mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 4e4cbee93d
			
		
	
	
		4e4cbee93d
		
	
	
	
	
		
			
			Replace bi_error with a new bi_status to allow for a clear conversion. Note that device mapper overloaded bi_error with a private value, which we'll have to keep arround at least for now and thus propagate to a proper blk_status_t value. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@fb.com>
		
			
				
	
	
		
			1157 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1157 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Main bcache entry point - handle a read or a write request and decide what to
 | |
|  * do with it; the make_request functions are called by the block layer.
 | |
|  *
 | |
|  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
 | |
|  * Copyright 2012 Google, Inc.
 | |
|  */
 | |
| 
 | |
| #include "bcache.h"
 | |
| #include "btree.h"
 | |
| #include "debug.h"
 | |
| #include "request.h"
 | |
| #include "writeback.h"
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/backing-dev.h>
 | |
| 
 | |
| #include <trace/events/bcache.h>
 | |
| 
 | |
| #define CUTOFF_CACHE_ADD	95
 | |
| #define CUTOFF_CACHE_READA	90
 | |
| 
 | |
| struct kmem_cache *bch_search_cache;
 | |
| 
 | |
| static void bch_data_insert_start(struct closure *);
 | |
| 
 | |
| static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
 | |
| {
 | |
| 	return BDEV_CACHE_MODE(&dc->sb);
 | |
| }
 | |
| 
 | |
| static bool verify(struct cached_dev *dc, struct bio *bio)
 | |
| {
 | |
| 	return dc->verify;
 | |
| }
 | |
| 
 | |
| static void bio_csum(struct bio *bio, struct bkey *k)
 | |
| {
 | |
| 	struct bio_vec bv;
 | |
| 	struct bvec_iter iter;
 | |
| 	uint64_t csum = 0;
 | |
| 
 | |
| 	bio_for_each_segment(bv, bio, iter) {
 | |
| 		void *d = kmap(bv.bv_page) + bv.bv_offset;
 | |
| 		csum = bch_crc64_update(csum, d, bv.bv_len);
 | |
| 		kunmap(bv.bv_page);
 | |
| 	}
 | |
| 
 | |
| 	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
 | |
| }
 | |
| 
 | |
| /* Insert data into cache */
 | |
| 
 | |
| static void bch_data_insert_keys(struct closure *cl)
 | |
| {
 | |
| 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 | |
| 	atomic_t *journal_ref = NULL;
 | |
| 	struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're looping, might already be waiting on
 | |
| 	 * another journal write - can't wait on more than one journal write at
 | |
| 	 * a time
 | |
| 	 *
 | |
| 	 * XXX: this looks wrong
 | |
| 	 */
 | |
| #if 0
 | |
| 	while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
 | |
| 		closure_sync(&s->cl);
 | |
| #endif
 | |
| 
 | |
| 	if (!op->replace)
 | |
| 		journal_ref = bch_journal(op->c, &op->insert_keys,
 | |
| 					  op->flush_journal ? cl : NULL);
 | |
| 
 | |
| 	ret = bch_btree_insert(op->c, &op->insert_keys,
 | |
| 			       journal_ref, replace_key);
 | |
| 	if (ret == -ESRCH) {
 | |
| 		op->replace_collision = true;
 | |
| 	} else if (ret) {
 | |
| 		op->status		= BLK_STS_RESOURCE;
 | |
| 		op->insert_data_done	= true;
 | |
| 	}
 | |
| 
 | |
| 	if (journal_ref)
 | |
| 		atomic_dec_bug(journal_ref);
 | |
| 
 | |
| 	if (!op->insert_data_done) {
 | |
| 		continue_at(cl, bch_data_insert_start, op->wq);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	bch_keylist_free(&op->insert_keys);
 | |
| 	closure_return(cl);
 | |
| }
 | |
| 
 | |
| static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
 | |
| 			       struct cache_set *c)
 | |
| {
 | |
| 	size_t oldsize = bch_keylist_nkeys(l);
 | |
| 	size_t newsize = oldsize + u64s;
 | |
| 
 | |
| 	/*
 | |
| 	 * The journalling code doesn't handle the case where the keys to insert
 | |
| 	 * is bigger than an empty write: If we just return -ENOMEM here,
 | |
| 	 * bio_insert() and bio_invalidate() will insert the keys created so far
 | |
| 	 * and finish the rest when the keylist is empty.
 | |
| 	 */
 | |
| 	if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return __bch_keylist_realloc(l, u64s);
 | |
| }
 | |
| 
 | |
| static void bch_data_invalidate(struct closure *cl)
 | |
| {
 | |
| 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 | |
| 	struct bio *bio = op->bio;
 | |
| 
 | |
| 	pr_debug("invalidating %i sectors from %llu",
 | |
| 		 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
 | |
| 
 | |
| 	while (bio_sectors(bio)) {
 | |
| 		unsigned sectors = min(bio_sectors(bio),
 | |
| 				       1U << (KEY_SIZE_BITS - 1));
 | |
| 
 | |
| 		if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
 | |
| 			goto out;
 | |
| 
 | |
| 		bio->bi_iter.bi_sector	+= sectors;
 | |
| 		bio->bi_iter.bi_size	-= sectors << 9;
 | |
| 
 | |
| 		bch_keylist_add(&op->insert_keys,
 | |
| 				&KEY(op->inode, bio->bi_iter.bi_sector, sectors));
 | |
| 	}
 | |
| 
 | |
| 	op->insert_data_done = true;
 | |
| 	bio_put(bio);
 | |
| out:
 | |
| 	continue_at(cl, bch_data_insert_keys, op->wq);
 | |
| }
 | |
| 
 | |
| static void bch_data_insert_error(struct closure *cl)
 | |
| {
 | |
| 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 | |
| 
 | |
| 	/*
 | |
| 	 * Our data write just errored, which means we've got a bunch of keys to
 | |
| 	 * insert that point to data that wasn't succesfully written.
 | |
| 	 *
 | |
| 	 * We don't have to insert those keys but we still have to invalidate
 | |
| 	 * that region of the cache - so, if we just strip off all the pointers
 | |
| 	 * from the keys we'll accomplish just that.
 | |
| 	 */
 | |
| 
 | |
| 	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
 | |
| 
 | |
| 	while (src != op->insert_keys.top) {
 | |
| 		struct bkey *n = bkey_next(src);
 | |
| 
 | |
| 		SET_KEY_PTRS(src, 0);
 | |
| 		memmove(dst, src, bkey_bytes(src));
 | |
| 
 | |
| 		dst = bkey_next(dst);
 | |
| 		src = n;
 | |
| 	}
 | |
| 
 | |
| 	op->insert_keys.top = dst;
 | |
| 
 | |
| 	bch_data_insert_keys(cl);
 | |
| }
 | |
| 
 | |
| static void bch_data_insert_endio(struct bio *bio)
 | |
| {
 | |
| 	struct closure *cl = bio->bi_private;
 | |
| 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 | |
| 
 | |
| 	if (bio->bi_status) {
 | |
| 		/* TODO: We could try to recover from this. */
 | |
| 		if (op->writeback)
 | |
| 			op->status = bio->bi_status;
 | |
| 		else if (!op->replace)
 | |
| 			set_closure_fn(cl, bch_data_insert_error, op->wq);
 | |
| 		else
 | |
| 			set_closure_fn(cl, NULL, NULL);
 | |
| 	}
 | |
| 
 | |
| 	bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
 | |
| }
 | |
| 
 | |
| static void bch_data_insert_start(struct closure *cl)
 | |
| {
 | |
| 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 | |
| 	struct bio *bio = op->bio, *n;
 | |
| 
 | |
| 	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
 | |
| 		wake_up_gc(op->c);
 | |
| 
 | |
| 	if (op->bypass)
 | |
| 		return bch_data_invalidate(cl);
 | |
| 
 | |
| 	/*
 | |
| 	 * Journal writes are marked REQ_PREFLUSH; if the original write was a
 | |
| 	 * flush, it'll wait on the journal write.
 | |
| 	 */
 | |
| 	bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
 | |
| 
 | |
| 	do {
 | |
| 		unsigned i;
 | |
| 		struct bkey *k;
 | |
| 		struct bio_set *split = op->c->bio_split;
 | |
| 
 | |
| 		/* 1 for the device pointer and 1 for the chksum */
 | |
| 		if (bch_keylist_realloc(&op->insert_keys,
 | |
| 					3 + (op->csum ? 1 : 0),
 | |
| 					op->c)) {
 | |
| 			continue_at(cl, bch_data_insert_keys, op->wq);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		k = op->insert_keys.top;
 | |
| 		bkey_init(k);
 | |
| 		SET_KEY_INODE(k, op->inode);
 | |
| 		SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
 | |
| 
 | |
| 		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
 | |
| 				       op->write_point, op->write_prio,
 | |
| 				       op->writeback))
 | |
| 			goto err;
 | |
| 
 | |
| 		n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
 | |
| 
 | |
| 		n->bi_end_io	= bch_data_insert_endio;
 | |
| 		n->bi_private	= cl;
 | |
| 
 | |
| 		if (op->writeback) {
 | |
| 			SET_KEY_DIRTY(k, true);
 | |
| 
 | |
| 			for (i = 0; i < KEY_PTRS(k); i++)
 | |
| 				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
 | |
| 					    GC_MARK_DIRTY);
 | |
| 		}
 | |
| 
 | |
| 		SET_KEY_CSUM(k, op->csum);
 | |
| 		if (KEY_CSUM(k))
 | |
| 			bio_csum(n, k);
 | |
| 
 | |
| 		trace_bcache_cache_insert(k);
 | |
| 		bch_keylist_push(&op->insert_keys);
 | |
| 
 | |
| 		bio_set_op_attrs(n, REQ_OP_WRITE, 0);
 | |
| 		bch_submit_bbio(n, op->c, k, 0);
 | |
| 	} while (n != bio);
 | |
| 
 | |
| 	op->insert_data_done = true;
 | |
| 	continue_at(cl, bch_data_insert_keys, op->wq);
 | |
| 	return;
 | |
| err:
 | |
| 	/* bch_alloc_sectors() blocks if s->writeback = true */
 | |
| 	BUG_ON(op->writeback);
 | |
| 
 | |
| 	/*
 | |
| 	 * But if it's not a writeback write we'd rather just bail out if
 | |
| 	 * there aren't any buckets ready to write to - it might take awhile and
 | |
| 	 * we might be starving btree writes for gc or something.
 | |
| 	 */
 | |
| 
 | |
| 	if (!op->replace) {
 | |
| 		/*
 | |
| 		 * Writethrough write: We can't complete the write until we've
 | |
| 		 * updated the index. But we don't want to delay the write while
 | |
| 		 * we wait for buckets to be freed up, so just invalidate the
 | |
| 		 * rest of the write.
 | |
| 		 */
 | |
| 		op->bypass = true;
 | |
| 		return bch_data_invalidate(cl);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * From a cache miss, we can just insert the keys for the data
 | |
| 		 * we have written or bail out if we didn't do anything.
 | |
| 		 */
 | |
| 		op->insert_data_done = true;
 | |
| 		bio_put(bio);
 | |
| 
 | |
| 		if (!bch_keylist_empty(&op->insert_keys))
 | |
| 			continue_at(cl, bch_data_insert_keys, op->wq);
 | |
| 		else
 | |
| 			closure_return(cl);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bch_data_insert - stick some data in the cache
 | |
|  *
 | |
|  * This is the starting point for any data to end up in a cache device; it could
 | |
|  * be from a normal write, or a writeback write, or a write to a flash only
 | |
|  * volume - it's also used by the moving garbage collector to compact data in
 | |
|  * mostly empty buckets.
 | |
|  *
 | |
|  * It first writes the data to the cache, creating a list of keys to be inserted
 | |
|  * (if the data had to be fragmented there will be multiple keys); after the
 | |
|  * data is written it calls bch_journal, and after the keys have been added to
 | |
|  * the next journal write they're inserted into the btree.
 | |
|  *
 | |
|  * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
 | |
|  * and op->inode is used for the key inode.
 | |
|  *
 | |
|  * If s->bypass is true, instead of inserting the data it invalidates the
 | |
|  * region of the cache represented by s->cache_bio and op->inode.
 | |
|  */
 | |
| void bch_data_insert(struct closure *cl)
 | |
| {
 | |
| 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 | |
| 
 | |
| 	trace_bcache_write(op->c, op->inode, op->bio,
 | |
| 			   op->writeback, op->bypass);
 | |
| 
 | |
| 	bch_keylist_init(&op->insert_keys);
 | |
| 	bio_get(op->bio);
 | |
| 	bch_data_insert_start(cl);
 | |
| }
 | |
| 
 | |
| /* Congested? */
 | |
| 
 | |
| unsigned bch_get_congested(struct cache_set *c)
 | |
| {
 | |
| 	int i;
 | |
| 	long rand;
 | |
| 
 | |
| 	if (!c->congested_read_threshold_us &&
 | |
| 	    !c->congested_write_threshold_us)
 | |
| 		return 0;
 | |
| 
 | |
| 	i = (local_clock_us() - c->congested_last_us) / 1024;
 | |
| 	if (i < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	i += atomic_read(&c->congested);
 | |
| 	if (i >= 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	i += CONGESTED_MAX;
 | |
| 
 | |
| 	if (i > 0)
 | |
| 		i = fract_exp_two(i, 6);
 | |
| 
 | |
| 	rand = get_random_int();
 | |
| 	i -= bitmap_weight(&rand, BITS_PER_LONG);
 | |
| 
 | |
| 	return i > 0 ? i : 1;
 | |
| }
 | |
| 
 | |
| static void add_sequential(struct task_struct *t)
 | |
| {
 | |
| 	ewma_add(t->sequential_io_avg,
 | |
| 		 t->sequential_io, 8, 0);
 | |
| 
 | |
| 	t->sequential_io = 0;
 | |
| }
 | |
| 
 | |
| static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
 | |
| {
 | |
| 	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
 | |
| }
 | |
| 
 | |
| static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
 | |
| {
 | |
| 	struct cache_set *c = dc->disk.c;
 | |
| 	unsigned mode = cache_mode(dc, bio);
 | |
| 	unsigned sectors, congested = bch_get_congested(c);
 | |
| 	struct task_struct *task = current;
 | |
| 	struct io *i;
 | |
| 
 | |
| 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
 | |
| 	    c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
 | |
| 	    (bio_op(bio) == REQ_OP_DISCARD))
 | |
| 		goto skip;
 | |
| 
 | |
| 	if (mode == CACHE_MODE_NONE ||
 | |
| 	    (mode == CACHE_MODE_WRITEAROUND &&
 | |
| 	     op_is_write(bio_op(bio))))
 | |
| 		goto skip;
 | |
| 
 | |
| 	if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
 | |
| 	    bio_sectors(bio) & (c->sb.block_size - 1)) {
 | |
| 		pr_debug("skipping unaligned io");
 | |
| 		goto skip;
 | |
| 	}
 | |
| 
 | |
| 	if (bypass_torture_test(dc)) {
 | |
| 		if ((get_random_int() & 3) == 3)
 | |
| 			goto skip;
 | |
| 		else
 | |
| 			goto rescale;
 | |
| 	}
 | |
| 
 | |
| 	if (!congested && !dc->sequential_cutoff)
 | |
| 		goto rescale;
 | |
| 
 | |
| 	if (!congested &&
 | |
| 	    mode == CACHE_MODE_WRITEBACK &&
 | |
| 	    op_is_write(bio->bi_opf) &&
 | |
| 	    op_is_sync(bio->bi_opf))
 | |
| 		goto rescale;
 | |
| 
 | |
| 	spin_lock(&dc->io_lock);
 | |
| 
 | |
| 	hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
 | |
| 		if (i->last == bio->bi_iter.bi_sector &&
 | |
| 		    time_before(jiffies, i->jiffies))
 | |
| 			goto found;
 | |
| 
 | |
| 	i = list_first_entry(&dc->io_lru, struct io, lru);
 | |
| 
 | |
| 	add_sequential(task);
 | |
| 	i->sequential = 0;
 | |
| found:
 | |
| 	if (i->sequential + bio->bi_iter.bi_size > i->sequential)
 | |
| 		i->sequential	+= bio->bi_iter.bi_size;
 | |
| 
 | |
| 	i->last			 = bio_end_sector(bio);
 | |
| 	i->jiffies		 = jiffies + msecs_to_jiffies(5000);
 | |
| 	task->sequential_io	 = i->sequential;
 | |
| 
 | |
| 	hlist_del(&i->hash);
 | |
| 	hlist_add_head(&i->hash, iohash(dc, i->last));
 | |
| 	list_move_tail(&i->lru, &dc->io_lru);
 | |
| 
 | |
| 	spin_unlock(&dc->io_lock);
 | |
| 
 | |
| 	sectors = max(task->sequential_io,
 | |
| 		      task->sequential_io_avg) >> 9;
 | |
| 
 | |
| 	if (dc->sequential_cutoff &&
 | |
| 	    sectors >= dc->sequential_cutoff >> 9) {
 | |
| 		trace_bcache_bypass_sequential(bio);
 | |
| 		goto skip;
 | |
| 	}
 | |
| 
 | |
| 	if (congested && sectors >= congested) {
 | |
| 		trace_bcache_bypass_congested(bio);
 | |
| 		goto skip;
 | |
| 	}
 | |
| 
 | |
| rescale:
 | |
| 	bch_rescale_priorities(c, bio_sectors(bio));
 | |
| 	return false;
 | |
| skip:
 | |
| 	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Cache lookup */
 | |
| 
 | |
| struct search {
 | |
| 	/* Stack frame for bio_complete */
 | |
| 	struct closure		cl;
 | |
| 
 | |
| 	struct bbio		bio;
 | |
| 	struct bio		*orig_bio;
 | |
| 	struct bio		*cache_miss;
 | |
| 	struct bcache_device	*d;
 | |
| 
 | |
| 	unsigned		insert_bio_sectors;
 | |
| 	unsigned		recoverable:1;
 | |
| 	unsigned		write:1;
 | |
| 	unsigned		read_dirty_data:1;
 | |
| 
 | |
| 	unsigned long		start_time;
 | |
| 
 | |
| 	struct btree_op		op;
 | |
| 	struct data_insert_op	iop;
 | |
| };
 | |
| 
 | |
| static void bch_cache_read_endio(struct bio *bio)
 | |
| {
 | |
| 	struct bbio *b = container_of(bio, struct bbio, bio);
 | |
| 	struct closure *cl = bio->bi_private;
 | |
| 	struct search *s = container_of(cl, struct search, cl);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the bucket was reused while our bio was in flight, we might have
 | |
| 	 * read the wrong data. Set s->error but not error so it doesn't get
 | |
| 	 * counted against the cache device, but we'll still reread the data
 | |
| 	 * from the backing device.
 | |
| 	 */
 | |
| 
 | |
| 	if (bio->bi_status)
 | |
| 		s->iop.status = bio->bi_status;
 | |
| 	else if (!KEY_DIRTY(&b->key) &&
 | |
| 		 ptr_stale(s->iop.c, &b->key, 0)) {
 | |
| 		atomic_long_inc(&s->iop.c->cache_read_races);
 | |
| 		s->iop.status = BLK_STS_IOERR;
 | |
| 	}
 | |
| 
 | |
| 	bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read from a single key, handling the initial cache miss if the key starts in
 | |
|  * the middle of the bio
 | |
|  */
 | |
| static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
 | |
| {
 | |
| 	struct search *s = container_of(op, struct search, op);
 | |
| 	struct bio *n, *bio = &s->bio.bio;
 | |
| 	struct bkey *bio_key;
 | |
| 	unsigned ptr;
 | |
| 
 | |
| 	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
 | |
| 		return MAP_CONTINUE;
 | |
| 
 | |
| 	if (KEY_INODE(k) != s->iop.inode ||
 | |
| 	    KEY_START(k) > bio->bi_iter.bi_sector) {
 | |
| 		unsigned bio_sectors = bio_sectors(bio);
 | |
| 		unsigned sectors = KEY_INODE(k) == s->iop.inode
 | |
| 			? min_t(uint64_t, INT_MAX,
 | |
| 				KEY_START(k) - bio->bi_iter.bi_sector)
 | |
| 			: INT_MAX;
 | |
| 
 | |
| 		int ret = s->d->cache_miss(b, s, bio, sectors);
 | |
| 		if (ret != MAP_CONTINUE)
 | |
| 			return ret;
 | |
| 
 | |
| 		/* if this was a complete miss we shouldn't get here */
 | |
| 		BUG_ON(bio_sectors <= sectors);
 | |
| 	}
 | |
| 
 | |
| 	if (!KEY_SIZE(k))
 | |
| 		return MAP_CONTINUE;
 | |
| 
 | |
| 	/* XXX: figure out best pointer - for multiple cache devices */
 | |
| 	ptr = 0;
 | |
| 
 | |
| 	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
 | |
| 
 | |
| 	if (KEY_DIRTY(k))
 | |
| 		s->read_dirty_data = true;
 | |
| 
 | |
| 	n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
 | |
| 				      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
 | |
| 			   GFP_NOIO, s->d->bio_split);
 | |
| 
 | |
| 	bio_key = &container_of(n, struct bbio, bio)->key;
 | |
| 	bch_bkey_copy_single_ptr(bio_key, k, ptr);
 | |
| 
 | |
| 	bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
 | |
| 	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
 | |
| 
 | |
| 	n->bi_end_io	= bch_cache_read_endio;
 | |
| 	n->bi_private	= &s->cl;
 | |
| 
 | |
| 	/*
 | |
| 	 * The bucket we're reading from might be reused while our bio
 | |
| 	 * is in flight, and we could then end up reading the wrong
 | |
| 	 * data.
 | |
| 	 *
 | |
| 	 * We guard against this by checking (in cache_read_endio()) if
 | |
| 	 * the pointer is stale again; if so, we treat it as an error
 | |
| 	 * and reread from the backing device (but we don't pass that
 | |
| 	 * error up anywhere).
 | |
| 	 */
 | |
| 
 | |
| 	__bch_submit_bbio(n, b->c);
 | |
| 	return n == bio ? MAP_DONE : MAP_CONTINUE;
 | |
| }
 | |
| 
 | |
| static void cache_lookup(struct closure *cl)
 | |
| {
 | |
| 	struct search *s = container_of(cl, struct search, iop.cl);
 | |
| 	struct bio *bio = &s->bio.bio;
 | |
| 	int ret;
 | |
| 
 | |
| 	bch_btree_op_init(&s->op, -1);
 | |
| 
 | |
| 	ret = bch_btree_map_keys(&s->op, s->iop.c,
 | |
| 				 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
 | |
| 				 cache_lookup_fn, MAP_END_KEY);
 | |
| 	if (ret == -EAGAIN) {
 | |
| 		continue_at(cl, cache_lookup, bcache_wq);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	closure_return(cl);
 | |
| }
 | |
| 
 | |
| /* Common code for the make_request functions */
 | |
| 
 | |
| static void request_endio(struct bio *bio)
 | |
| {
 | |
| 	struct closure *cl = bio->bi_private;
 | |
| 
 | |
| 	if (bio->bi_status) {
 | |
| 		struct search *s = container_of(cl, struct search, cl);
 | |
| 		s->iop.status = bio->bi_status;
 | |
| 		/* Only cache read errors are recoverable */
 | |
| 		s->recoverable = false;
 | |
| 	}
 | |
| 
 | |
| 	bio_put(bio);
 | |
| 	closure_put(cl);
 | |
| }
 | |
| 
 | |
| static void bio_complete(struct search *s)
 | |
| {
 | |
| 	if (s->orig_bio) {
 | |
| 		generic_end_io_acct(bio_data_dir(s->orig_bio),
 | |
| 				    &s->d->disk->part0, s->start_time);
 | |
| 
 | |
| 		trace_bcache_request_end(s->d, s->orig_bio);
 | |
| 		s->orig_bio->bi_status = s->iop.status;
 | |
| 		bio_endio(s->orig_bio);
 | |
| 		s->orig_bio = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void do_bio_hook(struct search *s, struct bio *orig_bio)
 | |
| {
 | |
| 	struct bio *bio = &s->bio.bio;
 | |
| 
 | |
| 	bio_init(bio, NULL, 0);
 | |
| 	__bio_clone_fast(bio, orig_bio);
 | |
| 	bio->bi_end_io		= request_endio;
 | |
| 	bio->bi_private		= &s->cl;
 | |
| 
 | |
| 	bio_cnt_set(bio, 3);
 | |
| }
 | |
| 
 | |
| static void search_free(struct closure *cl)
 | |
| {
 | |
| 	struct search *s = container_of(cl, struct search, cl);
 | |
| 	bio_complete(s);
 | |
| 
 | |
| 	if (s->iop.bio)
 | |
| 		bio_put(s->iop.bio);
 | |
| 
 | |
| 	closure_debug_destroy(cl);
 | |
| 	mempool_free(s, s->d->c->search);
 | |
| }
 | |
| 
 | |
| static inline struct search *search_alloc(struct bio *bio,
 | |
| 					  struct bcache_device *d)
 | |
| {
 | |
| 	struct search *s;
 | |
| 
 | |
| 	s = mempool_alloc(d->c->search, GFP_NOIO);
 | |
| 
 | |
| 	closure_init(&s->cl, NULL);
 | |
| 	do_bio_hook(s, bio);
 | |
| 
 | |
| 	s->orig_bio		= bio;
 | |
| 	s->cache_miss		= NULL;
 | |
| 	s->d			= d;
 | |
| 	s->recoverable		= 1;
 | |
| 	s->write		= op_is_write(bio_op(bio));
 | |
| 	s->read_dirty_data	= 0;
 | |
| 	s->start_time		= jiffies;
 | |
| 
 | |
| 	s->iop.c		= d->c;
 | |
| 	s->iop.bio		= NULL;
 | |
| 	s->iop.inode		= d->id;
 | |
| 	s->iop.write_point	= hash_long((unsigned long) current, 16);
 | |
| 	s->iop.write_prio	= 0;
 | |
| 	s->iop.status		= 0;
 | |
| 	s->iop.flags		= 0;
 | |
| 	s->iop.flush_journal	= op_is_flush(bio->bi_opf);
 | |
| 	s->iop.wq		= bcache_wq;
 | |
| 
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| /* Cached devices */
 | |
| 
 | |
| static void cached_dev_bio_complete(struct closure *cl)
 | |
| {
 | |
| 	struct search *s = container_of(cl, struct search, cl);
 | |
| 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 | |
| 
 | |
| 	search_free(cl);
 | |
| 	cached_dev_put(dc);
 | |
| }
 | |
| 
 | |
| /* Process reads */
 | |
| 
 | |
| static void cached_dev_cache_miss_done(struct closure *cl)
 | |
| {
 | |
| 	struct search *s = container_of(cl, struct search, cl);
 | |
| 
 | |
| 	if (s->iop.replace_collision)
 | |
| 		bch_mark_cache_miss_collision(s->iop.c, s->d);
 | |
| 
 | |
| 	if (s->iop.bio)
 | |
| 		bio_free_pages(s->iop.bio);
 | |
| 
 | |
| 	cached_dev_bio_complete(cl);
 | |
| }
 | |
| 
 | |
| static void cached_dev_read_error(struct closure *cl)
 | |
| {
 | |
| 	struct search *s = container_of(cl, struct search, cl);
 | |
| 	struct bio *bio = &s->bio.bio;
 | |
| 
 | |
| 	if (s->recoverable) {
 | |
| 		/* Retry from the backing device: */
 | |
| 		trace_bcache_read_retry(s->orig_bio);
 | |
| 
 | |
| 		s->iop.status = 0;
 | |
| 		do_bio_hook(s, s->orig_bio);
 | |
| 
 | |
| 		/* XXX: invalidate cache */
 | |
| 
 | |
| 		closure_bio_submit(bio, cl);
 | |
| 	}
 | |
| 
 | |
| 	continue_at(cl, cached_dev_cache_miss_done, NULL);
 | |
| }
 | |
| 
 | |
| static void cached_dev_read_done(struct closure *cl)
 | |
| {
 | |
| 	struct search *s = container_of(cl, struct search, cl);
 | |
| 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 | |
| 
 | |
| 	/*
 | |
| 	 * We had a cache miss; cache_bio now contains data ready to be inserted
 | |
| 	 * into the cache.
 | |
| 	 *
 | |
| 	 * First, we copy the data we just read from cache_bio's bounce buffers
 | |
| 	 * to the buffers the original bio pointed to:
 | |
| 	 */
 | |
| 
 | |
| 	if (s->iop.bio) {
 | |
| 		bio_reset(s->iop.bio);
 | |
| 		s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
 | |
| 		s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
 | |
| 		s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
 | |
| 		bch_bio_map(s->iop.bio, NULL);
 | |
| 
 | |
| 		bio_copy_data(s->cache_miss, s->iop.bio);
 | |
| 
 | |
| 		bio_put(s->cache_miss);
 | |
| 		s->cache_miss = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
 | |
| 		bch_data_verify(dc, s->orig_bio);
 | |
| 
 | |
| 	bio_complete(s);
 | |
| 
 | |
| 	if (s->iop.bio &&
 | |
| 	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
 | |
| 		BUG_ON(!s->iop.replace);
 | |
| 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
 | |
| 	}
 | |
| 
 | |
| 	continue_at(cl, cached_dev_cache_miss_done, NULL);
 | |
| }
 | |
| 
 | |
| static void cached_dev_read_done_bh(struct closure *cl)
 | |
| {
 | |
| 	struct search *s = container_of(cl, struct search, cl);
 | |
| 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 | |
| 
 | |
| 	bch_mark_cache_accounting(s->iop.c, s->d,
 | |
| 				  !s->cache_miss, s->iop.bypass);
 | |
| 	trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
 | |
| 
 | |
| 	if (s->iop.status)
 | |
| 		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
 | |
| 	else if (s->iop.bio || verify(dc, &s->bio.bio))
 | |
| 		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
 | |
| 	else
 | |
| 		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
 | |
| }
 | |
| 
 | |
| static int cached_dev_cache_miss(struct btree *b, struct search *s,
 | |
| 				 struct bio *bio, unsigned sectors)
 | |
| {
 | |
| 	int ret = MAP_CONTINUE;
 | |
| 	unsigned reada = 0;
 | |
| 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 | |
| 	struct bio *miss, *cache_bio;
 | |
| 
 | |
| 	if (s->cache_miss || s->iop.bypass) {
 | |
| 		miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
 | |
| 		ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
 | |
| 		goto out_submit;
 | |
| 	}
 | |
| 
 | |
| 	if (!(bio->bi_opf & REQ_RAHEAD) &&
 | |
| 	    !(bio->bi_opf & REQ_META) &&
 | |
| 	    s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
 | |
| 		reada = min_t(sector_t, dc->readahead >> 9,
 | |
| 			      bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
 | |
| 
 | |
| 	s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
 | |
| 
 | |
| 	s->iop.replace_key = KEY(s->iop.inode,
 | |
| 				 bio->bi_iter.bi_sector + s->insert_bio_sectors,
 | |
| 				 s->insert_bio_sectors);
 | |
| 
 | |
| 	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	s->iop.replace = true;
 | |
| 
 | |
| 	miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
 | |
| 
 | |
| 	/* btree_search_recurse()'s btree iterator is no good anymore */
 | |
| 	ret = miss == bio ? MAP_DONE : -EINTR;
 | |
| 
 | |
| 	cache_bio = bio_alloc_bioset(GFP_NOWAIT,
 | |
| 			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
 | |
| 			dc->disk.bio_split);
 | |
| 	if (!cache_bio)
 | |
| 		goto out_submit;
 | |
| 
 | |
| 	cache_bio->bi_iter.bi_sector	= miss->bi_iter.bi_sector;
 | |
| 	cache_bio->bi_bdev		= miss->bi_bdev;
 | |
| 	cache_bio->bi_iter.bi_size	= s->insert_bio_sectors << 9;
 | |
| 
 | |
| 	cache_bio->bi_end_io	= request_endio;
 | |
| 	cache_bio->bi_private	= &s->cl;
 | |
| 
 | |
| 	bch_bio_map(cache_bio, NULL);
 | |
| 	if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
 | |
| 		goto out_put;
 | |
| 
 | |
| 	if (reada)
 | |
| 		bch_mark_cache_readahead(s->iop.c, s->d);
 | |
| 
 | |
| 	s->cache_miss	= miss;
 | |
| 	s->iop.bio	= cache_bio;
 | |
| 	bio_get(cache_bio);
 | |
| 	closure_bio_submit(cache_bio, &s->cl);
 | |
| 
 | |
| 	return ret;
 | |
| out_put:
 | |
| 	bio_put(cache_bio);
 | |
| out_submit:
 | |
| 	miss->bi_end_io		= request_endio;
 | |
| 	miss->bi_private	= &s->cl;
 | |
| 	closure_bio_submit(miss, &s->cl);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void cached_dev_read(struct cached_dev *dc, struct search *s)
 | |
| {
 | |
| 	struct closure *cl = &s->cl;
 | |
| 
 | |
| 	closure_call(&s->iop.cl, cache_lookup, NULL, cl);
 | |
| 	continue_at(cl, cached_dev_read_done_bh, NULL);
 | |
| }
 | |
| 
 | |
| /* Process writes */
 | |
| 
 | |
| static void cached_dev_write_complete(struct closure *cl)
 | |
| {
 | |
| 	struct search *s = container_of(cl, struct search, cl);
 | |
| 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 | |
| 
 | |
| 	up_read_non_owner(&dc->writeback_lock);
 | |
| 	cached_dev_bio_complete(cl);
 | |
| }
 | |
| 
 | |
| static void cached_dev_write(struct cached_dev *dc, struct search *s)
 | |
| {
 | |
| 	struct closure *cl = &s->cl;
 | |
| 	struct bio *bio = &s->bio.bio;
 | |
| 	struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
 | |
| 	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
 | |
| 
 | |
| 	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
 | |
| 
 | |
| 	down_read_non_owner(&dc->writeback_lock);
 | |
| 	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
 | |
| 		/*
 | |
| 		 * We overlap with some dirty data undergoing background
 | |
| 		 * writeback, force this write to writeback
 | |
| 		 */
 | |
| 		s->iop.bypass = false;
 | |
| 		s->iop.writeback = true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Discards aren't _required_ to do anything, so skipping if
 | |
| 	 * check_overlapping returned true is ok
 | |
| 	 *
 | |
| 	 * But check_overlapping drops dirty keys for which io hasn't started,
 | |
| 	 * so we still want to call it.
 | |
| 	 */
 | |
| 	if (bio_op(bio) == REQ_OP_DISCARD)
 | |
| 		s->iop.bypass = true;
 | |
| 
 | |
| 	if (should_writeback(dc, s->orig_bio,
 | |
| 			     cache_mode(dc, bio),
 | |
| 			     s->iop.bypass)) {
 | |
| 		s->iop.bypass = false;
 | |
| 		s->iop.writeback = true;
 | |
| 	}
 | |
| 
 | |
| 	if (s->iop.bypass) {
 | |
| 		s->iop.bio = s->orig_bio;
 | |
| 		bio_get(s->iop.bio);
 | |
| 
 | |
| 		if ((bio_op(bio) != REQ_OP_DISCARD) ||
 | |
| 		    blk_queue_discard(bdev_get_queue(dc->bdev)))
 | |
| 			closure_bio_submit(bio, cl);
 | |
| 	} else if (s->iop.writeback) {
 | |
| 		bch_writeback_add(dc);
 | |
| 		s->iop.bio = bio;
 | |
| 
 | |
| 		if (bio->bi_opf & REQ_PREFLUSH) {
 | |
| 			/* Also need to send a flush to the backing device */
 | |
| 			struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
 | |
| 							     dc->disk.bio_split);
 | |
| 
 | |
| 			flush->bi_bdev	= bio->bi_bdev;
 | |
| 			flush->bi_end_io = request_endio;
 | |
| 			flush->bi_private = cl;
 | |
| 			flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
 | |
| 
 | |
| 			closure_bio_submit(flush, cl);
 | |
| 		}
 | |
| 	} else {
 | |
| 		s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
 | |
| 
 | |
| 		closure_bio_submit(bio, cl);
 | |
| 	}
 | |
| 
 | |
| 	closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
 | |
| 	continue_at(cl, cached_dev_write_complete, NULL);
 | |
| }
 | |
| 
 | |
| static void cached_dev_nodata(struct closure *cl)
 | |
| {
 | |
| 	struct search *s = container_of(cl, struct search, cl);
 | |
| 	struct bio *bio = &s->bio.bio;
 | |
| 
 | |
| 	if (s->iop.flush_journal)
 | |
| 		bch_journal_meta(s->iop.c, cl);
 | |
| 
 | |
| 	/* If it's a flush, we send the flush to the backing device too */
 | |
| 	closure_bio_submit(bio, cl);
 | |
| 
 | |
| 	continue_at(cl, cached_dev_bio_complete, NULL);
 | |
| }
 | |
| 
 | |
| /* Cached devices - read & write stuff */
 | |
| 
 | |
| static blk_qc_t cached_dev_make_request(struct request_queue *q,
 | |
| 					struct bio *bio)
 | |
| {
 | |
| 	struct search *s;
 | |
| 	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
 | |
| 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
 | |
| 	int rw = bio_data_dir(bio);
 | |
| 
 | |
| 	generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
 | |
| 
 | |
| 	bio->bi_bdev = dc->bdev;
 | |
| 	bio->bi_iter.bi_sector += dc->sb.data_offset;
 | |
| 
 | |
| 	if (cached_dev_get(dc)) {
 | |
| 		s = search_alloc(bio, d);
 | |
| 		trace_bcache_request_start(s->d, bio);
 | |
| 
 | |
| 		if (!bio->bi_iter.bi_size) {
 | |
| 			/*
 | |
| 			 * can't call bch_journal_meta from under
 | |
| 			 * generic_make_request
 | |
| 			 */
 | |
| 			continue_at_nobarrier(&s->cl,
 | |
| 					      cached_dev_nodata,
 | |
| 					      bcache_wq);
 | |
| 		} else {
 | |
| 			s->iop.bypass = check_should_bypass(dc, bio);
 | |
| 
 | |
| 			if (rw)
 | |
| 				cached_dev_write(dc, s);
 | |
| 			else
 | |
| 				cached_dev_read(dc, s);
 | |
| 		}
 | |
| 	} else {
 | |
| 		if ((bio_op(bio) == REQ_OP_DISCARD) &&
 | |
| 		    !blk_queue_discard(bdev_get_queue(dc->bdev)))
 | |
| 			bio_endio(bio);
 | |
| 		else
 | |
| 			generic_make_request(bio);
 | |
| 	}
 | |
| 
 | |
| 	return BLK_QC_T_NONE;
 | |
| }
 | |
| 
 | |
| static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
 | |
| 			    unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
 | |
| 	return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
 | |
| }
 | |
| 
 | |
| static int cached_dev_congested(void *data, int bits)
 | |
| {
 | |
| 	struct bcache_device *d = data;
 | |
| 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
 | |
| 	struct request_queue *q = bdev_get_queue(dc->bdev);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (bdi_congested(q->backing_dev_info, bits))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (cached_dev_get(dc)) {
 | |
| 		unsigned i;
 | |
| 		struct cache *ca;
 | |
| 
 | |
| 		for_each_cache(ca, d->c, i) {
 | |
| 			q = bdev_get_queue(ca->bdev);
 | |
| 			ret |= bdi_congested(q->backing_dev_info, bits);
 | |
| 		}
 | |
| 
 | |
| 		cached_dev_put(dc);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void bch_cached_dev_request_init(struct cached_dev *dc)
 | |
| {
 | |
| 	struct gendisk *g = dc->disk.disk;
 | |
| 
 | |
| 	g->queue->make_request_fn		= cached_dev_make_request;
 | |
| 	g->queue->backing_dev_info->congested_fn = cached_dev_congested;
 | |
| 	dc->disk.cache_miss			= cached_dev_cache_miss;
 | |
| 	dc->disk.ioctl				= cached_dev_ioctl;
 | |
| }
 | |
| 
 | |
| /* Flash backed devices */
 | |
| 
 | |
| static int flash_dev_cache_miss(struct btree *b, struct search *s,
 | |
| 				struct bio *bio, unsigned sectors)
 | |
| {
 | |
| 	unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
 | |
| 
 | |
| 	swap(bio->bi_iter.bi_size, bytes);
 | |
| 	zero_fill_bio(bio);
 | |
| 	swap(bio->bi_iter.bi_size, bytes);
 | |
| 
 | |
| 	bio_advance(bio, bytes);
 | |
| 
 | |
| 	if (!bio->bi_iter.bi_size)
 | |
| 		return MAP_DONE;
 | |
| 
 | |
| 	return MAP_CONTINUE;
 | |
| }
 | |
| 
 | |
| static void flash_dev_nodata(struct closure *cl)
 | |
| {
 | |
| 	struct search *s = container_of(cl, struct search, cl);
 | |
| 
 | |
| 	if (s->iop.flush_journal)
 | |
| 		bch_journal_meta(s->iop.c, cl);
 | |
| 
 | |
| 	continue_at(cl, search_free, NULL);
 | |
| }
 | |
| 
 | |
| static blk_qc_t flash_dev_make_request(struct request_queue *q,
 | |
| 					     struct bio *bio)
 | |
| {
 | |
| 	struct search *s;
 | |
| 	struct closure *cl;
 | |
| 	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
 | |
| 	int rw = bio_data_dir(bio);
 | |
| 
 | |
| 	generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
 | |
| 
 | |
| 	s = search_alloc(bio, d);
 | |
| 	cl = &s->cl;
 | |
| 	bio = &s->bio.bio;
 | |
| 
 | |
| 	trace_bcache_request_start(s->d, bio);
 | |
| 
 | |
| 	if (!bio->bi_iter.bi_size) {
 | |
| 		/*
 | |
| 		 * can't call bch_journal_meta from under
 | |
| 		 * generic_make_request
 | |
| 		 */
 | |
| 		continue_at_nobarrier(&s->cl,
 | |
| 				      flash_dev_nodata,
 | |
| 				      bcache_wq);
 | |
| 		return BLK_QC_T_NONE;
 | |
| 	} else if (rw) {
 | |
| 		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
 | |
| 					&KEY(d->id, bio->bi_iter.bi_sector, 0),
 | |
| 					&KEY(d->id, bio_end_sector(bio), 0));
 | |
| 
 | |
| 		s->iop.bypass		= (bio_op(bio) == REQ_OP_DISCARD) != 0;
 | |
| 		s->iop.writeback	= true;
 | |
| 		s->iop.bio		= bio;
 | |
| 
 | |
| 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
 | |
| 	} else {
 | |
| 		closure_call(&s->iop.cl, cache_lookup, NULL, cl);
 | |
| 	}
 | |
| 
 | |
| 	continue_at(cl, search_free, NULL);
 | |
| 	return BLK_QC_T_NONE;
 | |
| }
 | |
| 
 | |
| static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
 | |
| 			   unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	return -ENOTTY;
 | |
| }
 | |
| 
 | |
| static int flash_dev_congested(void *data, int bits)
 | |
| {
 | |
| 	struct bcache_device *d = data;
 | |
| 	struct request_queue *q;
 | |
| 	struct cache *ca;
 | |
| 	unsigned i;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	for_each_cache(ca, d->c, i) {
 | |
| 		q = bdev_get_queue(ca->bdev);
 | |
| 		ret |= bdi_congested(q->backing_dev_info, bits);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void bch_flash_dev_request_init(struct bcache_device *d)
 | |
| {
 | |
| 	struct gendisk *g = d->disk;
 | |
| 
 | |
| 	g->queue->make_request_fn		= flash_dev_make_request;
 | |
| 	g->queue->backing_dev_info->congested_fn = flash_dev_congested;
 | |
| 	d->cache_miss				= flash_dev_cache_miss;
 | |
| 	d->ioctl				= flash_dev_ioctl;
 | |
| }
 | |
| 
 | |
| void bch_request_exit(void)
 | |
| {
 | |
| 	if (bch_search_cache)
 | |
| 		kmem_cache_destroy(bch_search_cache);
 | |
| }
 | |
| 
 | |
| int __init bch_request_init(void)
 | |
| {
 | |
| 	bch_search_cache = KMEM_CACHE(search, 0);
 | |
| 	if (!bch_search_cache)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 |