp->completed access due to the fact
 | 
						|
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
 | 
						|
 */
 | 
						|
static void
 | 
						|
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
 | 
						|
	struct rcu_node *rnp = rcu_get_root(rsp);
 | 
						|
 | 
						|
	/* Set up local state, ensuring consistent view of global state. */
 | 
						|
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
	rdp->qlen_last_fqs_check = 0;
 | 
						|
	rdp->n_force_qs_snap = rsp->n_force_qs;
 | 
						|
	rdp->blimit = blimit;
 | 
						|
	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
 | 
						|
	    !init_nocb_callback_list(rdp))
 | 
						|
		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
 | 
						|
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
 | 
						|
	rcu_sysidle_init_percpu_data(rdp->dynticks);
 | 
						|
	rcu_dynticks_eqs_online();
 | 
						|
	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
 | 
						|
	 * propagation up the rcu_node tree will happen at the beginning
 | 
						|
	 * of the next grace period.
 | 
						|
	 */
 | 
						|
	rnp = rdp->mynode;
 | 
						|
	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
 | 
						|
	if (!rdp->beenonline)
 | 
						|
		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
 | 
						|
	rdp->beenonline = true;	 /* We have now been online. */
 | 
						|
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
 | 
						|
	rdp->completed = rnp->completed;
 | 
						|
	rdp->cpu_no_qs.b.norm = true;
 | 
						|
	rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
 | 
						|
	rdp->core_needs_qs = false;
 | 
						|
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
 | 
						|
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Invoked early in the CPU-online process, when pretty much all
 | 
						|
 * services are available.  The incoming CPU is not present.
 | 
						|
 */
 | 
						|
int rcutree_prepare_cpu(unsigned int cpu)
 | 
						|
{
 | 
						|
	struct rcu_state *rsp;
 | 
						|
 | 
						|
	for_each_rcu_flavor(rsp)
 | 
						|
		rcu_init_percpu_data(cpu, rsp);
 | 
						|
 | 
						|
	rcu_prepare_kthreads(cpu);
 | 
						|
	rcu_spawn_all_nocb_kthreads(cpu);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
 | 
						|
 */
 | 
						|
static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
 | 
						|
{
 | 
						|
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
 | 
						|
 | 
						|
	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Near the end of the CPU-online process.  Pretty much all services
 | 
						|
 * enabled, and the CPU is now very much alive.
 | 
						|
 */
 | 
						|
int rcutree_online_cpu(unsigned int cpu)
 | 
						|
{
 | 
						|
	sync_sched_exp_online_cleanup(cpu);
 | 
						|
	rcutree_affinity_setting(cpu, -1);
 | 
						|
	if (IS_ENABLED(CONFIG_TREE_SRCU))
 | 
						|
		srcu_online_cpu(cpu);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Near the beginning of the process.  The CPU is still very much alive
 | 
						|
 * with pretty much all services enabled.
 | 
						|
 */
 | 
						|
int rcutree_offline_cpu(unsigned int cpu)
 | 
						|
{
 | 
						|
	rcutree_affinity_setting(cpu, cpu);
 | 
						|
	if (IS_ENABLED(CONFIG_TREE_SRCU))
 | 
						|
		srcu_offline_cpu(cpu);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Near the end of the offline process.  We do only tracing here.
 | 
						|
 */
 | 
						|
int rcutree_dying_cpu(unsigned int cpu)
 | 
						|
{
 | 
						|
	struct rcu_state *rsp;
 | 
						|
 | 
						|
	for_each_rcu_flavor(rsp)
 | 
						|
		rcu_cleanup_dying_cpu(rsp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The outgoing CPU is gone and we are running elsewhere.
 | 
						|
 */
 | 
						|
int rcutree_dead_cpu(unsigned int cpu)
 | 
						|
{
 | 
						|
	struct rcu_state *rsp;
 | 
						|
 | 
						|
	for_each_rcu_flavor(rsp) {
 | 
						|
		rcu_cleanup_dead_cpu(cpu, rsp);
 | 
						|
		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Mark the specified CPU as being online so that subsequent grace periods
 | 
						|
 * (both expedited and normal) will wait on it.  Note that this means that
 | 
						|
 * incoming CPUs are not allowed to use RCU read-side critical sections
 | 
						|
 * until this function is called.  Failing to observe this restriction
 | 
						|
 * will result in lockdep splats.
 | 
						|
 *
 | 
						|
 * Note that this function is special in that it is invoked directly
 | 
						|
 * from the incoming CPU rather than from the cpuhp_step mechanism.
 | 
						|
 * This is because this function must be invoked at a precise location.
 | 
						|
 */
 | 
						|
void rcu_cpu_starting(unsigned int cpu)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long mask;
 | 
						|
	struct rcu_data *rdp;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
	struct rcu_state *rsp;
 | 
						|
 | 
						|
	for_each_rcu_flavor(rsp) {
 | 
						|
		rdp = per_cpu_ptr(rsp->rda, cpu);
 | 
						|
		rnp = rdp->mynode;
 | 
						|
		mask = rdp->grpmask;
 | 
						|
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
		rnp->qsmaskinitnext |= mask;
 | 
						|
		rnp->expmaskinitnext |= mask;
 | 
						|
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HOTPLUG_CPU
 | 
						|
/*
 | 
						|
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 | 
						|
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 | 
						|
 * bit masks.
 | 
						|
 */
 | 
						|
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long mask;
 | 
						|
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
 | 
						|
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
 | 
						|
 | 
						|
	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
 | 
						|
	mask = rdp->grpmask;
 | 
						|
	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
 | 
						|
	rnp->qsmaskinitnext &= ~mask;
 | 
						|
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The outgoing function has no further need of RCU, so remove it from
 | 
						|
 * the list of CPUs that RCU must track.
 | 
						|
 *
 | 
						|
 * Note that this function is special in that it is invoked directly
 | 
						|
 * from the outgoing CPU rather than from the cpuhp_step mechanism.
 | 
						|
 * This is because this function must be invoked at a precise location.
 | 
						|
 */
 | 
						|
void rcu_report_dead(unsigned int cpu)
 | 
						|
{
 | 
						|
	struct rcu_state *rsp;
 | 
						|
 | 
						|
	/* QS for any half-done expedited RCU-sched GP. */
 | 
						|
	preempt_disable();
 | 
						|
	rcu_report_exp_rdp(&rcu_sched_state,
 | 
						|
			   this_cpu_ptr(rcu_sched_state.rda), true);
 | 
						|
	preempt_enable();
 | 
						|
	for_each_rcu_flavor(rsp)
 | 
						|
		rcu_cleanup_dying_idle_cpu(cpu, rsp);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * On non-huge systems, use expedited RCU grace periods to make suspend
 | 
						|
 * and hibernation run faster.
 | 
						|
 */
 | 
						|
static int rcu_pm_notify(struct notifier_block *self,
 | 
						|
			 unsigned long action, void *hcpu)
 | 
						|
{
 | 
						|
	switch (action) {
 | 
						|
	case PM_HIBERNATION_PREPARE:
 | 
						|
	case PM_SUSPEND_PREPARE:
 | 
						|
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
 | 
						|
			rcu_expedite_gp();
 | 
						|
		break;
 | 
						|
	case PM_POST_HIBERNATION:
 | 
						|
	case PM_POST_SUSPEND:
 | 
						|
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
 | 
						|
			rcu_unexpedite_gp();
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	return NOTIFY_OK;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Spawn the kthreads that handle each RCU flavor's grace periods.
 | 
						|
 */
 | 
						|
static int __init rcu_spawn_gp_kthread(void)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	int kthread_prio_in = kthread_prio;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
	struct rcu_state *rsp;
 | 
						|
	struct sched_param sp;
 | 
						|
	struct task_struct *t;
 | 
						|
 | 
						|
	/* Force priority into range. */
 | 
						|
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
 | 
						|
		kthread_prio = 1;
 | 
						|
	else if (kthread_prio < 0)
 | 
						|
		kthread_prio = 0;
 | 
						|
	else if (kthread_prio > 99)
 | 
						|
		kthread_prio = 99;
 | 
						|
	if (kthread_prio != kthread_prio_in)
 | 
						|
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
 | 
						|
			 kthread_prio, kthread_prio_in);
 | 
						|
 | 
						|
	rcu_scheduler_fully_active = 1;
 | 
						|
	for_each_rcu_flavor(rsp) {
 | 
						|
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
 | 
						|
		BUG_ON(IS_ERR(t));
 | 
						|
		rnp = rcu_get_root(rsp);
 | 
						|
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | 
						|
		rsp->gp_kthread = t;
 | 
						|
		if (kthread_prio) {
 | 
						|
			sp.sched_priority = kthread_prio;
 | 
						|
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
 | 
						|
		}
 | 
						|
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | 
						|
		wake_up_process(t);
 | 
						|
	}
 | 
						|
	rcu_spawn_nocb_kthreads();
 | 
						|
	rcu_spawn_boost_kthreads();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_initcall(rcu_spawn_gp_kthread);
 | 
						|
 | 
						|
/*
 | 
						|
 * This function is invoked towards the end of the scheduler's
 | 
						|
 * initialization process.  Before this is called, the idle task might
 | 
						|
 * contain synchronous grace-period primitives (during which time, this idle
 | 
						|
 * task is booting the system, and such primitives are no-ops).  After this
 | 
						|
 * function is called, any synchronous grace-period primitives are run as
 | 
						|
 * expedited, with the requesting task driving the grace period forward.
 | 
						|
 * A later core_initcall() rcu_set_runtime_mode() will switch to full
 | 
						|
 * runtime RCU functionality.
 | 
						|
 */
 | 
						|
void rcu_scheduler_starting(void)
 | 
						|
{
 | 
						|
	WARN_ON(num_online_cpus() != 1);
 | 
						|
	WARN_ON(nr_context_switches() > 0);
 | 
						|
	rcu_test_sync_prims();
 | 
						|
	rcu_scheduler_active = RCU_SCHEDULER_INIT;
 | 
						|
	rcu_test_sync_prims();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Helper function for rcu_init() that initializes one rcu_state structure.
 | 
						|
 */
 | 
						|
static void __init rcu_init_one(struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	static const char * const buf[] = RCU_NODE_NAME_INIT;
 | 
						|
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
 | 
						|
	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
 | 
						|
	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
 | 
						|
 | 
						|
	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
 | 
						|
	int cpustride = 1;
 | 
						|
	int i;
 | 
						|
	int j;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
 | 
						|
	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
 | 
						|
 | 
						|
	/* Silence gcc 4.8 false positive about array index out of range. */
 | 
						|
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
 | 
						|
		panic("rcu_init_one: rcu_num_lvls out of range");
 | 
						|
 | 
						|
	/* Initialize the level-tracking arrays. */
 | 
						|
 | 
						|
	for (i = 1; i < rcu_num_lvls; i++)
 | 
						|
		rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
 | 
						|
	rcu_init_levelspread(levelspread, num_rcu_lvl);
 | 
						|
 | 
						|
	/* Initialize the elements themselves, starting from the leaves. */
 | 
						|
 | 
						|
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
 | 
						|
		cpustride *= levelspread[i];
 | 
						|
		rnp = rsp->level[i];
 | 
						|
		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
 | 
						|
			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
 | 
						|
			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
 | 
						|
						   &rcu_node_class[i], buf[i]);
 | 
						|
			raw_spin_lock_init(&rnp->fqslock);
 | 
						|
			lockdep_set_class_and_name(&rnp->fqslock,
 | 
						|
						   &rcu_fqs_class[i], fqs[i]);
 | 
						|
			rnp->gpnum = rsp->gpnum;
 | 
						|
			rnp->completed = rsp->completed;
 | 
						|
			rnp->qsmask = 0;
 | 
						|
			rnp->qsmaskinit = 0;
 | 
						|
			rnp->grplo = j * cpustride;
 | 
						|
			rnp->grphi = (j + 1) * cpustride - 1;
 | 
						|
			if (rnp->grphi >= nr_cpu_ids)
 | 
						|
				rnp->grphi = nr_cpu_ids - 1;
 | 
						|
			if (i == 0) {
 | 
						|
				rnp->grpnum = 0;
 | 
						|
				rnp->grpmask = 0;
 | 
						|
				rnp->parent = NULL;
 | 
						|
			} else {
 | 
						|
				rnp->grpnum = j % levelspread[i - 1];
 | 
						|
				rnp->grpmask = 1UL << rnp->grpnum;
 | 
						|
				rnp->parent = rsp->level[i - 1] +
 | 
						|
					      j / levelspread[i - 1];
 | 
						|
			}
 | 
						|
			rnp->level = i;
 | 
						|
			INIT_LIST_HEAD(&rnp->blkd_tasks);
 | 
						|
			rcu_init_one_nocb(rnp);
 | 
						|
			init_waitqueue_head(&rnp->exp_wq[0]);
 | 
						|
			init_waitqueue_head(&rnp->exp_wq[1]);
 | 
						|
			init_waitqueue_head(&rnp->exp_wq[2]);
 | 
						|
			init_waitqueue_head(&rnp->exp_wq[3]);
 | 
						|
			spin_lock_init(&rnp->exp_lock);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	init_swait_queue_head(&rsp->gp_wq);
 | 
						|
	init_swait_queue_head(&rsp->expedited_wq);
 | 
						|
	rnp = rsp->level[rcu_num_lvls - 1];
 | 
						|
	for_each_possible_cpu(i) {
 | 
						|
		while (i > rnp->grphi)
 | 
						|
			rnp++;
 | 
						|
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
 | 
						|
		rcu_boot_init_percpu_data(i, rsp);
 | 
						|
	}
 | 
						|
	list_add(&rsp->flavors, &rcu_struct_flavors);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
 | 
						|
 * replace the definitions in tree.h because those are needed to size
 | 
						|
 * the ->node array in the rcu_state structure.
 | 
						|
 */
 | 
						|
static void __init rcu_init_geometry(void)
 | 
						|
{
 | 
						|
	ulong d;
 | 
						|
	int i;
 | 
						|
	int rcu_capacity[RCU_NUM_LVLS];
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initialize any unspecified boot parameters.
 | 
						|
	 * The default values of jiffies_till_first_fqs and
 | 
						|
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
 | 
						|
	 * value, which is a function of HZ, then adding one for each
 | 
						|
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
 | 
						|
	 */
 | 
						|
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 | 
						|
	if (jiffies_till_first_fqs == ULONG_MAX)
 | 
						|
		jiffies_till_first_fqs = d;
 | 
						|
	if (jiffies_till_next_fqs == ULONG_MAX)
 | 
						|
		jiffies_till_next_fqs = d;
 | 
						|
 | 
						|
	/* If the compile-time values are accurate, just leave. */
 | 
						|
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
 | 
						|
	    nr_cpu_ids == NR_CPUS)
 | 
						|
		return;
 | 
						|
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
 | 
						|
		rcu_fanout_leaf, nr_cpu_ids);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The boot-time rcu_fanout_leaf parameter must be at least two
 | 
						|
	 * and cannot exceed the number of bits in the rcu_node masks.
 | 
						|
	 * Complain and fall back to the compile-time values if this
 | 
						|
	 * limit is exceeded.
 | 
						|
	 */
 | 
						|
	if (rcu_fanout_leaf < 2 ||
 | 
						|
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
 | 
						|
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
 | 
						|
		WARN_ON(1);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Compute number of nodes that can be handled an rcu_node tree
 | 
						|
	 * with the given number of levels.
 | 
						|
	 */
 | 
						|
	rcu_capacity[0] = rcu_fanout_leaf;
 | 
						|
	for (i = 1; i < RCU_NUM_LVLS; i++)
 | 
						|
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The tree must be able to accommodate the configured number of CPUs.
 | 
						|
	 * If this limit is exceeded, fall back to the compile-time values.
 | 
						|
	 */
 | 
						|
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
 | 
						|
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
 | 
						|
		WARN_ON(1);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Calculate the number of levels in the tree. */
 | 
						|
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
 | 
						|
	}
 | 
						|
	rcu_num_lvls = i + 1;
 | 
						|
 | 
						|
	/* Calculate the number of rcu_nodes at each level of the tree. */
 | 
						|
	for (i = 0; i < rcu_num_lvls; i++) {
 | 
						|
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
 | 
						|
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Calculate the total number of rcu_node structures. */
 | 
						|
	rcu_num_nodes = 0;
 | 
						|
	for (i = 0; i < rcu_num_lvls; i++)
 | 
						|
		rcu_num_nodes += num_rcu_lvl[i];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Dump out the structure of the rcu_node combining tree associated
 | 
						|
 * with the rcu_state structure referenced by rsp.
 | 
						|
 */
 | 
						|
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
 | 
						|
{
 | 
						|
	int level = 0;
 | 
						|
	struct rcu_node *rnp;
 | 
						|
 | 
						|
	pr_info("rcu_node tree layout dump\n");
 | 
						|
	pr_info(" ");
 | 
						|
	rcu_for_each_node_breadth_first(rsp, rnp) {
 | 
						|
		if (rnp->level != level) {
 | 
						|
			pr_cont("\n");
 | 
						|
			pr_info(" ");
 | 
						|
			level = rnp->level;
 | 
						|
		}
 | 
						|
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
 | 
						|
	}
 | 
						|
	pr_cont("\n");
 | 
						|
}
 | 
						|
 | 
						|
void __init rcu_init(void)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	rcu_early_boot_tests();
 | 
						|
 | 
						|
	rcu_bootup_announce();
 | 
						|
	rcu_init_geometry();
 | 
						|
	rcu_init_one(&rcu_bh_state);
 | 
						|
	rcu_init_one(&rcu_sched_state);
 | 
						|
	if (dump_tree)
 | 
						|
		rcu_dump_rcu_node_tree(&rcu_sched_state);
 | 
						|
	__rcu_init_preempt();
 | 
						|
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't need protection against CPU-hotplug here because
 | 
						|
	 * this is called early in boot, before either interrupts
 | 
						|
	 * or the scheduler are operational.
 | 
						|
	 */
 | 
						|
	pm_notifier(rcu_pm_notify, 0);
 | 
						|
	for_each_online_cpu(cpu) {
 | 
						|
		rcutree_prepare_cpu(cpu);
 | 
						|
		rcu_cpu_starting(cpu);
 | 
						|
		if (IS_ENABLED(CONFIG_TREE_SRCU))
 | 
						|
			srcu_online_cpu(cpu);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#include "tree_exp.h"
 | 
						|
#include "tree_plugin.h"
 |