mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-03 18:20:25 +02:00 
			
		
		
		
	In support of providing struct page for large persistent memory capacities, use struct vmem_altmap to change the default policy for allocating memory for the memmap array. The default vmemmap_populate() allocates page table storage area from the page allocator. Given persistent memory capacities relative to DRAM it may not be feasible to store the memmap in 'System Memory'. Instead vmem_altmap represents pre-allocated "device pages" to satisfy vmemmap_alloc_block_buf() requests. Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reported-by: kbuild test robot <lkp@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			6946 lines
		
	
	
	
		
			190 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6946 lines
		
	
	
	
		
			190 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  linux/mm/page_alloc.c
 | 
						|
 *
 | 
						|
 *  Manages the free list, the system allocates free pages here.
 | 
						|
 *  Note that kmalloc() lives in slab.c
 | 
						|
 *
 | 
						|
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | 
						|
 *  Swap reorganised 29.12.95, Stephen Tweedie
 | 
						|
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 | 
						|
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 | 
						|
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 | 
						|
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 | 
						|
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 | 
						|
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/stddef.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/jiffies.h>
 | 
						|
#include <linux/bootmem.h>
 | 
						|
#include <linux/memblock.h>
 | 
						|
#include <linux/compiler.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/kmemcheck.h>
 | 
						|
#include <linux/kasan.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/suspend.h>
 | 
						|
#include <linux/pagevec.h>
 | 
						|
#include <linux/blkdev.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/ratelimit.h>
 | 
						|
#include <linux/oom.h>
 | 
						|
#include <linux/notifier.h>
 | 
						|
#include <linux/topology.h>
 | 
						|
#include <linux/sysctl.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/cpuset.h>
 | 
						|
#include <linux/memory_hotplug.h>
 | 
						|
#include <linux/nodemask.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <linux/vmstat.h>
 | 
						|
#include <linux/mempolicy.h>
 | 
						|
#include <linux/memremap.h>
 | 
						|
#include <linux/stop_machine.h>
 | 
						|
#include <linux/sort.h>
 | 
						|
#include <linux/pfn.h>
 | 
						|
#include <linux/backing-dev.h>
 | 
						|
#include <linux/fault-inject.h>
 | 
						|
#include <linux/page-isolation.h>
 | 
						|
#include <linux/page_ext.h>
 | 
						|
#include <linux/debugobjects.h>
 | 
						|
#include <linux/kmemleak.h>
 | 
						|
#include <linux/compaction.h>
 | 
						|
#include <trace/events/kmem.h>
 | 
						|
#include <linux/prefetch.h>
 | 
						|
#include <linux/mm_inline.h>
 | 
						|
#include <linux/migrate.h>
 | 
						|
#include <linux/page_ext.h>
 | 
						|
#include <linux/hugetlb.h>
 | 
						|
#include <linux/sched/rt.h>
 | 
						|
#include <linux/page_owner.h>
 | 
						|
#include <linux/kthread.h>
 | 
						|
 | 
						|
#include <asm/sections.h>
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
#include <asm/div64.h>
 | 
						|
#include "internal.h"
 | 
						|
 | 
						|
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
 | 
						|
static DEFINE_MUTEX(pcp_batch_high_lock);
 | 
						|
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
 | 
						|
 | 
						|
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
 | 
						|
DEFINE_PER_CPU(int, numa_node);
 | 
						|
EXPORT_PER_CPU_SYMBOL(numa_node);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 | 
						|
/*
 | 
						|
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 | 
						|
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 | 
						|
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 | 
						|
 * defined in <linux/topology.h>.
 | 
						|
 */
 | 
						|
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
 | 
						|
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
 | 
						|
int _node_numa_mem_[MAX_NUMNODES];
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Array of node states.
 | 
						|
 */
 | 
						|
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 | 
						|
	[N_POSSIBLE] = NODE_MASK_ALL,
 | 
						|
	[N_ONLINE] = { { [0] = 1UL } },
 | 
						|
#ifndef CONFIG_NUMA
 | 
						|
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 | 
						|
#ifdef CONFIG_HIGHMEM
 | 
						|
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_MOVABLE_NODE
 | 
						|
	[N_MEMORY] = { { [0] = 1UL } },
 | 
						|
#endif
 | 
						|
	[N_CPU] = { { [0] = 1UL } },
 | 
						|
#endif	/* NUMA */
 | 
						|
};
 | 
						|
EXPORT_SYMBOL(node_states);
 | 
						|
 | 
						|
/* Protect totalram_pages and zone->managed_pages */
 | 
						|
static DEFINE_SPINLOCK(managed_page_count_lock);
 | 
						|
 | 
						|
unsigned long totalram_pages __read_mostly;
 | 
						|
unsigned long totalreserve_pages __read_mostly;
 | 
						|
unsigned long totalcma_pages __read_mostly;
 | 
						|
 | 
						|
int percpu_pagelist_fraction;
 | 
						|
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 | 
						|
 | 
						|
/*
 | 
						|
 * A cached value of the page's pageblock's migratetype, used when the page is
 | 
						|
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 | 
						|
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 | 
						|
 * Also the migratetype set in the page does not necessarily match the pcplist
 | 
						|
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 | 
						|
 * other index - this ensures that it will be put on the correct CMA freelist.
 | 
						|
 */
 | 
						|
static inline int get_pcppage_migratetype(struct page *page)
 | 
						|
{
 | 
						|
	return page->index;
 | 
						|
}
 | 
						|
 | 
						|
static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 | 
						|
{
 | 
						|
	page->index = migratetype;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_PM_SLEEP
 | 
						|
/*
 | 
						|
 * The following functions are used by the suspend/hibernate code to temporarily
 | 
						|
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 | 
						|
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 | 
						|
 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 | 
						|
 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 | 
						|
 * guaranteed not to run in parallel with that modification).
 | 
						|
 */
 | 
						|
 | 
						|
static gfp_t saved_gfp_mask;
 | 
						|
 | 
						|
void pm_restore_gfp_mask(void)
 | 
						|
{
 | 
						|
	WARN_ON(!mutex_is_locked(&pm_mutex));
 | 
						|
	if (saved_gfp_mask) {
 | 
						|
		gfp_allowed_mask = saved_gfp_mask;
 | 
						|
		saved_gfp_mask = 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void pm_restrict_gfp_mask(void)
 | 
						|
{
 | 
						|
	WARN_ON(!mutex_is_locked(&pm_mutex));
 | 
						|
	WARN_ON(saved_gfp_mask);
 | 
						|
	saved_gfp_mask = gfp_allowed_mask;
 | 
						|
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 | 
						|
}
 | 
						|
 | 
						|
bool pm_suspended_storage(void)
 | 
						|
{
 | 
						|
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 | 
						|
		return false;
 | 
						|
	return true;
 | 
						|
}
 | 
						|
#endif /* CONFIG_PM_SLEEP */
 | 
						|
 | 
						|
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 | 
						|
unsigned int pageblock_order __read_mostly;
 | 
						|
#endif
 | 
						|
 | 
						|
static void __free_pages_ok(struct page *page, unsigned int order);
 | 
						|
 | 
						|
/*
 | 
						|
 * results with 256, 32 in the lowmem_reserve sysctl:
 | 
						|
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 | 
						|
 *	1G machine -> (16M dma, 784M normal, 224M high)
 | 
						|
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 | 
						|
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 | 
						|
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 | 
						|
 *
 | 
						|
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 | 
						|
 * don't need any ZONE_NORMAL reservation
 | 
						|
 */
 | 
						|
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
 | 
						|
#ifdef CONFIG_ZONE_DMA
 | 
						|
	 256,
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_ZONE_DMA32
 | 
						|
	 256,
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_HIGHMEM
 | 
						|
	 32,
 | 
						|
#endif
 | 
						|
	 32,
 | 
						|
};
 | 
						|
 | 
						|
EXPORT_SYMBOL(totalram_pages);
 | 
						|
 | 
						|
static char * const zone_names[MAX_NR_ZONES] = {
 | 
						|
#ifdef CONFIG_ZONE_DMA
 | 
						|
	 "DMA",
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_ZONE_DMA32
 | 
						|
	 "DMA32",
 | 
						|
#endif
 | 
						|
	 "Normal",
 | 
						|
#ifdef CONFIG_HIGHMEM
 | 
						|
	 "HighMem",
 | 
						|
#endif
 | 
						|
	 "Movable",
 | 
						|
#ifdef CONFIG_ZONE_DEVICE
 | 
						|
	 "Device",
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
compound_page_dtor * const compound_page_dtors[] = {
 | 
						|
	NULL,
 | 
						|
	free_compound_page,
 | 
						|
#ifdef CONFIG_HUGETLB_PAGE
 | 
						|
	free_huge_page,
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
	free_transhuge_page,
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
int min_free_kbytes = 1024;
 | 
						|
int user_min_free_kbytes = -1;
 | 
						|
 | 
						|
static unsigned long __meminitdata nr_kernel_pages;
 | 
						|
static unsigned long __meminitdata nr_all_pages;
 | 
						|
static unsigned long __meminitdata dma_reserve;
 | 
						|
 | 
						|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | 
						|
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
 | 
						|
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
 | 
						|
static unsigned long __initdata required_kernelcore;
 | 
						|
static unsigned long __initdata required_movablecore;
 | 
						|
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
 | 
						|
 | 
						|
/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 | 
						|
int movable_zone;
 | 
						|
EXPORT_SYMBOL(movable_zone);
 | 
						|
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 | 
						|
 | 
						|
#if MAX_NUMNODES > 1
 | 
						|
int nr_node_ids __read_mostly = MAX_NUMNODES;
 | 
						|
int nr_online_nodes __read_mostly = 1;
 | 
						|
EXPORT_SYMBOL(nr_node_ids);
 | 
						|
EXPORT_SYMBOL(nr_online_nodes);
 | 
						|
#endif
 | 
						|
 | 
						|
int page_group_by_mobility_disabled __read_mostly;
 | 
						|
 | 
						|
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 | 
						|
static inline void reset_deferred_meminit(pg_data_t *pgdat)
 | 
						|
{
 | 
						|
	pgdat->first_deferred_pfn = ULONG_MAX;
 | 
						|
}
 | 
						|
 | 
						|
/* Returns true if the struct page for the pfn is uninitialised */
 | 
						|
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 | 
						|
{
 | 
						|
	if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
 | 
						|
{
 | 
						|
	if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns false when the remaining initialisation should be deferred until
 | 
						|
 * later in the boot cycle when it can be parallelised.
 | 
						|
 */
 | 
						|
static inline bool update_defer_init(pg_data_t *pgdat,
 | 
						|
				unsigned long pfn, unsigned long zone_end,
 | 
						|
				unsigned long *nr_initialised)
 | 
						|
{
 | 
						|
	/* Always populate low zones for address-contrained allocations */
 | 
						|
	if (zone_end < pgdat_end_pfn(pgdat))
 | 
						|
		return true;
 | 
						|
 | 
						|
	/* Initialise at least 2G of the highest zone */
 | 
						|
	(*nr_initialised)++;
 | 
						|
	if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
 | 
						|
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 | 
						|
		pgdat->first_deferred_pfn = pfn;
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void reset_deferred_meminit(pg_data_t *pgdat)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline bool early_page_uninitialised(unsigned long pfn)
 | 
						|
{
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
 | 
						|
{
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool update_defer_init(pg_data_t *pgdat,
 | 
						|
				unsigned long pfn, unsigned long zone_end,
 | 
						|
				unsigned long *nr_initialised)
 | 
						|
{
 | 
						|
	return true;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
void set_pageblock_migratetype(struct page *page, int migratetype)
 | 
						|
{
 | 
						|
	if (unlikely(page_group_by_mobility_disabled &&
 | 
						|
		     migratetype < MIGRATE_PCPTYPES))
 | 
						|
		migratetype = MIGRATE_UNMOVABLE;
 | 
						|
 | 
						|
	set_pageblock_flags_group(page, (unsigned long)migratetype,
 | 
						|
					PB_migrate, PB_migrate_end);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_VM
 | 
						|
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	unsigned seq;
 | 
						|
	unsigned long pfn = page_to_pfn(page);
 | 
						|
	unsigned long sp, start_pfn;
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = zone_span_seqbegin(zone);
 | 
						|
		start_pfn = zone->zone_start_pfn;
 | 
						|
		sp = zone->spanned_pages;
 | 
						|
		if (!zone_spans_pfn(zone, pfn))
 | 
						|
			ret = 1;
 | 
						|
	} while (zone_span_seqretry(zone, seq));
 | 
						|
 | 
						|
	if (ret)
 | 
						|
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 | 
						|
			pfn, zone_to_nid(zone), zone->name,
 | 
						|
			start_pfn, start_pfn + sp);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int page_is_consistent(struct zone *zone, struct page *page)
 | 
						|
{
 | 
						|
	if (!pfn_valid_within(page_to_pfn(page)))
 | 
						|
		return 0;
 | 
						|
	if (zone != page_zone(page))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
/*
 | 
						|
 * Temporary debugging check for pages not lying within a given zone.
 | 
						|
 */
 | 
						|
static int bad_range(struct zone *zone, struct page *page)
 | 
						|
{
 | 
						|
	if (page_outside_zone_boundaries(zone, page))
 | 
						|
		return 1;
 | 
						|
	if (!page_is_consistent(zone, page))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline int bad_range(struct zone *zone, struct page *page)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void bad_page(struct page *page, const char *reason,
 | 
						|
		unsigned long bad_flags)
 | 
						|
{
 | 
						|
	static unsigned long resume;
 | 
						|
	static unsigned long nr_shown;
 | 
						|
	static unsigned long nr_unshown;
 | 
						|
 | 
						|
	/* Don't complain about poisoned pages */
 | 
						|
	if (PageHWPoison(page)) {
 | 
						|
		page_mapcount_reset(page); /* remove PageBuddy */
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allow a burst of 60 reports, then keep quiet for that minute;
 | 
						|
	 * or allow a steady drip of one report per second.
 | 
						|
	 */
 | 
						|
	if (nr_shown == 60) {
 | 
						|
		if (time_before(jiffies, resume)) {
 | 
						|
			nr_unshown++;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		if (nr_unshown) {
 | 
						|
			printk(KERN_ALERT
 | 
						|
			      "BUG: Bad page state: %lu messages suppressed\n",
 | 
						|
				nr_unshown);
 | 
						|
			nr_unshown = 0;
 | 
						|
		}
 | 
						|
		nr_shown = 0;
 | 
						|
	}
 | 
						|
	if (nr_shown++ == 0)
 | 
						|
		resume = jiffies + 60 * HZ;
 | 
						|
 | 
						|
	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
 | 
						|
		current->comm, page_to_pfn(page));
 | 
						|
	dump_page_badflags(page, reason, bad_flags);
 | 
						|
 | 
						|
	print_modules();
 | 
						|
	dump_stack();
 | 
						|
out:
 | 
						|
	/* Leave bad fields for debug, except PageBuddy could make trouble */
 | 
						|
	page_mapcount_reset(page); /* remove PageBuddy */
 | 
						|
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Higher-order pages are called "compound pages".  They are structured thusly:
 | 
						|
 *
 | 
						|
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 | 
						|
 *
 | 
						|
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 | 
						|
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 | 
						|
 *
 | 
						|
 * The first tail page's ->compound_dtor holds the offset in array of compound
 | 
						|
 * page destructors. See compound_page_dtors.
 | 
						|
 *
 | 
						|
 * The first tail page's ->compound_order holds the order of allocation.
 | 
						|
 * This usage means that zero-order pages may not be compound.
 | 
						|
 */
 | 
						|
 | 
						|
void free_compound_page(struct page *page)
 | 
						|
{
 | 
						|
	__free_pages_ok(page, compound_order(page));
 | 
						|
}
 | 
						|
 | 
						|
void prep_compound_page(struct page *page, unsigned int order)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int nr_pages = 1 << order;
 | 
						|
 | 
						|
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 | 
						|
	set_compound_order(page, order);
 | 
						|
	__SetPageHead(page);
 | 
						|
	for (i = 1; i < nr_pages; i++) {
 | 
						|
		struct page *p = page + i;
 | 
						|
		set_page_count(p, 0);
 | 
						|
		p->mapping = TAIL_MAPPING;
 | 
						|
		set_compound_head(p, page);
 | 
						|
	}
 | 
						|
	atomic_set(compound_mapcount_ptr(page), -1);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_PAGEALLOC
 | 
						|
unsigned int _debug_guardpage_minorder;
 | 
						|
bool _debug_pagealloc_enabled __read_mostly;
 | 
						|
bool _debug_guardpage_enabled __read_mostly;
 | 
						|
 | 
						|
static int __init early_debug_pagealloc(char *buf)
 | 
						|
{
 | 
						|
	if (!buf)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (strcmp(buf, "on") == 0)
 | 
						|
		_debug_pagealloc_enabled = true;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_param("debug_pagealloc", early_debug_pagealloc);
 | 
						|
 | 
						|
static bool need_debug_guardpage(void)
 | 
						|
{
 | 
						|
	/* If we don't use debug_pagealloc, we don't need guard page */
 | 
						|
	if (!debug_pagealloc_enabled())
 | 
						|
		return false;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static void init_debug_guardpage(void)
 | 
						|
{
 | 
						|
	if (!debug_pagealloc_enabled())
 | 
						|
		return;
 | 
						|
 | 
						|
	_debug_guardpage_enabled = true;
 | 
						|
}
 | 
						|
 | 
						|
struct page_ext_operations debug_guardpage_ops = {
 | 
						|
	.need = need_debug_guardpage,
 | 
						|
	.init = init_debug_guardpage,
 | 
						|
};
 | 
						|
 | 
						|
static int __init debug_guardpage_minorder_setup(char *buf)
 | 
						|
{
 | 
						|
	unsigned long res;
 | 
						|
 | 
						|
	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 | 
						|
		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	_debug_guardpage_minorder = res;
 | 
						|
	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
 | 
						|
 | 
						|
static inline void set_page_guard(struct zone *zone, struct page *page,
 | 
						|
				unsigned int order, int migratetype)
 | 
						|
{
 | 
						|
	struct page_ext *page_ext;
 | 
						|
 | 
						|
	if (!debug_guardpage_enabled())
 | 
						|
		return;
 | 
						|
 | 
						|
	page_ext = lookup_page_ext(page);
 | 
						|
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&page->lru);
 | 
						|
	set_page_private(page, order);
 | 
						|
	/* Guard pages are not available for any usage */
 | 
						|
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
 | 
						|
}
 | 
						|
 | 
						|
static inline void clear_page_guard(struct zone *zone, struct page *page,
 | 
						|
				unsigned int order, int migratetype)
 | 
						|
{
 | 
						|
	struct page_ext *page_ext;
 | 
						|
 | 
						|
	if (!debug_guardpage_enabled())
 | 
						|
		return;
 | 
						|
 | 
						|
	page_ext = lookup_page_ext(page);
 | 
						|
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 | 
						|
 | 
						|
	set_page_private(page, 0);
 | 
						|
	if (!is_migrate_isolate(migratetype))
 | 
						|
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
 | 
						|
}
 | 
						|
#else
 | 
						|
struct page_ext_operations debug_guardpage_ops = { NULL, };
 | 
						|
static inline void set_page_guard(struct zone *zone, struct page *page,
 | 
						|
				unsigned int order, int migratetype) {}
 | 
						|
static inline void clear_page_guard(struct zone *zone, struct page *page,
 | 
						|
				unsigned int order, int migratetype) {}
 | 
						|
#endif
 | 
						|
 | 
						|
static inline void set_page_order(struct page *page, unsigned int order)
 | 
						|
{
 | 
						|
	set_page_private(page, order);
 | 
						|
	__SetPageBuddy(page);
 | 
						|
}
 | 
						|
 | 
						|
static inline void rmv_page_order(struct page *page)
 | 
						|
{
 | 
						|
	__ClearPageBuddy(page);
 | 
						|
	set_page_private(page, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function checks whether a page is free && is the buddy
 | 
						|
 * we can do coalesce a page and its buddy if
 | 
						|
 * (a) the buddy is not in a hole &&
 | 
						|
 * (b) the buddy is in the buddy system &&
 | 
						|
 * (c) a page and its buddy have the same order &&
 | 
						|
 * (d) a page and its buddy are in the same zone.
 | 
						|
 *
 | 
						|
 * For recording whether a page is in the buddy system, we set ->_mapcount
 | 
						|
 * PAGE_BUDDY_MAPCOUNT_VALUE.
 | 
						|
 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 | 
						|
 * serialized by zone->lock.
 | 
						|
 *
 | 
						|
 * For recording page's order, we use page_private(page).
 | 
						|
 */
 | 
						|
static inline int page_is_buddy(struct page *page, struct page *buddy,
 | 
						|
							unsigned int order)
 | 
						|
{
 | 
						|
	if (!pfn_valid_within(page_to_pfn(buddy)))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (page_is_guard(buddy) && page_order(buddy) == order) {
 | 
						|
		if (page_zone_id(page) != page_zone_id(buddy))
 | 
						|
			return 0;
 | 
						|
 | 
						|
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 | 
						|
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (PageBuddy(buddy) && page_order(buddy) == order) {
 | 
						|
		/*
 | 
						|
		 * zone check is done late to avoid uselessly
 | 
						|
		 * calculating zone/node ids for pages that could
 | 
						|
		 * never merge.
 | 
						|
		 */
 | 
						|
		if (page_zone_id(page) != page_zone_id(buddy))
 | 
						|
			return 0;
 | 
						|
 | 
						|
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 | 
						|
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Freeing function for a buddy system allocator.
 | 
						|
 *
 | 
						|
 * The concept of a buddy system is to maintain direct-mapped table
 | 
						|
 * (containing bit values) for memory blocks of various "orders".
 | 
						|
 * The bottom level table contains the map for the smallest allocatable
 | 
						|
 * units of memory (here, pages), and each level above it describes
 | 
						|
 * pairs of units from the levels below, hence, "buddies".
 | 
						|
 * At a high level, all that happens here is marking the table entry
 | 
						|
 * at the bottom level available, and propagating the changes upward
 | 
						|
 * as necessary, plus some accounting needed to play nicely with other
 | 
						|
 * parts of the VM system.
 | 
						|
 * At each level, we keep a list of pages, which are heads of continuous
 | 
						|
 * free pages of length of (1 << order) and marked with _mapcount
 | 
						|
 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 | 
						|
 * field.
 | 
						|
 * So when we are allocating or freeing one, we can derive the state of the
 | 
						|
 * other.  That is, if we allocate a small block, and both were
 | 
						|
 * free, the remainder of the region must be split into blocks.
 | 
						|
 * If a block is freed, and its buddy is also free, then this
 | 
						|
 * triggers coalescing into a block of larger size.
 | 
						|
 *
 | 
						|
 * -- nyc
 | 
						|
 */
 | 
						|
 | 
						|
static inline void __free_one_page(struct page *page,
 | 
						|
		unsigned long pfn,
 | 
						|
		struct zone *zone, unsigned int order,
 | 
						|
		int migratetype)
 | 
						|
{
 | 
						|
	unsigned long page_idx;
 | 
						|
	unsigned long combined_idx;
 | 
						|
	unsigned long uninitialized_var(buddy_idx);
 | 
						|
	struct page *buddy;
 | 
						|
	unsigned int max_order = MAX_ORDER;
 | 
						|
 | 
						|
	VM_BUG_ON(!zone_is_initialized(zone));
 | 
						|
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 | 
						|
 | 
						|
	VM_BUG_ON(migratetype == -1);
 | 
						|
	if (is_migrate_isolate(migratetype)) {
 | 
						|
		/*
 | 
						|
		 * We restrict max order of merging to prevent merge
 | 
						|
		 * between freepages on isolate pageblock and normal
 | 
						|
		 * pageblock. Without this, pageblock isolation
 | 
						|
		 * could cause incorrect freepage accounting.
 | 
						|
		 */
 | 
						|
		max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
 | 
						|
	} else {
 | 
						|
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
 | 
						|
	}
 | 
						|
 | 
						|
	page_idx = pfn & ((1 << max_order) - 1);
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
 | 
						|
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 | 
						|
 | 
						|
	while (order < max_order - 1) {
 | 
						|
		buddy_idx = __find_buddy_index(page_idx, order);
 | 
						|
		buddy = page + (buddy_idx - page_idx);
 | 
						|
		if (!page_is_buddy(page, buddy, order))
 | 
						|
			break;
 | 
						|
		/*
 | 
						|
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 | 
						|
		 * merge with it and move up one order.
 | 
						|
		 */
 | 
						|
		if (page_is_guard(buddy)) {
 | 
						|
			clear_page_guard(zone, buddy, order, migratetype);
 | 
						|
		} else {
 | 
						|
			list_del(&buddy->lru);
 | 
						|
			zone->free_area[order].nr_free--;
 | 
						|
			rmv_page_order(buddy);
 | 
						|
		}
 | 
						|
		combined_idx = buddy_idx & page_idx;
 | 
						|
		page = page + (combined_idx - page_idx);
 | 
						|
		page_idx = combined_idx;
 | 
						|
		order++;
 | 
						|
	}
 | 
						|
	set_page_order(page, order);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this is not the largest possible page, check if the buddy
 | 
						|
	 * of the next-highest order is free. If it is, it's possible
 | 
						|
	 * that pages are being freed that will coalesce soon. In case,
 | 
						|
	 * that is happening, add the free page to the tail of the list
 | 
						|
	 * so it's less likely to be used soon and more likely to be merged
 | 
						|
	 * as a higher order page
 | 
						|
	 */
 | 
						|
	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
 | 
						|
		struct page *higher_page, *higher_buddy;
 | 
						|
		combined_idx = buddy_idx & page_idx;
 | 
						|
		higher_page = page + (combined_idx - page_idx);
 | 
						|
		buddy_idx = __find_buddy_index(combined_idx, order + 1);
 | 
						|
		higher_buddy = higher_page + (buddy_idx - combined_idx);
 | 
						|
		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
 | 
						|
			list_add_tail(&page->lru,
 | 
						|
				&zone->free_area[order].free_list[migratetype]);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 | 
						|
out:
 | 
						|
	zone->free_area[order].nr_free++;
 | 
						|
}
 | 
						|
 | 
						|
static inline int free_pages_check(struct page *page)
 | 
						|
{
 | 
						|
	const char *bad_reason = NULL;
 | 
						|
	unsigned long bad_flags = 0;
 | 
						|
 | 
						|
	if (unlikely(atomic_read(&page->_mapcount) != -1))
 | 
						|
		bad_reason = "nonzero mapcount";
 | 
						|
	if (unlikely(page->mapping != NULL))
 | 
						|
		bad_reason = "non-NULL mapping";
 | 
						|
	if (unlikely(atomic_read(&page->_count) != 0))
 | 
						|
		bad_reason = "nonzero _count";
 | 
						|
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
 | 
						|
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
 | 
						|
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
 | 
						|
	}
 | 
						|
#ifdef CONFIG_MEMCG
 | 
						|
	if (unlikely(page->mem_cgroup))
 | 
						|
		bad_reason = "page still charged to cgroup";
 | 
						|
#endif
 | 
						|
	if (unlikely(bad_reason)) {
 | 
						|
		bad_page(page, bad_reason, bad_flags);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	page_cpupid_reset_last(page);
 | 
						|
	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
 | 
						|
		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Frees a number of pages from the PCP lists
 | 
						|
 * Assumes all pages on list are in same zone, and of same order.
 | 
						|
 * count is the number of pages to free.
 | 
						|
 *
 | 
						|
 * If the zone was previously in an "all pages pinned" state then look to
 | 
						|
 * see if this freeing clears that state.
 | 
						|
 *
 | 
						|
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 | 
						|
 * pinned" detection logic.
 | 
						|
 */
 | 
						|
static void free_pcppages_bulk(struct zone *zone, int count,
 | 
						|
					struct per_cpu_pages *pcp)
 | 
						|
{
 | 
						|
	int migratetype = 0;
 | 
						|
	int batch_free = 0;
 | 
						|
	int to_free = count;
 | 
						|
	unsigned long nr_scanned;
 | 
						|
 | 
						|
	spin_lock(&zone->lock);
 | 
						|
	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
 | 
						|
	if (nr_scanned)
 | 
						|
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
 | 
						|
 | 
						|
	while (to_free) {
 | 
						|
		struct page *page;
 | 
						|
		struct list_head *list;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Remove pages from lists in a round-robin fashion. A
 | 
						|
		 * batch_free count is maintained that is incremented when an
 | 
						|
		 * empty list is encountered.  This is so more pages are freed
 | 
						|
		 * off fuller lists instead of spinning excessively around empty
 | 
						|
		 * lists
 | 
						|
		 */
 | 
						|
		do {
 | 
						|
			batch_free++;
 | 
						|
			if (++migratetype == MIGRATE_PCPTYPES)
 | 
						|
				migratetype = 0;
 | 
						|
			list = &pcp->lists[migratetype];
 | 
						|
		} while (list_empty(list));
 | 
						|
 | 
						|
		/* This is the only non-empty list. Free them all. */
 | 
						|
		if (batch_free == MIGRATE_PCPTYPES)
 | 
						|
			batch_free = to_free;
 | 
						|
 | 
						|
		do {
 | 
						|
			int mt;	/* migratetype of the to-be-freed page */
 | 
						|
 | 
						|
			page = list_last_entry(list, struct page, lru);
 | 
						|
			/* must delete as __free_one_page list manipulates */
 | 
						|
			list_del(&page->lru);
 | 
						|
 | 
						|
			mt = get_pcppage_migratetype(page);
 | 
						|
			/* MIGRATE_ISOLATE page should not go to pcplists */
 | 
						|
			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
 | 
						|
			/* Pageblock could have been isolated meanwhile */
 | 
						|
			if (unlikely(has_isolate_pageblock(zone)))
 | 
						|
				mt = get_pageblock_migratetype(page);
 | 
						|
 | 
						|
			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
 | 
						|
			trace_mm_page_pcpu_drain(page, 0, mt);
 | 
						|
		} while (--to_free && --batch_free && !list_empty(list));
 | 
						|
	}
 | 
						|
	spin_unlock(&zone->lock);
 | 
						|
}
 | 
						|
 | 
						|
static void free_one_page(struct zone *zone,
 | 
						|
				struct page *page, unsigned long pfn,
 | 
						|
				unsigned int order,
 | 
						|
				int migratetype)
 | 
						|
{
 | 
						|
	unsigned long nr_scanned;
 | 
						|
	spin_lock(&zone->lock);
 | 
						|
	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
 | 
						|
	if (nr_scanned)
 | 
						|
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
 | 
						|
 | 
						|
	if (unlikely(has_isolate_pageblock(zone) ||
 | 
						|
		is_migrate_isolate(migratetype))) {
 | 
						|
		migratetype = get_pfnblock_migratetype(page, pfn);
 | 
						|
	}
 | 
						|
	__free_one_page(page, pfn, zone, order, migratetype);
 | 
						|
	spin_unlock(&zone->lock);
 | 
						|
}
 | 
						|
 | 
						|
static int free_tail_pages_check(struct page *head_page, struct page *page)
 | 
						|
{
 | 
						|
	int ret = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We rely page->lru.next never has bit 0 set, unless the page
 | 
						|
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
 | 
						|
	 */
 | 
						|
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
 | 
						|
 | 
						|
	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
 | 
						|
		ret = 0;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	switch (page - head_page) {
 | 
						|
	case 1:
 | 
						|
		/* the first tail page: ->mapping is compound_mapcount() */
 | 
						|
		if (unlikely(compound_mapcount(page))) {
 | 
						|
			bad_page(page, "nonzero compound_mapcount", 0);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case 2:
 | 
						|
		/*
 | 
						|
		 * the second tail page: ->mapping is
 | 
						|
		 * page_deferred_list().next -- ignore value.
 | 
						|
		 */
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		if (page->mapping != TAIL_MAPPING) {
 | 
						|
			bad_page(page, "corrupted mapping in tail page", 0);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	if (unlikely(!PageTail(page))) {
 | 
						|
		bad_page(page, "PageTail not set", 0);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	if (unlikely(compound_head(page) != head_page)) {
 | 
						|
		bad_page(page, "compound_head not consistent", 0);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	ret = 0;
 | 
						|
out:
 | 
						|
	page->mapping = NULL;
 | 
						|
	clear_compound_head(page);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
 | 
						|
				unsigned long zone, int nid)
 | 
						|
{
 | 
						|
	set_page_links(page, zone, nid, pfn);
 | 
						|
	init_page_count(page);
 | 
						|
	page_mapcount_reset(page);
 | 
						|
	page_cpupid_reset_last(page);
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&page->lru);
 | 
						|
#ifdef WANT_PAGE_VIRTUAL
 | 
						|
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
 | 
						|
	if (!is_highmem_idx(zone))
 | 
						|
		set_page_address(page, __va(pfn << PAGE_SHIFT));
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
 | 
						|
					int nid)
 | 
						|
{
 | 
						|
	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 | 
						|
static void init_reserved_page(unsigned long pfn)
 | 
						|
{
 | 
						|
	pg_data_t *pgdat;
 | 
						|
	int nid, zid;
 | 
						|
 | 
						|
	if (!early_page_uninitialised(pfn))
 | 
						|
		return;
 | 
						|
 | 
						|
	nid = early_pfn_to_nid(pfn);
 | 
						|
	pgdat = NODE_DATA(nid);
 | 
						|
 | 
						|
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | 
						|
		struct zone *zone = &pgdat->node_zones[zid];
 | 
						|
 | 
						|
		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	__init_single_pfn(pfn, zid, nid);
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void init_reserved_page(unsigned long pfn)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialised pages do not have PageReserved set. This function is
 | 
						|
 * called for each range allocated by the bootmem allocator and
 | 
						|
 * marks the pages PageReserved. The remaining valid pages are later
 | 
						|
 * sent to the buddy page allocator.
 | 
						|
 */
 | 
						|
void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
 | 
						|
{
 | 
						|
	unsigned long start_pfn = PFN_DOWN(start);
 | 
						|
	unsigned long end_pfn = PFN_UP(end);
 | 
						|
 | 
						|
	for (; start_pfn < end_pfn; start_pfn++) {
 | 
						|
		if (pfn_valid(start_pfn)) {
 | 
						|
			struct page *page = pfn_to_page(start_pfn);
 | 
						|
 | 
						|
			init_reserved_page(start_pfn);
 | 
						|
 | 
						|
			/* Avoid false-positive PageTail() */
 | 
						|
			INIT_LIST_HEAD(&page->lru);
 | 
						|
 | 
						|
			SetPageReserved(page);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static bool free_pages_prepare(struct page *page, unsigned int order)
 | 
						|
{
 | 
						|
	bool compound = PageCompound(page);
 | 
						|
	int i, bad = 0;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(PageTail(page), page);
 | 
						|
	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
 | 
						|
 | 
						|
	trace_mm_page_free(page, order);
 | 
						|
	kmemcheck_free_shadow(page, order);
 | 
						|
	kasan_free_pages(page, order);
 | 
						|
 | 
						|
	if (PageAnon(page))
 | 
						|
		page->mapping = NULL;
 | 
						|
	bad += free_pages_check(page);
 | 
						|
	for (i = 1; i < (1 << order); i++) {
 | 
						|
		if (compound)
 | 
						|
			bad += free_tail_pages_check(page, page + i);
 | 
						|
		bad += free_pages_check(page + i);
 | 
						|
	}
 | 
						|
	if (bad)
 | 
						|
		return false;
 | 
						|
 | 
						|
	reset_page_owner(page, order);
 | 
						|
 | 
						|
	if (!PageHighMem(page)) {
 | 
						|
		debug_check_no_locks_freed(page_address(page),
 | 
						|
					   PAGE_SIZE << order);
 | 
						|
		debug_check_no_obj_freed(page_address(page),
 | 
						|
					   PAGE_SIZE << order);
 | 
						|
	}
 | 
						|
	arch_free_page(page, order);
 | 
						|
	kernel_map_pages(page, 1 << order, 0);
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static void __free_pages_ok(struct page *page, unsigned int order)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	int migratetype;
 | 
						|
	unsigned long pfn = page_to_pfn(page);
 | 
						|
 | 
						|
	if (!free_pages_prepare(page, order))
 | 
						|
		return;
 | 
						|
 | 
						|
	migratetype = get_pfnblock_migratetype(page, pfn);
 | 
						|
	local_irq_save(flags);
 | 
						|
	__count_vm_events(PGFREE, 1 << order);
 | 
						|
	free_one_page(page_zone(page), page, pfn, order, migratetype);
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
static void __init __free_pages_boot_core(struct page *page,
 | 
						|
					unsigned long pfn, unsigned int order)
 | 
						|
{
 | 
						|
	unsigned int nr_pages = 1 << order;
 | 
						|
	struct page *p = page;
 | 
						|
	unsigned int loop;
 | 
						|
 | 
						|
	prefetchw(p);
 | 
						|
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
 | 
						|
		prefetchw(p + 1);
 | 
						|
		__ClearPageReserved(p);
 | 
						|
		set_page_count(p, 0);
 | 
						|
	}
 | 
						|
	__ClearPageReserved(p);
 | 
						|
	set_page_count(p, 0);
 | 
						|
 | 
						|
	page_zone(page)->managed_pages += nr_pages;
 | 
						|
	set_page_refcounted(page);
 | 
						|
	__free_pages(page, order);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
 | 
						|
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
 | 
						|
 | 
						|
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
 | 
						|
 | 
						|
int __meminit early_pfn_to_nid(unsigned long pfn)
 | 
						|
{
 | 
						|
	static DEFINE_SPINLOCK(early_pfn_lock);
 | 
						|
	int nid;
 | 
						|
 | 
						|
	spin_lock(&early_pfn_lock);
 | 
						|
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
 | 
						|
	if (nid < 0)
 | 
						|
		nid = 0;
 | 
						|
	spin_unlock(&early_pfn_lock);
 | 
						|
 | 
						|
	return nid;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_NODES_SPAN_OTHER_NODES
 | 
						|
static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
 | 
						|
					struct mminit_pfnnid_cache *state)
 | 
						|
{
 | 
						|
	int nid;
 | 
						|
 | 
						|
	nid = __early_pfn_to_nid(pfn, state);
 | 
						|
	if (nid >= 0 && nid != node)
 | 
						|
		return false;
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/* Only safe to use early in boot when initialisation is single-threaded */
 | 
						|
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
 | 
						|
{
 | 
						|
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
 | 
						|
{
 | 
						|
	return true;
 | 
						|
}
 | 
						|
static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
 | 
						|
					struct mminit_pfnnid_cache *state)
 | 
						|
{
 | 
						|
	return true;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
 | 
						|
							unsigned int order)
 | 
						|
{
 | 
						|
	if (early_page_uninitialised(pfn))
 | 
						|
		return;
 | 
						|
	return __free_pages_boot_core(page, pfn, order);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 | 
						|
static void __init deferred_free_range(struct page *page,
 | 
						|
					unsigned long pfn, int nr_pages)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (!page)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Free a large naturally-aligned chunk if possible */
 | 
						|
	if (nr_pages == MAX_ORDER_NR_PAGES &&
 | 
						|
	    (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
 | 
						|
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
 | 
						|
		__free_pages_boot_core(page, pfn, MAX_ORDER-1);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < nr_pages; i++, page++, pfn++)
 | 
						|
		__free_pages_boot_core(page, pfn, 0);
 | 
						|
}
 | 
						|
 | 
						|
/* Completion tracking for deferred_init_memmap() threads */
 | 
						|
static atomic_t pgdat_init_n_undone __initdata;
 | 
						|
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
 | 
						|
 | 
						|
static inline void __init pgdat_init_report_one_done(void)
 | 
						|
{
 | 
						|
	if (atomic_dec_and_test(&pgdat_init_n_undone))
 | 
						|
		complete(&pgdat_init_all_done_comp);
 | 
						|
}
 | 
						|
 | 
						|
/* Initialise remaining memory on a node */
 | 
						|
static int __init deferred_init_memmap(void *data)
 | 
						|
{
 | 
						|
	pg_data_t *pgdat = data;
 | 
						|
	int nid = pgdat->node_id;
 | 
						|
	struct mminit_pfnnid_cache nid_init_state = { };
 | 
						|
	unsigned long start = jiffies;
 | 
						|
	unsigned long nr_pages = 0;
 | 
						|
	unsigned long walk_start, walk_end;
 | 
						|
	int i, zid;
 | 
						|
	struct zone *zone;
 | 
						|
	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
 | 
						|
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
 | 
						|
 | 
						|
	if (first_init_pfn == ULONG_MAX) {
 | 
						|
		pgdat_init_report_one_done();
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Bind memory initialisation thread to a local node if possible */
 | 
						|
	if (!cpumask_empty(cpumask))
 | 
						|
		set_cpus_allowed_ptr(current, cpumask);
 | 
						|
 | 
						|
	/* Sanity check boundaries */
 | 
						|
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
 | 
						|
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
 | 
						|
	pgdat->first_deferred_pfn = ULONG_MAX;
 | 
						|
 | 
						|
	/* Only the highest zone is deferred so find it */
 | 
						|
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | 
						|
		zone = pgdat->node_zones + zid;
 | 
						|
		if (first_init_pfn < zone_end_pfn(zone))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
 | 
						|
		unsigned long pfn, end_pfn;
 | 
						|
		struct page *page = NULL;
 | 
						|
		struct page *free_base_page = NULL;
 | 
						|
		unsigned long free_base_pfn = 0;
 | 
						|
		int nr_to_free = 0;
 | 
						|
 | 
						|
		end_pfn = min(walk_end, zone_end_pfn(zone));
 | 
						|
		pfn = first_init_pfn;
 | 
						|
		if (pfn < walk_start)
 | 
						|
			pfn = walk_start;
 | 
						|
		if (pfn < zone->zone_start_pfn)
 | 
						|
			pfn = zone->zone_start_pfn;
 | 
						|
 | 
						|
		for (; pfn < end_pfn; pfn++) {
 | 
						|
			if (!pfn_valid_within(pfn))
 | 
						|
				goto free_range;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Ensure pfn_valid is checked every
 | 
						|
			 * MAX_ORDER_NR_PAGES for memory holes
 | 
						|
			 */
 | 
						|
			if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
 | 
						|
				if (!pfn_valid(pfn)) {
 | 
						|
					page = NULL;
 | 
						|
					goto free_range;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
 | 
						|
				page = NULL;
 | 
						|
				goto free_range;
 | 
						|
			}
 | 
						|
 | 
						|
			/* Minimise pfn page lookups and scheduler checks */
 | 
						|
			if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
 | 
						|
				page++;
 | 
						|
			} else {
 | 
						|
				nr_pages += nr_to_free;
 | 
						|
				deferred_free_range(free_base_page,
 | 
						|
						free_base_pfn, nr_to_free);
 | 
						|
				free_base_page = NULL;
 | 
						|
				free_base_pfn = nr_to_free = 0;
 | 
						|
 | 
						|
				page = pfn_to_page(pfn);
 | 
						|
				cond_resched();
 | 
						|
			}
 | 
						|
 | 
						|
			if (page->flags) {
 | 
						|
				VM_BUG_ON(page_zone(page) != zone);
 | 
						|
				goto free_range;
 | 
						|
			}
 | 
						|
 | 
						|
			__init_single_page(page, pfn, zid, nid);
 | 
						|
			if (!free_base_page) {
 | 
						|
				free_base_page = page;
 | 
						|
				free_base_pfn = pfn;
 | 
						|
				nr_to_free = 0;
 | 
						|
			}
 | 
						|
			nr_to_free++;
 | 
						|
 | 
						|
			/* Where possible, batch up pages for a single free */
 | 
						|
			continue;
 | 
						|
free_range:
 | 
						|
			/* Free the current block of pages to allocator */
 | 
						|
			nr_pages += nr_to_free;
 | 
						|
			deferred_free_range(free_base_page, free_base_pfn,
 | 
						|
								nr_to_free);
 | 
						|
			free_base_page = NULL;
 | 
						|
			free_base_pfn = nr_to_free = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		first_init_pfn = max(end_pfn, first_init_pfn);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Sanity check that the next zone really is unpopulated */
 | 
						|
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
 | 
						|
 | 
						|
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
 | 
						|
					jiffies_to_msecs(jiffies - start));
 | 
						|
 | 
						|
	pgdat_init_report_one_done();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void __init page_alloc_init_late(void)
 | 
						|
{
 | 
						|
	int nid;
 | 
						|
 | 
						|
	/* There will be num_node_state(N_MEMORY) threads */
 | 
						|
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
 | 
						|
	for_each_node_state(nid, N_MEMORY) {
 | 
						|
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Block until all are initialised */
 | 
						|
	wait_for_completion(&pgdat_init_all_done_comp);
 | 
						|
 | 
						|
	/* Reinit limits that are based on free pages after the kernel is up */
 | 
						|
	files_maxfiles_init();
 | 
						|
}
 | 
						|
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 | 
						|
 | 
						|
#ifdef CONFIG_CMA
 | 
						|
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
 | 
						|
void __init init_cma_reserved_pageblock(struct page *page)
 | 
						|
{
 | 
						|
	unsigned i = pageblock_nr_pages;
 | 
						|
	struct page *p = page;
 | 
						|
 | 
						|
	do {
 | 
						|
		__ClearPageReserved(p);
 | 
						|
		set_page_count(p, 0);
 | 
						|
	} while (++p, --i);
 | 
						|
 | 
						|
	set_pageblock_migratetype(page, MIGRATE_CMA);
 | 
						|
 | 
						|
	if (pageblock_order >= MAX_ORDER) {
 | 
						|
		i = pageblock_nr_pages;
 | 
						|
		p = page;
 | 
						|
		do {
 | 
						|
			set_page_refcounted(p);
 | 
						|
			__free_pages(p, MAX_ORDER - 1);
 | 
						|
			p += MAX_ORDER_NR_PAGES;
 | 
						|
		} while (i -= MAX_ORDER_NR_PAGES);
 | 
						|
	} else {
 | 
						|
		set_page_refcounted(page);
 | 
						|
		__free_pages(page, pageblock_order);
 | 
						|
	}
 | 
						|
 | 
						|
	adjust_managed_page_count(page, pageblock_nr_pages);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * The order of subdivision here is critical for the IO subsystem.
 | 
						|
 * Please do not alter this order without good reasons and regression
 | 
						|
 * testing. Specifically, as large blocks of memory are subdivided,
 | 
						|
 * the order in which smaller blocks are delivered depends on the order
 | 
						|
 * they're subdivided in this function. This is the primary factor
 | 
						|
 * influencing the order in which pages are delivered to the IO
 | 
						|
 * subsystem according to empirical testing, and this is also justified
 | 
						|
 * by considering the behavior of a buddy system containing a single
 | 
						|
 * large block of memory acted on by a series of small allocations.
 | 
						|
 * This behavior is a critical factor in sglist merging's success.
 | 
						|
 *
 | 
						|
 * -- nyc
 | 
						|
 */
 | 
						|
static inline void expand(struct zone *zone, struct page *page,
 | 
						|
	int low, int high, struct free_area *area,
 | 
						|
	int migratetype)
 | 
						|
{
 | 
						|
	unsigned long size = 1 << high;
 | 
						|
 | 
						|
	while (high > low) {
 | 
						|
		area--;
 | 
						|
		high--;
 | 
						|
		size >>= 1;
 | 
						|
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
 | 
						|
 | 
						|
		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
 | 
						|
			debug_guardpage_enabled() &&
 | 
						|
			high < debug_guardpage_minorder()) {
 | 
						|
			/*
 | 
						|
			 * Mark as guard pages (or page), that will allow to
 | 
						|
			 * merge back to allocator when buddy will be freed.
 | 
						|
			 * Corresponding page table entries will not be touched,
 | 
						|
			 * pages will stay not present in virtual address space
 | 
						|
			 */
 | 
						|
			set_page_guard(zone, &page[size], high, migratetype);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		list_add(&page[size].lru, &area->free_list[migratetype]);
 | 
						|
		area->nr_free++;
 | 
						|
		set_page_order(&page[size], high);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This page is about to be returned from the page allocator
 | 
						|
 */
 | 
						|
static inline int check_new_page(struct page *page)
 | 
						|
{
 | 
						|
	const char *bad_reason = NULL;
 | 
						|
	unsigned long bad_flags = 0;
 | 
						|
 | 
						|
	if (unlikely(atomic_read(&page->_mapcount) != -1))
 | 
						|
		bad_reason = "nonzero mapcount";
 | 
						|
	if (unlikely(page->mapping != NULL))
 | 
						|
		bad_reason = "non-NULL mapping";
 | 
						|
	if (unlikely(atomic_read(&page->_count) != 0))
 | 
						|
		bad_reason = "nonzero _count";
 | 
						|
	if (unlikely(page->flags & __PG_HWPOISON)) {
 | 
						|
		bad_reason = "HWPoisoned (hardware-corrupted)";
 | 
						|
		bad_flags = __PG_HWPOISON;
 | 
						|
	}
 | 
						|
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
 | 
						|
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
 | 
						|
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
 | 
						|
	}
 | 
						|
#ifdef CONFIG_MEMCG
 | 
						|
	if (unlikely(page->mem_cgroup))
 | 
						|
		bad_reason = "page still charged to cgroup";
 | 
						|
#endif
 | 
						|
	if (unlikely(bad_reason)) {
 | 
						|
		bad_page(page, bad_reason, bad_flags);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
 | 
						|
								int alloc_flags)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < (1 << order); i++) {
 | 
						|
		struct page *p = page + i;
 | 
						|
		if (unlikely(check_new_page(p)))
 | 
						|
			return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	set_page_private(page, 0);
 | 
						|
	set_page_refcounted(page);
 | 
						|
 | 
						|
	arch_alloc_page(page, order);
 | 
						|
	kernel_map_pages(page, 1 << order, 1);
 | 
						|
	kasan_alloc_pages(page, order);
 | 
						|
 | 
						|
	if (gfp_flags & __GFP_ZERO)
 | 
						|
		for (i = 0; i < (1 << order); i++)
 | 
						|
			clear_highpage(page + i);
 | 
						|
 | 
						|
	if (order && (gfp_flags & __GFP_COMP))
 | 
						|
		prep_compound_page(page, order);
 | 
						|
 | 
						|
	set_page_owner(page, order, gfp_flags);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
 | 
						|
	 * allocate the page. The expectation is that the caller is taking
 | 
						|
	 * steps that will free more memory. The caller should avoid the page
 | 
						|
	 * being used for !PFMEMALLOC purposes.
 | 
						|
	 */
 | 
						|
	if (alloc_flags & ALLOC_NO_WATERMARKS)
 | 
						|
		set_page_pfmemalloc(page);
 | 
						|
	else
 | 
						|
		clear_page_pfmemalloc(page);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Go through the free lists for the given migratetype and remove
 | 
						|
 * the smallest available page from the freelists
 | 
						|
 */
 | 
						|
static inline
 | 
						|
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
 | 
						|
						int migratetype)
 | 
						|
{
 | 
						|
	unsigned int current_order;
 | 
						|
	struct free_area *area;
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	/* Find a page of the appropriate size in the preferred list */
 | 
						|
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
 | 
						|
		area = &(zone->free_area[current_order]);
 | 
						|
		page = list_first_entry_or_null(&area->free_list[migratetype],
 | 
						|
							struct page, lru);
 | 
						|
		if (!page)
 | 
						|
			continue;
 | 
						|
		list_del(&page->lru);
 | 
						|
		rmv_page_order(page);
 | 
						|
		area->nr_free--;
 | 
						|
		expand(zone, page, order, current_order, area, migratetype);
 | 
						|
		set_pcppage_migratetype(page, migratetype);
 | 
						|
		return page;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * This array describes the order lists are fallen back to when
 | 
						|
 * the free lists for the desirable migrate type are depleted
 | 
						|
 */
 | 
						|
static int fallbacks[MIGRATE_TYPES][4] = {
 | 
						|
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
 | 
						|
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
 | 
						|
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
 | 
						|
#ifdef CONFIG_CMA
 | 
						|
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_MEMORY_ISOLATION
 | 
						|
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_CMA
 | 
						|
static struct page *__rmqueue_cma_fallback(struct zone *zone,
 | 
						|
					unsigned int order)
 | 
						|
{
 | 
						|
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
 | 
						|
					unsigned int order) { return NULL; }
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Move the free pages in a range to the free lists of the requested type.
 | 
						|
 * Note that start_page and end_pages are not aligned on a pageblock
 | 
						|
 * boundary. If alignment is required, use move_freepages_block()
 | 
						|
 */
 | 
						|
int move_freepages(struct zone *zone,
 | 
						|
			  struct page *start_page, struct page *end_page,
 | 
						|
			  int migratetype)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	unsigned int order;
 | 
						|
	int pages_moved = 0;
 | 
						|
 | 
						|
#ifndef CONFIG_HOLES_IN_ZONE
 | 
						|
	/*
 | 
						|
	 * page_zone is not safe to call in this context when
 | 
						|
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
 | 
						|
	 * anyway as we check zone boundaries in move_freepages_block().
 | 
						|
	 * Remove at a later date when no bug reports exist related to
 | 
						|
	 * grouping pages by mobility
 | 
						|
	 */
 | 
						|
	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
 | 
						|
#endif
 | 
						|
 | 
						|
	for (page = start_page; page <= end_page;) {
 | 
						|
		/* Make sure we are not inadvertently changing nodes */
 | 
						|
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
 | 
						|
 | 
						|
		if (!pfn_valid_within(page_to_pfn(page))) {
 | 
						|
			page++;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!PageBuddy(page)) {
 | 
						|
			page++;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		order = page_order(page);
 | 
						|
		list_move(&page->lru,
 | 
						|
			  &zone->free_area[order].free_list[migratetype]);
 | 
						|
		page += 1 << order;
 | 
						|
		pages_moved += 1 << order;
 | 
						|
	}
 | 
						|
 | 
						|
	return pages_moved;
 | 
						|
}
 | 
						|
 | 
						|
int move_freepages_block(struct zone *zone, struct page *page,
 | 
						|
				int migratetype)
 | 
						|
{
 | 
						|
	unsigned long start_pfn, end_pfn;
 | 
						|
	struct page *start_page, *end_page;
 | 
						|
 | 
						|
	start_pfn = page_to_pfn(page);
 | 
						|
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
 | 
						|
	start_page = pfn_to_page(start_pfn);
 | 
						|
	end_page = start_page + pageblock_nr_pages - 1;
 | 
						|
	end_pfn = start_pfn + pageblock_nr_pages - 1;
 | 
						|
 | 
						|
	/* Do not cross zone boundaries */
 | 
						|
	if (!zone_spans_pfn(zone, start_pfn))
 | 
						|
		start_page = page;
 | 
						|
	if (!zone_spans_pfn(zone, end_pfn))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return move_freepages(zone, start_page, end_page, migratetype);
 | 
						|
}
 | 
						|
 | 
						|
static void change_pageblock_range(struct page *pageblock_page,
 | 
						|
					int start_order, int migratetype)
 | 
						|
{
 | 
						|
	int nr_pageblocks = 1 << (start_order - pageblock_order);
 | 
						|
 | 
						|
	while (nr_pageblocks--) {
 | 
						|
		set_pageblock_migratetype(pageblock_page, migratetype);
 | 
						|
		pageblock_page += pageblock_nr_pages;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * When we are falling back to another migratetype during allocation, try to
 | 
						|
 * steal extra free pages from the same pageblocks to satisfy further
 | 
						|
 * allocations, instead of polluting multiple pageblocks.
 | 
						|
 *
 | 
						|
 * If we are stealing a relatively large buddy page, it is likely there will
 | 
						|
 * be more free pages in the pageblock, so try to steal them all. For
 | 
						|
 * reclaimable and unmovable allocations, we steal regardless of page size,
 | 
						|
 * as fragmentation caused by those allocations polluting movable pageblocks
 | 
						|
 * is worse than movable allocations stealing from unmovable and reclaimable
 | 
						|
 * pageblocks.
 | 
						|
 */
 | 
						|
static bool can_steal_fallback(unsigned int order, int start_mt)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Leaving this order check is intended, although there is
 | 
						|
	 * relaxed order check in next check. The reason is that
 | 
						|
	 * we can actually steal whole pageblock if this condition met,
 | 
						|
	 * but, below check doesn't guarantee it and that is just heuristic
 | 
						|
	 * so could be changed anytime.
 | 
						|
	 */
 | 
						|
	if (order >= pageblock_order)
 | 
						|
		return true;
 | 
						|
 | 
						|
	if (order >= pageblock_order / 2 ||
 | 
						|
		start_mt == MIGRATE_RECLAIMABLE ||
 | 
						|
		start_mt == MIGRATE_UNMOVABLE ||
 | 
						|
		page_group_by_mobility_disabled)
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function implements actual steal behaviour. If order is large enough,
 | 
						|
 * we can steal whole pageblock. If not, we first move freepages in this
 | 
						|
 * pageblock and check whether half of pages are moved or not. If half of
 | 
						|
 * pages are moved, we can change migratetype of pageblock and permanently
 | 
						|
 * use it's pages as requested migratetype in the future.
 | 
						|
 */
 | 
						|
static void steal_suitable_fallback(struct zone *zone, struct page *page,
 | 
						|
							  int start_type)
 | 
						|
{
 | 
						|
	unsigned int current_order = page_order(page);
 | 
						|
	int pages;
 | 
						|
 | 
						|
	/* Take ownership for orders >= pageblock_order */
 | 
						|
	if (current_order >= pageblock_order) {
 | 
						|
		change_pageblock_range(page, current_order, start_type);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	pages = move_freepages_block(zone, page, start_type);
 | 
						|
 | 
						|
	/* Claim the whole block if over half of it is free */
 | 
						|
	if (pages >= (1 << (pageblock_order-1)) ||
 | 
						|
			page_group_by_mobility_disabled)
 | 
						|
		set_pageblock_migratetype(page, start_type);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check whether there is a suitable fallback freepage with requested order.
 | 
						|
 * If only_stealable is true, this function returns fallback_mt only if
 | 
						|
 * we can steal other freepages all together. This would help to reduce
 | 
						|
 * fragmentation due to mixed migratetype pages in one pageblock.
 | 
						|
 */
 | 
						|
int find_suitable_fallback(struct free_area *area, unsigned int order,
 | 
						|
			int migratetype, bool only_stealable, bool *can_steal)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int fallback_mt;
 | 
						|
 | 
						|
	if (area->nr_free == 0)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	*can_steal = false;
 | 
						|
	for (i = 0;; i++) {
 | 
						|
		fallback_mt = fallbacks[migratetype][i];
 | 
						|
		if (fallback_mt == MIGRATE_TYPES)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (list_empty(&area->free_list[fallback_mt]))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (can_steal_fallback(order, migratetype))
 | 
						|
			*can_steal = true;
 | 
						|
 | 
						|
		if (!only_stealable)
 | 
						|
			return fallback_mt;
 | 
						|
 | 
						|
		if (*can_steal)
 | 
						|
			return fallback_mt;
 | 
						|
	}
 | 
						|
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 | 
						|
 * there are no empty page blocks that contain a page with a suitable order
 | 
						|
 */
 | 
						|
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
 | 
						|
				unsigned int alloc_order)
 | 
						|
{
 | 
						|
	int mt;
 | 
						|
	unsigned long max_managed, flags;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
 | 
						|
	 * Check is race-prone but harmless.
 | 
						|
	 */
 | 
						|
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
 | 
						|
	if (zone->nr_reserved_highatomic >= max_managed)
 | 
						|
		return;
 | 
						|
 | 
						|
	spin_lock_irqsave(&zone->lock, flags);
 | 
						|
 | 
						|
	/* Recheck the nr_reserved_highatomic limit under the lock */
 | 
						|
	if (zone->nr_reserved_highatomic >= max_managed)
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	/* Yoink! */
 | 
						|
	mt = get_pageblock_migratetype(page);
 | 
						|
	if (mt != MIGRATE_HIGHATOMIC &&
 | 
						|
			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
 | 
						|
		zone->nr_reserved_highatomic += pageblock_nr_pages;
 | 
						|
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
 | 
						|
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
 | 
						|
	}
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	spin_unlock_irqrestore(&zone->lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Used when an allocation is about to fail under memory pressure. This
 | 
						|
 * potentially hurts the reliability of high-order allocations when under
 | 
						|
 * intense memory pressure but failed atomic allocations should be easier
 | 
						|
 * to recover from than an OOM.
 | 
						|
 */
 | 
						|
static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
 | 
						|
{
 | 
						|
	struct zonelist *zonelist = ac->zonelist;
 | 
						|
	unsigned long flags;
 | 
						|
	struct zoneref *z;
 | 
						|
	struct zone *zone;
 | 
						|
	struct page *page;
 | 
						|
	int order;
 | 
						|
 | 
						|
	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
 | 
						|
								ac->nodemask) {
 | 
						|
		/* Preserve at least one pageblock */
 | 
						|
		if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
 | 
						|
			continue;
 | 
						|
 | 
						|
		spin_lock_irqsave(&zone->lock, flags);
 | 
						|
		for (order = 0; order < MAX_ORDER; order++) {
 | 
						|
			struct free_area *area = &(zone->free_area[order]);
 | 
						|
 | 
						|
			page = list_first_entry_or_null(
 | 
						|
					&area->free_list[MIGRATE_HIGHATOMIC],
 | 
						|
					struct page, lru);
 | 
						|
			if (!page)
 | 
						|
				continue;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * It should never happen but changes to locking could
 | 
						|
			 * inadvertently allow a per-cpu drain to add pages
 | 
						|
			 * to MIGRATE_HIGHATOMIC while unreserving so be safe
 | 
						|
			 * and watch for underflows.
 | 
						|
			 */
 | 
						|
			zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
 | 
						|
				zone->nr_reserved_highatomic);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Convert to ac->migratetype and avoid the normal
 | 
						|
			 * pageblock stealing heuristics. Minimally, the caller
 | 
						|
			 * is doing the work and needs the pages. More
 | 
						|
			 * importantly, if the block was always converted to
 | 
						|
			 * MIGRATE_UNMOVABLE or another type then the number
 | 
						|
			 * of pageblocks that cannot be completely freed
 | 
						|
			 * may increase.
 | 
						|
			 */
 | 
						|
			set_pageblock_migratetype(page, ac->migratetype);
 | 
						|
			move_freepages_block(zone, page, ac->migratetype);
 | 
						|
			spin_unlock_irqrestore(&zone->lock, flags);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		spin_unlock_irqrestore(&zone->lock, flags);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Remove an element from the buddy allocator from the fallback list */
 | 
						|
static inline struct page *
 | 
						|
__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
 | 
						|
{
 | 
						|
	struct free_area *area;
 | 
						|
	unsigned int current_order;
 | 
						|
	struct page *page;
 | 
						|
	int fallback_mt;
 | 
						|
	bool can_steal;
 | 
						|
 | 
						|
	/* Find the largest possible block of pages in the other list */
 | 
						|
	for (current_order = MAX_ORDER-1;
 | 
						|
				current_order >= order && current_order <= MAX_ORDER-1;
 | 
						|
				--current_order) {
 | 
						|
		area = &(zone->free_area[current_order]);
 | 
						|
		fallback_mt = find_suitable_fallback(area, current_order,
 | 
						|
				start_migratetype, false, &can_steal);
 | 
						|
		if (fallback_mt == -1)
 | 
						|
			continue;
 | 
						|
 | 
						|
		page = list_first_entry(&area->free_list[fallback_mt],
 | 
						|
						struct page, lru);
 | 
						|
		if (can_steal)
 | 
						|
			steal_suitable_fallback(zone, page, start_migratetype);
 | 
						|
 | 
						|
		/* Remove the page from the freelists */
 | 
						|
		area->nr_free--;
 | 
						|
		list_del(&page->lru);
 | 
						|
		rmv_page_order(page);
 | 
						|
 | 
						|
		expand(zone, page, order, current_order, area,
 | 
						|
					start_migratetype);
 | 
						|
		/*
 | 
						|
		 * The pcppage_migratetype may differ from pageblock's
 | 
						|
		 * migratetype depending on the decisions in
 | 
						|
		 * find_suitable_fallback(). This is OK as long as it does not
 | 
						|
		 * differ for MIGRATE_CMA pageblocks. Those can be used as
 | 
						|
		 * fallback only via special __rmqueue_cma_fallback() function
 | 
						|
		 */
 | 
						|
		set_pcppage_migratetype(page, start_migratetype);
 | 
						|
 | 
						|
		trace_mm_page_alloc_extfrag(page, order, current_order,
 | 
						|
			start_migratetype, fallback_mt);
 | 
						|
 | 
						|
		return page;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Do the hard work of removing an element from the buddy allocator.
 | 
						|
 * Call me with the zone->lock already held.
 | 
						|
 */
 | 
						|
static struct page *__rmqueue(struct zone *zone, unsigned int order,
 | 
						|
				int migratetype)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	page = __rmqueue_smallest(zone, order, migratetype);
 | 
						|
	if (unlikely(!page)) {
 | 
						|
		if (migratetype == MIGRATE_MOVABLE)
 | 
						|
			page = __rmqueue_cma_fallback(zone, order);
 | 
						|
 | 
						|
		if (!page)
 | 
						|
			page = __rmqueue_fallback(zone, order, migratetype);
 | 
						|
	}
 | 
						|
 | 
						|
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Obtain a specified number of elements from the buddy allocator, all under
 | 
						|
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 | 
						|
 * Returns the number of new pages which were placed at *list.
 | 
						|
 */
 | 
						|
static int rmqueue_bulk(struct zone *zone, unsigned int order,
 | 
						|
			unsigned long count, struct list_head *list,
 | 
						|
			int migratetype, bool cold)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	spin_lock(&zone->lock);
 | 
						|
	for (i = 0; i < count; ++i) {
 | 
						|
		struct page *page = __rmqueue(zone, order, migratetype);
 | 
						|
		if (unlikely(page == NULL))
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Split buddy pages returned by expand() are received here
 | 
						|
		 * in physical page order. The page is added to the callers and
 | 
						|
		 * list and the list head then moves forward. From the callers
 | 
						|
		 * perspective, the linked list is ordered by page number in
 | 
						|
		 * some conditions. This is useful for IO devices that can
 | 
						|
		 * merge IO requests if the physical pages are ordered
 | 
						|
		 * properly.
 | 
						|
		 */
 | 
						|
		if (likely(!cold))
 | 
						|
			list_add(&page->lru, list);
 | 
						|
		else
 | 
						|
			list_add_tail(&page->lru, list);
 | 
						|
		list = &page->lru;
 | 
						|
		if (is_migrate_cma(get_pcppage_migratetype(page)))
 | 
						|
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
 | 
						|
					      -(1 << order));
 | 
						|
	}
 | 
						|
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
 | 
						|
	spin_unlock(&zone->lock);
 | 
						|
	return i;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
/*
 | 
						|
 * Called from the vmstat counter updater to drain pagesets of this
 | 
						|
 * currently executing processor on remote nodes after they have
 | 
						|
 * expired.
 | 
						|
 *
 | 
						|
 * Note that this function must be called with the thread pinned to
 | 
						|
 * a single processor.
 | 
						|
 */
 | 
						|
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	int to_drain, batch;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	batch = READ_ONCE(pcp->batch);
 | 
						|
	to_drain = min(pcp->count, batch);
 | 
						|
	if (to_drain > 0) {
 | 
						|
		free_pcppages_bulk(zone, to_drain, pcp);
 | 
						|
		pcp->count -= to_drain;
 | 
						|
	}
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Drain pcplists of the indicated processor and zone.
 | 
						|
 *
 | 
						|
 * The processor must either be the current processor and the
 | 
						|
 * thread pinned to the current processor or a processor that
 | 
						|
 * is not online.
 | 
						|
 */
 | 
						|
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	struct per_cpu_pageset *pset;
 | 
						|
	struct per_cpu_pages *pcp;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	pset = per_cpu_ptr(zone->pageset, cpu);
 | 
						|
 | 
						|
	pcp = &pset->pcp;
 | 
						|
	if (pcp->count) {
 | 
						|
		free_pcppages_bulk(zone, pcp->count, pcp);
 | 
						|
		pcp->count = 0;
 | 
						|
	}
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Drain pcplists of all zones on the indicated processor.
 | 
						|
 *
 | 
						|
 * The processor must either be the current processor and the
 | 
						|
 * thread pinned to the current processor or a processor that
 | 
						|
 * is not online.
 | 
						|
 */
 | 
						|
static void drain_pages(unsigned int cpu)
 | 
						|
{
 | 
						|
	struct zone *zone;
 | 
						|
 | 
						|
	for_each_populated_zone(zone) {
 | 
						|
		drain_pages_zone(cpu, zone);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
 | 
						|
 *
 | 
						|
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 | 
						|
 * the single zone's pages.
 | 
						|
 */
 | 
						|
void drain_local_pages(struct zone *zone)
 | 
						|
{
 | 
						|
	int cpu = smp_processor_id();
 | 
						|
 | 
						|
	if (zone)
 | 
						|
		drain_pages_zone(cpu, zone);
 | 
						|
	else
 | 
						|
		drain_pages(cpu);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 | 
						|
 *
 | 
						|
 * When zone parameter is non-NULL, spill just the single zone's pages.
 | 
						|
 *
 | 
						|
 * Note that this code is protected against sending an IPI to an offline
 | 
						|
 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
 | 
						|
 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
 | 
						|
 * nothing keeps CPUs from showing up after we populated the cpumask and
 | 
						|
 * before the call to on_each_cpu_mask().
 | 
						|
 */
 | 
						|
void drain_all_pages(struct zone *zone)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allocate in the BSS so we wont require allocation in
 | 
						|
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
 | 
						|
	 */
 | 
						|
	static cpumask_t cpus_with_pcps;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't care about racing with CPU hotplug event
 | 
						|
	 * as offline notification will cause the notified
 | 
						|
	 * cpu to drain that CPU pcps and on_each_cpu_mask
 | 
						|
	 * disables preemption as part of its processing
 | 
						|
	 */
 | 
						|
	for_each_online_cpu(cpu) {
 | 
						|
		struct per_cpu_pageset *pcp;
 | 
						|
		struct zone *z;
 | 
						|
		bool has_pcps = false;
 | 
						|
 | 
						|
		if (zone) {
 | 
						|
			pcp = per_cpu_ptr(zone->pageset, cpu);
 | 
						|
			if (pcp->pcp.count)
 | 
						|
				has_pcps = true;
 | 
						|
		} else {
 | 
						|
			for_each_populated_zone(z) {
 | 
						|
				pcp = per_cpu_ptr(z->pageset, cpu);
 | 
						|
				if (pcp->pcp.count) {
 | 
						|
					has_pcps = true;
 | 
						|
					break;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (has_pcps)
 | 
						|
			cpumask_set_cpu(cpu, &cpus_with_pcps);
 | 
						|
		else
 | 
						|
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
 | 
						|
	}
 | 
						|
	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
 | 
						|
								zone, 1);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HIBERNATION
 | 
						|
 | 
						|
void mark_free_pages(struct zone *zone)
 | 
						|
{
 | 
						|
	unsigned long pfn, max_zone_pfn;
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned int order, t;
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	if (zone_is_empty(zone))
 | 
						|
		return;
 | 
						|
 | 
						|
	spin_lock_irqsave(&zone->lock, flags);
 | 
						|
 | 
						|
	max_zone_pfn = zone_end_pfn(zone);
 | 
						|
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
 | 
						|
		if (pfn_valid(pfn)) {
 | 
						|
			page = pfn_to_page(pfn);
 | 
						|
			if (!swsusp_page_is_forbidden(page))
 | 
						|
				swsusp_unset_page_free(page);
 | 
						|
		}
 | 
						|
 | 
						|
	for_each_migratetype_order(order, t) {
 | 
						|
		list_for_each_entry(page,
 | 
						|
				&zone->free_area[order].free_list[t], lru) {
 | 
						|
			unsigned long i;
 | 
						|
 | 
						|
			pfn = page_to_pfn(page);
 | 
						|
			for (i = 0; i < (1UL << order); i++)
 | 
						|
				swsusp_set_page_free(pfn_to_page(pfn + i));
 | 
						|
		}
 | 
						|
	}
 | 
						|
	spin_unlock_irqrestore(&zone->lock, flags);
 | 
						|
}
 | 
						|
#endif /* CONFIG_PM */
 | 
						|
 | 
						|
/*
 | 
						|
 * Free a 0-order page
 | 
						|
 * cold == true ? free a cold page : free a hot page
 | 
						|
 */
 | 
						|
void free_hot_cold_page(struct page *page, bool cold)
 | 
						|
{
 | 
						|
	struct zone *zone = page_zone(page);
 | 
						|
	struct per_cpu_pages *pcp;
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long pfn = page_to_pfn(page);
 | 
						|
	int migratetype;
 | 
						|
 | 
						|
	if (!free_pages_prepare(page, 0))
 | 
						|
		return;
 | 
						|
 | 
						|
	migratetype = get_pfnblock_migratetype(page, pfn);
 | 
						|
	set_pcppage_migratetype(page, migratetype);
 | 
						|
	local_irq_save(flags);
 | 
						|
	__count_vm_event(PGFREE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We only track unmovable, reclaimable and movable on pcp lists.
 | 
						|
	 * Free ISOLATE pages back to the allocator because they are being
 | 
						|
	 * offlined but treat RESERVE as movable pages so we can get those
 | 
						|
	 * areas back if necessary. Otherwise, we may have to free
 | 
						|
	 * excessively into the page allocator
 | 
						|
	 */
 | 
						|
	if (migratetype >= MIGRATE_PCPTYPES) {
 | 
						|
		if (unlikely(is_migrate_isolate(migratetype))) {
 | 
						|
			free_one_page(zone, page, pfn, 0, migratetype);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		migratetype = MIGRATE_MOVABLE;
 | 
						|
	}
 | 
						|
 | 
						|
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
 | 
						|
	if (!cold)
 | 
						|
		list_add(&page->lru, &pcp->lists[migratetype]);
 | 
						|
	else
 | 
						|
		list_add_tail(&page->lru, &pcp->lists[migratetype]);
 | 
						|
	pcp->count++;
 | 
						|
	if (pcp->count >= pcp->high) {
 | 
						|
		unsigned long batch = READ_ONCE(pcp->batch);
 | 
						|
		free_pcppages_bulk(zone, batch, pcp);
 | 
						|
		pcp->count -= batch;
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free a list of 0-order pages
 | 
						|
 */
 | 
						|
void free_hot_cold_page_list(struct list_head *list, bool cold)
 | 
						|
{
 | 
						|
	struct page *page, *next;
 | 
						|
 | 
						|
	list_for_each_entry_safe(page, next, list, lru) {
 | 
						|
		trace_mm_page_free_batched(page, cold);
 | 
						|
		free_hot_cold_page(page, cold);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * split_page takes a non-compound higher-order page, and splits it into
 | 
						|
 * n (1<<order) sub-pages: page[0..n]
 | 
						|
 * Each sub-page must be freed individually.
 | 
						|
 *
 | 
						|
 * Note: this is probably too low level an operation for use in drivers.
 | 
						|
 * Please consult with lkml before using this in your driver.
 | 
						|
 */
 | 
						|
void split_page(struct page *page, unsigned int order)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	gfp_t gfp_mask;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(PageCompound(page), page);
 | 
						|
	VM_BUG_ON_PAGE(!page_count(page), page);
 | 
						|
 | 
						|
#ifdef CONFIG_KMEMCHECK
 | 
						|
	/*
 | 
						|
	 * Split shadow pages too, because free(page[0]) would
 | 
						|
	 * otherwise free the whole shadow.
 | 
						|
	 */
 | 
						|
	if (kmemcheck_page_is_tracked(page))
 | 
						|
		split_page(virt_to_page(page[0].shadow), order);
 | 
						|
#endif
 | 
						|
 | 
						|
	gfp_mask = get_page_owner_gfp(page);
 | 
						|
	set_page_owner(page, 0, gfp_mask);
 | 
						|
	for (i = 1; i < (1 << order); i++) {
 | 
						|
		set_page_refcounted(page + i);
 | 
						|
		set_page_owner(page + i, 0, gfp_mask);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(split_page);
 | 
						|
 | 
						|
int __isolate_free_page(struct page *page, unsigned int order)
 | 
						|
{
 | 
						|
	unsigned long watermark;
 | 
						|
	struct zone *zone;
 | 
						|
	int mt;
 | 
						|
 | 
						|
	BUG_ON(!PageBuddy(page));
 | 
						|
 | 
						|
	zone = page_zone(page);
 | 
						|
	mt = get_pageblock_migratetype(page);
 | 
						|
 | 
						|
	if (!is_migrate_isolate(mt)) {
 | 
						|
		/* Obey watermarks as if the page was being allocated */
 | 
						|
		watermark = low_wmark_pages(zone) + (1 << order);
 | 
						|
		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
 | 
						|
			return 0;
 | 
						|
 | 
						|
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Remove page from free list */
 | 
						|
	list_del(&page->lru);
 | 
						|
	zone->free_area[order].nr_free--;
 | 
						|
	rmv_page_order(page);
 | 
						|
 | 
						|
	set_page_owner(page, order, __GFP_MOVABLE);
 | 
						|
 | 
						|
	/* Set the pageblock if the isolated page is at least a pageblock */
 | 
						|
	if (order >= pageblock_order - 1) {
 | 
						|
		struct page *endpage = page + (1 << order) - 1;
 | 
						|
		for (; page < endpage; page += pageblock_nr_pages) {
 | 
						|
			int mt = get_pageblock_migratetype(page);
 | 
						|
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
 | 
						|
				set_pageblock_migratetype(page,
 | 
						|
							  MIGRATE_MOVABLE);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	return 1UL << order;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Similar to split_page except the page is already free. As this is only
 | 
						|
 * being used for migration, the migratetype of the block also changes.
 | 
						|
 * As this is called with interrupts disabled, the caller is responsible
 | 
						|
 * for calling arch_alloc_page() and kernel_map_page() after interrupts
 | 
						|
 * are enabled.
 | 
						|
 *
 | 
						|
 * Note: this is probably too low level an operation for use in drivers.
 | 
						|
 * Please consult with lkml before using this in your driver.
 | 
						|
 */
 | 
						|
int split_free_page(struct page *page)
 | 
						|
{
 | 
						|
	unsigned int order;
 | 
						|
	int nr_pages;
 | 
						|
 | 
						|
	order = page_order(page);
 | 
						|
 | 
						|
	nr_pages = __isolate_free_page(page, order);
 | 
						|
	if (!nr_pages)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Split into individual pages */
 | 
						|
	set_page_refcounted(page);
 | 
						|
	split_page(page, order);
 | 
						|
	return nr_pages;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
 | 
						|
 */
 | 
						|
static inline
 | 
						|
struct page *buffered_rmqueue(struct zone *preferred_zone,
 | 
						|
			struct zone *zone, unsigned int order,
 | 
						|
			gfp_t gfp_flags, int alloc_flags, int migratetype)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	struct page *page;
 | 
						|
	bool cold = ((gfp_flags & __GFP_COLD) != 0);
 | 
						|
 | 
						|
	if (likely(order == 0)) {
 | 
						|
		struct per_cpu_pages *pcp;
 | 
						|
		struct list_head *list;
 | 
						|
 | 
						|
		local_irq_save(flags);
 | 
						|
		pcp = &this_cpu_ptr(zone->pageset)->pcp;
 | 
						|
		list = &pcp->lists[migratetype];
 | 
						|
		if (list_empty(list)) {
 | 
						|
			pcp->count += rmqueue_bulk(zone, 0,
 | 
						|
					pcp->batch, list,
 | 
						|
					migratetype, cold);
 | 
						|
			if (unlikely(list_empty(list)))
 | 
						|
				goto failed;
 | 
						|
		}
 | 
						|
 | 
						|
		if (cold)
 | 
						|
			page = list_last_entry(list, struct page, lru);
 | 
						|
		else
 | 
						|
			page = list_first_entry(list, struct page, lru);
 | 
						|
 | 
						|
		list_del(&page->lru);
 | 
						|
		pcp->count--;
 | 
						|
	} else {
 | 
						|
		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
 | 
						|
			/*
 | 
						|
			 * __GFP_NOFAIL is not to be used in new code.
 | 
						|
			 *
 | 
						|
			 * All __GFP_NOFAIL callers should be fixed so that they
 | 
						|
			 * properly detect and handle allocation failures.
 | 
						|
			 *
 | 
						|
			 * We most definitely don't want callers attempting to
 | 
						|
			 * allocate greater than order-1 page units with
 | 
						|
			 * __GFP_NOFAIL.
 | 
						|
			 */
 | 
						|
			WARN_ON_ONCE(order > 1);
 | 
						|
		}
 | 
						|
		spin_lock_irqsave(&zone->lock, flags);
 | 
						|
 | 
						|
		page = NULL;
 | 
						|
		if (alloc_flags & ALLOC_HARDER) {
 | 
						|
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
 | 
						|
			if (page)
 | 
						|
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
 | 
						|
		}
 | 
						|
		if (!page)
 | 
						|
			page = __rmqueue(zone, order, migratetype);
 | 
						|
		spin_unlock(&zone->lock);
 | 
						|
		if (!page)
 | 
						|
			goto failed;
 | 
						|
		__mod_zone_freepage_state(zone, -(1 << order),
 | 
						|
					  get_pcppage_migratetype(page));
 | 
						|
	}
 | 
						|
 | 
						|
	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
 | 
						|
	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
 | 
						|
	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
 | 
						|
		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
 | 
						|
 | 
						|
	__count_zone_vm_events(PGALLOC, zone, 1 << order);
 | 
						|
	zone_statistics(preferred_zone, zone, gfp_flags);
 | 
						|
	local_irq_restore(flags);
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 | 
						|
	return page;
 | 
						|
 | 
						|
failed:
 | 
						|
	local_irq_restore(flags);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_FAIL_PAGE_ALLOC
 | 
						|
 | 
						|
static struct {
 | 
						|
	struct fault_attr attr;
 | 
						|
 | 
						|
	bool ignore_gfp_highmem;
 | 
						|
	bool ignore_gfp_reclaim;
 | 
						|
	u32 min_order;
 | 
						|
} fail_page_alloc = {
 | 
						|
	.attr = FAULT_ATTR_INITIALIZER,
 | 
						|
	.ignore_gfp_reclaim = true,
 | 
						|
	.ignore_gfp_highmem = true,
 | 
						|
	.min_order = 1,
 | 
						|
};
 | 
						|
 | 
						|
static int __init setup_fail_page_alloc(char *str)
 | 
						|
{
 | 
						|
	return setup_fault_attr(&fail_page_alloc.attr, str);
 | 
						|
}
 | 
						|
__setup("fail_page_alloc=", setup_fail_page_alloc);
 | 
						|
 | 
						|
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
 | 
						|
{
 | 
						|
	if (order < fail_page_alloc.min_order)
 | 
						|
		return false;
 | 
						|
	if (gfp_mask & __GFP_NOFAIL)
 | 
						|
		return false;
 | 
						|
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
 | 
						|
		return false;
 | 
						|
	if (fail_page_alloc.ignore_gfp_reclaim &&
 | 
						|
			(gfp_mask & __GFP_DIRECT_RECLAIM))
 | 
						|
		return false;
 | 
						|
 | 
						|
	return should_fail(&fail_page_alloc.attr, 1 << order);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 | 
						|
 | 
						|
static int __init fail_page_alloc_debugfs(void)
 | 
						|
{
 | 
						|
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
 | 
						|
	struct dentry *dir;
 | 
						|
 | 
						|
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
 | 
						|
					&fail_page_alloc.attr);
 | 
						|
	if (IS_ERR(dir))
 | 
						|
		return PTR_ERR(dir);
 | 
						|
 | 
						|
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
 | 
						|
				&fail_page_alloc.ignore_gfp_reclaim))
 | 
						|
		goto fail;
 | 
						|
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
 | 
						|
				&fail_page_alloc.ignore_gfp_highmem))
 | 
						|
		goto fail;
 | 
						|
	if (!debugfs_create_u32("min-order", mode, dir,
 | 
						|
				&fail_page_alloc.min_order))
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	return 0;
 | 
						|
fail:
 | 
						|
	debugfs_remove_recursive(dir);
 | 
						|
 | 
						|
	return -ENOMEM;
 | 
						|
}
 | 
						|
 | 
						|
late_initcall(fail_page_alloc_debugfs);
 | 
						|
 | 
						|
#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 | 
						|
 | 
						|
#else /* CONFIG_FAIL_PAGE_ALLOC */
 | 
						|
 | 
						|
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
 | 
						|
{
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_FAIL_PAGE_ALLOC */
 | 
						|
 | 
						|
/*
 | 
						|
 * Return true if free base pages are above 'mark'. For high-order checks it
 | 
						|
 * will return true of the order-0 watermark is reached and there is at least
 | 
						|
 * one free page of a suitable size. Checking now avoids taking the zone lock
 | 
						|
 * to check in the allocation paths if no pages are free.
 | 
						|
 */
 | 
						|
static bool __zone_watermark_ok(struct zone *z, unsigned int order,
 | 
						|
			unsigned long mark, int classzone_idx, int alloc_flags,
 | 
						|
			long free_pages)
 | 
						|
{
 | 
						|
	long min = mark;
 | 
						|
	int o;
 | 
						|
	const int alloc_harder = (alloc_flags & ALLOC_HARDER);
 | 
						|
 | 
						|
	/* free_pages may go negative - that's OK */
 | 
						|
	free_pages -= (1 << order) - 1;
 | 
						|
 | 
						|
	if (alloc_flags & ALLOC_HIGH)
 | 
						|
		min -= min / 2;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the caller does not have rights to ALLOC_HARDER then subtract
 | 
						|
	 * the high-atomic reserves. This will over-estimate the size of the
 | 
						|
	 * atomic reserve but it avoids a search.
 | 
						|
	 */
 | 
						|
	if (likely(!alloc_harder))
 | 
						|
		free_pages -= z->nr_reserved_highatomic;
 | 
						|
	else
 | 
						|
		min -= min / 4;
 | 
						|
 | 
						|
#ifdef CONFIG_CMA
 | 
						|
	/* If allocation can't use CMA areas don't use free CMA pages */
 | 
						|
	if (!(alloc_flags & ALLOC_CMA))
 | 
						|
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
 | 
						|
#endif
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check watermarks for an order-0 allocation request. If these
 | 
						|
	 * are not met, then a high-order request also cannot go ahead
 | 
						|
	 * even if a suitable page happened to be free.
 | 
						|
	 */
 | 
						|
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
 | 
						|
		return false;
 | 
						|
 | 
						|
	/* If this is an order-0 request then the watermark is fine */
 | 
						|
	if (!order)
 | 
						|
		return true;
 | 
						|
 | 
						|
	/* For a high-order request, check at least one suitable page is free */
 | 
						|
	for (o = order; o < MAX_ORDER; o++) {
 | 
						|
		struct free_area *area = &z->free_area[o];
 | 
						|
		int mt;
 | 
						|
 | 
						|
		if (!area->nr_free)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (alloc_harder)
 | 
						|
			return true;
 | 
						|
 | 
						|
		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
 | 
						|
			if (!list_empty(&area->free_list[mt]))
 | 
						|
				return true;
 | 
						|
		}
 | 
						|
 | 
						|
#ifdef CONFIG_CMA
 | 
						|
		if ((alloc_flags & ALLOC_CMA) &&
 | 
						|
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
#endif
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
 | 
						|
		      int classzone_idx, int alloc_flags)
 | 
						|
{
 | 
						|
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
 | 
						|
					zone_page_state(z, NR_FREE_PAGES));
 | 
						|
}
 | 
						|
 | 
						|
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
 | 
						|
			unsigned long mark, int classzone_idx)
 | 
						|
{
 | 
						|
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
 | 
						|
 | 
						|
	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
 | 
						|
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
 | 
						|
 | 
						|
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
 | 
						|
								free_pages);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
static bool zone_local(struct zone *local_zone, struct zone *zone)
 | 
						|
{
 | 
						|
	return local_zone->node == zone->node;
 | 
						|
}
 | 
						|
 | 
						|
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
 | 
						|
{
 | 
						|
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
 | 
						|
				RECLAIM_DISTANCE;
 | 
						|
}
 | 
						|
#else	/* CONFIG_NUMA */
 | 
						|
static bool zone_local(struct zone *local_zone, struct zone *zone)
 | 
						|
{
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
 | 
						|
{
 | 
						|
	return true;
 | 
						|
}
 | 
						|
#endif	/* CONFIG_NUMA */
 | 
						|
 | 
						|
static void reset_alloc_batches(struct zone *preferred_zone)
 | 
						|
{
 | 
						|
	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
 | 
						|
 | 
						|
	do {
 | 
						|
		mod_zone_page_state(zone, NR_ALLOC_BATCH,
 | 
						|
			high_wmark_pages(zone) - low_wmark_pages(zone) -
 | 
						|
			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
 | 
						|
		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
 | 
						|
	} while (zone++ != preferred_zone);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * get_page_from_freelist goes through the zonelist trying to allocate
 | 
						|
 * a page.
 | 
						|
 */
 | 
						|
static struct page *
 | 
						|
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
 | 
						|
						const struct alloc_context *ac)
 | 
						|
{
 | 
						|
	struct zonelist *zonelist = ac->zonelist;
 | 
						|
	struct zoneref *z;
 | 
						|
	struct page *page = NULL;
 | 
						|
	struct zone *zone;
 | 
						|
	int nr_fair_skipped = 0;
 | 
						|
	bool zonelist_rescan;
 | 
						|
 | 
						|
zonelist_scan:
 | 
						|
	zonelist_rescan = false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Scan zonelist, looking for a zone with enough free.
 | 
						|
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
 | 
						|
	 */
 | 
						|
	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
 | 
						|
								ac->nodemask) {
 | 
						|
		unsigned long mark;
 | 
						|
 | 
						|
		if (cpusets_enabled() &&
 | 
						|
			(alloc_flags & ALLOC_CPUSET) &&
 | 
						|
			!cpuset_zone_allowed(zone, gfp_mask))
 | 
						|
				continue;
 | 
						|
		/*
 | 
						|
		 * Distribute pages in proportion to the individual
 | 
						|
		 * zone size to ensure fair page aging.  The zone a
 | 
						|
		 * page was allocated in should have no effect on the
 | 
						|
		 * time the page has in memory before being reclaimed.
 | 
						|
		 */
 | 
						|
		if (alloc_flags & ALLOC_FAIR) {
 | 
						|
			if (!zone_local(ac->preferred_zone, zone))
 | 
						|
				break;
 | 
						|
			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
 | 
						|
				nr_fair_skipped++;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * When allocating a page cache page for writing, we
 | 
						|
		 * want to get it from a zone that is within its dirty
 | 
						|
		 * limit, such that no single zone holds more than its
 | 
						|
		 * proportional share of globally allowed dirty pages.
 | 
						|
		 * The dirty limits take into account the zone's
 | 
						|
		 * lowmem reserves and high watermark so that kswapd
 | 
						|
		 * should be able to balance it without having to
 | 
						|
		 * write pages from its LRU list.
 | 
						|
		 *
 | 
						|
		 * This may look like it could increase pressure on
 | 
						|
		 * lower zones by failing allocations in higher zones
 | 
						|
		 * before they are full.  But the pages that do spill
 | 
						|
		 * over are limited as the lower zones are protected
 | 
						|
		 * by this very same mechanism.  It should not become
 | 
						|
		 * a practical burden to them.
 | 
						|
		 *
 | 
						|
		 * XXX: For now, allow allocations to potentially
 | 
						|
		 * exceed the per-zone dirty limit in the slowpath
 | 
						|
		 * (spread_dirty_pages unset) before going into reclaim,
 | 
						|
		 * which is important when on a NUMA setup the allowed
 | 
						|
		 * zones are together not big enough to reach the
 | 
						|
		 * global limit.  The proper fix for these situations
 | 
						|
		 * will require awareness of zones in the
 | 
						|
		 * dirty-throttling and the flusher threads.
 | 
						|
		 */
 | 
						|
		if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
 | 
						|
			continue;
 | 
						|
 | 
						|
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
 | 
						|
		if (!zone_watermark_ok(zone, order, mark,
 | 
						|
				       ac->classzone_idx, alloc_flags)) {
 | 
						|
			int ret;
 | 
						|
 | 
						|
			/* Checked here to keep the fast path fast */
 | 
						|
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
 | 
						|
			if (alloc_flags & ALLOC_NO_WATERMARKS)
 | 
						|
				goto try_this_zone;
 | 
						|
 | 
						|
			if (zone_reclaim_mode == 0 ||
 | 
						|
			    !zone_allows_reclaim(ac->preferred_zone, zone))
 | 
						|
				continue;
 | 
						|
 | 
						|
			ret = zone_reclaim(zone, gfp_mask, order);
 | 
						|
			switch (ret) {
 | 
						|
			case ZONE_RECLAIM_NOSCAN:
 | 
						|
				/* did not scan */
 | 
						|
				continue;
 | 
						|
			case ZONE_RECLAIM_FULL:
 | 
						|
				/* scanned but unreclaimable */
 | 
						|
				continue;
 | 
						|
			default:
 | 
						|
				/* did we reclaim enough */
 | 
						|
				if (zone_watermark_ok(zone, order, mark,
 | 
						|
						ac->classzone_idx, alloc_flags))
 | 
						|
					goto try_this_zone;
 | 
						|
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
try_this_zone:
 | 
						|
		page = buffered_rmqueue(ac->preferred_zone, zone, order,
 | 
						|
				gfp_mask, alloc_flags, ac->migratetype);
 | 
						|
		if (page) {
 | 
						|
			if (prep_new_page(page, order, gfp_mask, alloc_flags))
 | 
						|
				goto try_this_zone;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * If this is a high-order atomic allocation then check
 | 
						|
			 * if the pageblock should be reserved for the future
 | 
						|
			 */
 | 
						|
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
 | 
						|
				reserve_highatomic_pageblock(page, zone, order);
 | 
						|
 | 
						|
			return page;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The first pass makes sure allocations are spread fairly within the
 | 
						|
	 * local node.  However, the local node might have free pages left
 | 
						|
	 * after the fairness batches are exhausted, and remote zones haven't
 | 
						|
	 * even been considered yet.  Try once more without fairness, and
 | 
						|
	 * include remote zones now, before entering the slowpath and waking
 | 
						|
	 * kswapd: prefer spilling to a remote zone over swapping locally.
 | 
						|
	 */
 | 
						|
	if (alloc_flags & ALLOC_FAIR) {
 | 
						|
		alloc_flags &= ~ALLOC_FAIR;
 | 
						|
		if (nr_fair_skipped) {
 | 
						|
			zonelist_rescan = true;
 | 
						|
			reset_alloc_batches(ac->preferred_zone);
 | 
						|
		}
 | 
						|
		if (nr_online_nodes > 1)
 | 
						|
			zonelist_rescan = true;
 | 
						|
	}
 | 
						|
 | 
						|
	if (zonelist_rescan)
 | 
						|
		goto zonelist_scan;
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Large machines with many possible nodes should not always dump per-node
 | 
						|
 * meminfo in irq context.
 | 
						|
 */
 | 
						|
static inline bool should_suppress_show_mem(void)
 | 
						|
{
 | 
						|
	bool ret = false;
 | 
						|
 | 
						|
#if NODES_SHIFT > 8
 | 
						|
	ret = in_interrupt();
 | 
						|
#endif
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static DEFINE_RATELIMIT_STATE(nopage_rs,
 | 
						|
		DEFAULT_RATELIMIT_INTERVAL,
 | 
						|
		DEFAULT_RATELIMIT_BURST);
 | 
						|
 | 
						|
void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
 | 
						|
{
 | 
						|
	unsigned int filter = SHOW_MEM_FILTER_NODES;
 | 
						|
 | 
						|
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
 | 
						|
	    debug_guardpage_minorder() > 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This documents exceptions given to allocations in certain
 | 
						|
	 * contexts that are allowed to allocate outside current's set
 | 
						|
	 * of allowed nodes.
 | 
						|
	 */
 | 
						|
	if (!(gfp_mask & __GFP_NOMEMALLOC))
 | 
						|
		if (test_thread_flag(TIF_MEMDIE) ||
 | 
						|
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
 | 
						|
			filter &= ~SHOW_MEM_FILTER_NODES;
 | 
						|
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
 | 
						|
		filter &= ~SHOW_MEM_FILTER_NODES;
 | 
						|
 | 
						|
	if (fmt) {
 | 
						|
		struct va_format vaf;
 | 
						|
		va_list args;
 | 
						|
 | 
						|
		va_start(args, fmt);
 | 
						|
 | 
						|
		vaf.fmt = fmt;
 | 
						|
		vaf.va = &args;
 | 
						|
 | 
						|
		pr_warn("%pV", &vaf);
 | 
						|
 | 
						|
		va_end(args);
 | 
						|
	}
 | 
						|
 | 
						|
	pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
 | 
						|
		current->comm, order, gfp_mask);
 | 
						|
 | 
						|
	dump_stack();
 | 
						|
	if (!should_suppress_show_mem())
 | 
						|
		show_mem(filter);
 | 
						|
}
 | 
						|
 | 
						|
static inline struct page *
 | 
						|
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
 | 
						|
	const struct alloc_context *ac, unsigned long *did_some_progress)
 | 
						|
{
 | 
						|
	struct oom_control oc = {
 | 
						|
		.zonelist = ac->zonelist,
 | 
						|
		.nodemask = ac->nodemask,
 | 
						|
		.gfp_mask = gfp_mask,
 | 
						|
		.order = order,
 | 
						|
	};
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	*did_some_progress = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Acquire the oom lock.  If that fails, somebody else is
 | 
						|
	 * making progress for us.
 | 
						|
	 */
 | 
						|
	if (!mutex_trylock(&oom_lock)) {
 | 
						|
		*did_some_progress = 1;
 | 
						|
		schedule_timeout_uninterruptible(1);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Go through the zonelist yet one more time, keep very high watermark
 | 
						|
	 * here, this is only to catch a parallel oom killing, we must fail if
 | 
						|
	 * we're still under heavy pressure.
 | 
						|
	 */
 | 
						|
	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
 | 
						|
					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
 | 
						|
	if (page)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (!(gfp_mask & __GFP_NOFAIL)) {
 | 
						|
		/* Coredumps can quickly deplete all memory reserves */
 | 
						|
		if (current->flags & PF_DUMPCORE)
 | 
						|
			goto out;
 | 
						|
		/* The OOM killer will not help higher order allocs */
 | 
						|
		if (order > PAGE_ALLOC_COSTLY_ORDER)
 | 
						|
			goto out;
 | 
						|
		/* The OOM killer does not needlessly kill tasks for lowmem */
 | 
						|
		if (ac->high_zoneidx < ZONE_NORMAL)
 | 
						|
			goto out;
 | 
						|
		/* The OOM killer does not compensate for IO-less reclaim */
 | 
						|
		if (!(gfp_mask & __GFP_FS)) {
 | 
						|
			/*
 | 
						|
			 * XXX: Page reclaim didn't yield anything,
 | 
						|
			 * and the OOM killer can't be invoked, but
 | 
						|
			 * keep looping as per tradition.
 | 
						|
			 */
 | 
						|
			*did_some_progress = 1;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		if (pm_suspended_storage())
 | 
						|
			goto out;
 | 
						|
		/* The OOM killer may not free memory on a specific node */
 | 
						|
		if (gfp_mask & __GFP_THISNODE)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
	/* Exhausted what can be done so it's blamo time */
 | 
						|
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
 | 
						|
		*did_some_progress = 1;
 | 
						|
 | 
						|
		if (gfp_mask & __GFP_NOFAIL) {
 | 
						|
			page = get_page_from_freelist(gfp_mask, order,
 | 
						|
					ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
 | 
						|
			/*
 | 
						|
			 * fallback to ignore cpuset restriction if our nodes
 | 
						|
			 * are depleted
 | 
						|
			 */
 | 
						|
			if (!page)
 | 
						|
				page = get_page_from_freelist(gfp_mask, order,
 | 
						|
					ALLOC_NO_WATERMARKS, ac);
 | 
						|
		}
 | 
						|
	}
 | 
						|
out:
 | 
						|
	mutex_unlock(&oom_lock);
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_COMPACTION
 | 
						|
/* Try memory compaction for high-order allocations before reclaim */
 | 
						|
static struct page *
 | 
						|
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
 | 
						|
		int alloc_flags, const struct alloc_context *ac,
 | 
						|
		enum migrate_mode mode, int *contended_compaction,
 | 
						|
		bool *deferred_compaction)
 | 
						|
{
 | 
						|
	unsigned long compact_result;
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	if (!order)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	current->flags |= PF_MEMALLOC;
 | 
						|
	compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
 | 
						|
						mode, contended_compaction);
 | 
						|
	current->flags &= ~PF_MEMALLOC;
 | 
						|
 | 
						|
	switch (compact_result) {
 | 
						|
	case COMPACT_DEFERRED:
 | 
						|
		*deferred_compaction = true;
 | 
						|
		/* fall-through */
 | 
						|
	case COMPACT_SKIPPED:
 | 
						|
		return NULL;
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * At least in one zone compaction wasn't deferred or skipped, so let's
 | 
						|
	 * count a compaction stall
 | 
						|
	 */
 | 
						|
	count_vm_event(COMPACTSTALL);
 | 
						|
 | 
						|
	page = get_page_from_freelist(gfp_mask, order,
 | 
						|
					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
 | 
						|
 | 
						|
	if (page) {
 | 
						|
		struct zone *zone = page_zone(page);
 | 
						|
 | 
						|
		zone->compact_blockskip_flush = false;
 | 
						|
		compaction_defer_reset(zone, order, true);
 | 
						|
		count_vm_event(COMPACTSUCCESS);
 | 
						|
		return page;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It's bad if compaction run occurs and fails. The most likely reason
 | 
						|
	 * is that pages exist, but not enough to satisfy watermarks.
 | 
						|
	 */
 | 
						|
	count_vm_event(COMPACTFAIL);
 | 
						|
 | 
						|
	cond_resched();
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline struct page *
 | 
						|
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
 | 
						|
		int alloc_flags, const struct alloc_context *ac,
 | 
						|
		enum migrate_mode mode, int *contended_compaction,
 | 
						|
		bool *deferred_compaction)
 | 
						|
{
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
#endif /* CONFIG_COMPACTION */
 | 
						|
 | 
						|
/* Perform direct synchronous page reclaim */
 | 
						|
static int
 | 
						|
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
 | 
						|
					const struct alloc_context *ac)
 | 
						|
{
 | 
						|
	struct reclaim_state reclaim_state;
 | 
						|
	int progress;
 | 
						|
 | 
						|
	cond_resched();
 | 
						|
 | 
						|
	/* We now go into synchronous reclaim */
 | 
						|
	cpuset_memory_pressure_bump();
 | 
						|
	current->flags |= PF_MEMALLOC;
 | 
						|
	lockdep_set_current_reclaim_state(gfp_mask);
 | 
						|
	reclaim_state.reclaimed_slab = 0;
 | 
						|
	current->reclaim_state = &reclaim_state;
 | 
						|
 | 
						|
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
 | 
						|
								ac->nodemask);
 | 
						|
 | 
						|
	current->reclaim_state = NULL;
 | 
						|
	lockdep_clear_current_reclaim_state();
 | 
						|
	current->flags &= ~PF_MEMALLOC;
 | 
						|
 | 
						|
	cond_resched();
 | 
						|
 | 
						|
	return progress;
 | 
						|
}
 | 
						|
 | 
						|
/* The really slow allocator path where we enter direct reclaim */
 | 
						|
static inline struct page *
 | 
						|
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
 | 
						|
		int alloc_flags, const struct alloc_context *ac,
 | 
						|
		unsigned long *did_some_progress)
 | 
						|
{
 | 
						|
	struct page *page = NULL;
 | 
						|
	bool drained = false;
 | 
						|
 | 
						|
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
 | 
						|
	if (unlikely(!(*did_some_progress)))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
retry:
 | 
						|
	page = get_page_from_freelist(gfp_mask, order,
 | 
						|
					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If an allocation failed after direct reclaim, it could be because
 | 
						|
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
 | 
						|
	 * Shrink them them and try again
 | 
						|
	 */
 | 
						|
	if (!page && !drained) {
 | 
						|
		unreserve_highatomic_pageblock(ac);
 | 
						|
		drain_all_pages(NULL);
 | 
						|
		drained = true;
 | 
						|
		goto retry;
 | 
						|
	}
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
 | 
						|
{
 | 
						|
	struct zoneref *z;
 | 
						|
	struct zone *zone;
 | 
						|
 | 
						|
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
 | 
						|
						ac->high_zoneidx, ac->nodemask)
 | 
						|
		wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
 | 
						|
}
 | 
						|
 | 
						|
static inline int
 | 
						|
gfp_to_alloc_flags(gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
 | 
						|
 | 
						|
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
 | 
						|
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The caller may dip into page reserves a bit more if the caller
 | 
						|
	 * cannot run direct reclaim, or if the caller has realtime scheduling
 | 
						|
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
 | 
						|
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
 | 
						|
	 */
 | 
						|
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
 | 
						|
 | 
						|
	if (gfp_mask & __GFP_ATOMIC) {
 | 
						|
		/*
 | 
						|
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
 | 
						|
		 * if it can't schedule.
 | 
						|
		 */
 | 
						|
		if (!(gfp_mask & __GFP_NOMEMALLOC))
 | 
						|
			alloc_flags |= ALLOC_HARDER;
 | 
						|
		/*
 | 
						|
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
 | 
						|
		 * comment for __cpuset_node_allowed().
 | 
						|
		 */
 | 
						|
		alloc_flags &= ~ALLOC_CPUSET;
 | 
						|
	} else if (unlikely(rt_task(current)) && !in_interrupt())
 | 
						|
		alloc_flags |= ALLOC_HARDER;
 | 
						|
 | 
						|
	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
 | 
						|
		if (gfp_mask & __GFP_MEMALLOC)
 | 
						|
			alloc_flags |= ALLOC_NO_WATERMARKS;
 | 
						|
		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
 | 
						|
			alloc_flags |= ALLOC_NO_WATERMARKS;
 | 
						|
		else if (!in_interrupt() &&
 | 
						|
				((current->flags & PF_MEMALLOC) ||
 | 
						|
				 unlikely(test_thread_flag(TIF_MEMDIE))))
 | 
						|
			alloc_flags |= ALLOC_NO_WATERMARKS;
 | 
						|
	}
 | 
						|
#ifdef CONFIG_CMA
 | 
						|
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
 | 
						|
		alloc_flags |= ALLOC_CMA;
 | 
						|
#endif
 | 
						|
	return alloc_flags;
 | 
						|
}
 | 
						|
 | 
						|
bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
 | 
						|
}
 | 
						|
 | 
						|
static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct page *
 | 
						|
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
 | 
						|
						struct alloc_context *ac)
 | 
						|
{
 | 
						|
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
 | 
						|
	struct page *page = NULL;
 | 
						|
	int alloc_flags;
 | 
						|
	unsigned long pages_reclaimed = 0;
 | 
						|
	unsigned long did_some_progress;
 | 
						|
	enum migrate_mode migration_mode = MIGRATE_ASYNC;
 | 
						|
	bool deferred_compaction = false;
 | 
						|
	int contended_compaction = COMPACT_CONTENDED_NONE;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In the slowpath, we sanity check order to avoid ever trying to
 | 
						|
	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
 | 
						|
	 * be using allocators in order of preference for an area that is
 | 
						|
	 * too large.
 | 
						|
	 */
 | 
						|
	if (order >= MAX_ORDER) {
 | 
						|
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We also sanity check to catch abuse of atomic reserves being used by
 | 
						|
	 * callers that are not in atomic context.
 | 
						|
	 */
 | 
						|
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
 | 
						|
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
 | 
						|
		gfp_mask &= ~__GFP_ATOMIC;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this allocation cannot block and it is for a specific node, then
 | 
						|
	 * fail early.  There's no need to wakeup kswapd or retry for a
 | 
						|
	 * speculative node-specific allocation.
 | 
						|
	 */
 | 
						|
	if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
 | 
						|
		goto nopage;
 | 
						|
 | 
						|
retry:
 | 
						|
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
 | 
						|
		wake_all_kswapds(order, ac);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * OK, we're below the kswapd watermark and have kicked background
 | 
						|
	 * reclaim. Now things get more complex, so set up alloc_flags according
 | 
						|
	 * to how we want to proceed.
 | 
						|
	 */
 | 
						|
	alloc_flags = gfp_to_alloc_flags(gfp_mask);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Find the true preferred zone if the allocation is unconstrained by
 | 
						|
	 * cpusets.
 | 
						|
	 */
 | 
						|
	if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
 | 
						|
		struct zoneref *preferred_zoneref;
 | 
						|
		preferred_zoneref = first_zones_zonelist(ac->zonelist,
 | 
						|
				ac->high_zoneidx, NULL, &ac->preferred_zone);
 | 
						|
		ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
 | 
						|
	}
 | 
						|
 | 
						|
	/* This is the last chance, in general, before the goto nopage. */
 | 
						|
	page = get_page_from_freelist(gfp_mask, order,
 | 
						|
				alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
 | 
						|
	if (page)
 | 
						|
		goto got_pg;
 | 
						|
 | 
						|
	/* Allocate without watermarks if the context allows */
 | 
						|
	if (alloc_flags & ALLOC_NO_WATERMARKS) {
 | 
						|
		/*
 | 
						|
		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
 | 
						|
		 * the allocation is high priority and these type of
 | 
						|
		 * allocations are system rather than user orientated
 | 
						|
		 */
 | 
						|
		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
 | 
						|
		page = get_page_from_freelist(gfp_mask, order,
 | 
						|
						ALLOC_NO_WATERMARKS, ac);
 | 
						|
		if (page)
 | 
						|
			goto got_pg;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Caller is not willing to reclaim, we can't balance anything */
 | 
						|
	if (!can_direct_reclaim) {
 | 
						|
		/*
 | 
						|
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
 | 
						|
		 * of any new users that actually allow this type of allocation
 | 
						|
		 * to fail.
 | 
						|
		 */
 | 
						|
		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
 | 
						|
		goto nopage;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Avoid recursion of direct reclaim */
 | 
						|
	if (current->flags & PF_MEMALLOC) {
 | 
						|
		/*
 | 
						|
		 * __GFP_NOFAIL request from this context is rather bizarre
 | 
						|
		 * because we cannot reclaim anything and only can loop waiting
 | 
						|
		 * for somebody to do a work for us.
 | 
						|
		 */
 | 
						|
		if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
 | 
						|
			cond_resched();
 | 
						|
			goto retry;
 | 
						|
		}
 | 
						|
		goto nopage;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Avoid allocations with no watermarks from looping endlessly */
 | 
						|
	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
 | 
						|
		goto nopage;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Try direct compaction. The first pass is asynchronous. Subsequent
 | 
						|
	 * attempts after direct reclaim are synchronous
 | 
						|
	 */
 | 
						|
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
 | 
						|
					migration_mode,
 | 
						|
					&contended_compaction,
 | 
						|
					&deferred_compaction);
 | 
						|
	if (page)
 | 
						|
		goto got_pg;
 | 
						|
 | 
						|
	/* Checks for THP-specific high-order allocations */
 | 
						|
	if (is_thp_gfp_mask(gfp_mask)) {
 | 
						|
		/*
 | 
						|
		 * If compaction is deferred for high-order allocations, it is
 | 
						|
		 * because sync compaction recently failed. If this is the case
 | 
						|
		 * and the caller requested a THP allocation, we do not want
 | 
						|
		 * to heavily disrupt the system, so we fail the allocation
 | 
						|
		 * instead of entering direct reclaim.
 | 
						|
		 */
 | 
						|
		if (deferred_compaction)
 | 
						|
			goto nopage;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * In all zones where compaction was attempted (and not
 | 
						|
		 * deferred or skipped), lock contention has been detected.
 | 
						|
		 * For THP allocation we do not want to disrupt the others
 | 
						|
		 * so we fallback to base pages instead.
 | 
						|
		 */
 | 
						|
		if (contended_compaction == COMPACT_CONTENDED_LOCK)
 | 
						|
			goto nopage;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If compaction was aborted due to need_resched(), we do not
 | 
						|
		 * want to further increase allocation latency, unless it is
 | 
						|
		 * khugepaged trying to collapse.
 | 
						|
		 */
 | 
						|
		if (contended_compaction == COMPACT_CONTENDED_SCHED
 | 
						|
			&& !(current->flags & PF_KTHREAD))
 | 
						|
			goto nopage;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It can become very expensive to allocate transparent hugepages at
 | 
						|
	 * fault, so use asynchronous memory compaction for THP unless it is
 | 
						|
	 * khugepaged trying to collapse.
 | 
						|
	 */
 | 
						|
	if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
 | 
						|
		migration_mode = MIGRATE_SYNC_LIGHT;
 | 
						|
 | 
						|
	/* Try direct reclaim and then allocating */
 | 
						|
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
 | 
						|
							&did_some_progress);
 | 
						|
	if (page)
 | 
						|
		goto got_pg;
 | 
						|
 | 
						|
	/* Do not loop if specifically requested */
 | 
						|
	if (gfp_mask & __GFP_NORETRY)
 | 
						|
		goto noretry;
 | 
						|
 | 
						|
	/* Keep reclaiming pages as long as there is reasonable progress */
 | 
						|
	pages_reclaimed += did_some_progress;
 | 
						|
	if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
 | 
						|
	    ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
 | 
						|
		/* Wait for some write requests to complete then retry */
 | 
						|
		wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
 | 
						|
		goto retry;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Reclaim has failed us, start killing things */
 | 
						|
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
 | 
						|
	if (page)
 | 
						|
		goto got_pg;
 | 
						|
 | 
						|
	/* Retry as long as the OOM killer is making progress */
 | 
						|
	if (did_some_progress)
 | 
						|
		goto retry;
 | 
						|
 | 
						|
noretry:
 | 
						|
	/*
 | 
						|
	 * High-order allocations do not necessarily loop after
 | 
						|
	 * direct reclaim and reclaim/compaction depends on compaction
 | 
						|
	 * being called after reclaim so call directly if necessary
 | 
						|
	 */
 | 
						|
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
 | 
						|
					    ac, migration_mode,
 | 
						|
					    &contended_compaction,
 | 
						|
					    &deferred_compaction);
 | 
						|
	if (page)
 | 
						|
		goto got_pg;
 | 
						|
nopage:
 | 
						|
	warn_alloc_failed(gfp_mask, order, NULL);
 | 
						|
got_pg:
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is the 'heart' of the zoned buddy allocator.
 | 
						|
 */
 | 
						|
struct page *
 | 
						|
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
 | 
						|
			struct zonelist *zonelist, nodemask_t *nodemask)
 | 
						|
{
 | 
						|
	struct zoneref *preferred_zoneref;
 | 
						|
	struct page *page = NULL;
 | 
						|
	unsigned int cpuset_mems_cookie;
 | 
						|
	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
 | 
						|
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
 | 
						|
	struct alloc_context ac = {
 | 
						|
		.high_zoneidx = gfp_zone(gfp_mask),
 | 
						|
		.nodemask = nodemask,
 | 
						|
		.migratetype = gfpflags_to_migratetype(gfp_mask),
 | 
						|
	};
 | 
						|
 | 
						|
	gfp_mask &= gfp_allowed_mask;
 | 
						|
 | 
						|
	lockdep_trace_alloc(gfp_mask);
 | 
						|
 | 
						|
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
 | 
						|
 | 
						|
	if (should_fail_alloc_page(gfp_mask, order))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check the zones suitable for the gfp_mask contain at least one
 | 
						|
	 * valid zone. It's possible to have an empty zonelist as a result
 | 
						|
	 * of __GFP_THISNODE and a memoryless node
 | 
						|
	 */
 | 
						|
	if (unlikely(!zonelist->_zonerefs->zone))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
 | 
						|
		alloc_flags |= ALLOC_CMA;
 | 
						|
 | 
						|
retry_cpuset:
 | 
						|
	cpuset_mems_cookie = read_mems_allowed_begin();
 | 
						|
 | 
						|
	/* We set it here, as __alloc_pages_slowpath might have changed it */
 | 
						|
	ac.zonelist = zonelist;
 | 
						|
 | 
						|
	/* Dirty zone balancing only done in the fast path */
 | 
						|
	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
 | 
						|
 | 
						|
	/* The preferred zone is used for statistics later */
 | 
						|
	preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
 | 
						|
				ac.nodemask ? : &cpuset_current_mems_allowed,
 | 
						|
				&ac.preferred_zone);
 | 
						|
	if (!ac.preferred_zone)
 | 
						|
		goto out;
 | 
						|
	ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
 | 
						|
 | 
						|
	/* First allocation attempt */
 | 
						|
	alloc_mask = gfp_mask|__GFP_HARDWALL;
 | 
						|
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
 | 
						|
	if (unlikely(!page)) {
 | 
						|
		/*
 | 
						|
		 * Runtime PM, block IO and its error handling path
 | 
						|
		 * can deadlock because I/O on the device might not
 | 
						|
		 * complete.
 | 
						|
		 */
 | 
						|
		alloc_mask = memalloc_noio_flags(gfp_mask);
 | 
						|
		ac.spread_dirty_pages = false;
 | 
						|
 | 
						|
		page = __alloc_pages_slowpath(alloc_mask, order, &ac);
 | 
						|
	}
 | 
						|
 | 
						|
	if (kmemcheck_enabled && page)
 | 
						|
		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
 | 
						|
 | 
						|
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
 | 
						|
 | 
						|
out:
 | 
						|
	/*
 | 
						|
	 * When updating a task's mems_allowed, it is possible to race with
 | 
						|
	 * parallel threads in such a way that an allocation can fail while
 | 
						|
	 * the mask is being updated. If a page allocation is about to fail,
 | 
						|
	 * check if the cpuset changed during allocation and if so, retry.
 | 
						|
	 */
 | 
						|
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
 | 
						|
		goto retry_cpuset;
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__alloc_pages_nodemask);
 | 
						|
 | 
						|
/*
 | 
						|
 * Common helper functions.
 | 
						|
 */
 | 
						|
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * __get_free_pages() returns a 32-bit address, which cannot represent
 | 
						|
	 * a highmem page
 | 
						|
	 */
 | 
						|
	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
 | 
						|
 | 
						|
	page = alloc_pages(gfp_mask, order);
 | 
						|
	if (!page)
 | 
						|
		return 0;
 | 
						|
	return (unsigned long) page_address(page);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__get_free_pages);
 | 
						|
 | 
						|
unsigned long get_zeroed_page(gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(get_zeroed_page);
 | 
						|
 | 
						|
void __free_pages(struct page *page, unsigned int order)
 | 
						|
{
 | 
						|
	if (put_page_testzero(page)) {
 | 
						|
		if (order == 0)
 | 
						|
			free_hot_cold_page(page, false);
 | 
						|
		else
 | 
						|
			__free_pages_ok(page, order);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(__free_pages);
 | 
						|
 | 
						|
void free_pages(unsigned long addr, unsigned int order)
 | 
						|
{
 | 
						|
	if (addr != 0) {
 | 
						|
		VM_BUG_ON(!virt_addr_valid((void *)addr));
 | 
						|
		__free_pages(virt_to_page((void *)addr), order);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(free_pages);
 | 
						|
 | 
						|
/*
 | 
						|
 * Page Fragment:
 | 
						|
 *  An arbitrary-length arbitrary-offset area of memory which resides
 | 
						|
 *  within a 0 or higher order page.  Multiple fragments within that page
 | 
						|
 *  are individually refcounted, in the page's reference counter.
 | 
						|
 *
 | 
						|
 * The page_frag functions below provide a simple allocation framework for
 | 
						|
 * page fragments.  This is used by the network stack and network device
 | 
						|
 * drivers to provide a backing region of memory for use as either an
 | 
						|
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 | 
						|
 */
 | 
						|
static struct page *__page_frag_refill(struct page_frag_cache *nc,
 | 
						|
				       gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	struct page *page = NULL;
 | 
						|
	gfp_t gfp = gfp_mask;
 | 
						|
 | 
						|
#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
 | 
						|
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
 | 
						|
		    __GFP_NOMEMALLOC;
 | 
						|
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
 | 
						|
				PAGE_FRAG_CACHE_MAX_ORDER);
 | 
						|
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
 | 
						|
#endif
 | 
						|
	if (unlikely(!page))
 | 
						|
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
 | 
						|
 | 
						|
	nc->va = page ? page_address(page) : NULL;
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
void *__alloc_page_frag(struct page_frag_cache *nc,
 | 
						|
			unsigned int fragsz, gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	unsigned int size = PAGE_SIZE;
 | 
						|
	struct page *page;
 | 
						|
	int offset;
 | 
						|
 | 
						|
	if (unlikely(!nc->va)) {
 | 
						|
refill:
 | 
						|
		page = __page_frag_refill(nc, gfp_mask);
 | 
						|
		if (!page)
 | 
						|
			return NULL;
 | 
						|
 | 
						|
#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
 | 
						|
		/* if size can vary use size else just use PAGE_SIZE */
 | 
						|
		size = nc->size;
 | 
						|
#endif
 | 
						|
		/* Even if we own the page, we do not use atomic_set().
 | 
						|
		 * This would break get_page_unless_zero() users.
 | 
						|
		 */
 | 
						|
		atomic_add(size - 1, &page->_count);
 | 
						|
 | 
						|
		/* reset page count bias and offset to start of new frag */
 | 
						|
		nc->pfmemalloc = page_is_pfmemalloc(page);
 | 
						|
		nc->pagecnt_bias = size;
 | 
						|
		nc->offset = size;
 | 
						|
	}
 | 
						|
 | 
						|
	offset = nc->offset - fragsz;
 | 
						|
	if (unlikely(offset < 0)) {
 | 
						|
		page = virt_to_page(nc->va);
 | 
						|
 | 
						|
		if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
 | 
						|
			goto refill;
 | 
						|
 | 
						|
#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
 | 
						|
		/* if size can vary use size else just use PAGE_SIZE */
 | 
						|
		size = nc->size;
 | 
						|
#endif
 | 
						|
		/* OK, page count is 0, we can safely set it */
 | 
						|
		atomic_set(&page->_count, size);
 | 
						|
 | 
						|
		/* reset page count bias and offset to start of new frag */
 | 
						|
		nc->pagecnt_bias = size;
 | 
						|
		offset = size - fragsz;
 | 
						|
	}
 | 
						|
 | 
						|
	nc->pagecnt_bias--;
 | 
						|
	nc->offset = offset;
 | 
						|
 | 
						|
	return nc->va + offset;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__alloc_page_frag);
 | 
						|
 | 
						|
/*
 | 
						|
 * Frees a page fragment allocated out of either a compound or order 0 page.
 | 
						|
 */
 | 
						|
void __free_page_frag(void *addr)
 | 
						|
{
 | 
						|
	struct page *page = virt_to_head_page(addr);
 | 
						|
 | 
						|
	if (unlikely(put_page_testzero(page)))
 | 
						|
		__free_pages_ok(page, compound_order(page));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__free_page_frag);
 | 
						|
 | 
						|
/*
 | 
						|
 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
 | 
						|
 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
 | 
						|
 * equivalent to alloc_pages.
 | 
						|
 *
 | 
						|
 * It should be used when the caller would like to use kmalloc, but since the
 | 
						|
 * allocation is large, it has to fall back to the page allocator.
 | 
						|
 */
 | 
						|
struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	page = alloc_pages(gfp_mask, order);
 | 
						|
	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
 | 
						|
		__free_pages(page, order);
 | 
						|
		page = NULL;
 | 
						|
	}
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	page = alloc_pages_node(nid, gfp_mask, order);
 | 
						|
	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
 | 
						|
		__free_pages(page, order);
 | 
						|
		page = NULL;
 | 
						|
	}
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * __free_kmem_pages and free_kmem_pages will free pages allocated with
 | 
						|
 * alloc_kmem_pages.
 | 
						|
 */
 | 
						|
void __free_kmem_pages(struct page *page, unsigned int order)
 | 
						|
{
 | 
						|
	memcg_kmem_uncharge(page, order);
 | 
						|
	__free_pages(page, order);
 | 
						|
}
 | 
						|
 | 
						|
void free_kmem_pages(unsigned long addr, unsigned int order)
 | 
						|
{
 | 
						|
	if (addr != 0) {
 | 
						|
		VM_BUG_ON(!virt_addr_valid((void *)addr));
 | 
						|
		__free_kmem_pages(virt_to_page((void *)addr), order);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void *make_alloc_exact(unsigned long addr, unsigned int order,
 | 
						|
		size_t size)
 | 
						|
{
 | 
						|
	if (addr) {
 | 
						|
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
 | 
						|
		unsigned long used = addr + PAGE_ALIGN(size);
 | 
						|
 | 
						|
		split_page(virt_to_page((void *)addr), order);
 | 
						|
		while (used < alloc_end) {
 | 
						|
			free_page(used);
 | 
						|
			used += PAGE_SIZE;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return (void *)addr;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 | 
						|
 * @size: the number of bytes to allocate
 | 
						|
 * @gfp_mask: GFP flags for the allocation
 | 
						|
 *
 | 
						|
 * This function is similar to alloc_pages(), except that it allocates the
 | 
						|
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 | 
						|
 * allocate memory in power-of-two pages.
 | 
						|
 *
 | 
						|
 * This function is also limited by MAX_ORDER.
 | 
						|
 *
 | 
						|
 * Memory allocated by this function must be released by free_pages_exact().
 | 
						|
 */
 | 
						|
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	unsigned int order = get_order(size);
 | 
						|
	unsigned long addr;
 | 
						|
 | 
						|
	addr = __get_free_pages(gfp_mask, order);
 | 
						|
	return make_alloc_exact(addr, order, size);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(alloc_pages_exact);
 | 
						|
 | 
						|
/**
 | 
						|
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 | 
						|
 *			   pages on a node.
 | 
						|
 * @nid: the preferred node ID where memory should be allocated
 | 
						|
 * @size: the number of bytes to allocate
 | 
						|
 * @gfp_mask: GFP flags for the allocation
 | 
						|
 *
 | 
						|
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 | 
						|
 * back.
 | 
						|
 */
 | 
						|
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	unsigned int order = get_order(size);
 | 
						|
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
 | 
						|
	if (!p)
 | 
						|
		return NULL;
 | 
						|
	return make_alloc_exact((unsigned long)page_address(p), order, size);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 | 
						|
 * @virt: the value returned by alloc_pages_exact.
 | 
						|
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 | 
						|
 *
 | 
						|
 * Release the memory allocated by a previous call to alloc_pages_exact.
 | 
						|
 */
 | 
						|
void free_pages_exact(void *virt, size_t size)
 | 
						|
{
 | 
						|
	unsigned long addr = (unsigned long)virt;
 | 
						|
	unsigned long end = addr + PAGE_ALIGN(size);
 | 
						|
 | 
						|
	while (addr < end) {
 | 
						|
		free_page(addr);
 | 
						|
		addr += PAGE_SIZE;
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(free_pages_exact);
 | 
						|
 | 
						|
/**
 | 
						|
 * nr_free_zone_pages - count number of pages beyond high watermark
 | 
						|
 * @offset: The zone index of the highest zone
 | 
						|
 *
 | 
						|
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 | 
						|
 * high watermark within all zones at or below a given zone index.  For each
 | 
						|
 * zone, the number of pages is calculated as:
 | 
						|
 *     managed_pages - high_pages
 | 
						|
 */
 | 
						|
static unsigned long nr_free_zone_pages(int offset)
 | 
						|
{
 | 
						|
	struct zoneref *z;
 | 
						|
	struct zone *zone;
 | 
						|
 | 
						|
	/* Just pick one node, since fallback list is circular */
 | 
						|
	unsigned long sum = 0;
 | 
						|
 | 
						|
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
 | 
						|
 | 
						|
	for_each_zone_zonelist(zone, z, zonelist, offset) {
 | 
						|
		unsigned long size = zone->managed_pages;
 | 
						|
		unsigned long high = high_wmark_pages(zone);
 | 
						|
		if (size > high)
 | 
						|
			sum += size - high;
 | 
						|
	}
 | 
						|
 | 
						|
	return sum;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * nr_free_buffer_pages - count number of pages beyond high watermark
 | 
						|
 *
 | 
						|
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 | 
						|
 * watermark within ZONE_DMA and ZONE_NORMAL.
 | 
						|
 */
 | 
						|
unsigned long nr_free_buffer_pages(void)
 | 
						|
{
 | 
						|
	return nr_free_zone_pages(gfp_zone(GFP_USER));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
 | 
						|
 | 
						|
/**
 | 
						|
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 | 
						|
 *
 | 
						|
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 | 
						|
 * high watermark within all zones.
 | 
						|
 */
 | 
						|
unsigned long nr_free_pagecache_pages(void)
 | 
						|
{
 | 
						|
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
 | 
						|
}
 | 
						|
 | 
						|
static inline void show_node(struct zone *zone)
 | 
						|
{
 | 
						|
	if (IS_ENABLED(CONFIG_NUMA))
 | 
						|
		printk("Node %d ", zone_to_nid(zone));
 | 
						|
}
 | 
						|
 | 
						|
void si_meminfo(struct sysinfo *val)
 | 
						|
{
 | 
						|
	val->totalram = totalram_pages;
 | 
						|
	val->sharedram = global_page_state(NR_SHMEM);
 | 
						|
	val->freeram = global_page_state(NR_FREE_PAGES);
 | 
						|
	val->bufferram = nr_blockdev_pages();
 | 
						|
	val->totalhigh = totalhigh_pages;
 | 
						|
	val->freehigh = nr_free_highpages();
 | 
						|
	val->mem_unit = PAGE_SIZE;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(si_meminfo);
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
void si_meminfo_node(struct sysinfo *val, int nid)
 | 
						|
{
 | 
						|
	int zone_type;		/* needs to be signed */
 | 
						|
	unsigned long managed_pages = 0;
 | 
						|
	pg_data_t *pgdat = NODE_DATA(nid);
 | 
						|
 | 
						|
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
 | 
						|
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
 | 
						|
	val->totalram = managed_pages;
 | 
						|
	val->sharedram = node_page_state(nid, NR_SHMEM);
 | 
						|
	val->freeram = node_page_state(nid, NR_FREE_PAGES);
 | 
						|
#ifdef CONFIG_HIGHMEM
 | 
						|
	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
 | 
						|
	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
 | 
						|
			NR_FREE_PAGES);
 | 
						|
#else
 | 
						|
	val->totalhigh = 0;
 | 
						|
	val->freehigh = 0;
 | 
						|
#endif
 | 
						|
	val->mem_unit = PAGE_SIZE;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine whether the node should be displayed or not, depending on whether
 | 
						|
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
 | 
						|
 */
 | 
						|
bool skip_free_areas_node(unsigned int flags, int nid)
 | 
						|
{
 | 
						|
	bool ret = false;
 | 
						|
	unsigned int cpuset_mems_cookie;
 | 
						|
 | 
						|
	if (!(flags & SHOW_MEM_FILTER_NODES))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	do {
 | 
						|
		cpuset_mems_cookie = read_mems_allowed_begin();
 | 
						|
		ret = !node_isset(nid, cpuset_current_mems_allowed);
 | 
						|
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#define K(x) ((x) << (PAGE_SHIFT-10))
 | 
						|
 | 
						|
static void show_migration_types(unsigned char type)
 | 
						|
{
 | 
						|
	static const char types[MIGRATE_TYPES] = {
 | 
						|
		[MIGRATE_UNMOVABLE]	= 'U',
 | 
						|
		[MIGRATE_MOVABLE]	= 'M',
 | 
						|
		[MIGRATE_RECLAIMABLE]	= 'E',
 | 
						|
		[MIGRATE_HIGHATOMIC]	= 'H',
 | 
						|
#ifdef CONFIG_CMA
 | 
						|
		[MIGRATE_CMA]		= 'C',
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_MEMORY_ISOLATION
 | 
						|
		[MIGRATE_ISOLATE]	= 'I',
 | 
						|
#endif
 | 
						|
	};
 | 
						|
	char tmp[MIGRATE_TYPES + 1];
 | 
						|
	char *p = tmp;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < MIGRATE_TYPES; i++) {
 | 
						|
		if (type & (1 << i))
 | 
						|
			*p++ = types[i];
 | 
						|
	}
 | 
						|
 | 
						|
	*p = '\0';
 | 
						|
	printk("(%s) ", tmp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Show free area list (used inside shift_scroll-lock stuff)
 | 
						|
 * We also calculate the percentage fragmentation. We do this by counting the
 | 
						|
 * memory on each free list with the exception of the first item on the list.
 | 
						|
 *
 | 
						|
 * Bits in @filter:
 | 
						|
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 | 
						|
 *   cpuset.
 | 
						|
 */
 | 
						|
void show_free_areas(unsigned int filter)
 | 
						|
{
 | 
						|
	unsigned long free_pcp = 0;
 | 
						|
	int cpu;
 | 
						|
	struct zone *zone;
 | 
						|
 | 
						|
	for_each_populated_zone(zone) {
 | 
						|
		if (skip_free_areas_node(filter, zone_to_nid(zone)))
 | 
						|
			continue;
 | 
						|
 | 
						|
		for_each_online_cpu(cpu)
 | 
						|
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
 | 
						|
	}
 | 
						|
 | 
						|
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
 | 
						|
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
 | 
						|
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
 | 
						|
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
 | 
						|
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
 | 
						|
		" free:%lu free_pcp:%lu free_cma:%lu\n",
 | 
						|
		global_page_state(NR_ACTIVE_ANON),
 | 
						|
		global_page_state(NR_INACTIVE_ANON),
 | 
						|
		global_page_state(NR_ISOLATED_ANON),
 | 
						|
		global_page_state(NR_ACTIVE_FILE),
 | 
						|
		global_page_state(NR_INACTIVE_FILE),
 | 
						|
		global_page_state(NR_ISOLATED_FILE),
 | 
						|
		global_page_state(NR_UNEVICTABLE),
 | 
						|
		global_page_state(NR_FILE_DIRTY),
 | 
						|
		global_page_state(NR_WRITEBACK),
 | 
						|
		global_page_state(NR_UNSTABLE_NFS),
 | 
						|
		global_page_state(NR_SLAB_RECLAIMABLE),
 | 
						|
		global_page_state(NR_SLAB_UNRECLAIMABLE),
 | 
						|
		global_page_state(NR_FILE_MAPPED),
 | 
						|
		global_page_state(NR_SHMEM),
 | 
						|
		global_page_state(NR_PAGETABLE),
 | 
						|
		global_page_state(NR_BOUNCE),
 | 
						|
		global_page_state(NR_FREE_PAGES),
 | 
						|
		free_pcp,
 | 
						|
		global_page_state(NR_FREE_CMA_PAGES));
 | 
						|
 | 
						|
	for_each_populated_zone(zone) {
 | 
						|
		int i;
 | 
						|
 | 
						|
		if (skip_free_areas_node(filter, zone_to_nid(zone)))
 | 
						|
			continue;
 | 
						|
 | 
						|
		free_pcp = 0;
 | 
						|
		for_each_online_cpu(cpu)
 | 
						|
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
 | 
						|
 | 
						|
		show_node(zone);
 | 
						|
		printk("%s"
 | 
						|
			" free:%lukB"
 | 
						|
			" min:%lukB"
 | 
						|
			" low:%lukB"
 | 
						|
			" high:%lukB"
 | 
						|
			" active_anon:%lukB"
 | 
						|
			" inactive_anon:%lukB"
 | 
						|
			" active_file:%lukB"
 | 
						|
			" inactive_file:%lukB"
 | 
						|
			" unevictable:%lukB"
 | 
						|
			" isolated(anon):%lukB"
 | 
						|
			" isolated(file):%lukB"
 | 
						|
			" present:%lukB"
 | 
						|
			" managed:%lukB"
 | 
						|
			" mlocked:%lukB"
 | 
						|
			" dirty:%lukB"
 | 
						|
			" writeback:%lukB"
 | 
						|
			" mapped:%lukB"
 | 
						|
			" shmem:%lukB"
 | 
						|
			" slab_reclaimable:%lukB"
 | 
						|
			" slab_unreclaimable:%lukB"
 | 
						|
			" kernel_stack:%lukB"
 | 
						|
			" pagetables:%lukB"
 | 
						|
			" unstable:%lukB"
 | 
						|
			" bounce:%lukB"
 | 
						|
			" free_pcp:%lukB"
 | 
						|
			" local_pcp:%ukB"
 | 
						|
			" free_cma:%lukB"
 | 
						|
			" writeback_tmp:%lukB"
 | 
						|
			" pages_scanned:%lu"
 | 
						|
			" all_unreclaimable? %s"
 | 
						|
			"\n",
 | 
						|
			zone->name,
 | 
						|
			K(zone_page_state(zone, NR_FREE_PAGES)),
 | 
						|
			K(min_wmark_pages(zone)),
 | 
						|
			K(low_wmark_pages(zone)),
 | 
						|
			K(high_wmark_pages(zone)),
 | 
						|
			K(zone_page_state(zone, NR_ACTIVE_ANON)),
 | 
						|
			K(zone_page_state(zone, NR_INACTIVE_ANON)),
 | 
						|
			K(zone_page_state(zone, NR_ACTIVE_FILE)),
 | 
						|
			K(zone_page_state(zone, NR_INACTIVE_FILE)),
 | 
						|
			K(zone_page_state(zone, NR_UNEVICTABLE)),
 | 
						|
			K(zone_page_state(zone, NR_ISOLATED_ANON)),
 | 
						|
			K(zone_page_state(zone, NR_ISOLATED_FILE)),
 | 
						|
			K(zone->present_pages),
 | 
						|
			K(zone->managed_pages),
 | 
						|
			K(zone_page_state(zone, NR_MLOCK)),
 | 
						|
			K(zone_page_state(zone, NR_FILE_DIRTY)),
 | 
						|
			K(zone_page_state(zone, NR_WRITEBACK)),
 | 
						|
			K(zone_page_state(zone, NR_FILE_MAPPED)),
 | 
						|
			K(zone_page_state(zone, NR_SHMEM)),
 | 
						|
			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
 | 
						|
			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
 | 
						|
			zone_page_state(zone, NR_KERNEL_STACK) *
 | 
						|
				THREAD_SIZE / 1024,
 | 
						|
			K(zone_page_state(zone, NR_PAGETABLE)),
 | 
						|
			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
 | 
						|
			K(zone_page_state(zone, NR_BOUNCE)),
 | 
						|
			K(free_pcp),
 | 
						|
			K(this_cpu_read(zone->pageset->pcp.count)),
 | 
						|
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
 | 
						|
			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
 | 
						|
			K(zone_page_state(zone, NR_PAGES_SCANNED)),
 | 
						|
			(!zone_reclaimable(zone) ? "yes" : "no")
 | 
						|
			);
 | 
						|
		printk("lowmem_reserve[]:");
 | 
						|
		for (i = 0; i < MAX_NR_ZONES; i++)
 | 
						|
			printk(" %ld", zone->lowmem_reserve[i]);
 | 
						|
		printk("\n");
 | 
						|
	}
 | 
						|
 | 
						|
	for_each_populated_zone(zone) {
 | 
						|
		unsigned int order;
 | 
						|
		unsigned long nr[MAX_ORDER], flags, total = 0;
 | 
						|
		unsigned char types[MAX_ORDER];
 | 
						|
 | 
						|
		if (skip_free_areas_node(filter, zone_to_nid(zone)))
 | 
						|
			continue;
 | 
						|
		show_node(zone);
 | 
						|
		printk("%s: ", zone->name);
 | 
						|
 | 
						|
		spin_lock_irqsave(&zone->lock, flags);
 | 
						|
		for (order = 0; order < MAX_ORDER; order++) {
 | 
						|
			struct free_area *area = &zone->free_area[order];
 | 
						|
			int type;
 | 
						|
 | 
						|
			nr[order] = area->nr_free;
 | 
						|
			total += nr[order] << order;
 | 
						|
 | 
						|
			types[order] = 0;
 | 
						|
			for (type = 0; type < MIGRATE_TYPES; type++) {
 | 
						|
				if (!list_empty(&area->free_list[type]))
 | 
						|
					types[order] |= 1 << type;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		spin_unlock_irqrestore(&zone->lock, flags);
 | 
						|
		for (order = 0; order < MAX_ORDER; order++) {
 | 
						|
			printk("%lu*%lukB ", nr[order], K(1UL) << order);
 | 
						|
			if (nr[order])
 | 
						|
				show_migration_types(types[order]);
 | 
						|
		}
 | 
						|
		printk("= %lukB\n", K(total));
 | 
						|
	}
 | 
						|
 | 
						|
	hugetlb_show_meminfo();
 | 
						|
 | 
						|
	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
 | 
						|
 | 
						|
	show_swap_cache_info();
 | 
						|
}
 | 
						|
 | 
						|
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
 | 
						|
{
 | 
						|
	zoneref->zone = zone;
 | 
						|
	zoneref->zone_idx = zone_idx(zone);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Builds allocation fallback zone lists.
 | 
						|
 *
 | 
						|
 * Add all populated zones of a node to the zonelist.
 | 
						|
 */
 | 
						|
static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
 | 
						|
				int nr_zones)
 | 
						|
{
 | 
						|
	struct zone *zone;
 | 
						|
	enum zone_type zone_type = MAX_NR_ZONES;
 | 
						|
 | 
						|
	do {
 | 
						|
		zone_type--;
 | 
						|
		zone = pgdat->node_zones + zone_type;
 | 
						|
		if (populated_zone(zone)) {
 | 
						|
			zoneref_set_zone(zone,
 | 
						|
				&zonelist->_zonerefs[nr_zones++]);
 | 
						|
			check_highest_zone(zone_type);
 | 
						|
		}
 | 
						|
	} while (zone_type);
 | 
						|
 | 
						|
	return nr_zones;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 *  zonelist_order:
 | 
						|
 *  0 = automatic detection of better ordering.
 | 
						|
 *  1 = order by ([node] distance, -zonetype)
 | 
						|
 *  2 = order by (-zonetype, [node] distance)
 | 
						|
 *
 | 
						|
 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
 | 
						|
 *  the same zonelist. So only NUMA can configure this param.
 | 
						|
 */
 | 
						|
#define ZONELIST_ORDER_DEFAULT  0
 | 
						|
#define ZONELIST_ORDER_NODE     1
 | 
						|
#define ZONELIST_ORDER_ZONE     2
 | 
						|
 | 
						|
/* zonelist order in the kernel.
 | 
						|
 * set_zonelist_order() will set this to NODE or ZONE.
 | 
						|
 */
 | 
						|
static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
 | 
						|
static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
 | 
						|
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
/* The value user specified ....changed by config */
 | 
						|
static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
 | 
						|
/* string for sysctl */
 | 
						|
#define NUMA_ZONELIST_ORDER_LEN	16
 | 
						|
char numa_zonelist_order[16] = "default";
 | 
						|
 | 
						|
/*
 | 
						|
 * interface for configure zonelist ordering.
 | 
						|
 * command line option "numa_zonelist_order"
 | 
						|
 *	= "[dD]efault	- default, automatic configuration.
 | 
						|
 *	= "[nN]ode 	- order by node locality, then by zone within node
 | 
						|
 *	= "[zZ]one      - order by zone, then by locality within zone
 | 
						|
 */
 | 
						|
 | 
						|
static int __parse_numa_zonelist_order(char *s)
 | 
						|
{
 | 
						|
	if (*s == 'd' || *s == 'D') {
 | 
						|
		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
 | 
						|
	} else if (*s == 'n' || *s == 'N') {
 | 
						|
		user_zonelist_order = ZONELIST_ORDER_NODE;
 | 
						|
	} else if (*s == 'z' || *s == 'Z') {
 | 
						|
		user_zonelist_order = ZONELIST_ORDER_ZONE;
 | 
						|
	} else {
 | 
						|
		printk(KERN_WARNING
 | 
						|
			"Ignoring invalid numa_zonelist_order value:  "
 | 
						|
			"%s\n", s);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static __init int setup_numa_zonelist_order(char *s)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (!s)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	ret = __parse_numa_zonelist_order(s);
 | 
						|
	if (ret == 0)
 | 
						|
		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
early_param("numa_zonelist_order", setup_numa_zonelist_order);
 | 
						|
 | 
						|
/*
 | 
						|
 * sysctl handler for numa_zonelist_order
 | 
						|
 */
 | 
						|
int numa_zonelist_order_handler(struct ctl_table *table, int write,
 | 
						|
		void __user *buffer, size_t *length,
 | 
						|
		loff_t *ppos)
 | 
						|
{
 | 
						|
	char saved_string[NUMA_ZONELIST_ORDER_LEN];
 | 
						|
	int ret;
 | 
						|
	static DEFINE_MUTEX(zl_order_mutex);
 | 
						|
 | 
						|
	mutex_lock(&zl_order_mutex);
 | 
						|
	if (write) {
 | 
						|
		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
 | 
						|
			ret = -EINVAL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		strcpy(saved_string, (char *)table->data);
 | 
						|
	}
 | 
						|
	ret = proc_dostring(table, write, buffer, length, ppos);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
	if (write) {
 | 
						|
		int oldval = user_zonelist_order;
 | 
						|
 | 
						|
		ret = __parse_numa_zonelist_order((char *)table->data);
 | 
						|
		if (ret) {
 | 
						|
			/*
 | 
						|
			 * bogus value.  restore saved string
 | 
						|
			 */
 | 
						|
			strncpy((char *)table->data, saved_string,
 | 
						|
				NUMA_ZONELIST_ORDER_LEN);
 | 
						|
			user_zonelist_order = oldval;
 | 
						|
		} else if (oldval != user_zonelist_order) {
 | 
						|
			mutex_lock(&zonelists_mutex);
 | 
						|
			build_all_zonelists(NULL, NULL);
 | 
						|
			mutex_unlock(&zonelists_mutex);
 | 
						|
		}
 | 
						|
	}
 | 
						|
out:
 | 
						|
	mutex_unlock(&zl_order_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#define MAX_NODE_LOAD (nr_online_nodes)
 | 
						|
static int node_load[MAX_NUMNODES];
 | 
						|
 | 
						|
/**
 | 
						|
 * find_next_best_node - find the next node that should appear in a given node's fallback list
 | 
						|
 * @node: node whose fallback list we're appending
 | 
						|
 * @used_node_mask: nodemask_t of already used nodes
 | 
						|
 *
 | 
						|
 * We use a number of factors to determine which is the next node that should
 | 
						|
 * appear on a given node's fallback list.  The node should not have appeared
 | 
						|
 * already in @node's fallback list, and it should be the next closest node
 | 
						|
 * according to the distance array (which contains arbitrary distance values
 | 
						|
 * from each node to each node in the system), and should also prefer nodes
 | 
						|
 * with no CPUs, since presumably they'll have very little allocation pressure
 | 
						|
 * on them otherwise.
 | 
						|
 * It returns -1 if no node is found.
 | 
						|
 */
 | 
						|
static int find_next_best_node(int node, nodemask_t *used_node_mask)
 | 
						|
{
 | 
						|
	int n, val;
 | 
						|
	int min_val = INT_MAX;
 | 
						|
	int best_node = NUMA_NO_NODE;
 | 
						|
	const struct cpumask *tmp = cpumask_of_node(0);
 | 
						|
 | 
						|
	/* Use the local node if we haven't already */
 | 
						|
	if (!node_isset(node, *used_node_mask)) {
 | 
						|
		node_set(node, *used_node_mask);
 | 
						|
		return node;
 | 
						|
	}
 | 
						|
 | 
						|
	for_each_node_state(n, N_MEMORY) {
 | 
						|
 | 
						|
		/* Don't want a node to appear more than once */
 | 
						|
		if (node_isset(n, *used_node_mask))
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* Use the distance array to find the distance */
 | 
						|
		val = node_distance(node, n);
 | 
						|
 | 
						|
		/* Penalize nodes under us ("prefer the next node") */
 | 
						|
		val += (n < node);
 | 
						|
 | 
						|
		/* Give preference to headless and unused nodes */
 | 
						|
		tmp = cpumask_of_node(n);
 | 
						|
		if (!cpumask_empty(tmp))
 | 
						|
			val += PENALTY_FOR_NODE_WITH_CPUS;
 | 
						|
 | 
						|
		/* Slight preference for less loaded node */
 | 
						|
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
 | 
						|
		val += node_load[n];
 | 
						|
 | 
						|
		if (val < min_val) {
 | 
						|
			min_val = val;
 | 
						|
			best_node = n;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (best_node >= 0)
 | 
						|
		node_set(best_node, *used_node_mask);
 | 
						|
 | 
						|
	return best_node;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Build zonelists ordered by node and zones within node.
 | 
						|
 * This results in maximum locality--normal zone overflows into local
 | 
						|
 * DMA zone, if any--but risks exhausting DMA zone.
 | 
						|
 */
 | 
						|
static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
 | 
						|
{
 | 
						|
	int j;
 | 
						|
	struct zonelist *zonelist;
 | 
						|
 | 
						|
	zonelist = &pgdat->node_zonelists[0];
 | 
						|
	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
 | 
						|
		;
 | 
						|
	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
 | 
						|
	zonelist->_zonerefs[j].zone = NULL;
 | 
						|
	zonelist->_zonerefs[j].zone_idx = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Build gfp_thisnode zonelists
 | 
						|
 */
 | 
						|
static void build_thisnode_zonelists(pg_data_t *pgdat)
 | 
						|
{
 | 
						|
	int j;
 | 
						|
	struct zonelist *zonelist;
 | 
						|
 | 
						|
	zonelist = &pgdat->node_zonelists[1];
 | 
						|
	j = build_zonelists_node(pgdat, zonelist, 0);
 | 
						|
	zonelist->_zonerefs[j].zone = NULL;
 | 
						|
	zonelist->_zonerefs[j].zone_idx = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Build zonelists ordered by zone and nodes within zones.
 | 
						|
 * This results in conserving DMA zone[s] until all Normal memory is
 | 
						|
 * exhausted, but results in overflowing to remote node while memory
 | 
						|
 * may still exist in local DMA zone.
 | 
						|
 */
 | 
						|
static int node_order[MAX_NUMNODES];
 | 
						|
 | 
						|
static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
 | 
						|
{
 | 
						|
	int pos, j, node;
 | 
						|
	int zone_type;		/* needs to be signed */
 | 
						|
	struct zone *z;
 | 
						|
	struct zonelist *zonelist;
 | 
						|
 | 
						|
	zonelist = &pgdat->node_zonelists[0];
 | 
						|
	pos = 0;
 | 
						|
	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
 | 
						|
		for (j = 0; j < nr_nodes; j++) {
 | 
						|
			node = node_order[j];
 | 
						|
			z = &NODE_DATA(node)->node_zones[zone_type];
 | 
						|
			if (populated_zone(z)) {
 | 
						|
				zoneref_set_zone(z,
 | 
						|
					&zonelist->_zonerefs[pos++]);
 | 
						|
				check_highest_zone(zone_type);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	zonelist->_zonerefs[pos].zone = NULL;
 | 
						|
	zonelist->_zonerefs[pos].zone_idx = 0;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(CONFIG_64BIT)
 | 
						|
/*
 | 
						|
 * Devices that require DMA32/DMA are relatively rare and do not justify a
 | 
						|
 * penalty to every machine in case the specialised case applies. Default
 | 
						|
 * to Node-ordering on 64-bit NUMA machines
 | 
						|
 */
 | 
						|
static int default_zonelist_order(void)
 | 
						|
{
 | 
						|
	return ZONELIST_ORDER_NODE;
 | 
						|
}
 | 
						|
#else
 | 
						|
/*
 | 
						|
 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
 | 
						|
 * by the kernel. If processes running on node 0 deplete the low memory zone
 | 
						|
 * then reclaim will occur more frequency increasing stalls and potentially
 | 
						|
 * be easier to OOM if a large percentage of the zone is under writeback or
 | 
						|
 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
 | 
						|
 * Hence, default to zone ordering on 32-bit.
 | 
						|
 */
 | 
						|
static int default_zonelist_order(void)
 | 
						|
{
 | 
						|
	return ZONELIST_ORDER_ZONE;
 | 
						|
}
 | 
						|
#endif /* CONFIG_64BIT */
 | 
						|
 | 
						|
static void set_zonelist_order(void)
 | 
						|
{
 | 
						|
	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
 | 
						|
		current_zonelist_order = default_zonelist_order();
 | 
						|
	else
 | 
						|
		current_zonelist_order = user_zonelist_order;
 | 
						|
}
 | 
						|
 | 
						|
static void build_zonelists(pg_data_t *pgdat)
 | 
						|
{
 | 
						|
	int i, node, load;
 | 
						|
	nodemask_t used_mask;
 | 
						|
	int local_node, prev_node;
 | 
						|
	struct zonelist *zonelist;
 | 
						|
	unsigned int order = current_zonelist_order;
 | 
						|
 | 
						|
	/* initialize zonelists */
 | 
						|
	for (i = 0; i < MAX_ZONELISTS; i++) {
 | 
						|
		zonelist = pgdat->node_zonelists + i;
 | 
						|
		zonelist->_zonerefs[0].zone = NULL;
 | 
						|
		zonelist->_zonerefs[0].zone_idx = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* NUMA-aware ordering of nodes */
 | 
						|
	local_node = pgdat->node_id;
 | 
						|
	load = nr_online_nodes;
 | 
						|
	prev_node = local_node;
 | 
						|
	nodes_clear(used_mask);
 | 
						|
 | 
						|
	memset(node_order, 0, sizeof(node_order));
 | 
						|
	i = 0;
 | 
						|
 | 
						|
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
 | 
						|
		/*
 | 
						|
		 * We don't want to pressure a particular node.
 | 
						|
		 * So adding penalty to the first node in same
 | 
						|
		 * distance group to make it round-robin.
 | 
						|
		 */
 | 
						|
		if (node_distance(local_node, node) !=
 | 
						|
		    node_distance(local_node, prev_node))
 | 
						|
			node_load[node] = load;
 | 
						|
 | 
						|
		prev_node = node;
 | 
						|
		load--;
 | 
						|
		if (order == ZONELIST_ORDER_NODE)
 | 
						|
			build_zonelists_in_node_order(pgdat, node);
 | 
						|
		else
 | 
						|
			node_order[i++] = node;	/* remember order */
 | 
						|
	}
 | 
						|
 | 
						|
	if (order == ZONELIST_ORDER_ZONE) {
 | 
						|
		/* calculate node order -- i.e., DMA last! */
 | 
						|
		build_zonelists_in_zone_order(pgdat, i);
 | 
						|
	}
 | 
						|
 | 
						|
	build_thisnode_zonelists(pgdat);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 | 
						|
/*
 | 
						|
 * Return node id of node used for "local" allocations.
 | 
						|
 * I.e., first node id of first zone in arg node's generic zonelist.
 | 
						|
 * Used for initializing percpu 'numa_mem', which is used primarily
 | 
						|
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 | 
						|
 */
 | 
						|
int local_memory_node(int node)
 | 
						|
{
 | 
						|
	struct zone *zone;
 | 
						|
 | 
						|
	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
 | 
						|
				   gfp_zone(GFP_KERNEL),
 | 
						|
				   NULL,
 | 
						|
				   &zone);
 | 
						|
	return zone->node;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#else	/* CONFIG_NUMA */
 | 
						|
 | 
						|
static void set_zonelist_order(void)
 | 
						|
{
 | 
						|
	current_zonelist_order = ZONELIST_ORDER_ZONE;
 | 
						|
}
 | 
						|
 | 
						|
static void build_zonelists(pg_data_t *pgdat)
 | 
						|
{
 | 
						|
	int node, local_node;
 | 
						|
	enum zone_type j;
 | 
						|
	struct zonelist *zonelist;
 | 
						|
 | 
						|
	local_node = pgdat->node_id;
 | 
						|
 | 
						|
	zonelist = &pgdat->node_zonelists[0];
 | 
						|
	j = build_zonelists_node(pgdat, zonelist, 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now we build the zonelist so that it contains the zones
 | 
						|
	 * of all the other nodes.
 | 
						|
	 * We don't want to pressure a particular node, so when
 | 
						|
	 * building the zones for node N, we make sure that the
 | 
						|
	 * zones coming right after the local ones are those from
 | 
						|
	 * node N+1 (modulo N)
 | 
						|
	 */
 | 
						|
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
 | 
						|
		if (!node_online(node))
 | 
						|
			continue;
 | 
						|
		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
 | 
						|
	}
 | 
						|
	for (node = 0; node < local_node; node++) {
 | 
						|
		if (!node_online(node))
 | 
						|
			continue;
 | 
						|
		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
 | 
						|
	}
 | 
						|
 | 
						|
	zonelist->_zonerefs[j].zone = NULL;
 | 
						|
	zonelist->_zonerefs[j].zone_idx = 0;
 | 
						|
}
 | 
						|
 | 
						|
#endif	/* CONFIG_NUMA */
 | 
						|
 | 
						|
/*
 | 
						|
 * Boot pageset table. One per cpu which is going to be used for all
 | 
						|
 * zones and all nodes. The parameters will be set in such a way
 | 
						|
 * that an item put on a list will immediately be handed over to
 | 
						|
 * the buddy list. This is safe since pageset manipulation is done
 | 
						|
 * with interrupts disabled.
 | 
						|
 *
 | 
						|
 * The boot_pagesets must be kept even after bootup is complete for
 | 
						|
 * unused processors and/or zones. They do play a role for bootstrapping
 | 
						|
 * hotplugged processors.
 | 
						|
 *
 | 
						|
 * zoneinfo_show() and maybe other functions do
 | 
						|
 * not check if the processor is online before following the pageset pointer.
 | 
						|
 * Other parts of the kernel may not check if the zone is available.
 | 
						|
 */
 | 
						|
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
 | 
						|
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
 | 
						|
static void setup_zone_pageset(struct zone *zone);
 | 
						|
 | 
						|
/*
 | 
						|
 * Global mutex to protect against size modification of zonelists
 | 
						|
 * as well as to serialize pageset setup for the new populated zone.
 | 
						|
 */
 | 
						|
DEFINE_MUTEX(zonelists_mutex);
 | 
						|
 | 
						|
/* return values int ....just for stop_machine() */
 | 
						|
static int __build_all_zonelists(void *data)
 | 
						|
{
 | 
						|
	int nid;
 | 
						|
	int cpu;
 | 
						|
	pg_data_t *self = data;
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
	memset(node_load, 0, sizeof(node_load));
 | 
						|
#endif
 | 
						|
 | 
						|
	if (self && !node_online(self->node_id)) {
 | 
						|
		build_zonelists(self);
 | 
						|
	}
 | 
						|
 | 
						|
	for_each_online_node(nid) {
 | 
						|
		pg_data_t *pgdat = NODE_DATA(nid);
 | 
						|
 | 
						|
		build_zonelists(pgdat);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initialize the boot_pagesets that are going to be used
 | 
						|
	 * for bootstrapping processors. The real pagesets for
 | 
						|
	 * each zone will be allocated later when the per cpu
 | 
						|
	 * allocator is available.
 | 
						|
	 *
 | 
						|
	 * boot_pagesets are used also for bootstrapping offline
 | 
						|
	 * cpus if the system is already booted because the pagesets
 | 
						|
	 * are needed to initialize allocators on a specific cpu too.
 | 
						|
	 * F.e. the percpu allocator needs the page allocator which
 | 
						|
	 * needs the percpu allocator in order to allocate its pagesets
 | 
						|
	 * (a chicken-egg dilemma).
 | 
						|
	 */
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
 | 
						|
 | 
						|
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 | 
						|
		/*
 | 
						|
		 * We now know the "local memory node" for each node--
 | 
						|
		 * i.e., the node of the first zone in the generic zonelist.
 | 
						|
		 * Set up numa_mem percpu variable for on-line cpus.  During
 | 
						|
		 * boot, only the boot cpu should be on-line;  we'll init the
 | 
						|
		 * secondary cpus' numa_mem as they come on-line.  During
 | 
						|
		 * node/memory hotplug, we'll fixup all on-line cpus.
 | 
						|
		 */
 | 
						|
		if (cpu_online(cpu))
 | 
						|
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static noinline void __init
 | 
						|
build_all_zonelists_init(void)
 | 
						|
{
 | 
						|
	__build_all_zonelists(NULL);
 | 
						|
	mminit_verify_zonelist();
 | 
						|
	cpuset_init_current_mems_allowed();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called with zonelists_mutex held always
 | 
						|
 * unless system_state == SYSTEM_BOOTING.
 | 
						|
 *
 | 
						|
 * __ref due to (1) call of __meminit annotated setup_zone_pageset
 | 
						|
 * [we're only called with non-NULL zone through __meminit paths] and
 | 
						|
 * (2) call of __init annotated helper build_all_zonelists_init
 | 
						|
 * [protected by SYSTEM_BOOTING].
 | 
						|
 */
 | 
						|
void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
 | 
						|
{
 | 
						|
	set_zonelist_order();
 | 
						|
 | 
						|
	if (system_state == SYSTEM_BOOTING) {
 | 
						|
		build_all_zonelists_init();
 | 
						|
	} else {
 | 
						|
#ifdef CONFIG_MEMORY_HOTPLUG
 | 
						|
		if (zone)
 | 
						|
			setup_zone_pageset(zone);
 | 
						|
#endif
 | 
						|
		/* we have to stop all cpus to guarantee there is no user
 | 
						|
		   of zonelist */
 | 
						|
		stop_machine(__build_all_zonelists, pgdat, NULL);
 | 
						|
		/* cpuset refresh routine should be here */
 | 
						|
	}
 | 
						|
	vm_total_pages = nr_free_pagecache_pages();
 | 
						|
	/*
 | 
						|
	 * Disable grouping by mobility if the number of pages in the
 | 
						|
	 * system is too low to allow the mechanism to work. It would be
 | 
						|
	 * more accurate, but expensive to check per-zone. This check is
 | 
						|
	 * made on memory-hotadd so a system can start with mobility
 | 
						|
	 * disabled and enable it later
 | 
						|
	 */
 | 
						|
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
 | 
						|
		page_group_by_mobility_disabled = 1;
 | 
						|
	else
 | 
						|
		page_group_by_mobility_disabled = 0;
 | 
						|
 | 
						|
	pr_info("Built %i zonelists in %s order, mobility grouping %s.  "
 | 
						|
		"Total pages: %ld\n",
 | 
						|
			nr_online_nodes,
 | 
						|
			zonelist_order_name[current_zonelist_order],
 | 
						|
			page_group_by_mobility_disabled ? "off" : "on",
 | 
						|
			vm_total_pages);
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Helper functions to size the waitqueue hash table.
 | 
						|
 * Essentially these want to choose hash table sizes sufficiently
 | 
						|
 * large so that collisions trying to wait on pages are rare.
 | 
						|
 * But in fact, the number of active page waitqueues on typical
 | 
						|
 * systems is ridiculously low, less than 200. So this is even
 | 
						|
 * conservative, even though it seems large.
 | 
						|
 *
 | 
						|
 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
 | 
						|
 * waitqueues, i.e. the size of the waitq table given the number of pages.
 | 
						|
 */
 | 
						|
#define PAGES_PER_WAITQUEUE	256
 | 
						|
 | 
						|
#ifndef CONFIG_MEMORY_HOTPLUG
 | 
						|
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
 | 
						|
{
 | 
						|
	unsigned long size = 1;
 | 
						|
 | 
						|
	pages /= PAGES_PER_WAITQUEUE;
 | 
						|
 | 
						|
	while (size < pages)
 | 
						|
		size <<= 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Once we have dozens or even hundreds of threads sleeping
 | 
						|
	 * on IO we've got bigger problems than wait queue collision.
 | 
						|
	 * Limit the size of the wait table to a reasonable size.
 | 
						|
	 */
 | 
						|
	size = min(size, 4096UL);
 | 
						|
 | 
						|
	return max(size, 4UL);
 | 
						|
}
 | 
						|
#else
 | 
						|
/*
 | 
						|
 * A zone's size might be changed by hot-add, so it is not possible to determine
 | 
						|
 * a suitable size for its wait_table.  So we use the maximum size now.
 | 
						|
 *
 | 
						|
 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
 | 
						|
 *
 | 
						|
 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
 | 
						|
 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
 | 
						|
 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
 | 
						|
 *
 | 
						|
 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
 | 
						|
 * or more by the traditional way. (See above).  It equals:
 | 
						|
 *
 | 
						|
 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
 | 
						|
 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
 | 
						|
 *    powerpc (64K page size)             : =  (32G +16M)byte.
 | 
						|
 */
 | 
						|
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
 | 
						|
{
 | 
						|
	return 4096UL;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * This is an integer logarithm so that shifts can be used later
 | 
						|
 * to extract the more random high bits from the multiplicative
 | 
						|
 * hash function before the remainder is taken.
 | 
						|
 */
 | 
						|
static inline unsigned long wait_table_bits(unsigned long size)
 | 
						|
{
 | 
						|
	return ffz(~size);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initially all pages are reserved - free ones are freed
 | 
						|
 * up by free_all_bootmem() once the early boot process is
 | 
						|
 * done. Non-atomic initialization, single-pass.
 | 
						|
 */
 | 
						|
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
 | 
						|
		unsigned long start_pfn, enum memmap_context context)
 | 
						|
{
 | 
						|
	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
 | 
						|
	unsigned long end_pfn = start_pfn + size;
 | 
						|
	pg_data_t *pgdat = NODE_DATA(nid);
 | 
						|
	unsigned long pfn;
 | 
						|
	struct zone *z;
 | 
						|
	unsigned long nr_initialised = 0;
 | 
						|
 | 
						|
	if (highest_memmap_pfn < end_pfn - 1)
 | 
						|
		highest_memmap_pfn = end_pfn - 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Honor reservation requested by the driver for this ZONE_DEVICE
 | 
						|
	 * memory
 | 
						|
	 */
 | 
						|
	if (altmap && start_pfn == altmap->base_pfn)
 | 
						|
		start_pfn += altmap->reserve;
 | 
						|
 | 
						|
	z = &pgdat->node_zones[zone];
 | 
						|
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
 | 
						|
		/*
 | 
						|
		 * There can be holes in boot-time mem_map[]s
 | 
						|
		 * handed to this function.  They do not
 | 
						|
		 * exist on hotplugged memory.
 | 
						|
		 */
 | 
						|
		if (context == MEMMAP_EARLY) {
 | 
						|
			if (!early_pfn_valid(pfn))
 | 
						|
				continue;
 | 
						|
			if (!early_pfn_in_nid(pfn, nid))
 | 
						|
				continue;
 | 
						|
			if (!update_defer_init(pgdat, pfn, end_pfn,
 | 
						|
						&nr_initialised))
 | 
						|
				break;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Mark the block movable so that blocks are reserved for
 | 
						|
		 * movable at startup. This will force kernel allocations
 | 
						|
		 * to reserve their blocks rather than leaking throughout
 | 
						|
		 * the address space during boot when many long-lived
 | 
						|
		 * kernel allocations are made.
 | 
						|
		 *
 | 
						|
		 * bitmap is created for zone's valid pfn range. but memmap
 | 
						|
		 * can be created for invalid pages (for alignment)
 | 
						|
		 * check here not to call set_pageblock_migratetype() against
 | 
						|
		 * pfn out of zone.
 | 
						|
		 */
 | 
						|
		if (!(pfn & (pageblock_nr_pages - 1))) {
 | 
						|
			struct page *page = pfn_to_page(pfn);
 | 
						|
 | 
						|
			__init_single_page(page, pfn, zone, nid);
 | 
						|
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
 | 
						|
		} else {
 | 
						|
			__init_single_pfn(pfn, zone, nid);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void __meminit zone_init_free_lists(struct zone *zone)
 | 
						|
{
 | 
						|
	unsigned int order, t;
 | 
						|
	for_each_migratetype_order(order, t) {
 | 
						|
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
 | 
						|
		zone->free_area[order].nr_free = 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_MEMMAP_INIT
 | 
						|
#define memmap_init(size, nid, zone, start_pfn) \
 | 
						|
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
 | 
						|
#endif
 | 
						|
 | 
						|
static int zone_batchsize(struct zone *zone)
 | 
						|
{
 | 
						|
#ifdef CONFIG_MMU
 | 
						|
	int batch;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The per-cpu-pages pools are set to around 1000th of the
 | 
						|
	 * size of the zone.  But no more than 1/2 of a meg.
 | 
						|
	 *
 | 
						|
	 * OK, so we don't know how big the cache is.  So guess.
 | 
						|
	 */
 | 
						|
	batch = zone->managed_pages / 1024;
 | 
						|
	if (batch * PAGE_SIZE > 512 * 1024)
 | 
						|
		batch = (512 * 1024) / PAGE_SIZE;
 | 
						|
	batch /= 4;		/* We effectively *= 4 below */
 | 
						|
	if (batch < 1)
 | 
						|
		batch = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Clamp the batch to a 2^n - 1 value. Having a power
 | 
						|
	 * of 2 value was found to be more likely to have
 | 
						|
	 * suboptimal cache aliasing properties in some cases.
 | 
						|
	 *
 | 
						|
	 * For example if 2 tasks are alternately allocating
 | 
						|
	 * batches of pages, one task can end up with a lot
 | 
						|
	 * of pages of one half of the possible page colors
 | 
						|
	 * and the other with pages of the other colors.
 | 
						|
	 */
 | 
						|
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
 | 
						|
 | 
						|
	return batch;
 | 
						|
 | 
						|
#else
 | 
						|
	/* The deferral and batching of frees should be suppressed under NOMMU
 | 
						|
	 * conditions.
 | 
						|
	 *
 | 
						|
	 * The problem is that NOMMU needs to be able to allocate large chunks
 | 
						|
	 * of contiguous memory as there's no hardware page translation to
 | 
						|
	 * assemble apparent contiguous memory from discontiguous pages.
 | 
						|
	 *
 | 
						|
	 * Queueing large contiguous runs of pages for batching, however,
 | 
						|
	 * causes the pages to actually be freed in smaller chunks.  As there
 | 
						|
	 * can be a significant delay between the individual batches being
 | 
						|
	 * recycled, this leads to the once large chunks of space being
 | 
						|
	 * fragmented and becoming unavailable for high-order allocations.
 | 
						|
	 */
 | 
						|
	return 0;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * pcp->high and pcp->batch values are related and dependent on one another:
 | 
						|
 * ->batch must never be higher then ->high.
 | 
						|
 * The following function updates them in a safe manner without read side
 | 
						|
 * locking.
 | 
						|
 *
 | 
						|
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 | 
						|
 * those fields changing asynchronously (acording the the above rule).
 | 
						|
 *
 | 
						|
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 | 
						|
 * outside of boot time (or some other assurance that no concurrent updaters
 | 
						|
 * exist).
 | 
						|
 */
 | 
						|
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
 | 
						|
		unsigned long batch)
 | 
						|
{
 | 
						|
       /* start with a fail safe value for batch */
 | 
						|
	pcp->batch = 1;
 | 
						|
	smp_wmb();
 | 
						|
 | 
						|
       /* Update high, then batch, in order */
 | 
						|
	pcp->high = high;
 | 
						|
	smp_wmb();
 | 
						|
 | 
						|
	pcp->batch = batch;
 | 
						|
}
 | 
						|
 | 
						|
/* a companion to pageset_set_high() */
 | 
						|
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
 | 
						|
{
 | 
						|
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
 | 
						|
}
 | 
						|
 | 
						|
static void pageset_init(struct per_cpu_pageset *p)
 | 
						|
{
 | 
						|
	struct per_cpu_pages *pcp;
 | 
						|
	int migratetype;
 | 
						|
 | 
						|
	memset(p, 0, sizeof(*p));
 | 
						|
 | 
						|
	pcp = &p->pcp;
 | 
						|
	pcp->count = 0;
 | 
						|
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
 | 
						|
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
 | 
						|
}
 | 
						|
 | 
						|
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
 | 
						|
{
 | 
						|
	pageset_init(p);
 | 
						|
	pageset_set_batch(p, batch);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
 | 
						|
 * to the value high for the pageset p.
 | 
						|
 */
 | 
						|
static void pageset_set_high(struct per_cpu_pageset *p,
 | 
						|
				unsigned long high)
 | 
						|
{
 | 
						|
	unsigned long batch = max(1UL, high / 4);
 | 
						|
	if ((high / 4) > (PAGE_SHIFT * 8))
 | 
						|
		batch = PAGE_SHIFT * 8;
 | 
						|
 | 
						|
	pageset_update(&p->pcp, high, batch);
 | 
						|
}
 | 
						|
 | 
						|
static void pageset_set_high_and_batch(struct zone *zone,
 | 
						|
				       struct per_cpu_pageset *pcp)
 | 
						|
{
 | 
						|
	if (percpu_pagelist_fraction)
 | 
						|
		pageset_set_high(pcp,
 | 
						|
			(zone->managed_pages /
 | 
						|
				percpu_pagelist_fraction));
 | 
						|
	else
 | 
						|
		pageset_set_batch(pcp, zone_batchsize(zone));
 | 
						|
}
 | 
						|
 | 
						|
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
 | 
						|
{
 | 
						|
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
 | 
						|
 | 
						|
	pageset_init(pcp);
 | 
						|
	pageset_set_high_and_batch(zone, pcp);
 | 
						|
}
 | 
						|
 | 
						|
static void __meminit setup_zone_pageset(struct zone *zone)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
 | 
						|
	for_each_possible_cpu(cpu)
 | 
						|
		zone_pageset_init(zone, cpu);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate per cpu pagesets and initialize them.
 | 
						|
 * Before this call only boot pagesets were available.
 | 
						|
 */
 | 
						|
void __init setup_per_cpu_pageset(void)
 | 
						|
{
 | 
						|
	struct zone *zone;
 | 
						|
 | 
						|
	for_each_populated_zone(zone)
 | 
						|
		setup_zone_pageset(zone);
 | 
						|
}
 | 
						|
 | 
						|
static noinline __init_refok
 | 
						|
int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	size_t alloc_size;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The per-page waitqueue mechanism uses hashed waitqueues
 | 
						|
	 * per zone.
 | 
						|
	 */
 | 
						|
	zone->wait_table_hash_nr_entries =
 | 
						|
		 wait_table_hash_nr_entries(zone_size_pages);
 | 
						|
	zone->wait_table_bits =
 | 
						|
		wait_table_bits(zone->wait_table_hash_nr_entries);
 | 
						|
	alloc_size = zone->wait_table_hash_nr_entries
 | 
						|
					* sizeof(wait_queue_head_t);
 | 
						|
 | 
						|
	if (!slab_is_available()) {
 | 
						|
		zone->wait_table = (wait_queue_head_t *)
 | 
						|
			memblock_virt_alloc_node_nopanic(
 | 
						|
				alloc_size, zone->zone_pgdat->node_id);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * This case means that a zone whose size was 0 gets new memory
 | 
						|
		 * via memory hot-add.
 | 
						|
		 * But it may be the case that a new node was hot-added.  In
 | 
						|
		 * this case vmalloc() will not be able to use this new node's
 | 
						|
		 * memory - this wait_table must be initialized to use this new
 | 
						|
		 * node itself as well.
 | 
						|
		 * To use this new node's memory, further consideration will be
 | 
						|
		 * necessary.
 | 
						|
		 */
 | 
						|
		zone->wait_table = vmalloc(alloc_size);
 | 
						|
	}
 | 
						|
	if (!zone->wait_table)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
 | 
						|
		init_waitqueue_head(zone->wait_table + i);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static __meminit void zone_pcp_init(struct zone *zone)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * per cpu subsystem is not up at this point. The following code
 | 
						|
	 * relies on the ability of the linker to provide the
 | 
						|
	 * offset of a (static) per cpu variable into the per cpu area.
 | 
						|
	 */
 | 
						|
	zone->pageset = &boot_pageset;
 | 
						|
 | 
						|
	if (populated_zone(zone))
 | 
						|
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
 | 
						|
			zone->name, zone->present_pages,
 | 
						|
					 zone_batchsize(zone));
 | 
						|
}
 | 
						|
 | 
						|
int __meminit init_currently_empty_zone(struct zone *zone,
 | 
						|
					unsigned long zone_start_pfn,
 | 
						|
					unsigned long size)
 | 
						|
{
 | 
						|
	struct pglist_data *pgdat = zone->zone_pgdat;
 | 
						|
	int ret;
 | 
						|
	ret = zone_wait_table_init(zone, size);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
	pgdat->nr_zones = zone_idx(zone) + 1;
 | 
						|
 | 
						|
	zone->zone_start_pfn = zone_start_pfn;
 | 
						|
 | 
						|
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
 | 
						|
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
 | 
						|
			pgdat->node_id,
 | 
						|
			(unsigned long)zone_idx(zone),
 | 
						|
			zone_start_pfn, (zone_start_pfn + size));
 | 
						|
 | 
						|
	zone_init_free_lists(zone);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | 
						|
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
 | 
						|
 | 
						|
/*
 | 
						|
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 | 
						|
 */
 | 
						|
int __meminit __early_pfn_to_nid(unsigned long pfn,
 | 
						|
					struct mminit_pfnnid_cache *state)
 | 
						|
{
 | 
						|
	unsigned long start_pfn, end_pfn;
 | 
						|
	int nid;
 | 
						|
 | 
						|
	if (state->last_start <= pfn && pfn < state->last_end)
 | 
						|
		return state->last_nid;
 | 
						|
 | 
						|
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
 | 
						|
	if (nid != -1) {
 | 
						|
		state->last_start = start_pfn;
 | 
						|
		state->last_end = end_pfn;
 | 
						|
		state->last_nid = nid;
 | 
						|
	}
 | 
						|
 | 
						|
	return nid;
 | 
						|
}
 | 
						|
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
 | 
						|
 | 
						|
/**
 | 
						|
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
 | 
						|
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
 | 
						|
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
 | 
						|
 *
 | 
						|
 * If an architecture guarantees that all ranges registered contain no holes
 | 
						|
 * and may be freed, this this function may be used instead of calling
 | 
						|
 * memblock_free_early_nid() manually.
 | 
						|
 */
 | 
						|
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
 | 
						|
{
 | 
						|
	unsigned long start_pfn, end_pfn;
 | 
						|
	int i, this_nid;
 | 
						|
 | 
						|
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
 | 
						|
		start_pfn = min(start_pfn, max_low_pfn);
 | 
						|
		end_pfn = min(end_pfn, max_low_pfn);
 | 
						|
 | 
						|
		if (start_pfn < end_pfn)
 | 
						|
			memblock_free_early_nid(PFN_PHYS(start_pfn),
 | 
						|
					(end_pfn - start_pfn) << PAGE_SHIFT,
 | 
						|
					this_nid);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
 | 
						|
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
 | 
						|
 *
 | 
						|
 * If an architecture guarantees that all ranges registered contain no holes and may
 | 
						|
 * be freed, this function may be used instead of calling memory_present() manually.
 | 
						|
 */
 | 
						|
void __init sparse_memory_present_with_active_regions(int nid)
 | 
						|
{
 | 
						|
	unsigned long start_pfn, end_pfn;
 | 
						|
	int i, this_nid;
 | 
						|
 | 
						|
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
 | 
						|
		memory_present(this_nid, start_pfn, end_pfn);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * get_pfn_range_for_nid - Return the start and end page frames for a node
 | 
						|
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 | 
						|
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 | 
						|
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
 | 
						|
 *
 | 
						|
 * It returns the start and end page frame of a node based on information
 | 
						|
 * provided by memblock_set_node(). If called for a node
 | 
						|
 * with no available memory, a warning is printed and the start and end
 | 
						|
 * PFNs will be 0.
 | 
						|
 */
 | 
						|
void __meminit get_pfn_range_for_nid(unsigned int nid,
 | 
						|
			unsigned long *start_pfn, unsigned long *end_pfn)
 | 
						|
{
 | 
						|
	unsigned long this_start_pfn, this_end_pfn;
 | 
						|
	int i;
 | 
						|
 | 
						|
	*start_pfn = -1UL;
 | 
						|
	*end_pfn = 0;
 | 
						|
 | 
						|
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
 | 
						|
		*start_pfn = min(*start_pfn, this_start_pfn);
 | 
						|
		*end_pfn = max(*end_pfn, this_end_pfn);
 | 
						|
	}
 | 
						|
 | 
						|
	if (*start_pfn == -1UL)
 | 
						|
		*start_pfn = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 | 
						|
 * assumption is made that zones within a node are ordered in monotonic
 | 
						|
 * increasing memory addresses so that the "highest" populated zone is used
 | 
						|
 */
 | 
						|
static void __init find_usable_zone_for_movable(void)
 | 
						|
{
 | 
						|
	int zone_index;
 | 
						|
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
 | 
						|
		if (zone_index == ZONE_MOVABLE)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (arch_zone_highest_possible_pfn[zone_index] >
 | 
						|
				arch_zone_lowest_possible_pfn[zone_index])
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	VM_BUG_ON(zone_index == -1);
 | 
						|
	movable_zone = zone_index;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
 | 
						|
 * because it is sized independent of architecture. Unlike the other zones,
 | 
						|
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 | 
						|
 * in each node depending on the size of each node and how evenly kernelcore
 | 
						|
 * is distributed. This helper function adjusts the zone ranges
 | 
						|
 * provided by the architecture for a given node by using the end of the
 | 
						|
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 | 
						|
 * zones within a node are in order of monotonic increases memory addresses
 | 
						|
 */
 | 
						|
static void __meminit adjust_zone_range_for_zone_movable(int nid,
 | 
						|
					unsigned long zone_type,
 | 
						|
					unsigned long node_start_pfn,
 | 
						|
					unsigned long node_end_pfn,
 | 
						|
					unsigned long *zone_start_pfn,
 | 
						|
					unsigned long *zone_end_pfn)
 | 
						|
{
 | 
						|
	/* Only adjust if ZONE_MOVABLE is on this node */
 | 
						|
	if (zone_movable_pfn[nid]) {
 | 
						|
		/* Size ZONE_MOVABLE */
 | 
						|
		if (zone_type == ZONE_MOVABLE) {
 | 
						|
			*zone_start_pfn = zone_movable_pfn[nid];
 | 
						|
			*zone_end_pfn = min(node_end_pfn,
 | 
						|
				arch_zone_highest_possible_pfn[movable_zone]);
 | 
						|
 | 
						|
		/* Adjust for ZONE_MOVABLE starting within this range */
 | 
						|
		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
 | 
						|
				*zone_end_pfn > zone_movable_pfn[nid]) {
 | 
						|
			*zone_end_pfn = zone_movable_pfn[nid];
 | 
						|
 | 
						|
		/* Check if this whole range is within ZONE_MOVABLE */
 | 
						|
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
 | 
						|
			*zone_start_pfn = *zone_end_pfn;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the number of pages a zone spans in a node, including holes
 | 
						|
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 | 
						|
 */
 | 
						|
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
 | 
						|
					unsigned long zone_type,
 | 
						|
					unsigned long node_start_pfn,
 | 
						|
					unsigned long node_end_pfn,
 | 
						|
					unsigned long *ignored)
 | 
						|
{
 | 
						|
	unsigned long zone_start_pfn, zone_end_pfn;
 | 
						|
 | 
						|
	/* When hotadd a new node from cpu_up(), the node should be empty */
 | 
						|
	if (!node_start_pfn && !node_end_pfn)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Get the start and end of the zone */
 | 
						|
	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
 | 
						|
	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
 | 
						|
	adjust_zone_range_for_zone_movable(nid, zone_type,
 | 
						|
				node_start_pfn, node_end_pfn,
 | 
						|
				&zone_start_pfn, &zone_end_pfn);
 | 
						|
 | 
						|
	/* Check that this node has pages within the zone's required range */
 | 
						|
	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Move the zone boundaries inside the node if necessary */
 | 
						|
	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
 | 
						|
	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
 | 
						|
 | 
						|
	/* Return the spanned pages */
 | 
						|
	return zone_end_pfn - zone_start_pfn;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
 | 
						|
 * then all holes in the requested range will be accounted for.
 | 
						|
 */
 | 
						|
unsigned long __meminit __absent_pages_in_range(int nid,
 | 
						|
				unsigned long range_start_pfn,
 | 
						|
				unsigned long range_end_pfn)
 | 
						|
{
 | 
						|
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
 | 
						|
	unsigned long start_pfn, end_pfn;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
 | 
						|
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
 | 
						|
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
 | 
						|
		nr_absent -= end_pfn - start_pfn;
 | 
						|
	}
 | 
						|
	return nr_absent;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * absent_pages_in_range - Return number of page frames in holes within a range
 | 
						|
 * @start_pfn: The start PFN to start searching for holes
 | 
						|
 * @end_pfn: The end PFN to stop searching for holes
 | 
						|
 *
 | 
						|
 * It returns the number of pages frames in memory holes within a range.
 | 
						|
 */
 | 
						|
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
 | 
						|
							unsigned long end_pfn)
 | 
						|
{
 | 
						|
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
 | 
						|
}
 | 
						|
 | 
						|
/* Return the number of page frames in holes in a zone on a node */
 | 
						|
static unsigned long __meminit zone_absent_pages_in_node(int nid,
 | 
						|
					unsigned long zone_type,
 | 
						|
					unsigned long node_start_pfn,
 | 
						|
					unsigned long node_end_pfn,
 | 
						|
					unsigned long *ignored)
 | 
						|
{
 | 
						|
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
 | 
						|
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
 | 
						|
	unsigned long zone_start_pfn, zone_end_pfn;
 | 
						|
 | 
						|
	/* When hotadd a new node from cpu_up(), the node should be empty */
 | 
						|
	if (!node_start_pfn && !node_end_pfn)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
 | 
						|
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
 | 
						|
 | 
						|
	adjust_zone_range_for_zone_movable(nid, zone_type,
 | 
						|
			node_start_pfn, node_end_pfn,
 | 
						|
			&zone_start_pfn, &zone_end_pfn);
 | 
						|
	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
 | 
						|
}
 | 
						|
 | 
						|
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 | 
						|
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
 | 
						|
					unsigned long zone_type,
 | 
						|
					unsigned long node_start_pfn,
 | 
						|
					unsigned long node_end_pfn,
 | 
						|
					unsigned long *zones_size)
 | 
						|
{
 | 
						|
	return zones_size[zone_type];
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
 | 
						|
						unsigned long zone_type,
 | 
						|
						unsigned long node_start_pfn,
 | 
						|
						unsigned long node_end_pfn,
 | 
						|
						unsigned long *zholes_size)
 | 
						|
{
 | 
						|
	if (!zholes_size)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return zholes_size[zone_type];
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 | 
						|
 | 
						|
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
 | 
						|
						unsigned long node_start_pfn,
 | 
						|
						unsigned long node_end_pfn,
 | 
						|
						unsigned long *zones_size,
 | 
						|
						unsigned long *zholes_size)
 | 
						|
{
 | 
						|
	unsigned long realtotalpages = 0, totalpages = 0;
 | 
						|
	enum zone_type i;
 | 
						|
 | 
						|
	for (i = 0; i < MAX_NR_ZONES; i++) {
 | 
						|
		struct zone *zone = pgdat->node_zones + i;
 | 
						|
		unsigned long size, real_size;
 | 
						|
 | 
						|
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
 | 
						|
						  node_start_pfn,
 | 
						|
						  node_end_pfn,
 | 
						|
						  zones_size);
 | 
						|
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
 | 
						|
						  node_start_pfn, node_end_pfn,
 | 
						|
						  zholes_size);
 | 
						|
		zone->spanned_pages = size;
 | 
						|
		zone->present_pages = real_size;
 | 
						|
 | 
						|
		totalpages += size;
 | 
						|
		realtotalpages += real_size;
 | 
						|
	}
 | 
						|
 | 
						|
	pgdat->node_spanned_pages = totalpages;
 | 
						|
	pgdat->node_present_pages = realtotalpages;
 | 
						|
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
 | 
						|
							realtotalpages);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef CONFIG_SPARSEMEM
 | 
						|
/*
 | 
						|
 * Calculate the size of the zone->blockflags rounded to an unsigned long
 | 
						|
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 | 
						|
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
 | 
						|
 * round what is now in bits to nearest long in bits, then return it in
 | 
						|
 * bytes.
 | 
						|
 */
 | 
						|
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
 | 
						|
{
 | 
						|
	unsigned long usemapsize;
 | 
						|
 | 
						|
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
 | 
						|
	usemapsize = roundup(zonesize, pageblock_nr_pages);
 | 
						|
	usemapsize = usemapsize >> pageblock_order;
 | 
						|
	usemapsize *= NR_PAGEBLOCK_BITS;
 | 
						|
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
 | 
						|
 | 
						|
	return usemapsize / 8;
 | 
						|
}
 | 
						|
 | 
						|
static void __init setup_usemap(struct pglist_data *pgdat,
 | 
						|
				struct zone *zone,
 | 
						|
				unsigned long zone_start_pfn,
 | 
						|
				unsigned long zonesize)
 | 
						|
{
 | 
						|
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
 | 
						|
	zone->pageblock_flags = NULL;
 | 
						|
	if (usemapsize)
 | 
						|
		zone->pageblock_flags =
 | 
						|
			memblock_virt_alloc_node_nopanic(usemapsize,
 | 
						|
							 pgdat->node_id);
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
 | 
						|
				unsigned long zone_start_pfn, unsigned long zonesize) {}
 | 
						|
#endif /* CONFIG_SPARSEMEM */
 | 
						|
 | 
						|
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 | 
						|
 | 
						|
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
 | 
						|
void __paginginit set_pageblock_order(void)
 | 
						|
{
 | 
						|
	unsigned int order;
 | 
						|
 | 
						|
	/* Check that pageblock_nr_pages has not already been setup */
 | 
						|
	if (pageblock_order)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (HPAGE_SHIFT > PAGE_SHIFT)
 | 
						|
		order = HUGETLB_PAGE_ORDER;
 | 
						|
	else
 | 
						|
		order = MAX_ORDER - 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Assume the largest contiguous order of interest is a huge page.
 | 
						|
	 * This value may be variable depending on boot parameters on IA64 and
 | 
						|
	 * powerpc.
 | 
						|
	 */
 | 
						|
	pageblock_order = order;
 | 
						|
}
 | 
						|
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
 | 
						|
 | 
						|
/*
 | 
						|
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
 | 
						|
 * is unused as pageblock_order is set at compile-time. See
 | 
						|
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 | 
						|
 * the kernel config
 | 
						|
 */
 | 
						|
void __paginginit set_pageblock_order(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
 | 
						|
 | 
						|
static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
 | 
						|
						   unsigned long present_pages)
 | 
						|
{
 | 
						|
	unsigned long pages = spanned_pages;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Provide a more accurate estimation if there are holes within
 | 
						|
	 * the zone and SPARSEMEM is in use. If there are holes within the
 | 
						|
	 * zone, each populated memory region may cost us one or two extra
 | 
						|
	 * memmap pages due to alignment because memmap pages for each
 | 
						|
	 * populated regions may not naturally algined on page boundary.
 | 
						|
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
 | 
						|
	 */
 | 
						|
	if (spanned_pages > present_pages + (present_pages >> 4) &&
 | 
						|
	    IS_ENABLED(CONFIG_SPARSEMEM))
 | 
						|
		pages = present_pages;
 | 
						|
 | 
						|
	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set up the zone data structures:
 | 
						|
 *   - mark all pages reserved
 | 
						|
 *   - mark all memory queues empty
 | 
						|
 *   - clear the memory bitmaps
 | 
						|
 *
 | 
						|
 * NOTE: pgdat should get zeroed by caller.
 | 
						|
 */
 | 
						|
static void __paginginit free_area_init_core(struct pglist_data *pgdat)
 | 
						|
{
 | 
						|
	enum zone_type j;
 | 
						|
	int nid = pgdat->node_id;
 | 
						|
	unsigned long zone_start_pfn = pgdat->node_start_pfn;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	pgdat_resize_init(pgdat);
 | 
						|
#ifdef CONFIG_NUMA_BALANCING
 | 
						|
	spin_lock_init(&pgdat->numabalancing_migrate_lock);
 | 
						|
	pgdat->numabalancing_migrate_nr_pages = 0;
 | 
						|
	pgdat->numabalancing_migrate_next_window = jiffies;
 | 
						|
#endif
 | 
						|
	init_waitqueue_head(&pgdat->kswapd_wait);
 | 
						|
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
 | 
						|
	pgdat_page_ext_init(pgdat);
 | 
						|
 | 
						|
	for (j = 0; j < MAX_NR_ZONES; j++) {
 | 
						|
		struct zone *zone = pgdat->node_zones + j;
 | 
						|
		unsigned long size, realsize, freesize, memmap_pages;
 | 
						|
 | 
						|
		size = zone->spanned_pages;
 | 
						|
		realsize = freesize = zone->present_pages;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Adjust freesize so that it accounts for how much memory
 | 
						|
		 * is used by this zone for memmap. This affects the watermark
 | 
						|
		 * and per-cpu initialisations
 | 
						|
		 */
 | 
						|
		memmap_pages = calc_memmap_size(size, realsize);
 | 
						|
		if (!is_highmem_idx(j)) {
 | 
						|
			if (freesize >= memmap_pages) {
 | 
						|
				freesize -= memmap_pages;
 | 
						|
				if (memmap_pages)
 | 
						|
					printk(KERN_DEBUG
 | 
						|
					       "  %s zone: %lu pages used for memmap\n",
 | 
						|
					       zone_names[j], memmap_pages);
 | 
						|
			} else
 | 
						|
				printk(KERN_WARNING
 | 
						|
					"  %s zone: %lu pages exceeds freesize %lu\n",
 | 
						|
					zone_names[j], memmap_pages, freesize);
 | 
						|
		}
 | 
						|
 | 
						|
		/* Account for reserved pages */
 | 
						|
		if (j == 0 && freesize > dma_reserve) {
 | 
						|
			freesize -= dma_reserve;
 | 
						|
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
 | 
						|
					zone_names[0], dma_reserve);
 | 
						|
		}
 | 
						|
 | 
						|
		if (!is_highmem_idx(j))
 | 
						|
			nr_kernel_pages += freesize;
 | 
						|
		/* Charge for highmem memmap if there are enough kernel pages */
 | 
						|
		else if (nr_kernel_pages > memmap_pages * 2)
 | 
						|
			nr_kernel_pages -= memmap_pages;
 | 
						|
		nr_all_pages += freesize;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Set an approximate value for lowmem here, it will be adjusted
 | 
						|
		 * when the bootmem allocator frees pages into the buddy system.
 | 
						|
		 * And all highmem pages will be managed by the buddy system.
 | 
						|
		 */
 | 
						|
		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
		zone->node = nid;
 | 
						|
		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
 | 
						|
						/ 100;
 | 
						|
		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
 | 
						|
#endif
 | 
						|
		zone->name = zone_names[j];
 | 
						|
		spin_lock_init(&zone->lock);
 | 
						|
		spin_lock_init(&zone->lru_lock);
 | 
						|
		zone_seqlock_init(zone);
 | 
						|
		zone->zone_pgdat = pgdat;
 | 
						|
		zone_pcp_init(zone);
 | 
						|
 | 
						|
		/* For bootup, initialized properly in watermark setup */
 | 
						|
		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
 | 
						|
 | 
						|
		lruvec_init(&zone->lruvec);
 | 
						|
		if (!size)
 | 
						|
			continue;
 | 
						|
 | 
						|
		set_pageblock_order();
 | 
						|
		setup_usemap(pgdat, zone, zone_start_pfn, size);
 | 
						|
		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
 | 
						|
		BUG_ON(ret);
 | 
						|
		memmap_init(size, nid, j, zone_start_pfn);
 | 
						|
		zone_start_pfn += size;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
 | 
						|
{
 | 
						|
	unsigned long __maybe_unused start = 0;
 | 
						|
	unsigned long __maybe_unused offset = 0;
 | 
						|
 | 
						|
	/* Skip empty nodes */
 | 
						|
	if (!pgdat->node_spanned_pages)
 | 
						|
		return;
 | 
						|
 | 
						|
#ifdef CONFIG_FLAT_NODE_MEM_MAP
 | 
						|
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
 | 
						|
	offset = pgdat->node_start_pfn - start;
 | 
						|
	/* ia64 gets its own node_mem_map, before this, without bootmem */
 | 
						|
	if (!pgdat->node_mem_map) {
 | 
						|
		unsigned long size, end;
 | 
						|
		struct page *map;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The zone's endpoints aren't required to be MAX_ORDER
 | 
						|
		 * aligned but the node_mem_map endpoints must be in order
 | 
						|
		 * for the buddy allocator to function correctly.
 | 
						|
		 */
 | 
						|
		end = pgdat_end_pfn(pgdat);
 | 
						|
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
 | 
						|
		size =  (end - start) * sizeof(struct page);
 | 
						|
		map = alloc_remap(pgdat->node_id, size);
 | 
						|
		if (!map)
 | 
						|
			map = memblock_virt_alloc_node_nopanic(size,
 | 
						|
							       pgdat->node_id);
 | 
						|
		pgdat->node_mem_map = map + offset;
 | 
						|
	}
 | 
						|
#ifndef CONFIG_NEED_MULTIPLE_NODES
 | 
						|
	/*
 | 
						|
	 * With no DISCONTIG, the global mem_map is just set as node 0's
 | 
						|
	 */
 | 
						|
	if (pgdat == NODE_DATA(0)) {
 | 
						|
		mem_map = NODE_DATA(0)->node_mem_map;
 | 
						|
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
 | 
						|
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
 | 
						|
			mem_map -= offset;
 | 
						|
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 | 
						|
	}
 | 
						|
#endif
 | 
						|
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
 | 
						|
}
 | 
						|
 | 
						|
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
 | 
						|
		unsigned long node_start_pfn, unsigned long *zholes_size)
 | 
						|
{
 | 
						|
	pg_data_t *pgdat = NODE_DATA(nid);
 | 
						|
	unsigned long start_pfn = 0;
 | 
						|
	unsigned long end_pfn = 0;
 | 
						|
 | 
						|
	/* pg_data_t should be reset to zero when it's allocated */
 | 
						|
	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
 | 
						|
 | 
						|
	reset_deferred_meminit(pgdat);
 | 
						|
	pgdat->node_id = nid;
 | 
						|
	pgdat->node_start_pfn = node_start_pfn;
 | 
						|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | 
						|
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 | 
						|
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
 | 
						|
		(u64)start_pfn << PAGE_SHIFT,
 | 
						|
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
 | 
						|
#endif
 | 
						|
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
 | 
						|
				  zones_size, zholes_size);
 | 
						|
 | 
						|
	alloc_node_mem_map(pgdat);
 | 
						|
#ifdef CONFIG_FLAT_NODE_MEM_MAP
 | 
						|
	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
 | 
						|
		nid, (unsigned long)pgdat,
 | 
						|
		(unsigned long)pgdat->node_mem_map);
 | 
						|
#endif
 | 
						|
 | 
						|
	free_area_init_core(pgdat);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | 
						|
 | 
						|
#if MAX_NUMNODES > 1
 | 
						|
/*
 | 
						|
 * Figure out the number of possible node ids.
 | 
						|
 */
 | 
						|
void __init setup_nr_node_ids(void)
 | 
						|
{
 | 
						|
	unsigned int highest;
 | 
						|
 | 
						|
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
 | 
						|
	nr_node_ids = highest + 1;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * node_map_pfn_alignment - determine the maximum internode alignment
 | 
						|
 *
 | 
						|
 * This function should be called after node map is populated and sorted.
 | 
						|
 * It calculates the maximum power of two alignment which can distinguish
 | 
						|
 * all the nodes.
 | 
						|
 *
 | 
						|
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 | 
						|
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 | 
						|
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 | 
						|
 * shifted, 1GiB is enough and this function will indicate so.
 | 
						|
 *
 | 
						|
 * This is used to test whether pfn -> nid mapping of the chosen memory
 | 
						|
 * model has fine enough granularity to avoid incorrect mapping for the
 | 
						|
 * populated node map.
 | 
						|
 *
 | 
						|
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 | 
						|
 * requirement (single node).
 | 
						|
 */
 | 
						|
unsigned long __init node_map_pfn_alignment(void)
 | 
						|
{
 | 
						|
	unsigned long accl_mask = 0, last_end = 0;
 | 
						|
	unsigned long start, end, mask;
 | 
						|
	int last_nid = -1;
 | 
						|
	int i, nid;
 | 
						|
 | 
						|
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
 | 
						|
		if (!start || last_nid < 0 || last_nid == nid) {
 | 
						|
			last_nid = nid;
 | 
						|
			last_end = end;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Start with a mask granular enough to pin-point to the
 | 
						|
		 * start pfn and tick off bits one-by-one until it becomes
 | 
						|
		 * too coarse to separate the current node from the last.
 | 
						|
		 */
 | 
						|
		mask = ~((1 << __ffs(start)) - 1);
 | 
						|
		while (mask && last_end <= (start & (mask << 1)))
 | 
						|
			mask <<= 1;
 | 
						|
 | 
						|
		/* accumulate all internode masks */
 | 
						|
		accl_mask |= mask;
 | 
						|
	}
 | 
						|
 | 
						|
	/* convert mask to number of pages */
 | 
						|
	return ~accl_mask + 1;
 | 
						|
}
 | 
						|
 | 
						|
/* Find the lowest pfn for a node */
 | 
						|
static unsigned long __init find_min_pfn_for_node(int nid)
 | 
						|
{
 | 
						|
	unsigned long min_pfn = ULONG_MAX;
 | 
						|
	unsigned long start_pfn;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
 | 
						|
		min_pfn = min(min_pfn, start_pfn);
 | 
						|
 | 
						|
	if (min_pfn == ULONG_MAX) {
 | 
						|
		printk(KERN_WARNING
 | 
						|
			"Could not find start_pfn for node %d\n", nid);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return min_pfn;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 | 
						|
 *
 | 
						|
 * It returns the minimum PFN based on information provided via
 | 
						|
 * memblock_set_node().
 | 
						|
 */
 | 
						|
unsigned long __init find_min_pfn_with_active_regions(void)
 | 
						|
{
 | 
						|
	return find_min_pfn_for_node(MAX_NUMNODES);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * early_calculate_totalpages()
 | 
						|
 * Sum pages in active regions for movable zone.
 | 
						|
 * Populate N_MEMORY for calculating usable_nodes.
 | 
						|
 */
 | 
						|
static unsigned long __init early_calculate_totalpages(void)
 | 
						|
{
 | 
						|
	unsigned long totalpages = 0;
 | 
						|
	unsigned long start_pfn, end_pfn;
 | 
						|
	int i, nid;
 | 
						|
 | 
						|
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
 | 
						|
		unsigned long pages = end_pfn - start_pfn;
 | 
						|
 | 
						|
		totalpages += pages;
 | 
						|
		if (pages)
 | 
						|
			node_set_state(nid, N_MEMORY);
 | 
						|
	}
 | 
						|
	return totalpages;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find the PFN the Movable zone begins in each node. Kernel memory
 | 
						|
 * is spread evenly between nodes as long as the nodes have enough
 | 
						|
 * memory. When they don't, some nodes will have more kernelcore than
 | 
						|
 * others
 | 
						|
 */
 | 
						|
static void __init find_zone_movable_pfns_for_nodes(void)
 | 
						|
{
 | 
						|
	int i, nid;
 | 
						|
	unsigned long usable_startpfn;
 | 
						|
	unsigned long kernelcore_node, kernelcore_remaining;
 | 
						|
	/* save the state before borrow the nodemask */
 | 
						|
	nodemask_t saved_node_state = node_states[N_MEMORY];
 | 
						|
	unsigned long totalpages = early_calculate_totalpages();
 | 
						|
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
 | 
						|
	struct memblock_region *r;
 | 
						|
 | 
						|
	/* Need to find movable_zone earlier when movable_node is specified. */
 | 
						|
	find_usable_zone_for_movable();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If movable_node is specified, ignore kernelcore and movablecore
 | 
						|
	 * options.
 | 
						|
	 */
 | 
						|
	if (movable_node_is_enabled()) {
 | 
						|
		for_each_memblock(memory, r) {
 | 
						|
			if (!memblock_is_hotpluggable(r))
 | 
						|
				continue;
 | 
						|
 | 
						|
			nid = r->nid;
 | 
						|
 | 
						|
			usable_startpfn = PFN_DOWN(r->base);
 | 
						|
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
 | 
						|
				min(usable_startpfn, zone_movable_pfn[nid]) :
 | 
						|
				usable_startpfn;
 | 
						|
		}
 | 
						|
 | 
						|
		goto out2;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If movablecore=nn[KMG] was specified, calculate what size of
 | 
						|
	 * kernelcore that corresponds so that memory usable for
 | 
						|
	 * any allocation type is evenly spread. If both kernelcore
 | 
						|
	 * and movablecore are specified, then the value of kernelcore
 | 
						|
	 * will be used for required_kernelcore if it's greater than
 | 
						|
	 * what movablecore would have allowed.
 | 
						|
	 */
 | 
						|
	if (required_movablecore) {
 | 
						|
		unsigned long corepages;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Round-up so that ZONE_MOVABLE is at least as large as what
 | 
						|
		 * was requested by the user
 | 
						|
		 */
 | 
						|
		required_movablecore =
 | 
						|
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
 | 
						|
		required_movablecore = min(totalpages, required_movablecore);
 | 
						|
		corepages = totalpages - required_movablecore;
 | 
						|
 | 
						|
		required_kernelcore = max(required_kernelcore, corepages);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If kernelcore was not specified or kernelcore size is larger
 | 
						|
	 * than totalpages, there is no ZONE_MOVABLE.
 | 
						|
	 */
 | 
						|
	if (!required_kernelcore || required_kernelcore >= totalpages)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
 | 
						|
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
 | 
						|
 | 
						|
restart:
 | 
						|
	/* Spread kernelcore memory as evenly as possible throughout nodes */
 | 
						|
	kernelcore_node = required_kernelcore / usable_nodes;
 | 
						|
	for_each_node_state(nid, N_MEMORY) {
 | 
						|
		unsigned long start_pfn, end_pfn;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Recalculate kernelcore_node if the division per node
 | 
						|
		 * now exceeds what is necessary to satisfy the requested
 | 
						|
		 * amount of memory for the kernel
 | 
						|
		 */
 | 
						|
		if (required_kernelcore < kernelcore_node)
 | 
						|
			kernelcore_node = required_kernelcore / usable_nodes;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * As the map is walked, we track how much memory is usable
 | 
						|
		 * by the kernel using kernelcore_remaining. When it is
 | 
						|
		 * 0, the rest of the node is usable by ZONE_MOVABLE
 | 
						|
		 */
 | 
						|
		kernelcore_remaining = kernelcore_node;
 | 
						|
 | 
						|
		/* Go through each range of PFNs within this node */
 | 
						|
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
 | 
						|
			unsigned long size_pages;
 | 
						|
 | 
						|
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
 | 
						|
			if (start_pfn >= end_pfn)
 | 
						|
				continue;
 | 
						|
 | 
						|
			/* Account for what is only usable for kernelcore */
 | 
						|
			if (start_pfn < usable_startpfn) {
 | 
						|
				unsigned long kernel_pages;
 | 
						|
				kernel_pages = min(end_pfn, usable_startpfn)
 | 
						|
								- start_pfn;
 | 
						|
 | 
						|
				kernelcore_remaining -= min(kernel_pages,
 | 
						|
							kernelcore_remaining);
 | 
						|
				required_kernelcore -= min(kernel_pages,
 | 
						|
							required_kernelcore);
 | 
						|
 | 
						|
				/* Continue if range is now fully accounted */
 | 
						|
				if (end_pfn <= usable_startpfn) {
 | 
						|
 | 
						|
					/*
 | 
						|
					 * Push zone_movable_pfn to the end so
 | 
						|
					 * that if we have to rebalance
 | 
						|
					 * kernelcore across nodes, we will
 | 
						|
					 * not double account here
 | 
						|
					 */
 | 
						|
					zone_movable_pfn[nid] = end_pfn;
 | 
						|
					continue;
 | 
						|
				}
 | 
						|
				start_pfn = usable_startpfn;
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * The usable PFN range for ZONE_MOVABLE is from
 | 
						|
			 * start_pfn->end_pfn. Calculate size_pages as the
 | 
						|
			 * number of pages used as kernelcore
 | 
						|
			 */
 | 
						|
			size_pages = end_pfn - start_pfn;
 | 
						|
			if (size_pages > kernelcore_remaining)
 | 
						|
				size_pages = kernelcore_remaining;
 | 
						|
			zone_movable_pfn[nid] = start_pfn + size_pages;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Some kernelcore has been met, update counts and
 | 
						|
			 * break if the kernelcore for this node has been
 | 
						|
			 * satisfied
 | 
						|
			 */
 | 
						|
			required_kernelcore -= min(required_kernelcore,
 | 
						|
								size_pages);
 | 
						|
			kernelcore_remaining -= size_pages;
 | 
						|
			if (!kernelcore_remaining)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If there is still required_kernelcore, we do another pass with one
 | 
						|
	 * less node in the count. This will push zone_movable_pfn[nid] further
 | 
						|
	 * along on the nodes that still have memory until kernelcore is
 | 
						|
	 * satisfied
 | 
						|
	 */
 | 
						|
	usable_nodes--;
 | 
						|
	if (usable_nodes && required_kernelcore > usable_nodes)
 | 
						|
		goto restart;
 | 
						|
 | 
						|
out2:
 | 
						|
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
 | 
						|
	for (nid = 0; nid < MAX_NUMNODES; nid++)
 | 
						|
		zone_movable_pfn[nid] =
 | 
						|
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
 | 
						|
 | 
						|
out:
 | 
						|
	/* restore the node_state */
 | 
						|
	node_states[N_MEMORY] = saved_node_state;
 | 
						|
}
 | 
						|
 | 
						|
/* Any regular or high memory on that node ? */
 | 
						|
static void check_for_memory(pg_data_t *pgdat, int nid)
 | 
						|
{
 | 
						|
	enum zone_type zone_type;
 | 
						|
 | 
						|
	if (N_MEMORY == N_NORMAL_MEMORY)
 | 
						|
		return;
 | 
						|
 | 
						|
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
 | 
						|
		struct zone *zone = &pgdat->node_zones[zone_type];
 | 
						|
		if (populated_zone(zone)) {
 | 
						|
			node_set_state(nid, N_HIGH_MEMORY);
 | 
						|
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
 | 
						|
			    zone_type <= ZONE_NORMAL)
 | 
						|
				node_set_state(nid, N_NORMAL_MEMORY);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * free_area_init_nodes - Initialise all pg_data_t and zone data
 | 
						|
 * @max_zone_pfn: an array of max PFNs for each zone
 | 
						|
 *
 | 
						|
 * This will call free_area_init_node() for each active node in the system.
 | 
						|
 * Using the page ranges provided by memblock_set_node(), the size of each
 | 
						|
 * zone in each node and their holes is calculated. If the maximum PFN
 | 
						|
 * between two adjacent zones match, it is assumed that the zone is empty.
 | 
						|
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 | 
						|
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 | 
						|
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 | 
						|
 * at arch_max_dma_pfn.
 | 
						|
 */
 | 
						|
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
 | 
						|
{
 | 
						|
	unsigned long start_pfn, end_pfn;
 | 
						|
	int i, nid;
 | 
						|
 | 
						|
	/* Record where the zone boundaries are */
 | 
						|
	memset(arch_zone_lowest_possible_pfn, 0,
 | 
						|
				sizeof(arch_zone_lowest_possible_pfn));
 | 
						|
	memset(arch_zone_highest_possible_pfn, 0,
 | 
						|
				sizeof(arch_zone_highest_possible_pfn));
 | 
						|
	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
 | 
						|
	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
 | 
						|
	for (i = 1; i < MAX_NR_ZONES; i++) {
 | 
						|
		if (i == ZONE_MOVABLE)
 | 
						|
			continue;
 | 
						|
		arch_zone_lowest_possible_pfn[i] =
 | 
						|
			arch_zone_highest_possible_pfn[i-1];
 | 
						|
		arch_zone_highest_possible_pfn[i] =
 | 
						|
			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
 | 
						|
	}
 | 
						|
	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
 | 
						|
	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
 | 
						|
 | 
						|
	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
 | 
						|
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
 | 
						|
	find_zone_movable_pfns_for_nodes();
 | 
						|
 | 
						|
	/* Print out the zone ranges */
 | 
						|
	pr_info("Zone ranges:\n");
 | 
						|
	for (i = 0; i < MAX_NR_ZONES; i++) {
 | 
						|
		if (i == ZONE_MOVABLE)
 | 
						|
			continue;
 | 
						|
		pr_info("  %-8s ", zone_names[i]);
 | 
						|
		if (arch_zone_lowest_possible_pfn[i] ==
 | 
						|
				arch_zone_highest_possible_pfn[i])
 | 
						|
			pr_cont("empty\n");
 | 
						|
		else
 | 
						|
			pr_cont("[mem %#018Lx-%#018Lx]\n",
 | 
						|
				(u64)arch_zone_lowest_possible_pfn[i]
 | 
						|
					<< PAGE_SHIFT,
 | 
						|
				((u64)arch_zone_highest_possible_pfn[i]
 | 
						|
					<< PAGE_SHIFT) - 1);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
 | 
						|
	pr_info("Movable zone start for each node\n");
 | 
						|
	for (i = 0; i < MAX_NUMNODES; i++) {
 | 
						|
		if (zone_movable_pfn[i])
 | 
						|
			pr_info("  Node %d: %#018Lx\n", i,
 | 
						|
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Print out the early node map */
 | 
						|
	pr_info("Early memory node ranges\n");
 | 
						|
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
 | 
						|
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
 | 
						|
			(u64)start_pfn << PAGE_SHIFT,
 | 
						|
			((u64)end_pfn << PAGE_SHIFT) - 1);
 | 
						|
 | 
						|
	/* Initialise every node */
 | 
						|
	mminit_verify_pageflags_layout();
 | 
						|
	setup_nr_node_ids();
 | 
						|
	for_each_online_node(nid) {
 | 
						|
		pg_data_t *pgdat = NODE_DATA(nid);
 | 
						|
		free_area_init_node(nid, NULL,
 | 
						|
				find_min_pfn_for_node(nid), NULL);
 | 
						|
 | 
						|
		/* Any memory on that node */
 | 
						|
		if (pgdat->node_present_pages)
 | 
						|
			node_set_state(nid, N_MEMORY);
 | 
						|
		check_for_memory(pgdat, nid);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int __init cmdline_parse_core(char *p, unsigned long *core)
 | 
						|
{
 | 
						|
	unsigned long long coremem;
 | 
						|
	if (!p)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	coremem = memparse(p, &p);
 | 
						|
	*core = coremem >> PAGE_SHIFT;
 | 
						|
 | 
						|
	/* Paranoid check that UL is enough for the coremem value */
 | 
						|
	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * kernelcore=size sets the amount of memory for use for allocations that
 | 
						|
 * cannot be reclaimed or migrated.
 | 
						|
 */
 | 
						|
static int __init cmdline_parse_kernelcore(char *p)
 | 
						|
{
 | 
						|
	return cmdline_parse_core(p, &required_kernelcore);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * movablecore=size sets the amount of memory for use for allocations that
 | 
						|
 * can be reclaimed or migrated.
 | 
						|
 */
 | 
						|
static int __init cmdline_parse_movablecore(char *p)
 | 
						|
{
 | 
						|
	return cmdline_parse_core(p, &required_movablecore);
 | 
						|
}
 | 
						|
 | 
						|
early_param("kernelcore", cmdline_parse_kernelcore);
 | 
						|
early_param("movablecore", cmdline_parse_movablecore);
 | 
						|
 | 
						|
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 | 
						|
 | 
						|
void adjust_managed_page_count(struct page *page, long count)
 | 
						|
{
 | 
						|
	spin_lock(&managed_page_count_lock);
 | 
						|
	page_zone(page)->managed_pages += count;
 | 
						|
	totalram_pages += count;
 | 
						|
#ifdef CONFIG_HIGHMEM
 | 
						|
	if (PageHighMem(page))
 | 
						|
		totalhigh_pages += count;
 | 
						|
#endif
 | 
						|
	spin_unlock(&managed_page_count_lock);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(adjust_managed_page_count);
 | 
						|
 | 
						|
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
 | 
						|
{
 | 
						|
	void *pos;
 | 
						|
	unsigned long pages = 0;
 | 
						|
 | 
						|
	start = (void *)PAGE_ALIGN((unsigned long)start);
 | 
						|
	end = (void *)((unsigned long)end & PAGE_MASK);
 | 
						|
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
 | 
						|
		if ((unsigned int)poison <= 0xFF)
 | 
						|
			memset(pos, poison, PAGE_SIZE);
 | 
						|
		free_reserved_page(virt_to_page(pos));
 | 
						|
	}
 | 
						|
 | 
						|
	if (pages && s)
 | 
						|
		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
 | 
						|
			s, pages << (PAGE_SHIFT - 10), start, end);
 | 
						|
 | 
						|
	return pages;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(free_reserved_area);
 | 
						|
 | 
						|
#ifdef	CONFIG_HIGHMEM
 | 
						|
void free_highmem_page(struct page *page)
 | 
						|
{
 | 
						|
	__free_reserved_page(page);
 | 
						|
	totalram_pages++;
 | 
						|
	page_zone(page)->managed_pages++;
 | 
						|
	totalhigh_pages++;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
void __init mem_init_print_info(const char *str)
 | 
						|
{
 | 
						|
	unsigned long physpages, codesize, datasize, rosize, bss_size;
 | 
						|
	unsigned long init_code_size, init_data_size;
 | 
						|
 | 
						|
	physpages = get_num_physpages();
 | 
						|
	codesize = _etext - _stext;
 | 
						|
	datasize = _edata - _sdata;
 | 
						|
	rosize = __end_rodata - __start_rodata;
 | 
						|
	bss_size = __bss_stop - __bss_start;
 | 
						|
	init_data_size = __init_end - __init_begin;
 | 
						|
	init_code_size = _einittext - _sinittext;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Detect special cases and adjust section sizes accordingly:
 | 
						|
	 * 1) .init.* may be embedded into .data sections
 | 
						|
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
 | 
						|
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
 | 
						|
	 * 3) .rodata.* may be embedded into .text or .data sections.
 | 
						|
	 */
 | 
						|
#define adj_init_size(start, end, size, pos, adj) \
 | 
						|
	do { \
 | 
						|
		if (start <= pos && pos < end && size > adj) \
 | 
						|
			size -= adj; \
 | 
						|
	} while (0)
 | 
						|
 | 
						|
	adj_init_size(__init_begin, __init_end, init_data_size,
 | 
						|
		     _sinittext, init_code_size);
 | 
						|
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
 | 
						|
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
 | 
						|
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
 | 
						|
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
 | 
						|
 | 
						|
#undef	adj_init_size
 | 
						|
 | 
						|
	pr_info("Memory: %luK/%luK available "
 | 
						|
	       "(%luK kernel code, %luK rwdata, %luK rodata, "
 | 
						|
	       "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
 | 
						|
#ifdef	CONFIG_HIGHMEM
 | 
						|
	       ", %luK highmem"
 | 
						|
#endif
 | 
						|
	       "%s%s)\n",
 | 
						|
	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
 | 
						|
	       codesize >> 10, datasize >> 10, rosize >> 10,
 | 
						|
	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
 | 
						|
	       (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
 | 
						|
	       totalcma_pages << (PAGE_SHIFT-10),
 | 
						|
#ifdef	CONFIG_HIGHMEM
 | 
						|
	       totalhigh_pages << (PAGE_SHIFT-10),
 | 
						|
#endif
 | 
						|
	       str ? ", " : "", str ? str : "");
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 | 
						|
 * @new_dma_reserve: The number of pages to mark reserved
 | 
						|
 *
 | 
						|
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
 | 
						|
 * In the DMA zone, a significant percentage may be consumed by kernel image
 | 
						|
 * and other unfreeable allocations which can skew the watermarks badly. This
 | 
						|
 * function may optionally be used to account for unfreeable pages in the
 | 
						|
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 | 
						|
 * smaller per-cpu batchsize.
 | 
						|
 */
 | 
						|
void __init set_dma_reserve(unsigned long new_dma_reserve)
 | 
						|
{
 | 
						|
	dma_reserve = new_dma_reserve;
 | 
						|
}
 | 
						|
 | 
						|
void __init free_area_init(unsigned long *zones_size)
 | 
						|
{
 | 
						|
	free_area_init_node(0, zones_size,
 | 
						|
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static int page_alloc_cpu_notify(struct notifier_block *self,
 | 
						|
				 unsigned long action, void *hcpu)
 | 
						|
{
 | 
						|
	int cpu = (unsigned long)hcpu;
 | 
						|
 | 
						|
	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
 | 
						|
		lru_add_drain_cpu(cpu);
 | 
						|
		drain_pages(cpu);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Spill the event counters of the dead processor
 | 
						|
		 * into the current processors event counters.
 | 
						|
		 * This artificially elevates the count of the current
 | 
						|
		 * processor.
 | 
						|
		 */
 | 
						|
		vm_events_fold_cpu(cpu);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Zero the differential counters of the dead processor
 | 
						|
		 * so that the vm statistics are consistent.
 | 
						|
		 *
 | 
						|
		 * This is only okay since the processor is dead and cannot
 | 
						|
		 * race with what we are doing.
 | 
						|
		 */
 | 
						|
		cpu_vm_stats_fold(cpu);
 | 
						|
	}
 | 
						|
	return NOTIFY_OK;
 | 
						|
}
 | 
						|
 | 
						|
void __init page_alloc_init(void)
 | 
						|
{
 | 
						|
	hotcpu_notifier(page_alloc_cpu_notify, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
 | 
						|
 *	or min_free_kbytes changes.
 | 
						|
 */
 | 
						|
static void calculate_totalreserve_pages(void)
 | 
						|
{
 | 
						|
	struct pglist_data *pgdat;
 | 
						|
	unsigned long reserve_pages = 0;
 | 
						|
	enum zone_type i, j;
 | 
						|
 | 
						|
	for_each_online_pgdat(pgdat) {
 | 
						|
		for (i = 0; i < MAX_NR_ZONES; i++) {
 | 
						|
			struct zone *zone = pgdat->node_zones + i;
 | 
						|
			long max = 0;
 | 
						|
 | 
						|
			/* Find valid and maximum lowmem_reserve in the zone */
 | 
						|
			for (j = i; j < MAX_NR_ZONES; j++) {
 | 
						|
				if (zone->lowmem_reserve[j] > max)
 | 
						|
					max = zone->lowmem_reserve[j];
 | 
						|
			}
 | 
						|
 | 
						|
			/* we treat the high watermark as reserved pages. */
 | 
						|
			max += high_wmark_pages(zone);
 | 
						|
 | 
						|
			if (max > zone->managed_pages)
 | 
						|
				max = zone->managed_pages;
 | 
						|
 | 
						|
			zone->totalreserve_pages = max;
 | 
						|
 | 
						|
			reserve_pages += max;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	totalreserve_pages = reserve_pages;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * setup_per_zone_lowmem_reserve - called whenever
 | 
						|
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
 | 
						|
 *	has a correct pages reserved value, so an adequate number of
 | 
						|
 *	pages are left in the zone after a successful __alloc_pages().
 | 
						|
 */
 | 
						|
static void setup_per_zone_lowmem_reserve(void)
 | 
						|
{
 | 
						|
	struct pglist_data *pgdat;
 | 
						|
	enum zone_type j, idx;
 | 
						|
 | 
						|
	for_each_online_pgdat(pgdat) {
 | 
						|
		for (j = 0; j < MAX_NR_ZONES; j++) {
 | 
						|
			struct zone *zone = pgdat->node_zones + j;
 | 
						|
			unsigned long managed_pages = zone->managed_pages;
 | 
						|
 | 
						|
			zone->lowmem_reserve[j] = 0;
 | 
						|
 | 
						|
			idx = j;
 | 
						|
			while (idx) {
 | 
						|
				struct zone *lower_zone;
 | 
						|
 | 
						|
				idx--;
 | 
						|
 | 
						|
				if (sysctl_lowmem_reserve_ratio[idx] < 1)
 | 
						|
					sysctl_lowmem_reserve_ratio[idx] = 1;
 | 
						|
 | 
						|
				lower_zone = pgdat->node_zones + idx;
 | 
						|
				lower_zone->lowmem_reserve[j] = managed_pages /
 | 
						|
					sysctl_lowmem_reserve_ratio[idx];
 | 
						|
				managed_pages += lower_zone->managed_pages;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* update totalreserve_pages */
 | 
						|
	calculate_totalreserve_pages();
 | 
						|
}
 | 
						|
 | 
						|
static void __setup_per_zone_wmarks(void)
 | 
						|
{
 | 
						|
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
 | 
						|
	unsigned long lowmem_pages = 0;
 | 
						|
	struct zone *zone;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	/* Calculate total number of !ZONE_HIGHMEM pages */
 | 
						|
	for_each_zone(zone) {
 | 
						|
		if (!is_highmem(zone))
 | 
						|
			lowmem_pages += zone->managed_pages;
 | 
						|
	}
 | 
						|
 | 
						|
	for_each_zone(zone) {
 | 
						|
		u64 tmp;
 | 
						|
 | 
						|
		spin_lock_irqsave(&zone->lock, flags);
 | 
						|
		tmp = (u64)pages_min * zone->managed_pages;
 | 
						|
		do_div(tmp, lowmem_pages);
 | 
						|
		if (is_highmem(zone)) {
 | 
						|
			/*
 | 
						|
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
 | 
						|
			 * need highmem pages, so cap pages_min to a small
 | 
						|
			 * value here.
 | 
						|
			 *
 | 
						|
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
 | 
						|
			 * deltas control asynch page reclaim, and so should
 | 
						|
			 * not be capped for highmem.
 | 
						|
			 */
 | 
						|
			unsigned long min_pages;
 | 
						|
 | 
						|
			min_pages = zone->managed_pages / 1024;
 | 
						|
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
 | 
						|
			zone->watermark[WMARK_MIN] = min_pages;
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * If it's a lowmem zone, reserve a number of pages
 | 
						|
			 * proportionate to the zone's size.
 | 
						|
			 */
 | 
						|
			zone->watermark[WMARK_MIN] = tmp;
 | 
						|
		}
 | 
						|
 | 
						|
		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
 | 
						|
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
 | 
						|
 | 
						|
		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
 | 
						|
			high_wmark_pages(zone) - low_wmark_pages(zone) -
 | 
						|
			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
 | 
						|
 | 
						|
		spin_unlock_irqrestore(&zone->lock, flags);
 | 
						|
	}
 | 
						|
 | 
						|
	/* update totalreserve_pages */
 | 
						|
	calculate_totalreserve_pages();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 | 
						|
 * or when memory is hot-{added|removed}
 | 
						|
 *
 | 
						|
 * Ensures that the watermark[min,low,high] values for each zone are set
 | 
						|
 * correctly with respect to min_free_kbytes.
 | 
						|
 */
 | 
						|
void setup_per_zone_wmarks(void)
 | 
						|
{
 | 
						|
	mutex_lock(&zonelists_mutex);
 | 
						|
	__setup_per_zone_wmarks();
 | 
						|
	mutex_unlock(&zonelists_mutex);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The inactive anon list should be small enough that the VM never has to
 | 
						|
 * do too much work, but large enough that each inactive page has a chance
 | 
						|
 * to be referenced again before it is swapped out.
 | 
						|
 *
 | 
						|
 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
 | 
						|
 * INACTIVE_ANON pages on this zone's LRU, maintained by the
 | 
						|
 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
 | 
						|
 * the anonymous pages are kept on the inactive list.
 | 
						|
 *
 | 
						|
 * total     target    max
 | 
						|
 * memory    ratio     inactive anon
 | 
						|
 * -------------------------------------
 | 
						|
 *   10MB       1         5MB
 | 
						|
 *  100MB       1        50MB
 | 
						|
 *    1GB       3       250MB
 | 
						|
 *   10GB      10       0.9GB
 | 
						|
 *  100GB      31         3GB
 | 
						|
 *    1TB     101        10GB
 | 
						|
 *   10TB     320        32GB
 | 
						|
 */
 | 
						|
static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
 | 
						|
{
 | 
						|
	unsigned int gb, ratio;
 | 
						|
 | 
						|
	/* Zone size in gigabytes */
 | 
						|
	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
 | 
						|
	if (gb)
 | 
						|
		ratio = int_sqrt(10 * gb);
 | 
						|
	else
 | 
						|
		ratio = 1;
 | 
						|
 | 
						|
	zone->inactive_ratio = ratio;
 | 
						|
}
 | 
						|
 | 
						|
static void __meminit setup_per_zone_inactive_ratio(void)
 | 
						|
{
 | 
						|
	struct zone *zone;
 | 
						|
 | 
						|
	for_each_zone(zone)
 | 
						|
		calculate_zone_inactive_ratio(zone);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialise min_free_kbytes.
 | 
						|
 *
 | 
						|
 * For small machines we want it small (128k min).  For large machines
 | 
						|
 * we want it large (64MB max).  But it is not linear, because network
 | 
						|
 * bandwidth does not increase linearly with machine size.  We use
 | 
						|
 *
 | 
						|
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
 | 
						|
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 | 
						|
 *
 | 
						|
 * which yields
 | 
						|
 *
 | 
						|
 * 16MB:	512k
 | 
						|
 * 32MB:	724k
 | 
						|
 * 64MB:	1024k
 | 
						|
 * 128MB:	1448k
 | 
						|
 * 256MB:	2048k
 | 
						|
 * 512MB:	2896k
 | 
						|
 * 1024MB:	4096k
 | 
						|
 * 2048MB:	5792k
 | 
						|
 * 4096MB:	8192k
 | 
						|
 * 8192MB:	11584k
 | 
						|
 * 16384MB:	16384k
 | 
						|
 */
 | 
						|
int __meminit init_per_zone_wmark_min(void)
 | 
						|
{
 | 
						|
	unsigned long lowmem_kbytes;
 | 
						|
	int new_min_free_kbytes;
 | 
						|
 | 
						|
	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
 | 
						|
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
 | 
						|
 | 
						|
	if (new_min_free_kbytes > user_min_free_kbytes) {
 | 
						|
		min_free_kbytes = new_min_free_kbytes;
 | 
						|
		if (min_free_kbytes < 128)
 | 
						|
			min_free_kbytes = 128;
 | 
						|
		if (min_free_kbytes > 65536)
 | 
						|
			min_free_kbytes = 65536;
 | 
						|
	} else {
 | 
						|
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
 | 
						|
				new_min_free_kbytes, user_min_free_kbytes);
 | 
						|
	}
 | 
						|
	setup_per_zone_wmarks();
 | 
						|
	refresh_zone_stat_thresholds();
 | 
						|
	setup_per_zone_lowmem_reserve();
 | 
						|
	setup_per_zone_inactive_ratio();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
module_init(init_per_zone_wmark_min)
 | 
						|
 | 
						|
/*
 | 
						|
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
 | 
						|
 *	that we can call two helper functions whenever min_free_kbytes
 | 
						|
 *	changes.
 | 
						|
 */
 | 
						|
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
 | 
						|
	void __user *buffer, size_t *length, loff_t *ppos)
 | 
						|
{
 | 
						|
	int rc;
 | 
						|
 | 
						|
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
 | 
						|
	if (rc)
 | 
						|
		return rc;
 | 
						|
 | 
						|
	if (write) {
 | 
						|
		user_min_free_kbytes = min_free_kbytes;
 | 
						|
		setup_per_zone_wmarks();
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
 | 
						|
	void __user *buffer, size_t *length, loff_t *ppos)
 | 
						|
{
 | 
						|
	struct zone *zone;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
 | 
						|
	if (rc)
 | 
						|
		return rc;
 | 
						|
 | 
						|
	for_each_zone(zone)
 | 
						|
		zone->min_unmapped_pages = (zone->managed_pages *
 | 
						|
				sysctl_min_unmapped_ratio) / 100;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
 | 
						|
	void __user *buffer, size_t *length, loff_t *ppos)
 | 
						|
{
 | 
						|
	struct zone *zone;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
 | 
						|
	if (rc)
 | 
						|
		return rc;
 | 
						|
 | 
						|
	for_each_zone(zone)
 | 
						|
		zone->min_slab_pages = (zone->managed_pages *
 | 
						|
				sysctl_min_slab_ratio) / 100;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 | 
						|
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 | 
						|
 *	whenever sysctl_lowmem_reserve_ratio changes.
 | 
						|
 *
 | 
						|
 * The reserve ratio obviously has absolutely no relation with the
 | 
						|
 * minimum watermarks. The lowmem reserve ratio can only make sense
 | 
						|
 * if in function of the boot time zone sizes.
 | 
						|
 */
 | 
						|
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
 | 
						|
	void __user *buffer, size_t *length, loff_t *ppos)
 | 
						|
{
 | 
						|
	proc_dointvec_minmax(table, write, buffer, length, ppos);
 | 
						|
	setup_per_zone_lowmem_reserve();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
 | 
						|
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 | 
						|
 * pagelist can have before it gets flushed back to buddy allocator.
 | 
						|
 */
 | 
						|
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
 | 
						|
	void __user *buffer, size_t *length, loff_t *ppos)
 | 
						|
{
 | 
						|
	struct zone *zone;
 | 
						|
	int old_percpu_pagelist_fraction;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	mutex_lock(&pcp_batch_high_lock);
 | 
						|
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
 | 
						|
 | 
						|
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 | 
						|
	if (!write || ret < 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* Sanity checking to avoid pcp imbalance */
 | 
						|
	if (percpu_pagelist_fraction &&
 | 
						|
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
 | 
						|
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/* No change? */
 | 
						|
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	for_each_populated_zone(zone) {
 | 
						|
		unsigned int cpu;
 | 
						|
 | 
						|
		for_each_possible_cpu(cpu)
 | 
						|
			pageset_set_high_and_batch(zone,
 | 
						|
					per_cpu_ptr(zone->pageset, cpu));
 | 
						|
	}
 | 
						|
out:
 | 
						|
	mutex_unlock(&pcp_batch_high_lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
int hashdist = HASHDIST_DEFAULT;
 | 
						|
 | 
						|
static int __init set_hashdist(char *str)
 | 
						|
{
 | 
						|
	if (!str)
 | 
						|
		return 0;
 | 
						|
	hashdist = simple_strtoul(str, &str, 0);
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("hashdist=", set_hashdist);
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * allocate a large system hash table from bootmem
 | 
						|
 * - it is assumed that the hash table must contain an exact power-of-2
 | 
						|
 *   quantity of entries
 | 
						|
 * - limit is the number of hash buckets, not the total allocation size
 | 
						|
 */
 | 
						|
void *__init alloc_large_system_hash(const char *tablename,
 | 
						|
				     unsigned long bucketsize,
 | 
						|
				     unsigned long numentries,
 | 
						|
				     int scale,
 | 
						|
				     int flags,
 | 
						|
				     unsigned int *_hash_shift,
 | 
						|
				     unsigned int *_hash_mask,
 | 
						|
				     unsigned long low_limit,
 | 
						|
				     unsigned long high_limit)
 | 
						|
{
 | 
						|
	unsigned long long max = high_limit;
 | 
						|
	unsigned long log2qty, size;
 | 
						|
	void *table = NULL;
 | 
						|
 | 
						|
	/* allow the kernel cmdline to have a say */
 | 
						|
	if (!numentries) {
 | 
						|
		/* round applicable memory size up to nearest megabyte */
 | 
						|
		numentries = nr_kernel_pages;
 | 
						|
 | 
						|
		/* It isn't necessary when PAGE_SIZE >= 1MB */
 | 
						|
		if (PAGE_SHIFT < 20)
 | 
						|
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
 | 
						|
 | 
						|
		/* limit to 1 bucket per 2^scale bytes of low memory */
 | 
						|
		if (scale > PAGE_SHIFT)
 | 
						|
			numentries >>= (scale - PAGE_SHIFT);
 | 
						|
		else
 | 
						|
			numentries <<= (PAGE_SHIFT - scale);
 | 
						|
 | 
						|
		/* Make sure we've got at least a 0-order allocation.. */
 | 
						|
		if (unlikely(flags & HASH_SMALL)) {
 | 
						|
			/* Makes no sense without HASH_EARLY */
 | 
						|
			WARN_ON(!(flags & HASH_EARLY));
 | 
						|
			if (!(numentries >> *_hash_shift)) {
 | 
						|
				numentries = 1UL << *_hash_shift;
 | 
						|
				BUG_ON(!numentries);
 | 
						|
			}
 | 
						|
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
 | 
						|
			numentries = PAGE_SIZE / bucketsize;
 | 
						|
	}
 | 
						|
	numentries = roundup_pow_of_two(numentries);
 | 
						|
 | 
						|
	/* limit allocation size to 1/16 total memory by default */
 | 
						|
	if (max == 0) {
 | 
						|
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
 | 
						|
		do_div(max, bucketsize);
 | 
						|
	}
 | 
						|
	max = min(max, 0x80000000ULL);
 | 
						|
 | 
						|
	if (numentries < low_limit)
 | 
						|
		numentries = low_limit;
 | 
						|
	if (numentries > max)
 | 
						|
		numentries = max;
 | 
						|
 | 
						|
	log2qty = ilog2(numentries);
 | 
						|
 | 
						|
	do {
 | 
						|
		size = bucketsize << log2qty;
 | 
						|
		if (flags & HASH_EARLY)
 | 
						|
			table = memblock_virt_alloc_nopanic(size, 0);
 | 
						|
		else if (hashdist)
 | 
						|
			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
 | 
						|
		else {
 | 
						|
			/*
 | 
						|
			 * If bucketsize is not a power-of-two, we may free
 | 
						|
			 * some pages at the end of hash table which
 | 
						|
			 * alloc_pages_exact() automatically does
 | 
						|
			 */
 | 
						|
			if (get_order(size) < MAX_ORDER) {
 | 
						|
				table = alloc_pages_exact(size, GFP_ATOMIC);
 | 
						|
				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} while (!table && size > PAGE_SIZE && --log2qty);
 | 
						|
 | 
						|
	if (!table)
 | 
						|
		panic("Failed to allocate %s hash table\n", tablename);
 | 
						|
 | 
						|
	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
 | 
						|
	       tablename,
 | 
						|
	       (1UL << log2qty),
 | 
						|
	       ilog2(size) - PAGE_SHIFT,
 | 
						|
	       size);
 | 
						|
 | 
						|
	if (_hash_shift)
 | 
						|
		*_hash_shift = log2qty;
 | 
						|
	if (_hash_mask)
 | 
						|
		*_hash_mask = (1 << log2qty) - 1;
 | 
						|
 | 
						|
	return table;
 | 
						|
}
 | 
						|
 | 
						|
/* Return a pointer to the bitmap storing bits affecting a block of pages */
 | 
						|
static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
 | 
						|
							unsigned long pfn)
 | 
						|
{
 | 
						|
#ifdef CONFIG_SPARSEMEM
 | 
						|
	return __pfn_to_section(pfn)->pageblock_flags;
 | 
						|
#else
 | 
						|
	return zone->pageblock_flags;
 | 
						|
#endif /* CONFIG_SPARSEMEM */
 | 
						|
}
 | 
						|
 | 
						|
static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
 | 
						|
{
 | 
						|
#ifdef CONFIG_SPARSEMEM
 | 
						|
	pfn &= (PAGES_PER_SECTION-1);
 | 
						|
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 | 
						|
#else
 | 
						|
	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
 | 
						|
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 | 
						|
#endif /* CONFIG_SPARSEMEM */
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 | 
						|
 * @page: The page within the block of interest
 | 
						|
 * @pfn: The target page frame number
 | 
						|
 * @end_bitidx: The last bit of interest to retrieve
 | 
						|
 * @mask: mask of bits that the caller is interested in
 | 
						|
 *
 | 
						|
 * Return: pageblock_bits flags
 | 
						|
 */
 | 
						|
unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
 | 
						|
					unsigned long end_bitidx,
 | 
						|
					unsigned long mask)
 | 
						|
{
 | 
						|
	struct zone *zone;
 | 
						|
	unsigned long *bitmap;
 | 
						|
	unsigned long bitidx, word_bitidx;
 | 
						|
	unsigned long word;
 | 
						|
 | 
						|
	zone = page_zone(page);
 | 
						|
	bitmap = get_pageblock_bitmap(zone, pfn);
 | 
						|
	bitidx = pfn_to_bitidx(zone, pfn);
 | 
						|
	word_bitidx = bitidx / BITS_PER_LONG;
 | 
						|
	bitidx &= (BITS_PER_LONG-1);
 | 
						|
 | 
						|
	word = bitmap[word_bitidx];
 | 
						|
	bitidx += end_bitidx;
 | 
						|
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 | 
						|
 * @page: The page within the block of interest
 | 
						|
 * @flags: The flags to set
 | 
						|
 * @pfn: The target page frame number
 | 
						|
 * @end_bitidx: The last bit of interest
 | 
						|
 * @mask: mask of bits that the caller is interested in
 | 
						|
 */
 | 
						|
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 | 
						|
					unsigned long pfn,
 | 
						|
					unsigned long end_bitidx,
 | 
						|
					unsigned long mask)
 | 
						|
{
 | 
						|
	struct zone *zone;
 | 
						|
	unsigned long *bitmap;
 | 
						|
	unsigned long bitidx, word_bitidx;
 | 
						|
	unsigned long old_word, word;
 | 
						|
 | 
						|
	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 | 
						|
 | 
						|
	zone = page_zone(page);
 | 
						|
	bitmap = get_pageblock_bitmap(zone, pfn);
 | 
						|
	bitidx = pfn_to_bitidx(zone, pfn);
 | 
						|
	word_bitidx = bitidx / BITS_PER_LONG;
 | 
						|
	bitidx &= (BITS_PER_LONG-1);
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
 | 
						|
 | 
						|
	bitidx += end_bitidx;
 | 
						|
	mask <<= (BITS_PER_LONG - bitidx - 1);
 | 
						|
	flags <<= (BITS_PER_LONG - bitidx - 1);
 | 
						|
 | 
						|
	word = READ_ONCE(bitmap[word_bitidx]);
 | 
						|
	for (;;) {
 | 
						|
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
 | 
						|
		if (word == old_word)
 | 
						|
			break;
 | 
						|
		word = old_word;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function checks whether pageblock includes unmovable pages or not.
 | 
						|
 * If @count is not zero, it is okay to include less @count unmovable pages
 | 
						|
 *
 | 
						|
 * PageLRU check without isolation or lru_lock could race so that
 | 
						|
 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
 | 
						|
 * expect this function should be exact.
 | 
						|
 */
 | 
						|
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
 | 
						|
			 bool skip_hwpoisoned_pages)
 | 
						|
{
 | 
						|
	unsigned long pfn, iter, found;
 | 
						|
	int mt;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For avoiding noise data, lru_add_drain_all() should be called
 | 
						|
	 * If ZONE_MOVABLE, the zone never contains unmovable pages
 | 
						|
	 */
 | 
						|
	if (zone_idx(zone) == ZONE_MOVABLE)
 | 
						|
		return false;
 | 
						|
	mt = get_pageblock_migratetype(page);
 | 
						|
	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
 | 
						|
		return false;
 | 
						|
 | 
						|
	pfn = page_to_pfn(page);
 | 
						|
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
 | 
						|
		unsigned long check = pfn + iter;
 | 
						|
 | 
						|
		if (!pfn_valid_within(check))
 | 
						|
			continue;
 | 
						|
 | 
						|
		page = pfn_to_page(check);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Hugepages are not in LRU lists, but they're movable.
 | 
						|
		 * We need not scan over tail pages bacause we don't
 | 
						|
		 * handle each tail page individually in migration.
 | 
						|
		 */
 | 
						|
		if (PageHuge(page)) {
 | 
						|
			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We can't use page_count without pin a page
 | 
						|
		 * because another CPU can free compound page.
 | 
						|
		 * This check already skips compound tails of THP
 | 
						|
		 * because their page->_count is zero at all time.
 | 
						|
		 */
 | 
						|
		if (!atomic_read(&page->_count)) {
 | 
						|
			if (PageBuddy(page))
 | 
						|
				iter += (1 << page_order(page)) - 1;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The HWPoisoned page may be not in buddy system, and
 | 
						|
		 * page_count() is not 0.
 | 
						|
		 */
 | 
						|
		if (skip_hwpoisoned_pages && PageHWPoison(page))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (!PageLRU(page))
 | 
						|
			found++;
 | 
						|
		/*
 | 
						|
		 * If there are RECLAIMABLE pages, we need to check
 | 
						|
		 * it.  But now, memory offline itself doesn't call
 | 
						|
		 * shrink_node_slabs() and it still to be fixed.
 | 
						|
		 */
 | 
						|
		/*
 | 
						|
		 * If the page is not RAM, page_count()should be 0.
 | 
						|
		 * we don't need more check. This is an _used_ not-movable page.
 | 
						|
		 *
 | 
						|
		 * The problematic thing here is PG_reserved pages. PG_reserved
 | 
						|
		 * is set to both of a memory hole page and a _used_ kernel
 | 
						|
		 * page at boot.
 | 
						|
		 */
 | 
						|
		if (found > count)
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool is_pageblock_removable_nolock(struct page *page)
 | 
						|
{
 | 
						|
	struct zone *zone;
 | 
						|
	unsigned long pfn;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We have to be careful here because we are iterating over memory
 | 
						|
	 * sections which are not zone aware so we might end up outside of
 | 
						|
	 * the zone but still within the section.
 | 
						|
	 * We have to take care about the node as well. If the node is offline
 | 
						|
	 * its NODE_DATA will be NULL - see page_zone.
 | 
						|
	 */
 | 
						|
	if (!node_online(page_to_nid(page)))
 | 
						|
		return false;
 | 
						|
 | 
						|
	zone = page_zone(page);
 | 
						|
	pfn = page_to_pfn(page);
 | 
						|
	if (!zone_spans_pfn(zone, pfn))
 | 
						|
		return false;
 | 
						|
 | 
						|
	return !has_unmovable_pages(zone, page, 0, true);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_CMA
 | 
						|
 | 
						|
static unsigned long pfn_max_align_down(unsigned long pfn)
 | 
						|
{
 | 
						|
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
 | 
						|
			     pageblock_nr_pages) - 1);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long pfn_max_align_up(unsigned long pfn)
 | 
						|
{
 | 
						|
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
 | 
						|
				pageblock_nr_pages));
 | 
						|
}
 | 
						|
 | 
						|
/* [start, end) must belong to a single zone. */
 | 
						|
static int __alloc_contig_migrate_range(struct compact_control *cc,
 | 
						|
					unsigned long start, unsigned long end)
 | 
						|
{
 | 
						|
	/* This function is based on compact_zone() from compaction.c. */
 | 
						|
	unsigned long nr_reclaimed;
 | 
						|
	unsigned long pfn = start;
 | 
						|
	unsigned int tries = 0;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	migrate_prep();
 | 
						|
 | 
						|
	while (pfn < end || !list_empty(&cc->migratepages)) {
 | 
						|
		if (fatal_signal_pending(current)) {
 | 
						|
			ret = -EINTR;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (list_empty(&cc->migratepages)) {
 | 
						|
			cc->nr_migratepages = 0;
 | 
						|
			pfn = isolate_migratepages_range(cc, pfn, end);
 | 
						|
			if (!pfn) {
 | 
						|
				ret = -EINTR;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			tries = 0;
 | 
						|
		} else if (++tries == 5) {
 | 
						|
			ret = ret < 0 ? ret : -EBUSY;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
 | 
						|
							&cc->migratepages);
 | 
						|
		cc->nr_migratepages -= nr_reclaimed;
 | 
						|
 | 
						|
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
 | 
						|
				    NULL, 0, cc->mode, MR_CMA);
 | 
						|
	}
 | 
						|
	if (ret < 0) {
 | 
						|
		putback_movable_pages(&cc->migratepages);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * alloc_contig_range() -- tries to allocate given range of pages
 | 
						|
 * @start:	start PFN to allocate
 | 
						|
 * @end:	one-past-the-last PFN to allocate
 | 
						|
 * @migratetype:	migratetype of the underlaying pageblocks (either
 | 
						|
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 | 
						|
 *			in range must have the same migratetype and it must
 | 
						|
 *			be either of the two.
 | 
						|
 *
 | 
						|
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
 | 
						|
 * aligned, however it's the caller's responsibility to guarantee that
 | 
						|
 * we are the only thread that changes migrate type of pageblocks the
 | 
						|
 * pages fall in.
 | 
						|
 *
 | 
						|
 * The PFN range must belong to a single zone.
 | 
						|
 *
 | 
						|
 * Returns zero on success or negative error code.  On success all
 | 
						|
 * pages which PFN is in [start, end) are allocated for the caller and
 | 
						|
 * need to be freed with free_contig_range().
 | 
						|
 */
 | 
						|
int alloc_contig_range(unsigned long start, unsigned long end,
 | 
						|
		       unsigned migratetype)
 | 
						|
{
 | 
						|
	unsigned long outer_start, outer_end;
 | 
						|
	unsigned int order;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	struct compact_control cc = {
 | 
						|
		.nr_migratepages = 0,
 | 
						|
		.order = -1,
 | 
						|
		.zone = page_zone(pfn_to_page(start)),
 | 
						|
		.mode = MIGRATE_SYNC,
 | 
						|
		.ignore_skip_hint = true,
 | 
						|
	};
 | 
						|
	INIT_LIST_HEAD(&cc.migratepages);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * What we do here is we mark all pageblocks in range as
 | 
						|
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
 | 
						|
	 * have different sizes, and due to the way page allocator
 | 
						|
	 * work, we align the range to biggest of the two pages so
 | 
						|
	 * that page allocator won't try to merge buddies from
 | 
						|
	 * different pageblocks and change MIGRATE_ISOLATE to some
 | 
						|
	 * other migration type.
 | 
						|
	 *
 | 
						|
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
 | 
						|
	 * migrate the pages from an unaligned range (ie. pages that
 | 
						|
	 * we are interested in).  This will put all the pages in
 | 
						|
	 * range back to page allocator as MIGRATE_ISOLATE.
 | 
						|
	 *
 | 
						|
	 * When this is done, we take the pages in range from page
 | 
						|
	 * allocator removing them from the buddy system.  This way
 | 
						|
	 * page allocator will never consider using them.
 | 
						|
	 *
 | 
						|
	 * This lets us mark the pageblocks back as
 | 
						|
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
 | 
						|
	 * aligned range but not in the unaligned, original range are
 | 
						|
	 * put back to page allocator so that buddy can use them.
 | 
						|
	 */
 | 
						|
 | 
						|
	ret = start_isolate_page_range(pfn_max_align_down(start),
 | 
						|
				       pfn_max_align_up(end), migratetype,
 | 
						|
				       false);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In case of -EBUSY, we'd like to know which page causes problem.
 | 
						|
	 * So, just fall through. We will check it in test_pages_isolated().
 | 
						|
	 */
 | 
						|
	ret = __alloc_contig_migrate_range(&cc, start, end);
 | 
						|
	if (ret && ret != -EBUSY)
 | 
						|
		goto done;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
 | 
						|
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
 | 
						|
	 * more, all pages in [start, end) are free in page allocator.
 | 
						|
	 * What we are going to do is to allocate all pages from
 | 
						|
	 * [start, end) (that is remove them from page allocator).
 | 
						|
	 *
 | 
						|
	 * The only problem is that pages at the beginning and at the
 | 
						|
	 * end of interesting range may be not aligned with pages that
 | 
						|
	 * page allocator holds, ie. they can be part of higher order
 | 
						|
	 * pages.  Because of this, we reserve the bigger range and
 | 
						|
	 * once this is done free the pages we are not interested in.
 | 
						|
	 *
 | 
						|
	 * We don't have to hold zone->lock here because the pages are
 | 
						|
	 * isolated thus they won't get removed from buddy.
 | 
						|
	 */
 | 
						|
 | 
						|
	lru_add_drain_all();
 | 
						|
	drain_all_pages(cc.zone);
 | 
						|
 | 
						|
	order = 0;
 | 
						|
	outer_start = start;
 | 
						|
	while (!PageBuddy(pfn_to_page(outer_start))) {
 | 
						|
		if (++order >= MAX_ORDER) {
 | 
						|
			outer_start = start;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		outer_start &= ~0UL << order;
 | 
						|
	}
 | 
						|
 | 
						|
	if (outer_start != start) {
 | 
						|
		order = page_order(pfn_to_page(outer_start));
 | 
						|
 | 
						|
		/*
 | 
						|
		 * outer_start page could be small order buddy page and
 | 
						|
		 * it doesn't include start page. Adjust outer_start
 | 
						|
		 * in this case to report failed page properly
 | 
						|
		 * on tracepoint in test_pages_isolated()
 | 
						|
		 */
 | 
						|
		if (outer_start + (1UL << order) <= start)
 | 
						|
			outer_start = start;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Make sure the range is really isolated. */
 | 
						|
	if (test_pages_isolated(outer_start, end, false)) {
 | 
						|
		pr_info("%s: [%lx, %lx) PFNs busy\n",
 | 
						|
			__func__, outer_start, end);
 | 
						|
		ret = -EBUSY;
 | 
						|
		goto done;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Grab isolated pages from freelists. */
 | 
						|
	outer_end = isolate_freepages_range(&cc, outer_start, end);
 | 
						|
	if (!outer_end) {
 | 
						|
		ret = -EBUSY;
 | 
						|
		goto done;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Free head and tail (if any) */
 | 
						|
	if (start != outer_start)
 | 
						|
		free_contig_range(outer_start, start - outer_start);
 | 
						|
	if (end != outer_end)
 | 
						|
		free_contig_range(end, outer_end - end);
 | 
						|
 | 
						|
done:
 | 
						|
	undo_isolate_page_range(pfn_max_align_down(start),
 | 
						|
				pfn_max_align_up(end), migratetype);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void free_contig_range(unsigned long pfn, unsigned nr_pages)
 | 
						|
{
 | 
						|
	unsigned int count = 0;
 | 
						|
 | 
						|
	for (; nr_pages--; pfn++) {
 | 
						|
		struct page *page = pfn_to_page(pfn);
 | 
						|
 | 
						|
		count += page_count(page) != 1;
 | 
						|
		__free_page(page);
 | 
						|
	}
 | 
						|
	WARN(count != 0, "%d pages are still in use!\n", count);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_MEMORY_HOTPLUG
 | 
						|
/*
 | 
						|
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 | 
						|
 * page high values need to be recalulated.
 | 
						|
 */
 | 
						|
void __meminit zone_pcp_update(struct zone *zone)
 | 
						|
{
 | 
						|
	unsigned cpu;
 | 
						|
	mutex_lock(&pcp_batch_high_lock);
 | 
						|
	for_each_possible_cpu(cpu)
 | 
						|
		pageset_set_high_and_batch(zone,
 | 
						|
				per_cpu_ptr(zone->pageset, cpu));
 | 
						|
	mutex_unlock(&pcp_batch_high_lock);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void zone_pcp_reset(struct zone *zone)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	int cpu;
 | 
						|
	struct per_cpu_pageset *pset;
 | 
						|
 | 
						|
	/* avoid races with drain_pages()  */
 | 
						|
	local_irq_save(flags);
 | 
						|
	if (zone->pageset != &boot_pageset) {
 | 
						|
		for_each_online_cpu(cpu) {
 | 
						|
			pset = per_cpu_ptr(zone->pageset, cpu);
 | 
						|
			drain_zonestat(zone, pset);
 | 
						|
		}
 | 
						|
		free_percpu(zone->pageset);
 | 
						|
		zone->pageset = &boot_pageset;
 | 
						|
	}
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MEMORY_HOTREMOVE
 | 
						|
/*
 | 
						|
 * All pages in the range must be isolated before calling this.
 | 
						|
 */
 | 
						|
void
 | 
						|
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	struct zone *zone;
 | 
						|
	unsigned int order, i;
 | 
						|
	unsigned long pfn;
 | 
						|
	unsigned long flags;
 | 
						|
	/* find the first valid pfn */
 | 
						|
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
 | 
						|
		if (pfn_valid(pfn))
 | 
						|
			break;
 | 
						|
	if (pfn == end_pfn)
 | 
						|
		return;
 | 
						|
	zone = page_zone(pfn_to_page(pfn));
 | 
						|
	spin_lock_irqsave(&zone->lock, flags);
 | 
						|
	pfn = start_pfn;
 | 
						|
	while (pfn < end_pfn) {
 | 
						|
		if (!pfn_valid(pfn)) {
 | 
						|
			pfn++;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		page = pfn_to_page(pfn);
 | 
						|
		/*
 | 
						|
		 * The HWPoisoned page may be not in buddy system, and
 | 
						|
		 * page_count() is not 0.
 | 
						|
		 */
 | 
						|
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
 | 
						|
			pfn++;
 | 
						|
			SetPageReserved(page);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		BUG_ON(page_count(page));
 | 
						|
		BUG_ON(!PageBuddy(page));
 | 
						|
		order = page_order(page);
 | 
						|
#ifdef CONFIG_DEBUG_VM
 | 
						|
		printk(KERN_INFO "remove from free list %lx %d %lx\n",
 | 
						|
		       pfn, 1 << order, end_pfn);
 | 
						|
#endif
 | 
						|
		list_del(&page->lru);
 | 
						|
		rmv_page_order(page);
 | 
						|
		zone->free_area[order].nr_free--;
 | 
						|
		for (i = 0; i < (1 << order); i++)
 | 
						|
			SetPageReserved((page+i));
 | 
						|
		pfn += (1 << order);
 | 
						|
	}
 | 
						|
	spin_unlock_irqrestore(&zone->lock, flags);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_MEMORY_FAILURE
 | 
						|
bool is_free_buddy_page(struct page *page)
 | 
						|
{
 | 
						|
	struct zone *zone = page_zone(page);
 | 
						|
	unsigned long pfn = page_to_pfn(page);
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned int order;
 | 
						|
 | 
						|
	spin_lock_irqsave(&zone->lock, flags);
 | 
						|
	for (order = 0; order < MAX_ORDER; order++) {
 | 
						|
		struct page *page_head = page - (pfn & ((1 << order) - 1));
 | 
						|
 | 
						|
		if (PageBuddy(page_head) && page_order(page_head) >= order)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	spin_unlock_irqrestore(&zone->lock, flags);
 | 
						|
 | 
						|
	return order < MAX_ORDER;
 | 
						|
}
 | 
						|
#endif
 |