mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 4e4cbee93d
			
		
	
	
		4e4cbee93d
		
	
	
	
	
		
			
			Replace bi_error with a new bi_status to allow for a clear conversion. Note that device mapper overloaded bi_error with a private value, which we'll have to keep arround at least for now and thus propagate to a proper blk_status_t value. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@fb.com>
		
			
				
	
	
		
			4647 lines
		
	
	
	
		
			126 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4647 lines
		
	
	
	
		
			126 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2007 Oracle.  All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public
 | |
|  * License v2 as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public
 | |
|  * License along with this program; if not, write to the
 | |
|  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
|  * Boston, MA 021110-1307, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/fs.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/radix-tree.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/buffer_head.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/uuid.h>
 | |
| #include <linux/semaphore.h>
 | |
| #include <asm/unaligned.h>
 | |
| #include "ctree.h"
 | |
| #include "disk-io.h"
 | |
| #include "hash.h"
 | |
| #include "transaction.h"
 | |
| #include "btrfs_inode.h"
 | |
| #include "volumes.h"
 | |
| #include "print-tree.h"
 | |
| #include "locking.h"
 | |
| #include "tree-log.h"
 | |
| #include "free-space-cache.h"
 | |
| #include "free-space-tree.h"
 | |
| #include "inode-map.h"
 | |
| #include "check-integrity.h"
 | |
| #include "rcu-string.h"
 | |
| #include "dev-replace.h"
 | |
| #include "raid56.h"
 | |
| #include "sysfs.h"
 | |
| #include "qgroup.h"
 | |
| #include "compression.h"
 | |
| 
 | |
| #ifdef CONFIG_X86
 | |
| #include <asm/cpufeature.h>
 | |
| #endif
 | |
| 
 | |
| #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
 | |
| 				 BTRFS_HEADER_FLAG_RELOC |\
 | |
| 				 BTRFS_SUPER_FLAG_ERROR |\
 | |
| 				 BTRFS_SUPER_FLAG_SEEDING |\
 | |
| 				 BTRFS_SUPER_FLAG_METADUMP)
 | |
| 
 | |
| static const struct extent_io_ops btree_extent_io_ops;
 | |
| static void end_workqueue_fn(struct btrfs_work *work);
 | |
| static void free_fs_root(struct btrfs_root *root);
 | |
| static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
 | |
| static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
 | |
| static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
 | |
| 				      struct btrfs_fs_info *fs_info);
 | |
| static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
 | |
| static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
 | |
| 					struct extent_io_tree *dirty_pages,
 | |
| 					int mark);
 | |
| static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
 | |
| 				       struct extent_io_tree *pinned_extents);
 | |
| static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
 | |
| static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
 | |
| 
 | |
| /*
 | |
|  * btrfs_end_io_wq structs are used to do processing in task context when an IO
 | |
|  * is complete.  This is used during reads to verify checksums, and it is used
 | |
|  * by writes to insert metadata for new file extents after IO is complete.
 | |
|  */
 | |
| struct btrfs_end_io_wq {
 | |
| 	struct bio *bio;
 | |
| 	bio_end_io_t *end_io;
 | |
| 	void *private;
 | |
| 	struct btrfs_fs_info *info;
 | |
| 	blk_status_t status;
 | |
| 	enum btrfs_wq_endio_type metadata;
 | |
| 	struct list_head list;
 | |
| 	struct btrfs_work work;
 | |
| };
 | |
| 
 | |
| static struct kmem_cache *btrfs_end_io_wq_cache;
 | |
| 
 | |
| int __init btrfs_end_io_wq_init(void)
 | |
| {
 | |
| 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
 | |
| 					sizeof(struct btrfs_end_io_wq),
 | |
| 					0,
 | |
| 					SLAB_MEM_SPREAD,
 | |
| 					NULL);
 | |
| 	if (!btrfs_end_io_wq_cache)
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void btrfs_end_io_wq_exit(void)
 | |
| {
 | |
| 	kmem_cache_destroy(btrfs_end_io_wq_cache);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * async submit bios are used to offload expensive checksumming
 | |
|  * onto the worker threads.  They checksum file and metadata bios
 | |
|  * just before they are sent down the IO stack.
 | |
|  */
 | |
| struct async_submit_bio {
 | |
| 	struct inode *inode;
 | |
| 	struct bio *bio;
 | |
| 	struct list_head list;
 | |
| 	extent_submit_bio_hook_t *submit_bio_start;
 | |
| 	extent_submit_bio_hook_t *submit_bio_done;
 | |
| 	int mirror_num;
 | |
| 	unsigned long bio_flags;
 | |
| 	/*
 | |
| 	 * bio_offset is optional, can be used if the pages in the bio
 | |
| 	 * can't tell us where in the file the bio should go
 | |
| 	 */
 | |
| 	u64 bio_offset;
 | |
| 	struct btrfs_work work;
 | |
| 	blk_status_t status;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 | |
|  * eb, the lockdep key is determined by the btrfs_root it belongs to and
 | |
|  * the level the eb occupies in the tree.
 | |
|  *
 | |
|  * Different roots are used for different purposes and may nest inside each
 | |
|  * other and they require separate keysets.  As lockdep keys should be
 | |
|  * static, assign keysets according to the purpose of the root as indicated
 | |
|  * by btrfs_root->objectid.  This ensures that all special purpose roots
 | |
|  * have separate keysets.
 | |
|  *
 | |
|  * Lock-nesting across peer nodes is always done with the immediate parent
 | |
|  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 | |
|  * subclass to avoid triggering lockdep warning in such cases.
 | |
|  *
 | |
|  * The key is set by the readpage_end_io_hook after the buffer has passed
 | |
|  * csum validation but before the pages are unlocked.  It is also set by
 | |
|  * btrfs_init_new_buffer on freshly allocated blocks.
 | |
|  *
 | |
|  * We also add a check to make sure the highest level of the tree is the
 | |
|  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 | |
|  * needs update as well.
 | |
|  */
 | |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC
 | |
| # if BTRFS_MAX_LEVEL != 8
 | |
| #  error
 | |
| # endif
 | |
| 
 | |
| static struct btrfs_lockdep_keyset {
 | |
| 	u64			id;		/* root objectid */
 | |
| 	const char		*name_stem;	/* lock name stem */
 | |
| 	char			names[BTRFS_MAX_LEVEL + 1][20];
 | |
| 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 | |
| } btrfs_lockdep_keysets[] = {
 | |
| 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 | |
| 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 | |
| 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 | |
| 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 | |
| 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 | |
| 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 | |
| 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
 | |
| 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 | |
| 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 | |
| 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 | |
| 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
 | |
| 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
 | |
| 	{ .id = 0,				.name_stem = "tree"	},
 | |
| };
 | |
| 
 | |
| void __init btrfs_init_lockdep(void)
 | |
| {
 | |
| 	int i, j;
 | |
| 
 | |
| 	/* initialize lockdep class names */
 | |
| 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 | |
| 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 | |
| 
 | |
| 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 | |
| 			snprintf(ks->names[j], sizeof(ks->names[j]),
 | |
| 				 "btrfs-%s-%02d", ks->name_stem, j);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 | |
| 				    int level)
 | |
| {
 | |
| 	struct btrfs_lockdep_keyset *ks;
 | |
| 
 | |
| 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 | |
| 
 | |
| 	/* find the matching keyset, id 0 is the default entry */
 | |
| 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 | |
| 		if (ks->id == objectid)
 | |
| 			break;
 | |
| 
 | |
| 	lockdep_set_class_and_name(&eb->lock,
 | |
| 				   &ks->keys[level], ks->names[level]);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * extents on the btree inode are pretty simple, there's one extent
 | |
|  * that covers the entire device
 | |
|  */
 | |
| static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
 | |
| 		struct page *page, size_t pg_offset, u64 start, u64 len,
 | |
| 		int create)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
 | |
| 	struct extent_map_tree *em_tree = &inode->extent_tree;
 | |
| 	struct extent_map *em;
 | |
| 	int ret;
 | |
| 
 | |
| 	read_lock(&em_tree->lock);
 | |
| 	em = lookup_extent_mapping(em_tree, start, len);
 | |
| 	if (em) {
 | |
| 		em->bdev = fs_info->fs_devices->latest_bdev;
 | |
| 		read_unlock(&em_tree->lock);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	read_unlock(&em_tree->lock);
 | |
| 
 | |
| 	em = alloc_extent_map();
 | |
| 	if (!em) {
 | |
| 		em = ERR_PTR(-ENOMEM);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	em->start = 0;
 | |
| 	em->len = (u64)-1;
 | |
| 	em->block_len = (u64)-1;
 | |
| 	em->block_start = 0;
 | |
| 	em->bdev = fs_info->fs_devices->latest_bdev;
 | |
| 
 | |
| 	write_lock(&em_tree->lock);
 | |
| 	ret = add_extent_mapping(em_tree, em, 0);
 | |
| 	if (ret == -EEXIST) {
 | |
| 		free_extent_map(em);
 | |
| 		em = lookup_extent_mapping(em_tree, start, len);
 | |
| 		if (!em)
 | |
| 			em = ERR_PTR(-EIO);
 | |
| 	} else if (ret) {
 | |
| 		free_extent_map(em);
 | |
| 		em = ERR_PTR(ret);
 | |
| 	}
 | |
| 	write_unlock(&em_tree->lock);
 | |
| 
 | |
| out:
 | |
| 	return em;
 | |
| }
 | |
| 
 | |
| u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
 | |
| {
 | |
| 	return btrfs_crc32c(seed, data, len);
 | |
| }
 | |
| 
 | |
| void btrfs_csum_final(u32 crc, u8 *result)
 | |
| {
 | |
| 	put_unaligned_le32(~crc, result);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * compute the csum for a btree block, and either verify it or write it
 | |
|  * into the csum field of the block.
 | |
|  */
 | |
| static int csum_tree_block(struct btrfs_fs_info *fs_info,
 | |
| 			   struct extent_buffer *buf,
 | |
| 			   int verify)
 | |
| {
 | |
| 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 | |
| 	char *result = NULL;
 | |
| 	unsigned long len;
 | |
| 	unsigned long cur_len;
 | |
| 	unsigned long offset = BTRFS_CSUM_SIZE;
 | |
| 	char *kaddr;
 | |
| 	unsigned long map_start;
 | |
| 	unsigned long map_len;
 | |
| 	int err;
 | |
| 	u32 crc = ~(u32)0;
 | |
| 	unsigned long inline_result;
 | |
| 
 | |
| 	len = buf->len - offset;
 | |
| 	while (len > 0) {
 | |
| 		err = map_private_extent_buffer(buf, offset, 32,
 | |
| 					&kaddr, &map_start, &map_len);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		cur_len = min(len, map_len - (offset - map_start));
 | |
| 		crc = btrfs_csum_data(kaddr + offset - map_start,
 | |
| 				      crc, cur_len);
 | |
| 		len -= cur_len;
 | |
| 		offset += cur_len;
 | |
| 	}
 | |
| 	if (csum_size > sizeof(inline_result)) {
 | |
| 		result = kzalloc(csum_size, GFP_NOFS);
 | |
| 		if (!result)
 | |
| 			return -ENOMEM;
 | |
| 	} else {
 | |
| 		result = (char *)&inline_result;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_csum_final(crc, result);
 | |
| 
 | |
| 	if (verify) {
 | |
| 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 | |
| 			u32 val;
 | |
| 			u32 found = 0;
 | |
| 			memcpy(&found, result, csum_size);
 | |
| 
 | |
| 			read_extent_buffer(buf, &val, 0, csum_size);
 | |
| 			btrfs_warn_rl(fs_info,
 | |
| 				"%s checksum verify failed on %llu wanted %X found %X level %d",
 | |
| 				fs_info->sb->s_id, buf->start,
 | |
| 				val, found, btrfs_header_level(buf));
 | |
| 			if (result != (char *)&inline_result)
 | |
| 				kfree(result);
 | |
| 			return -EUCLEAN;
 | |
| 		}
 | |
| 	} else {
 | |
| 		write_extent_buffer(buf, result, 0, csum_size);
 | |
| 	}
 | |
| 	if (result != (char *)&inline_result)
 | |
| 		kfree(result);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * we can't consider a given block up to date unless the transid of the
 | |
|  * block matches the transid in the parent node's pointer.  This is how we
 | |
|  * detect blocks that either didn't get written at all or got written
 | |
|  * in the wrong place.
 | |
|  */
 | |
| static int verify_parent_transid(struct extent_io_tree *io_tree,
 | |
| 				 struct extent_buffer *eb, u64 parent_transid,
 | |
| 				 int atomic)
 | |
| {
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	int ret;
 | |
| 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 | |
| 
 | |
| 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (atomic)
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	if (need_lock) {
 | |
| 		btrfs_tree_read_lock(eb);
 | |
| 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 | |
| 	}
 | |
| 
 | |
| 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 | |
| 			 &cached_state);
 | |
| 	if (extent_buffer_uptodate(eb) &&
 | |
| 	    btrfs_header_generation(eb) == parent_transid) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	btrfs_err_rl(eb->fs_info,
 | |
| 		"parent transid verify failed on %llu wanted %llu found %llu",
 | |
| 			eb->start,
 | |
| 			parent_transid, btrfs_header_generation(eb));
 | |
| 	ret = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Things reading via commit roots that don't have normal protection,
 | |
| 	 * like send, can have a really old block in cache that may point at a
 | |
| 	 * block that has been freed and re-allocated.  So don't clear uptodate
 | |
| 	 * if we find an eb that is under IO (dirty/writeback) because we could
 | |
| 	 * end up reading in the stale data and then writing it back out and
 | |
| 	 * making everybody very sad.
 | |
| 	 */
 | |
| 	if (!extent_buffer_under_io(eb))
 | |
| 		clear_extent_buffer_uptodate(eb);
 | |
| out:
 | |
| 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 | |
| 			     &cached_state, GFP_NOFS);
 | |
| 	if (need_lock)
 | |
| 		btrfs_tree_read_unlock_blocking(eb);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return 0 if the superblock checksum type matches the checksum value of that
 | |
|  * algorithm. Pass the raw disk superblock data.
 | |
|  */
 | |
| static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 | |
| 				  char *raw_disk_sb)
 | |
| {
 | |
| 	struct btrfs_super_block *disk_sb =
 | |
| 		(struct btrfs_super_block *)raw_disk_sb;
 | |
| 	u16 csum_type = btrfs_super_csum_type(disk_sb);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
 | |
| 		u32 crc = ~(u32)0;
 | |
| 		const int csum_size = sizeof(crc);
 | |
| 		char result[csum_size];
 | |
| 
 | |
| 		/*
 | |
| 		 * The super_block structure does not span the whole
 | |
| 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
 | |
| 		 * is filled with zeros and is included in the checksum.
 | |
| 		 */
 | |
| 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
 | |
| 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 | |
| 		btrfs_csum_final(crc, result);
 | |
| 
 | |
| 		if (memcmp(raw_disk_sb, result, csum_size))
 | |
| 			ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
 | |
| 		btrfs_err(fs_info, "unsupported checksum algorithm %u",
 | |
| 				csum_type);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to read a given tree block, doing retries as required when
 | |
|  * the checksums don't match and we have alternate mirrors to try.
 | |
|  */
 | |
| static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
 | |
| 					  struct extent_buffer *eb,
 | |
| 					  u64 parent_transid)
 | |
| {
 | |
| 	struct extent_io_tree *io_tree;
 | |
| 	int failed = 0;
 | |
| 	int ret;
 | |
| 	int num_copies = 0;
 | |
| 	int mirror_num = 0;
 | |
| 	int failed_mirror = 0;
 | |
| 
 | |
| 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 | |
| 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 | |
| 	while (1) {
 | |
| 		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
 | |
| 					       btree_get_extent, mirror_num);
 | |
| 		if (!ret) {
 | |
| 			if (!verify_parent_transid(io_tree, eb,
 | |
| 						   parent_transid, 0))
 | |
| 				break;
 | |
| 			else
 | |
| 				ret = -EIO;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * This buffer's crc is fine, but its contents are corrupted, so
 | |
| 		 * there is no reason to read the other copies, they won't be
 | |
| 		 * any less wrong.
 | |
| 		 */
 | |
| 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 | |
| 			break;
 | |
| 
 | |
| 		num_copies = btrfs_num_copies(fs_info,
 | |
| 					      eb->start, eb->len);
 | |
| 		if (num_copies == 1)
 | |
| 			break;
 | |
| 
 | |
| 		if (!failed_mirror) {
 | |
| 			failed = 1;
 | |
| 			failed_mirror = eb->read_mirror;
 | |
| 		}
 | |
| 
 | |
| 		mirror_num++;
 | |
| 		if (mirror_num == failed_mirror)
 | |
| 			mirror_num++;
 | |
| 
 | |
| 		if (mirror_num > num_copies)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (failed && !ret && failed_mirror)
 | |
| 		repair_eb_io_failure(fs_info, eb, failed_mirror);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * checksum a dirty tree block before IO.  This has extra checks to make sure
 | |
|  * we only fill in the checksum field in the first page of a multi-page block
 | |
|  */
 | |
| 
 | |
| static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 | |
| {
 | |
| 	u64 start = page_offset(page);
 | |
| 	u64 found_start;
 | |
| 	struct extent_buffer *eb;
 | |
| 
 | |
| 	eb = (struct extent_buffer *)page->private;
 | |
| 	if (page != eb->pages[0])
 | |
| 		return 0;
 | |
| 
 | |
| 	found_start = btrfs_header_bytenr(eb);
 | |
| 	/*
 | |
| 	 * Please do not consolidate these warnings into a single if.
 | |
| 	 * It is useful to know what went wrong.
 | |
| 	 */
 | |
| 	if (WARN_ON(found_start != start))
 | |
| 		return -EUCLEAN;
 | |
| 	if (WARN_ON(!PageUptodate(page)))
 | |
| 		return -EUCLEAN;
 | |
| 
 | |
| 	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
 | |
| 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
 | |
| 
 | |
| 	return csum_tree_block(fs_info, eb, 0);
 | |
| }
 | |
| 
 | |
| static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
 | |
| 				 struct extent_buffer *eb)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 | |
| 	u8 fsid[BTRFS_UUID_SIZE];
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 | |
| 	while (fs_devices) {
 | |
| 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		fs_devices = fs_devices->seed;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define CORRUPT(reason, eb, root, slot)					\
 | |
| 	btrfs_crit(root->fs_info,					\
 | |
| 		   "corrupt %s, %s: block=%llu, root=%llu, slot=%d",	\
 | |
| 		   btrfs_header_level(eb) == 0 ? "leaf" : "node",	\
 | |
| 		   reason, btrfs_header_bytenr(eb), root->objectid, slot)
 | |
| 
 | |
| static noinline int check_leaf(struct btrfs_root *root,
 | |
| 			       struct extent_buffer *leaf)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key leaf_key;
 | |
| 	u32 nritems = btrfs_header_nritems(leaf);
 | |
| 	int slot;
 | |
| 
 | |
| 	/*
 | |
| 	 * Extent buffers from a relocation tree have a owner field that
 | |
| 	 * corresponds to the subvolume tree they are based on. So just from an
 | |
| 	 * extent buffer alone we can not find out what is the id of the
 | |
| 	 * corresponding subvolume tree, so we can not figure out if the extent
 | |
| 	 * buffer corresponds to the root of the relocation tree or not. So skip
 | |
| 	 * this check for relocation trees.
 | |
| 	 */
 | |
| 	if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
 | |
| 		struct btrfs_root *check_root;
 | |
| 
 | |
| 		key.objectid = btrfs_header_owner(leaf);
 | |
| 		key.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 		key.offset = (u64)-1;
 | |
| 
 | |
| 		check_root = btrfs_get_fs_root(fs_info, &key, false);
 | |
| 		/*
 | |
| 		 * The only reason we also check NULL here is that during
 | |
| 		 * open_ctree() some roots has not yet been set up.
 | |
| 		 */
 | |
| 		if (!IS_ERR_OR_NULL(check_root)) {
 | |
| 			struct extent_buffer *eb;
 | |
| 
 | |
| 			eb = btrfs_root_node(check_root);
 | |
| 			/* if leaf is the root, then it's fine */
 | |
| 			if (leaf != eb) {
 | |
| 				CORRUPT("non-root leaf's nritems is 0",
 | |
| 					leaf, check_root, 0);
 | |
| 				free_extent_buffer(eb);
 | |
| 				return -EIO;
 | |
| 			}
 | |
| 			free_extent_buffer(eb);
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (nritems == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Check the 0 item */
 | |
| 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 | |
| 	    BTRFS_LEAF_DATA_SIZE(fs_info)) {
 | |
| 		CORRUPT("invalid item offset size pair", leaf, root, 0);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check to make sure each items keys are in the correct order and their
 | |
| 	 * offsets make sense.  We only have to loop through nritems-1 because
 | |
| 	 * we check the current slot against the next slot, which verifies the
 | |
| 	 * next slot's offset+size makes sense and that the current's slot
 | |
| 	 * offset is correct.
 | |
| 	 */
 | |
| 	for (slot = 0; slot < nritems - 1; slot++) {
 | |
| 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 | |
| 
 | |
| 		/* Make sure the keys are in the right order */
 | |
| 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 | |
| 			CORRUPT("bad key order", leaf, root, slot);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure the offset and ends are right, remember that the
 | |
| 		 * item data starts at the end of the leaf and grows towards the
 | |
| 		 * front.
 | |
| 		 */
 | |
| 		if (btrfs_item_offset_nr(leaf, slot) !=
 | |
| 			btrfs_item_end_nr(leaf, slot + 1)) {
 | |
| 			CORRUPT("slot offset bad", leaf, root, slot);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Check to make sure that we don't point outside of the leaf,
 | |
| 		 * just in case all the items are consistent to each other, but
 | |
| 		 * all point outside of the leaf.
 | |
| 		 */
 | |
| 		if (btrfs_item_end_nr(leaf, slot) >
 | |
| 		    BTRFS_LEAF_DATA_SIZE(fs_info)) {
 | |
| 			CORRUPT("slot end outside of leaf", leaf, root, slot);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int check_node(struct btrfs_root *root, struct extent_buffer *node)
 | |
| {
 | |
| 	unsigned long nr = btrfs_header_nritems(node);
 | |
| 	struct btrfs_key key, next_key;
 | |
| 	int slot;
 | |
| 	u64 bytenr;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
 | |
| 		btrfs_crit(root->fs_info,
 | |
| 			   "corrupt node: block %llu root %llu nritems %lu",
 | |
| 			   node->start, root->objectid, nr);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	for (slot = 0; slot < nr - 1; slot++) {
 | |
| 		bytenr = btrfs_node_blockptr(node, slot);
 | |
| 		btrfs_node_key_to_cpu(node, &key, slot);
 | |
| 		btrfs_node_key_to_cpu(node, &next_key, slot + 1);
 | |
| 
 | |
| 		if (!bytenr) {
 | |
| 			CORRUPT("invalid item slot", node, root, slot);
 | |
| 			ret = -EIO;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
 | |
| 			CORRUPT("bad key order", node, root, slot);
 | |
| 			ret = -EIO;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 | |
| 				      u64 phy_offset, struct page *page,
 | |
| 				      u64 start, u64 end, int mirror)
 | |
| {
 | |
| 	u64 found_start;
 | |
| 	int found_level;
 | |
| 	struct extent_buffer *eb;
 | |
| 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	int ret = 0;
 | |
| 	int reads_done;
 | |
| 
 | |
| 	if (!page->private)
 | |
| 		goto out;
 | |
| 
 | |
| 	eb = (struct extent_buffer *)page->private;
 | |
| 
 | |
| 	/* the pending IO might have been the only thing that kept this buffer
 | |
| 	 * in memory.  Make sure we have a ref for all this other checks
 | |
| 	 */
 | |
| 	extent_buffer_get(eb);
 | |
| 
 | |
| 	reads_done = atomic_dec_and_test(&eb->io_pages);
 | |
| 	if (!reads_done)
 | |
| 		goto err;
 | |
| 
 | |
| 	eb->read_mirror = mirror;
 | |
| 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 | |
| 		ret = -EIO;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	found_start = btrfs_header_bytenr(eb);
 | |
| 	if (found_start != eb->start) {
 | |
| 		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
 | |
| 			     found_start, eb->start);
 | |
| 		ret = -EIO;
 | |
| 		goto err;
 | |
| 	}
 | |
| 	if (check_tree_block_fsid(fs_info, eb)) {
 | |
| 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
 | |
| 			     eb->start);
 | |
| 		ret = -EIO;
 | |
| 		goto err;
 | |
| 	}
 | |
| 	found_level = btrfs_header_level(eb);
 | |
| 	if (found_level >= BTRFS_MAX_LEVEL) {
 | |
| 		btrfs_err(fs_info, "bad tree block level %d",
 | |
| 			  (int)btrfs_header_level(eb));
 | |
| 		ret = -EIO;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 | |
| 				       eb, found_level);
 | |
| 
 | |
| 	ret = csum_tree_block(fs_info, eb, 1);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 | |
| 	 * that we don't try and read the other copies of this block, just
 | |
| 	 * return -EIO.
 | |
| 	 */
 | |
| 	if (found_level == 0 && check_leaf(root, eb)) {
 | |
| 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 | |
| 		ret = -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (found_level > 0 && check_node(root, eb))
 | |
| 		ret = -EIO;
 | |
| 
 | |
| 	if (!ret)
 | |
| 		set_extent_buffer_uptodate(eb);
 | |
| err:
 | |
| 	if (reads_done &&
 | |
| 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 | |
| 		btree_readahead_hook(eb, ret);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		/*
 | |
| 		 * our io error hook is going to dec the io pages
 | |
| 		 * again, we have to make sure it has something
 | |
| 		 * to decrement
 | |
| 		 */
 | |
| 		atomic_inc(&eb->io_pages);
 | |
| 		clear_extent_buffer_uptodate(eb);
 | |
| 	}
 | |
| 	free_extent_buffer(eb);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btree_io_failed_hook(struct page *page, int failed_mirror)
 | |
| {
 | |
| 	struct extent_buffer *eb;
 | |
| 
 | |
| 	eb = (struct extent_buffer *)page->private;
 | |
| 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
 | |
| 	eb->read_mirror = failed_mirror;
 | |
| 	atomic_dec(&eb->io_pages);
 | |
| 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 | |
| 		btree_readahead_hook(eb, -EIO);
 | |
| 	return -EIO;	/* we fixed nothing */
 | |
| }
 | |
| 
 | |
| static void end_workqueue_bio(struct bio *bio)
 | |
| {
 | |
| 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 | |
| 	struct btrfs_fs_info *fs_info;
 | |
| 	struct btrfs_workqueue *wq;
 | |
| 	btrfs_work_func_t func;
 | |
| 
 | |
| 	fs_info = end_io_wq->info;
 | |
| 	end_io_wq->status = bio->bi_status;
 | |
| 
 | |
| 	if (bio_op(bio) == REQ_OP_WRITE) {
 | |
| 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
 | |
| 			wq = fs_info->endio_meta_write_workers;
 | |
| 			func = btrfs_endio_meta_write_helper;
 | |
| 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
 | |
| 			wq = fs_info->endio_freespace_worker;
 | |
| 			func = btrfs_freespace_write_helper;
 | |
| 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 | |
| 			wq = fs_info->endio_raid56_workers;
 | |
| 			func = btrfs_endio_raid56_helper;
 | |
| 		} else {
 | |
| 			wq = fs_info->endio_write_workers;
 | |
| 			func = btrfs_endio_write_helper;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (unlikely(end_io_wq->metadata ==
 | |
| 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
 | |
| 			wq = fs_info->endio_repair_workers;
 | |
| 			func = btrfs_endio_repair_helper;
 | |
| 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 | |
| 			wq = fs_info->endio_raid56_workers;
 | |
| 			func = btrfs_endio_raid56_helper;
 | |
| 		} else if (end_io_wq->metadata) {
 | |
| 			wq = fs_info->endio_meta_workers;
 | |
| 			func = btrfs_endio_meta_helper;
 | |
| 		} else {
 | |
| 			wq = fs_info->endio_workers;
 | |
| 			func = btrfs_endio_helper;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
 | |
| 	btrfs_queue_work(wq, &end_io_wq->work);
 | |
| }
 | |
| 
 | |
| blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 | |
| 			enum btrfs_wq_endio_type metadata)
 | |
| {
 | |
| 	struct btrfs_end_io_wq *end_io_wq;
 | |
| 
 | |
| 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 | |
| 	if (!end_io_wq)
 | |
| 		return BLK_STS_RESOURCE;
 | |
| 
 | |
| 	end_io_wq->private = bio->bi_private;
 | |
| 	end_io_wq->end_io = bio->bi_end_io;
 | |
| 	end_io_wq->info = info;
 | |
| 	end_io_wq->status = 0;
 | |
| 	end_io_wq->bio = bio;
 | |
| 	end_io_wq->metadata = metadata;
 | |
| 
 | |
| 	bio->bi_private = end_io_wq;
 | |
| 	bio->bi_end_io = end_workqueue_bio;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	unsigned long limit = min_t(unsigned long,
 | |
| 				    info->thread_pool_size,
 | |
| 				    info->fs_devices->open_devices);
 | |
| 	return 256 * limit;
 | |
| }
 | |
| 
 | |
| static void run_one_async_start(struct btrfs_work *work)
 | |
| {
 | |
| 	struct async_submit_bio *async;
 | |
| 	blk_status_t ret;
 | |
| 
 | |
| 	async = container_of(work, struct  async_submit_bio, work);
 | |
| 	ret = async->submit_bio_start(async->inode, async->bio,
 | |
| 				      async->mirror_num, async->bio_flags,
 | |
| 				      async->bio_offset);
 | |
| 	if (ret)
 | |
| 		async->status = ret;
 | |
| }
 | |
| 
 | |
| static void run_one_async_done(struct btrfs_work *work)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info;
 | |
| 	struct async_submit_bio *async;
 | |
| 	int limit;
 | |
| 
 | |
| 	async = container_of(work, struct  async_submit_bio, work);
 | |
| 	fs_info = BTRFS_I(async->inode)->root->fs_info;
 | |
| 
 | |
| 	limit = btrfs_async_submit_limit(fs_info);
 | |
| 	limit = limit * 2 / 3;
 | |
| 
 | |
| 	/*
 | |
| 	 * atomic_dec_return implies a barrier for waitqueue_active
 | |
| 	 */
 | |
| 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
 | |
| 	    waitqueue_active(&fs_info->async_submit_wait))
 | |
| 		wake_up(&fs_info->async_submit_wait);
 | |
| 
 | |
| 	/* If an error occurred we just want to clean up the bio and move on */
 | |
| 	if (async->status) {
 | |
| 		async->bio->bi_status = async->status;
 | |
| 		bio_endio(async->bio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	async->submit_bio_done(async->inode, async->bio, async->mirror_num,
 | |
| 			       async->bio_flags, async->bio_offset);
 | |
| }
 | |
| 
 | |
| static void run_one_async_free(struct btrfs_work *work)
 | |
| {
 | |
| 	struct async_submit_bio *async;
 | |
| 
 | |
| 	async = container_of(work, struct  async_submit_bio, work);
 | |
| 	kfree(async);
 | |
| }
 | |
| 
 | |
| blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info,
 | |
| 		struct inode *inode, struct bio *bio, int mirror_num,
 | |
| 		unsigned long bio_flags, u64 bio_offset,
 | |
| 		extent_submit_bio_hook_t *submit_bio_start,
 | |
| 		extent_submit_bio_hook_t *submit_bio_done)
 | |
| {
 | |
| 	struct async_submit_bio *async;
 | |
| 
 | |
| 	async = kmalloc(sizeof(*async), GFP_NOFS);
 | |
| 	if (!async)
 | |
| 		return BLK_STS_RESOURCE;
 | |
| 
 | |
| 	async->inode = inode;
 | |
| 	async->bio = bio;
 | |
| 	async->mirror_num = mirror_num;
 | |
| 	async->submit_bio_start = submit_bio_start;
 | |
| 	async->submit_bio_done = submit_bio_done;
 | |
| 
 | |
| 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
 | |
| 			run_one_async_done, run_one_async_free);
 | |
| 
 | |
| 	async->bio_flags = bio_flags;
 | |
| 	async->bio_offset = bio_offset;
 | |
| 
 | |
| 	async->status = 0;
 | |
| 
 | |
| 	atomic_inc(&fs_info->nr_async_submits);
 | |
| 
 | |
| 	if (op_is_sync(bio->bi_opf))
 | |
| 		btrfs_set_work_high_priority(&async->work);
 | |
| 
 | |
| 	btrfs_queue_work(fs_info->workers, &async->work);
 | |
| 
 | |
| 	while (atomic_read(&fs_info->async_submit_draining) &&
 | |
| 	      atomic_read(&fs_info->nr_async_submits)) {
 | |
| 		wait_event(fs_info->async_submit_wait,
 | |
| 			   (atomic_read(&fs_info->nr_async_submits) == 0));
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static blk_status_t btree_csum_one_bio(struct bio *bio)
 | |
| {
 | |
| 	struct bio_vec *bvec;
 | |
| 	struct btrfs_root *root;
 | |
| 	int i, ret = 0;
 | |
| 
 | |
| 	bio_for_each_segment_all(bvec, bio, i) {
 | |
| 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 | |
| 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return errno_to_blk_status(ret);
 | |
| }
 | |
| 
 | |
| static blk_status_t __btree_submit_bio_start(struct inode *inode,
 | |
| 		struct bio *bio, int mirror_num, unsigned long bio_flags,
 | |
| 		u64 bio_offset)
 | |
| {
 | |
| 	/*
 | |
| 	 * when we're called for a write, we're already in the async
 | |
| 	 * submission context.  Just jump into btrfs_map_bio
 | |
| 	 */
 | |
| 	return btree_csum_one_bio(bio);
 | |
| }
 | |
| 
 | |
| static blk_status_t __btree_submit_bio_done(struct inode *inode,
 | |
| 		struct bio *bio, int mirror_num, unsigned long bio_flags,
 | |
| 		u64 bio_offset)
 | |
| {
 | |
| 	blk_status_t ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * when we're called for a write, we're already in the async
 | |
| 	 * submission context.  Just jump into btrfs_map_bio
 | |
| 	 */
 | |
| 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
 | |
| 	if (ret) {
 | |
| 		bio->bi_status = ret;
 | |
| 		bio_endio(bio);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int check_async_write(unsigned long bio_flags)
 | |
| {
 | |
| 	if (bio_flags & EXTENT_BIO_TREE_LOG)
 | |
| 		return 0;
 | |
| #ifdef CONFIG_X86
 | |
| 	if (static_cpu_has(X86_FEATURE_XMM4_2))
 | |
| 		return 0;
 | |
| #endif
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
 | |
| 				 int mirror_num, unsigned long bio_flags,
 | |
| 				 u64 bio_offset)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | |
| 	int async = check_async_write(bio_flags);
 | |
| 	blk_status_t ret;
 | |
| 
 | |
| 	if (bio_op(bio) != REQ_OP_WRITE) {
 | |
| 		/*
 | |
| 		 * called for a read, do the setup so that checksum validation
 | |
| 		 * can happen in the async kernel threads
 | |
| 		 */
 | |
| 		ret = btrfs_bio_wq_end_io(fs_info, bio,
 | |
| 					  BTRFS_WQ_ENDIO_METADATA);
 | |
| 		if (ret)
 | |
| 			goto out_w_error;
 | |
| 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
 | |
| 	} else if (!async) {
 | |
| 		ret = btree_csum_one_bio(bio);
 | |
| 		if (ret)
 | |
| 			goto out_w_error;
 | |
| 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * kthread helpers are used to submit writes so that
 | |
| 		 * checksumming can happen in parallel across all CPUs
 | |
| 		 */
 | |
| 		ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
 | |
| 					  bio_offset,
 | |
| 					  __btree_submit_bio_start,
 | |
| 					  __btree_submit_bio_done);
 | |
| 	}
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto out_w_error;
 | |
| 	return 0;
 | |
| 
 | |
| out_w_error:
 | |
| 	bio->bi_status = ret;
 | |
| 	bio_endio(bio);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MIGRATION
 | |
| static int btree_migratepage(struct address_space *mapping,
 | |
| 			struct page *newpage, struct page *page,
 | |
| 			enum migrate_mode mode)
 | |
| {
 | |
| 	/*
 | |
| 	 * we can't safely write a btree page from here,
 | |
| 	 * we haven't done the locking hook
 | |
| 	 */
 | |
| 	if (PageDirty(page))
 | |
| 		return -EAGAIN;
 | |
| 	/*
 | |
| 	 * Buffers may be managed in a filesystem specific way.
 | |
| 	 * We must have no buffers or drop them.
 | |
| 	 */
 | |
| 	if (page_has_private(page) &&
 | |
| 	    !try_to_release_page(page, GFP_KERNEL))
 | |
| 		return -EAGAIN;
 | |
| 	return migrate_page(mapping, newpage, page, mode);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static int btree_writepages(struct address_space *mapping,
 | |
| 			    struct writeback_control *wbc)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (wbc->sync_mode == WB_SYNC_NONE) {
 | |
| 
 | |
| 		if (wbc->for_kupdate)
 | |
| 			return 0;
 | |
| 
 | |
| 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
 | |
| 		/* this is a bit racy, but that's ok */
 | |
| 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 | |
| 					     BTRFS_DIRTY_METADATA_THRESH);
 | |
| 		if (ret < 0)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	return btree_write_cache_pages(mapping, wbc);
 | |
| }
 | |
| 
 | |
| static int btree_readpage(struct file *file, struct page *page)
 | |
| {
 | |
| 	struct extent_io_tree *tree;
 | |
| 	tree = &BTRFS_I(page->mapping->host)->io_tree;
 | |
| 	return extent_read_full_page(tree, page, btree_get_extent, 0);
 | |
| }
 | |
| 
 | |
| static int btree_releasepage(struct page *page, gfp_t gfp_flags)
 | |
| {
 | |
| 	if (PageWriteback(page) || PageDirty(page))
 | |
| 		return 0;
 | |
| 
 | |
| 	return try_release_extent_buffer(page);
 | |
| }
 | |
| 
 | |
| static void btree_invalidatepage(struct page *page, unsigned int offset,
 | |
| 				 unsigned int length)
 | |
| {
 | |
| 	struct extent_io_tree *tree;
 | |
| 	tree = &BTRFS_I(page->mapping->host)->io_tree;
 | |
| 	extent_invalidatepage(tree, page, offset);
 | |
| 	btree_releasepage(page, GFP_NOFS);
 | |
| 	if (PagePrivate(page)) {
 | |
| 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
 | |
| 			   "page private not zero on page %llu",
 | |
| 			   (unsigned long long)page_offset(page));
 | |
| 		ClearPagePrivate(page);
 | |
| 		set_page_private(page, 0);
 | |
| 		put_page(page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int btree_set_page_dirty(struct page *page)
 | |
| {
 | |
| #ifdef DEBUG
 | |
| 	struct extent_buffer *eb;
 | |
| 
 | |
| 	BUG_ON(!PagePrivate(page));
 | |
| 	eb = (struct extent_buffer *)page->private;
 | |
| 	BUG_ON(!eb);
 | |
| 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 | |
| 	BUG_ON(!atomic_read(&eb->refs));
 | |
| 	btrfs_assert_tree_locked(eb);
 | |
| #endif
 | |
| 	return __set_page_dirty_nobuffers(page);
 | |
| }
 | |
| 
 | |
| static const struct address_space_operations btree_aops = {
 | |
| 	.readpage	= btree_readpage,
 | |
| 	.writepages	= btree_writepages,
 | |
| 	.releasepage	= btree_releasepage,
 | |
| 	.invalidatepage = btree_invalidatepage,
 | |
| #ifdef CONFIG_MIGRATION
 | |
| 	.migratepage	= btree_migratepage,
 | |
| #endif
 | |
| 	.set_page_dirty = btree_set_page_dirty,
 | |
| };
 | |
| 
 | |
| void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
 | |
| {
 | |
| 	struct extent_buffer *buf = NULL;
 | |
| 	struct inode *btree_inode = fs_info->btree_inode;
 | |
| 
 | |
| 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
 | |
| 	if (IS_ERR(buf))
 | |
| 		return;
 | |
| 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
 | |
| 				 buf, WAIT_NONE, btree_get_extent, 0);
 | |
| 	free_extent_buffer(buf);
 | |
| }
 | |
| 
 | |
| int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
 | |
| 			 int mirror_num, struct extent_buffer **eb)
 | |
| {
 | |
| 	struct extent_buffer *buf = NULL;
 | |
| 	struct inode *btree_inode = fs_info->btree_inode;
 | |
| 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
 | |
| 	int ret;
 | |
| 
 | |
| 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
 | |
| 	if (IS_ERR(buf))
 | |
| 		return 0;
 | |
| 
 | |
| 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
 | |
| 
 | |
| 	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
 | |
| 				       btree_get_extent, mirror_num);
 | |
| 	if (ret) {
 | |
| 		free_extent_buffer(buf);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
 | |
| 		free_extent_buffer(buf);
 | |
| 		return -EIO;
 | |
| 	} else if (extent_buffer_uptodate(buf)) {
 | |
| 		*eb = buf;
 | |
| 	} else {
 | |
| 		free_extent_buffer(buf);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct extent_buffer *btrfs_find_create_tree_block(
 | |
| 						struct btrfs_fs_info *fs_info,
 | |
| 						u64 bytenr)
 | |
| {
 | |
| 	if (btrfs_is_testing(fs_info))
 | |
| 		return alloc_test_extent_buffer(fs_info, bytenr);
 | |
| 	return alloc_extent_buffer(fs_info, bytenr);
 | |
| }
 | |
| 
 | |
| 
 | |
| int btrfs_write_tree_block(struct extent_buffer *buf)
 | |
| {
 | |
| 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
 | |
| 					buf->start + buf->len - 1);
 | |
| }
 | |
| 
 | |
| int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
 | |
| {
 | |
| 	return filemap_fdatawait_range(buf->pages[0]->mapping,
 | |
| 				       buf->start, buf->start + buf->len - 1);
 | |
| }
 | |
| 
 | |
| struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
 | |
| 				      u64 parent_transid)
 | |
| {
 | |
| 	struct extent_buffer *buf = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
 | |
| 	if (IS_ERR(buf))
 | |
| 		return buf;
 | |
| 
 | |
| 	ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
 | |
| 	if (ret) {
 | |
| 		free_extent_buffer(buf);
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 	return buf;
 | |
| 
 | |
| }
 | |
| 
 | |
| void clean_tree_block(struct btrfs_fs_info *fs_info,
 | |
| 		      struct extent_buffer *buf)
 | |
| {
 | |
| 	if (btrfs_header_generation(buf) ==
 | |
| 	    fs_info->running_transaction->transid) {
 | |
| 		btrfs_assert_tree_locked(buf);
 | |
| 
 | |
| 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
 | |
| 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
 | |
| 					     -buf->len,
 | |
| 					     fs_info->dirty_metadata_batch);
 | |
| 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
 | |
| 			btrfs_set_lock_blocking(buf);
 | |
| 			clear_extent_buffer_dirty(buf);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
 | |
| {
 | |
| 	struct btrfs_subvolume_writers *writers;
 | |
| 	int ret;
 | |
| 
 | |
| 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
 | |
| 	if (!writers)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
 | |
| 	if (ret < 0) {
 | |
| 		kfree(writers);
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 
 | |
| 	init_waitqueue_head(&writers->wait);
 | |
| 	return writers;
 | |
| }
 | |
| 
 | |
| static void
 | |
| btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
 | |
| {
 | |
| 	percpu_counter_destroy(&writers->counter);
 | |
| 	kfree(writers);
 | |
| }
 | |
| 
 | |
| static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
 | |
| 			 u64 objectid)
 | |
| {
 | |
| 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
 | |
| 	root->node = NULL;
 | |
| 	root->commit_root = NULL;
 | |
| 	root->state = 0;
 | |
| 	root->orphan_cleanup_state = 0;
 | |
| 
 | |
| 	root->objectid = objectid;
 | |
| 	root->last_trans = 0;
 | |
| 	root->highest_objectid = 0;
 | |
| 	root->nr_delalloc_inodes = 0;
 | |
| 	root->nr_ordered_extents = 0;
 | |
| 	root->name = NULL;
 | |
| 	root->inode_tree = RB_ROOT;
 | |
| 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
 | |
| 	root->block_rsv = NULL;
 | |
| 	root->orphan_block_rsv = NULL;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&root->dirty_list);
 | |
| 	INIT_LIST_HEAD(&root->root_list);
 | |
| 	INIT_LIST_HEAD(&root->delalloc_inodes);
 | |
| 	INIT_LIST_HEAD(&root->delalloc_root);
 | |
| 	INIT_LIST_HEAD(&root->ordered_extents);
 | |
| 	INIT_LIST_HEAD(&root->ordered_root);
 | |
| 	INIT_LIST_HEAD(&root->logged_list[0]);
 | |
| 	INIT_LIST_HEAD(&root->logged_list[1]);
 | |
| 	spin_lock_init(&root->orphan_lock);
 | |
| 	spin_lock_init(&root->inode_lock);
 | |
| 	spin_lock_init(&root->delalloc_lock);
 | |
| 	spin_lock_init(&root->ordered_extent_lock);
 | |
| 	spin_lock_init(&root->accounting_lock);
 | |
| 	spin_lock_init(&root->log_extents_lock[0]);
 | |
| 	spin_lock_init(&root->log_extents_lock[1]);
 | |
| 	mutex_init(&root->objectid_mutex);
 | |
| 	mutex_init(&root->log_mutex);
 | |
| 	mutex_init(&root->ordered_extent_mutex);
 | |
| 	mutex_init(&root->delalloc_mutex);
 | |
| 	init_waitqueue_head(&root->log_writer_wait);
 | |
| 	init_waitqueue_head(&root->log_commit_wait[0]);
 | |
| 	init_waitqueue_head(&root->log_commit_wait[1]);
 | |
| 	INIT_LIST_HEAD(&root->log_ctxs[0]);
 | |
| 	INIT_LIST_HEAD(&root->log_ctxs[1]);
 | |
| 	atomic_set(&root->log_commit[0], 0);
 | |
| 	atomic_set(&root->log_commit[1], 0);
 | |
| 	atomic_set(&root->log_writers, 0);
 | |
| 	atomic_set(&root->log_batch, 0);
 | |
| 	atomic_set(&root->orphan_inodes, 0);
 | |
| 	refcount_set(&root->refs, 1);
 | |
| 	atomic_set(&root->will_be_snapshoted, 0);
 | |
| 	atomic64_set(&root->qgroup_meta_rsv, 0);
 | |
| 	root->log_transid = 0;
 | |
| 	root->log_transid_committed = -1;
 | |
| 	root->last_log_commit = 0;
 | |
| 	if (!dummy)
 | |
| 		extent_io_tree_init(&root->dirty_log_pages,
 | |
| 				     fs_info->btree_inode->i_mapping);
 | |
| 
 | |
| 	memset(&root->root_key, 0, sizeof(root->root_key));
 | |
| 	memset(&root->root_item, 0, sizeof(root->root_item));
 | |
| 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
 | |
| 	if (!dummy)
 | |
| 		root->defrag_trans_start = fs_info->generation;
 | |
| 	else
 | |
| 		root->defrag_trans_start = 0;
 | |
| 	root->root_key.objectid = objectid;
 | |
| 	root->anon_dev = 0;
 | |
| 
 | |
| 	spin_lock_init(&root->root_item_lock);
 | |
| }
 | |
| 
 | |
| static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
 | |
| 		gfp_t flags)
 | |
| {
 | |
| 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
 | |
| 	if (root)
 | |
| 		root->fs_info = fs_info;
 | |
| 	return root;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 | |
| /* Should only be used by the testing infrastructure */
 | |
| struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *root;
 | |
| 
 | |
| 	if (!fs_info)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
 | |
| 	if (!root)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	/* We don't use the stripesize in selftest, set it as sectorsize */
 | |
| 	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
 | |
| 	root->alloc_bytenr = 0;
 | |
| 
 | |
| 	return root;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
 | |
| 				     struct btrfs_fs_info *fs_info,
 | |
| 				     u64 objectid)
 | |
| {
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_root *tree_root = fs_info->tree_root;
 | |
| 	struct btrfs_root *root;
 | |
| 	struct btrfs_key key;
 | |
| 	int ret = 0;
 | |
| 	uuid_le uuid;
 | |
| 
 | |
| 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
 | |
| 	if (!root)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	__setup_root(root, fs_info, objectid);
 | |
| 	root->root_key.objectid = objectid;
 | |
| 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 	root->root_key.offset = 0;
 | |
| 
 | |
| 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
 | |
| 	if (IS_ERR(leaf)) {
 | |
| 		ret = PTR_ERR(leaf);
 | |
| 		leaf = NULL;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
 | |
| 	btrfs_set_header_bytenr(leaf, leaf->start);
 | |
| 	btrfs_set_header_generation(leaf, trans->transid);
 | |
| 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
 | |
| 	btrfs_set_header_owner(leaf, objectid);
 | |
| 	root->node = leaf;
 | |
| 
 | |
| 	write_extent_buffer_fsid(leaf, fs_info->fsid);
 | |
| 	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| 
 | |
| 	root->commit_root = btrfs_root_node(root);
 | |
| 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 | |
| 
 | |
| 	root->root_item.flags = 0;
 | |
| 	root->root_item.byte_limit = 0;
 | |
| 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
 | |
| 	btrfs_set_root_generation(&root->root_item, trans->transid);
 | |
| 	btrfs_set_root_level(&root->root_item, 0);
 | |
| 	btrfs_set_root_refs(&root->root_item, 1);
 | |
| 	btrfs_set_root_used(&root->root_item, leaf->len);
 | |
| 	btrfs_set_root_last_snapshot(&root->root_item, 0);
 | |
| 	btrfs_set_root_dirid(&root->root_item, 0);
 | |
| 	uuid_le_gen(&uuid);
 | |
| 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
 | |
| 	root->root_item.drop_level = 0;
 | |
| 
 | |
| 	key.objectid = objectid;
 | |
| 	key.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 	key.offset = 0;
 | |
| 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
 | |
| 	if (ret)
 | |
| 		goto fail;
 | |
| 
 | |
| 	btrfs_tree_unlock(leaf);
 | |
| 
 | |
| 	return root;
 | |
| 
 | |
| fail:
 | |
| 	if (leaf) {
 | |
| 		btrfs_tree_unlock(leaf);
 | |
| 		free_extent_buffer(root->commit_root);
 | |
| 		free_extent_buffer(leaf);
 | |
| 	}
 | |
| 	kfree(root);
 | |
| 
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
 | |
| 					 struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *root;
 | |
| 	struct extent_buffer *leaf;
 | |
| 
 | |
| 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
 | |
| 	if (!root)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
 | |
| 
 | |
| 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
 | |
| 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
 | |
| 
 | |
| 	/*
 | |
| 	 * DON'T set REF_COWS for log trees
 | |
| 	 *
 | |
| 	 * log trees do not get reference counted because they go away
 | |
| 	 * before a real commit is actually done.  They do store pointers
 | |
| 	 * to file data extents, and those reference counts still get
 | |
| 	 * updated (along with back refs to the log tree).
 | |
| 	 */
 | |
| 
 | |
| 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
 | |
| 			NULL, 0, 0, 0);
 | |
| 	if (IS_ERR(leaf)) {
 | |
| 		kfree(root);
 | |
| 		return ERR_CAST(leaf);
 | |
| 	}
 | |
| 
 | |
| 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
 | |
| 	btrfs_set_header_bytenr(leaf, leaf->start);
 | |
| 	btrfs_set_header_generation(leaf, trans->transid);
 | |
| 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
 | |
| 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
 | |
| 	root->node = leaf;
 | |
| 
 | |
| 	write_extent_buffer_fsid(root->node, fs_info->fsid);
 | |
| 	btrfs_mark_buffer_dirty(root->node);
 | |
| 	btrfs_tree_unlock(root->node);
 | |
| 	return root;
 | |
| }
 | |
| 
 | |
| int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
 | |
| 			     struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *log_root;
 | |
| 
 | |
| 	log_root = alloc_log_tree(trans, fs_info);
 | |
| 	if (IS_ERR(log_root))
 | |
| 		return PTR_ERR(log_root);
 | |
| 	WARN_ON(fs_info->log_root_tree);
 | |
| 	fs_info->log_root_tree = log_root;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
 | |
| 		       struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_root *log_root;
 | |
| 	struct btrfs_inode_item *inode_item;
 | |
| 
 | |
| 	log_root = alloc_log_tree(trans, fs_info);
 | |
| 	if (IS_ERR(log_root))
 | |
| 		return PTR_ERR(log_root);
 | |
| 
 | |
| 	log_root->last_trans = trans->transid;
 | |
| 	log_root->root_key.offset = root->root_key.objectid;
 | |
| 
 | |
| 	inode_item = &log_root->root_item.inode;
 | |
| 	btrfs_set_stack_inode_generation(inode_item, 1);
 | |
| 	btrfs_set_stack_inode_size(inode_item, 3);
 | |
| 	btrfs_set_stack_inode_nlink(inode_item, 1);
 | |
| 	btrfs_set_stack_inode_nbytes(inode_item,
 | |
| 				     fs_info->nodesize);
 | |
| 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
 | |
| 
 | |
| 	btrfs_set_root_node(&log_root->root_item, log_root->node);
 | |
| 
 | |
| 	WARN_ON(root->log_root);
 | |
| 	root->log_root = log_root;
 | |
| 	root->log_transid = 0;
 | |
| 	root->log_transid_committed = -1;
 | |
| 	root->last_log_commit = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
 | |
| 					       struct btrfs_key *key)
 | |
| {
 | |
| 	struct btrfs_root *root;
 | |
| 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
 | |
| 	struct btrfs_path *path;
 | |
| 	u64 generation;
 | |
| 	int ret;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
 | |
| 	if (!root) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto alloc_fail;
 | |
| 	}
 | |
| 
 | |
| 	__setup_root(root, fs_info, key->objectid);
 | |
| 
 | |
| 	ret = btrfs_find_root(tree_root, key, path,
 | |
| 			      &root->root_item, &root->root_key);
 | |
| 	if (ret) {
 | |
| 		if (ret > 0)
 | |
| 			ret = -ENOENT;
 | |
| 		goto find_fail;
 | |
| 	}
 | |
| 
 | |
| 	generation = btrfs_root_generation(&root->root_item);
 | |
| 	root->node = read_tree_block(fs_info,
 | |
| 				     btrfs_root_bytenr(&root->root_item),
 | |
| 				     generation);
 | |
| 	if (IS_ERR(root->node)) {
 | |
| 		ret = PTR_ERR(root->node);
 | |
| 		goto find_fail;
 | |
| 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
 | |
| 		ret = -EIO;
 | |
| 		free_extent_buffer(root->node);
 | |
| 		goto find_fail;
 | |
| 	}
 | |
| 	root->commit_root = btrfs_root_node(root);
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return root;
 | |
| 
 | |
| find_fail:
 | |
| 	kfree(root);
 | |
| alloc_fail:
 | |
| 	root = ERR_PTR(ret);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
 | |
| 				      struct btrfs_key *location)
 | |
| {
 | |
| 	struct btrfs_root *root;
 | |
| 
 | |
| 	root = btrfs_read_tree_root(tree_root, location);
 | |
| 	if (IS_ERR(root))
 | |
| 		return root;
 | |
| 
 | |
| 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
 | |
| 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
 | |
| 		btrfs_check_and_init_root_item(&root->root_item);
 | |
| 	}
 | |
| 
 | |
| 	return root;
 | |
| }
 | |
| 
 | |
| int btrfs_init_fs_root(struct btrfs_root *root)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_subvolume_writers *writers;
 | |
| 
 | |
| 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
 | |
| 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
 | |
| 					GFP_NOFS);
 | |
| 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	writers = btrfs_alloc_subvolume_writers();
 | |
| 	if (IS_ERR(writers)) {
 | |
| 		ret = PTR_ERR(writers);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	root->subv_writers = writers;
 | |
| 
 | |
| 	btrfs_init_free_ino_ctl(root);
 | |
| 	spin_lock_init(&root->ino_cache_lock);
 | |
| 	init_waitqueue_head(&root->ino_cache_wait);
 | |
| 
 | |
| 	ret = get_anon_bdev(&root->anon_dev);
 | |
| 	if (ret)
 | |
| 		goto fail;
 | |
| 
 | |
| 	mutex_lock(&root->objectid_mutex);
 | |
| 	ret = btrfs_find_highest_objectid(root,
 | |
| 					&root->highest_objectid);
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&root->objectid_mutex);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
 | |
| 
 | |
| 	mutex_unlock(&root->objectid_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| fail:
 | |
| 	/* the caller is responsible to call free_fs_root */
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
 | |
| 					u64 root_id)
 | |
| {
 | |
| 	struct btrfs_root *root;
 | |
| 
 | |
| 	spin_lock(&fs_info->fs_roots_radix_lock);
 | |
| 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
 | |
| 				 (unsigned long)root_id);
 | |
| 	spin_unlock(&fs_info->fs_roots_radix_lock);
 | |
| 	return root;
 | |
| }
 | |
| 
 | |
| int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
 | |
| 			 struct btrfs_root *root)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = radix_tree_preload(GFP_NOFS);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	spin_lock(&fs_info->fs_roots_radix_lock);
 | |
| 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
 | |
| 				(unsigned long)root->root_key.objectid,
 | |
| 				root);
 | |
| 	if (ret == 0)
 | |
| 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
 | |
| 	spin_unlock(&fs_info->fs_roots_radix_lock);
 | |
| 	radix_tree_preload_end();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
 | |
| 				     struct btrfs_key *location,
 | |
| 				     bool check_ref)
 | |
| {
 | |
| 	struct btrfs_root *root;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_key key;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
 | |
| 		return fs_info->tree_root;
 | |
| 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
 | |
| 		return fs_info->extent_root;
 | |
| 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
 | |
| 		return fs_info->chunk_root;
 | |
| 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
 | |
| 		return fs_info->dev_root;
 | |
| 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
 | |
| 		return fs_info->csum_root;
 | |
| 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
 | |
| 		return fs_info->quota_root ? fs_info->quota_root :
 | |
| 					     ERR_PTR(-ENOENT);
 | |
| 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
 | |
| 		return fs_info->uuid_root ? fs_info->uuid_root :
 | |
| 					    ERR_PTR(-ENOENT);
 | |
| 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
 | |
| 		return fs_info->free_space_root ? fs_info->free_space_root :
 | |
| 						  ERR_PTR(-ENOENT);
 | |
| again:
 | |
| 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
 | |
| 	if (root) {
 | |
| 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
 | |
| 			return ERR_PTR(-ENOENT);
 | |
| 		return root;
 | |
| 	}
 | |
| 
 | |
| 	root = btrfs_read_fs_root(fs_info->tree_root, location);
 | |
| 	if (IS_ERR(root))
 | |
| 		return root;
 | |
| 
 | |
| 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
 | |
| 		ret = -ENOENT;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_init_fs_root(root);
 | |
| 	if (ret)
 | |
| 		goto fail;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	key.objectid = BTRFS_ORPHAN_OBJECTID;
 | |
| 	key.type = BTRFS_ORPHAN_ITEM_KEY;
 | |
| 	key.offset = location->objectid;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
 | |
| 	btrfs_free_path(path);
 | |
| 	if (ret < 0)
 | |
| 		goto fail;
 | |
| 	if (ret == 0)
 | |
| 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
 | |
| 
 | |
| 	ret = btrfs_insert_fs_root(fs_info, root);
 | |
| 	if (ret) {
 | |
| 		if (ret == -EEXIST) {
 | |
| 			free_fs_root(root);
 | |
| 			goto again;
 | |
| 		}
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	return root;
 | |
| fail:
 | |
| 	free_fs_root(root);
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| static int btrfs_congested_fn(void *congested_data, int bdi_bits)
 | |
| {
 | |
| 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
 | |
| 	int ret = 0;
 | |
| 	struct btrfs_device *device;
 | |
| 	struct backing_dev_info *bdi;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
 | |
| 		if (!device->bdev)
 | |
| 			continue;
 | |
| 		bdi = device->bdev->bd_bdi;
 | |
| 		if (bdi_congested(bdi, bdi_bits)) {
 | |
| 			ret = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * called by the kthread helper functions to finally call the bio end_io
 | |
|  * functions.  This is where read checksum verification actually happens
 | |
|  */
 | |
| static void end_workqueue_fn(struct btrfs_work *work)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 	struct btrfs_end_io_wq *end_io_wq;
 | |
| 
 | |
| 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
 | |
| 	bio = end_io_wq->bio;
 | |
| 
 | |
| 	bio->bi_status = end_io_wq->status;
 | |
| 	bio->bi_private = end_io_wq->private;
 | |
| 	bio->bi_end_io = end_io_wq->end_io;
 | |
| 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
 | |
| 	bio_endio(bio);
 | |
| }
 | |
| 
 | |
| static int cleaner_kthread(void *arg)
 | |
| {
 | |
| 	struct btrfs_root *root = arg;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	int again;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 
 | |
| 	do {
 | |
| 		again = 0;
 | |
| 
 | |
| 		/* Make the cleaner go to sleep early. */
 | |
| 		if (btrfs_need_cleaner_sleep(fs_info))
 | |
| 			goto sleep;
 | |
| 
 | |
| 		/*
 | |
| 		 * Do not do anything if we might cause open_ctree() to block
 | |
| 		 * before we have finished mounting the filesystem.
 | |
| 		 */
 | |
| 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
 | |
| 			goto sleep;
 | |
| 
 | |
| 		if (!mutex_trylock(&fs_info->cleaner_mutex))
 | |
| 			goto sleep;
 | |
| 
 | |
| 		/*
 | |
| 		 * Avoid the problem that we change the status of the fs
 | |
| 		 * during the above check and trylock.
 | |
| 		 */
 | |
| 		if (btrfs_need_cleaner_sleep(fs_info)) {
 | |
| 			mutex_unlock(&fs_info->cleaner_mutex);
 | |
| 			goto sleep;
 | |
| 		}
 | |
| 
 | |
| 		mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
 | |
| 		btrfs_run_delayed_iputs(fs_info);
 | |
| 		mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
 | |
| 
 | |
| 		again = btrfs_clean_one_deleted_snapshot(root);
 | |
| 		mutex_unlock(&fs_info->cleaner_mutex);
 | |
| 
 | |
| 		/*
 | |
| 		 * The defragger has dealt with the R/O remount and umount,
 | |
| 		 * needn't do anything special here.
 | |
| 		 */
 | |
| 		btrfs_run_defrag_inodes(fs_info);
 | |
| 
 | |
| 		/*
 | |
| 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
 | |
| 		 * with relocation (btrfs_relocate_chunk) and relocation
 | |
| 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
 | |
| 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
 | |
| 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
 | |
| 		 * unused block groups.
 | |
| 		 */
 | |
| 		btrfs_delete_unused_bgs(fs_info);
 | |
| sleep:
 | |
| 		if (!again) {
 | |
| 			set_current_state(TASK_INTERRUPTIBLE);
 | |
| 			if (!kthread_should_stop())
 | |
| 				schedule();
 | |
| 			__set_current_state(TASK_RUNNING);
 | |
| 		}
 | |
| 	} while (!kthread_should_stop());
 | |
| 
 | |
| 	/*
 | |
| 	 * Transaction kthread is stopped before us and wakes us up.
 | |
| 	 * However we might have started a new transaction and COWed some
 | |
| 	 * tree blocks when deleting unused block groups for example. So
 | |
| 	 * make sure we commit the transaction we started to have a clean
 | |
| 	 * shutdown when evicting the btree inode - if it has dirty pages
 | |
| 	 * when we do the final iput() on it, eviction will trigger a
 | |
| 	 * writeback for it which will fail with null pointer dereferences
 | |
| 	 * since work queues and other resources were already released and
 | |
| 	 * destroyed by the time the iput/eviction/writeback is made.
 | |
| 	 */
 | |
| 	trans = btrfs_attach_transaction(root);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		if (PTR_ERR(trans) != -ENOENT)
 | |
| 			btrfs_err(fs_info,
 | |
| 				  "cleaner transaction attach returned %ld",
 | |
| 				  PTR_ERR(trans));
 | |
| 	} else {
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = btrfs_commit_transaction(trans);
 | |
| 		if (ret)
 | |
| 			btrfs_err(fs_info,
 | |
| 				  "cleaner open transaction commit returned %d",
 | |
| 				  ret);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int transaction_kthread(void *arg)
 | |
| {
 | |
| 	struct btrfs_root *root = arg;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct btrfs_transaction *cur;
 | |
| 	u64 transid;
 | |
| 	unsigned long now;
 | |
| 	unsigned long delay;
 | |
| 	bool cannot_commit;
 | |
| 
 | |
| 	do {
 | |
| 		cannot_commit = false;
 | |
| 		delay = HZ * fs_info->commit_interval;
 | |
| 		mutex_lock(&fs_info->transaction_kthread_mutex);
 | |
| 
 | |
| 		spin_lock(&fs_info->trans_lock);
 | |
| 		cur = fs_info->running_transaction;
 | |
| 		if (!cur) {
 | |
| 			spin_unlock(&fs_info->trans_lock);
 | |
| 			goto sleep;
 | |
| 		}
 | |
| 
 | |
| 		now = get_seconds();
 | |
| 		if (cur->state < TRANS_STATE_BLOCKED &&
 | |
| 		    (now < cur->start_time ||
 | |
| 		     now - cur->start_time < fs_info->commit_interval)) {
 | |
| 			spin_unlock(&fs_info->trans_lock);
 | |
| 			delay = HZ * 5;
 | |
| 			goto sleep;
 | |
| 		}
 | |
| 		transid = cur->transid;
 | |
| 		spin_unlock(&fs_info->trans_lock);
 | |
| 
 | |
| 		/* If the file system is aborted, this will always fail. */
 | |
| 		trans = btrfs_attach_transaction(root);
 | |
| 		if (IS_ERR(trans)) {
 | |
| 			if (PTR_ERR(trans) != -ENOENT)
 | |
| 				cannot_commit = true;
 | |
| 			goto sleep;
 | |
| 		}
 | |
| 		if (transid == trans->transid) {
 | |
| 			btrfs_commit_transaction(trans);
 | |
| 		} else {
 | |
| 			btrfs_end_transaction(trans);
 | |
| 		}
 | |
| sleep:
 | |
| 		wake_up_process(fs_info->cleaner_kthread);
 | |
| 		mutex_unlock(&fs_info->transaction_kthread_mutex);
 | |
| 
 | |
| 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
 | |
| 				      &fs_info->fs_state)))
 | |
| 			btrfs_cleanup_transaction(fs_info);
 | |
| 		set_current_state(TASK_INTERRUPTIBLE);
 | |
| 		if (!kthread_should_stop() &&
 | |
| 				(!btrfs_transaction_blocked(fs_info) ||
 | |
| 				 cannot_commit))
 | |
| 			schedule_timeout(delay);
 | |
| 		__set_current_state(TASK_RUNNING);
 | |
| 	} while (!kthread_should_stop());
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this will find the highest generation in the array of
 | |
|  * root backups.  The index of the highest array is returned,
 | |
|  * or -1 if we can't find anything.
 | |
|  *
 | |
|  * We check to make sure the array is valid by comparing the
 | |
|  * generation of the latest  root in the array with the generation
 | |
|  * in the super block.  If they don't match we pitch it.
 | |
|  */
 | |
| static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
 | |
| {
 | |
| 	u64 cur;
 | |
| 	int newest_index = -1;
 | |
| 	struct btrfs_root_backup *root_backup;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
 | |
| 		root_backup = info->super_copy->super_roots + i;
 | |
| 		cur = btrfs_backup_tree_root_gen(root_backup);
 | |
| 		if (cur == newest_gen)
 | |
| 			newest_index = i;
 | |
| 	}
 | |
| 
 | |
| 	/* check to see if we actually wrapped around */
 | |
| 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
 | |
| 		root_backup = info->super_copy->super_roots;
 | |
| 		cur = btrfs_backup_tree_root_gen(root_backup);
 | |
| 		if (cur == newest_gen)
 | |
| 			newest_index = 0;
 | |
| 	}
 | |
| 	return newest_index;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * find the oldest backup so we know where to store new entries
 | |
|  * in the backup array.  This will set the backup_root_index
 | |
|  * field in the fs_info struct
 | |
|  */
 | |
| static void find_oldest_super_backup(struct btrfs_fs_info *info,
 | |
| 				     u64 newest_gen)
 | |
| {
 | |
| 	int newest_index = -1;
 | |
| 
 | |
| 	newest_index = find_newest_super_backup(info, newest_gen);
 | |
| 	/* if there was garbage in there, just move along */
 | |
| 	if (newest_index == -1) {
 | |
| 		info->backup_root_index = 0;
 | |
| 	} else {
 | |
| 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * copy all the root pointers into the super backup array.
 | |
|  * this will bump the backup pointer by one when it is
 | |
|  * done
 | |
|  */
 | |
| static void backup_super_roots(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	int next_backup;
 | |
| 	struct btrfs_root_backup *root_backup;
 | |
| 	int last_backup;
 | |
| 
 | |
| 	next_backup = info->backup_root_index;
 | |
| 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
 | |
| 		BTRFS_NUM_BACKUP_ROOTS;
 | |
| 
 | |
| 	/*
 | |
| 	 * just overwrite the last backup if we're at the same generation
 | |
| 	 * this happens only at umount
 | |
| 	 */
 | |
| 	root_backup = info->super_for_commit->super_roots + last_backup;
 | |
| 	if (btrfs_backup_tree_root_gen(root_backup) ==
 | |
| 	    btrfs_header_generation(info->tree_root->node))
 | |
| 		next_backup = last_backup;
 | |
| 
 | |
| 	root_backup = info->super_for_commit->super_roots + next_backup;
 | |
| 
 | |
| 	/*
 | |
| 	 * make sure all of our padding and empty slots get zero filled
 | |
| 	 * regardless of which ones we use today
 | |
| 	 */
 | |
| 	memset(root_backup, 0, sizeof(*root_backup));
 | |
| 
 | |
| 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
 | |
| 
 | |
| 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
 | |
| 	btrfs_set_backup_tree_root_gen(root_backup,
 | |
| 			       btrfs_header_generation(info->tree_root->node));
 | |
| 
 | |
| 	btrfs_set_backup_tree_root_level(root_backup,
 | |
| 			       btrfs_header_level(info->tree_root->node));
 | |
| 
 | |
| 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
 | |
| 	btrfs_set_backup_chunk_root_gen(root_backup,
 | |
| 			       btrfs_header_generation(info->chunk_root->node));
 | |
| 	btrfs_set_backup_chunk_root_level(root_backup,
 | |
| 			       btrfs_header_level(info->chunk_root->node));
 | |
| 
 | |
| 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
 | |
| 	btrfs_set_backup_extent_root_gen(root_backup,
 | |
| 			       btrfs_header_generation(info->extent_root->node));
 | |
| 	btrfs_set_backup_extent_root_level(root_backup,
 | |
| 			       btrfs_header_level(info->extent_root->node));
 | |
| 
 | |
| 	/*
 | |
| 	 * we might commit during log recovery, which happens before we set
 | |
| 	 * the fs_root.  Make sure it is valid before we fill it in.
 | |
| 	 */
 | |
| 	if (info->fs_root && info->fs_root->node) {
 | |
| 		btrfs_set_backup_fs_root(root_backup,
 | |
| 					 info->fs_root->node->start);
 | |
| 		btrfs_set_backup_fs_root_gen(root_backup,
 | |
| 			       btrfs_header_generation(info->fs_root->node));
 | |
| 		btrfs_set_backup_fs_root_level(root_backup,
 | |
| 			       btrfs_header_level(info->fs_root->node));
 | |
| 	}
 | |
| 
 | |
| 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
 | |
| 	btrfs_set_backup_dev_root_gen(root_backup,
 | |
| 			       btrfs_header_generation(info->dev_root->node));
 | |
| 	btrfs_set_backup_dev_root_level(root_backup,
 | |
| 				       btrfs_header_level(info->dev_root->node));
 | |
| 
 | |
| 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
 | |
| 	btrfs_set_backup_csum_root_gen(root_backup,
 | |
| 			       btrfs_header_generation(info->csum_root->node));
 | |
| 	btrfs_set_backup_csum_root_level(root_backup,
 | |
| 			       btrfs_header_level(info->csum_root->node));
 | |
| 
 | |
| 	btrfs_set_backup_total_bytes(root_backup,
 | |
| 			     btrfs_super_total_bytes(info->super_copy));
 | |
| 	btrfs_set_backup_bytes_used(root_backup,
 | |
| 			     btrfs_super_bytes_used(info->super_copy));
 | |
| 	btrfs_set_backup_num_devices(root_backup,
 | |
| 			     btrfs_super_num_devices(info->super_copy));
 | |
| 
 | |
| 	/*
 | |
| 	 * if we don't copy this out to the super_copy, it won't get remembered
 | |
| 	 * for the next commit
 | |
| 	 */
 | |
| 	memcpy(&info->super_copy->super_roots,
 | |
| 	       &info->super_for_commit->super_roots,
 | |
| 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this copies info out of the root backup array and back into
 | |
|  * the in-memory super block.  It is meant to help iterate through
 | |
|  * the array, so you send it the number of backups you've already
 | |
|  * tried and the last backup index you used.
 | |
|  *
 | |
|  * this returns -1 when it has tried all the backups
 | |
|  */
 | |
| static noinline int next_root_backup(struct btrfs_fs_info *info,
 | |
| 				     struct btrfs_super_block *super,
 | |
| 				     int *num_backups_tried, int *backup_index)
 | |
| {
 | |
| 	struct btrfs_root_backup *root_backup;
 | |
| 	int newest = *backup_index;
 | |
| 
 | |
| 	if (*num_backups_tried == 0) {
 | |
| 		u64 gen = btrfs_super_generation(super);
 | |
| 
 | |
| 		newest = find_newest_super_backup(info, gen);
 | |
| 		if (newest == -1)
 | |
| 			return -1;
 | |
| 
 | |
| 		*backup_index = newest;
 | |
| 		*num_backups_tried = 1;
 | |
| 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
 | |
| 		/* we've tried all the backups, all done */
 | |
| 		return -1;
 | |
| 	} else {
 | |
| 		/* jump to the next oldest backup */
 | |
| 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
 | |
| 			BTRFS_NUM_BACKUP_ROOTS;
 | |
| 		*backup_index = newest;
 | |
| 		*num_backups_tried += 1;
 | |
| 	}
 | |
| 	root_backup = super->super_roots + newest;
 | |
| 
 | |
| 	btrfs_set_super_generation(super,
 | |
| 				   btrfs_backup_tree_root_gen(root_backup));
 | |
| 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
 | |
| 	btrfs_set_super_root_level(super,
 | |
| 				   btrfs_backup_tree_root_level(root_backup));
 | |
| 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
 | |
| 
 | |
| 	/*
 | |
| 	 * fixme: the total bytes and num_devices need to match or we should
 | |
| 	 * need a fsck
 | |
| 	 */
 | |
| 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
 | |
| 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* helper to cleanup workers */
 | |
| static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	btrfs_destroy_workqueue(fs_info->fixup_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->endio_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->rmw_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
 | |
| 	btrfs_destroy_workqueue(fs_info->submit_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->delayed_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->caching_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->readahead_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->flush_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->extent_workers);
 | |
| 	/*
 | |
| 	 * Now that all other work queues are destroyed, we can safely destroy
 | |
| 	 * the queues used for metadata I/O, since tasks from those other work
 | |
| 	 * queues can do metadata I/O operations.
 | |
| 	 */
 | |
| 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
 | |
| }
 | |
| 
 | |
| static void free_root_extent_buffers(struct btrfs_root *root)
 | |
| {
 | |
| 	if (root) {
 | |
| 		free_extent_buffer(root->node);
 | |
| 		free_extent_buffer(root->commit_root);
 | |
| 		root->node = NULL;
 | |
| 		root->commit_root = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* helper to cleanup tree roots */
 | |
| static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
 | |
| {
 | |
| 	free_root_extent_buffers(info->tree_root);
 | |
| 
 | |
| 	free_root_extent_buffers(info->dev_root);
 | |
| 	free_root_extent_buffers(info->extent_root);
 | |
| 	free_root_extent_buffers(info->csum_root);
 | |
| 	free_root_extent_buffers(info->quota_root);
 | |
| 	free_root_extent_buffers(info->uuid_root);
 | |
| 	if (chunk_root)
 | |
| 		free_root_extent_buffers(info->chunk_root);
 | |
| 	free_root_extent_buffers(info->free_space_root);
 | |
| }
 | |
| 
 | |
| void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_root *gang[8];
 | |
| 	int i;
 | |
| 
 | |
| 	while (!list_empty(&fs_info->dead_roots)) {
 | |
| 		gang[0] = list_entry(fs_info->dead_roots.next,
 | |
| 				     struct btrfs_root, root_list);
 | |
| 		list_del(&gang[0]->root_list);
 | |
| 
 | |
| 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
 | |
| 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
 | |
| 		} else {
 | |
| 			free_extent_buffer(gang[0]->node);
 | |
| 			free_extent_buffer(gang[0]->commit_root);
 | |
| 			btrfs_put_fs_root(gang[0]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
 | |
| 					     (void **)gang, 0,
 | |
| 					     ARRAY_SIZE(gang));
 | |
| 		if (!ret)
 | |
| 			break;
 | |
| 		for (i = 0; i < ret; i++)
 | |
| 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 | |
| 		btrfs_free_log_root_tree(NULL, fs_info);
 | |
| 		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	mutex_init(&fs_info->scrub_lock);
 | |
| 	atomic_set(&fs_info->scrubs_running, 0);
 | |
| 	atomic_set(&fs_info->scrub_pause_req, 0);
 | |
| 	atomic_set(&fs_info->scrubs_paused, 0);
 | |
| 	atomic_set(&fs_info->scrub_cancel_req, 0);
 | |
| 	init_waitqueue_head(&fs_info->scrub_pause_wait);
 | |
| 	fs_info->scrub_workers_refcnt = 0;
 | |
| }
 | |
| 
 | |
| static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	spin_lock_init(&fs_info->balance_lock);
 | |
| 	mutex_init(&fs_info->balance_mutex);
 | |
| 	atomic_set(&fs_info->balance_running, 0);
 | |
| 	atomic_set(&fs_info->balance_pause_req, 0);
 | |
| 	atomic_set(&fs_info->balance_cancel_req, 0);
 | |
| 	fs_info->balance_ctl = NULL;
 | |
| 	init_waitqueue_head(&fs_info->balance_wait_q);
 | |
| }
 | |
| 
 | |
| static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct inode *inode = fs_info->btree_inode;
 | |
| 
 | |
| 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
 | |
| 	set_nlink(inode, 1);
 | |
| 	/*
 | |
| 	 * we set the i_size on the btree inode to the max possible int.
 | |
| 	 * the real end of the address space is determined by all of
 | |
| 	 * the devices in the system
 | |
| 	 */
 | |
| 	inode->i_size = OFFSET_MAX;
 | |
| 	inode->i_mapping->a_ops = &btree_aops;
 | |
| 
 | |
| 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
 | |
| 	extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping);
 | |
| 	BTRFS_I(inode)->io_tree.track_uptodate = 0;
 | |
| 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
 | |
| 
 | |
| 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
 | |
| 
 | |
| 	BTRFS_I(inode)->root = fs_info->tree_root;
 | |
| 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
 | |
| 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
 | |
| 	btrfs_insert_inode_hash(inode);
 | |
| }
 | |
| 
 | |
| static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	fs_info->dev_replace.lock_owner = 0;
 | |
| 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
 | |
| 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
 | |
| 	rwlock_init(&fs_info->dev_replace.lock);
 | |
| 	atomic_set(&fs_info->dev_replace.read_locks, 0);
 | |
| 	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
 | |
| 	init_waitqueue_head(&fs_info->replace_wait);
 | |
| 	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
 | |
| }
 | |
| 
 | |
| static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	spin_lock_init(&fs_info->qgroup_lock);
 | |
| 	mutex_init(&fs_info->qgroup_ioctl_lock);
 | |
| 	fs_info->qgroup_tree = RB_ROOT;
 | |
| 	fs_info->qgroup_op_tree = RB_ROOT;
 | |
| 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
 | |
| 	fs_info->qgroup_seq = 1;
 | |
| 	fs_info->qgroup_ulist = NULL;
 | |
| 	fs_info->qgroup_rescan_running = false;
 | |
| 	mutex_init(&fs_info->qgroup_rescan_lock);
 | |
| }
 | |
| 
 | |
| static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
 | |
| 		struct btrfs_fs_devices *fs_devices)
 | |
| {
 | |
| 	int max_active = fs_info->thread_pool_size;
 | |
| 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
 | |
| 
 | |
| 	fs_info->workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "worker",
 | |
| 				      flags | WQ_HIGHPRI, max_active, 16);
 | |
| 
 | |
| 	fs_info->delalloc_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "delalloc",
 | |
| 				      flags, max_active, 2);
 | |
| 
 | |
| 	fs_info->flush_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
 | |
| 				      flags, max_active, 0);
 | |
| 
 | |
| 	fs_info->caching_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * a higher idle thresh on the submit workers makes it much more
 | |
| 	 * likely that bios will be send down in a sane order to the
 | |
| 	 * devices
 | |
| 	 */
 | |
| 	fs_info->submit_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "submit", flags,
 | |
| 				      min_t(u64, fs_devices->num_devices,
 | |
| 					    max_active), 64);
 | |
| 
 | |
| 	fs_info->fixup_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * endios are largely parallel and should have a very
 | |
| 	 * low idle thresh
 | |
| 	 */
 | |
| 	fs_info->endio_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
 | |
| 	fs_info->endio_meta_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
 | |
| 				      max_active, 4);
 | |
| 	fs_info->endio_meta_write_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
 | |
| 				      max_active, 2);
 | |
| 	fs_info->endio_raid56_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
 | |
| 				      max_active, 4);
 | |
| 	fs_info->endio_repair_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
 | |
| 	fs_info->rmw_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
 | |
| 	fs_info->endio_write_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
 | |
| 				      max_active, 2);
 | |
| 	fs_info->endio_freespace_worker =
 | |
| 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
 | |
| 				      max_active, 0);
 | |
| 	fs_info->delayed_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
 | |
| 				      max_active, 0);
 | |
| 	fs_info->readahead_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
 | |
| 				      max_active, 2);
 | |
| 	fs_info->qgroup_rescan_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
 | |
| 	fs_info->extent_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
 | |
| 				      min_t(u64, fs_devices->num_devices,
 | |
| 					    max_active), 8);
 | |
| 
 | |
| 	if (!(fs_info->workers && fs_info->delalloc_workers &&
 | |
| 	      fs_info->submit_workers && fs_info->flush_workers &&
 | |
| 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
 | |
| 	      fs_info->endio_meta_write_workers &&
 | |
| 	      fs_info->endio_repair_workers &&
 | |
| 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
 | |
| 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
 | |
| 	      fs_info->caching_workers && fs_info->readahead_workers &&
 | |
| 	      fs_info->fixup_workers && fs_info->delayed_workers &&
 | |
| 	      fs_info->extent_workers &&
 | |
| 	      fs_info->qgroup_rescan_workers)) {
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
 | |
| 			    struct btrfs_fs_devices *fs_devices)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_root *log_tree_root;
 | |
| 	struct btrfs_super_block *disk_super = fs_info->super_copy;
 | |
| 	u64 bytenr = btrfs_super_log_root(disk_super);
 | |
| 
 | |
| 	if (fs_devices->rw_devices == 0) {
 | |
| 		btrfs_warn(fs_info, "log replay required on RO media");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
 | |
| 	if (!log_tree_root)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
 | |
| 
 | |
| 	log_tree_root->node = read_tree_block(fs_info, bytenr,
 | |
| 					      fs_info->generation + 1);
 | |
| 	if (IS_ERR(log_tree_root->node)) {
 | |
| 		btrfs_warn(fs_info, "failed to read log tree");
 | |
| 		ret = PTR_ERR(log_tree_root->node);
 | |
| 		kfree(log_tree_root);
 | |
| 		return ret;
 | |
| 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
 | |
| 		btrfs_err(fs_info, "failed to read log tree");
 | |
| 		free_extent_buffer(log_tree_root->node);
 | |
| 		kfree(log_tree_root);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	/* returns with log_tree_root freed on success */
 | |
| 	ret = btrfs_recover_log_trees(log_tree_root);
 | |
| 	if (ret) {
 | |
| 		btrfs_handle_fs_error(fs_info, ret,
 | |
| 				      "Failed to recover log tree");
 | |
| 		free_extent_buffer(log_tree_root->node);
 | |
| 		kfree(log_tree_root);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (fs_info->sb->s_flags & MS_RDONLY) {
 | |
| 		ret = btrfs_commit_super(fs_info);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *tree_root = fs_info->tree_root;
 | |
| 	struct btrfs_root *root;
 | |
| 	struct btrfs_key location;
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(!fs_info->tree_root);
 | |
| 
 | |
| 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
 | |
| 	location.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 	location.offset = 0;
 | |
| 
 | |
| 	root = btrfs_read_tree_root(tree_root, &location);
 | |
| 	if (IS_ERR(root))
 | |
| 		return PTR_ERR(root);
 | |
| 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 | |
| 	fs_info->extent_root = root;
 | |
| 
 | |
| 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
 | |
| 	root = btrfs_read_tree_root(tree_root, &location);
 | |
| 	if (IS_ERR(root))
 | |
| 		return PTR_ERR(root);
 | |
| 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 | |
| 	fs_info->dev_root = root;
 | |
| 	btrfs_init_devices_late(fs_info);
 | |
| 
 | |
| 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
 | |
| 	root = btrfs_read_tree_root(tree_root, &location);
 | |
| 	if (IS_ERR(root))
 | |
| 		return PTR_ERR(root);
 | |
| 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 | |
| 	fs_info->csum_root = root;
 | |
| 
 | |
| 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
 | |
| 	root = btrfs_read_tree_root(tree_root, &location);
 | |
| 	if (!IS_ERR(root)) {
 | |
| 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 | |
| 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
 | |
| 		fs_info->quota_root = root;
 | |
| 	}
 | |
| 
 | |
| 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
 | |
| 	root = btrfs_read_tree_root(tree_root, &location);
 | |
| 	if (IS_ERR(root)) {
 | |
| 		ret = PTR_ERR(root);
 | |
| 		if (ret != -ENOENT)
 | |
| 			return ret;
 | |
| 	} else {
 | |
| 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 | |
| 		fs_info->uuid_root = root;
 | |
| 	}
 | |
| 
 | |
| 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
 | |
| 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
 | |
| 		root = btrfs_read_tree_root(tree_root, &location);
 | |
| 		if (IS_ERR(root))
 | |
| 			return PTR_ERR(root);
 | |
| 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 | |
| 		fs_info->free_space_root = root;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int open_ctree(struct super_block *sb,
 | |
| 	       struct btrfs_fs_devices *fs_devices,
 | |
| 	       char *options)
 | |
| {
 | |
| 	u32 sectorsize;
 | |
| 	u32 nodesize;
 | |
| 	u32 stripesize;
 | |
| 	u64 generation;
 | |
| 	u64 features;
 | |
| 	struct btrfs_key location;
 | |
| 	struct buffer_head *bh;
 | |
| 	struct btrfs_super_block *disk_super;
 | |
| 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 | |
| 	struct btrfs_root *tree_root;
 | |
| 	struct btrfs_root *chunk_root;
 | |
| 	int ret;
 | |
| 	int err = -EINVAL;
 | |
| 	int num_backups_tried = 0;
 | |
| 	int backup_index = 0;
 | |
| 	int max_active;
 | |
| 	int clear_free_space_tree = 0;
 | |
| 
 | |
| 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
 | |
| 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
 | |
| 	if (!tree_root || !chunk_root) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	ret = init_srcu_struct(&fs_info->subvol_srcu);
 | |
| 	if (ret) {
 | |
| 		err = ret;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
 | |
| 	if (ret) {
 | |
| 		err = ret;
 | |
| 		goto fail_srcu;
 | |
| 	}
 | |
| 	fs_info->dirty_metadata_batch = PAGE_SIZE *
 | |
| 					(1 + ilog2(nr_cpu_ids));
 | |
| 
 | |
| 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
 | |
| 	if (ret) {
 | |
| 		err = ret;
 | |
| 		goto fail_dirty_metadata_bytes;
 | |
| 	}
 | |
| 
 | |
| 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
 | |
| 	if (ret) {
 | |
| 		err = ret;
 | |
| 		goto fail_delalloc_bytes;
 | |
| 	}
 | |
| 
 | |
| 	fs_info->btree_inode = new_inode(sb);
 | |
| 	if (!fs_info->btree_inode) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto fail_bio_counter;
 | |
| 	}
 | |
| 
 | |
| 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
 | |
| 
 | |
| 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
 | |
| 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
 | |
| 	INIT_LIST_HEAD(&fs_info->trans_list);
 | |
| 	INIT_LIST_HEAD(&fs_info->dead_roots);
 | |
| 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
 | |
| 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
 | |
| 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
 | |
| 	spin_lock_init(&fs_info->delalloc_root_lock);
 | |
| 	spin_lock_init(&fs_info->trans_lock);
 | |
| 	spin_lock_init(&fs_info->fs_roots_radix_lock);
 | |
| 	spin_lock_init(&fs_info->delayed_iput_lock);
 | |
| 	spin_lock_init(&fs_info->defrag_inodes_lock);
 | |
| 	spin_lock_init(&fs_info->free_chunk_lock);
 | |
| 	spin_lock_init(&fs_info->tree_mod_seq_lock);
 | |
| 	spin_lock_init(&fs_info->super_lock);
 | |
| 	spin_lock_init(&fs_info->qgroup_op_lock);
 | |
| 	spin_lock_init(&fs_info->buffer_lock);
 | |
| 	spin_lock_init(&fs_info->unused_bgs_lock);
 | |
| 	rwlock_init(&fs_info->tree_mod_log_lock);
 | |
| 	mutex_init(&fs_info->unused_bg_unpin_mutex);
 | |
| 	mutex_init(&fs_info->delete_unused_bgs_mutex);
 | |
| 	mutex_init(&fs_info->reloc_mutex);
 | |
| 	mutex_init(&fs_info->delalloc_root_mutex);
 | |
| 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
 | |
| 	seqlock_init(&fs_info->profiles_lock);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
 | |
| 	INIT_LIST_HEAD(&fs_info->space_info);
 | |
| 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
 | |
| 	INIT_LIST_HEAD(&fs_info->unused_bgs);
 | |
| 	btrfs_mapping_init(&fs_info->mapping_tree);
 | |
| 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
 | |
| 			     BTRFS_BLOCK_RSV_GLOBAL);
 | |
| 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
 | |
| 			     BTRFS_BLOCK_RSV_DELALLOC);
 | |
| 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
 | |
| 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
 | |
| 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
 | |
| 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
 | |
| 			     BTRFS_BLOCK_RSV_DELOPS);
 | |
| 	atomic_set(&fs_info->nr_async_submits, 0);
 | |
| 	atomic_set(&fs_info->async_delalloc_pages, 0);
 | |
| 	atomic_set(&fs_info->async_submit_draining, 0);
 | |
| 	atomic_set(&fs_info->nr_async_bios, 0);
 | |
| 	atomic_set(&fs_info->defrag_running, 0);
 | |
| 	atomic_set(&fs_info->qgroup_op_seq, 0);
 | |
| 	atomic_set(&fs_info->reada_works_cnt, 0);
 | |
| 	atomic64_set(&fs_info->tree_mod_seq, 0);
 | |
| 	fs_info->fs_frozen = 0;
 | |
| 	fs_info->sb = sb;
 | |
| 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
 | |
| 	fs_info->metadata_ratio = 0;
 | |
| 	fs_info->defrag_inodes = RB_ROOT;
 | |
| 	fs_info->free_chunk_space = 0;
 | |
| 	fs_info->tree_mod_log = RB_ROOT;
 | |
| 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
 | |
| 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
 | |
| 	/* readahead state */
 | |
| 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
 | |
| 	spin_lock_init(&fs_info->reada_lock);
 | |
| 
 | |
| 	fs_info->thread_pool_size = min_t(unsigned long,
 | |
| 					  num_online_cpus() + 2, 8);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&fs_info->ordered_roots);
 | |
| 	spin_lock_init(&fs_info->ordered_root_lock);
 | |
| 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
 | |
| 					GFP_KERNEL);
 | |
| 	if (!fs_info->delayed_root) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto fail_iput;
 | |
| 	}
 | |
| 	btrfs_init_delayed_root(fs_info->delayed_root);
 | |
| 
 | |
| 	btrfs_init_scrub(fs_info);
 | |
| #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 | |
| 	fs_info->check_integrity_print_mask = 0;
 | |
| #endif
 | |
| 	btrfs_init_balance(fs_info);
 | |
| 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
 | |
| 
 | |
| 	sb->s_blocksize = 4096;
 | |
| 	sb->s_blocksize_bits = blksize_bits(4096);
 | |
| 
 | |
| 	btrfs_init_btree_inode(fs_info);
 | |
| 
 | |
| 	spin_lock_init(&fs_info->block_group_cache_lock);
 | |
| 	fs_info->block_group_cache_tree = RB_ROOT;
 | |
| 	fs_info->first_logical_byte = (u64)-1;
 | |
| 
 | |
| 	extent_io_tree_init(&fs_info->freed_extents[0],
 | |
| 			     fs_info->btree_inode->i_mapping);
 | |
| 	extent_io_tree_init(&fs_info->freed_extents[1],
 | |
| 			     fs_info->btree_inode->i_mapping);
 | |
| 	fs_info->pinned_extents = &fs_info->freed_extents[0];
 | |
| 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
 | |
| 
 | |
| 	mutex_init(&fs_info->ordered_operations_mutex);
 | |
| 	mutex_init(&fs_info->tree_log_mutex);
 | |
| 	mutex_init(&fs_info->chunk_mutex);
 | |
| 	mutex_init(&fs_info->transaction_kthread_mutex);
 | |
| 	mutex_init(&fs_info->cleaner_mutex);
 | |
| 	mutex_init(&fs_info->volume_mutex);
 | |
| 	mutex_init(&fs_info->ro_block_group_mutex);
 | |
| 	init_rwsem(&fs_info->commit_root_sem);
 | |
| 	init_rwsem(&fs_info->cleanup_work_sem);
 | |
| 	init_rwsem(&fs_info->subvol_sem);
 | |
| 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
 | |
| 
 | |
| 	btrfs_init_dev_replace_locks(fs_info);
 | |
| 	btrfs_init_qgroup(fs_info);
 | |
| 
 | |
| 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
 | |
| 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
 | |
| 
 | |
| 	init_waitqueue_head(&fs_info->transaction_throttle);
 | |
| 	init_waitqueue_head(&fs_info->transaction_wait);
 | |
| 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
 | |
| 	init_waitqueue_head(&fs_info->async_submit_wait);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
 | |
| 
 | |
| 	/* Usable values until the real ones are cached from the superblock */
 | |
| 	fs_info->nodesize = 4096;
 | |
| 	fs_info->sectorsize = 4096;
 | |
| 	fs_info->stripesize = 4096;
 | |
| 
 | |
| 	ret = btrfs_alloc_stripe_hash_table(fs_info);
 | |
| 	if (ret) {
 | |
| 		err = ret;
 | |
| 		goto fail_alloc;
 | |
| 	}
 | |
| 
 | |
| 	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
 | |
| 
 | |
| 	invalidate_bdev(fs_devices->latest_bdev);
 | |
| 
 | |
| 	/*
 | |
| 	 * Read super block and check the signature bytes only
 | |
| 	 */
 | |
| 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
 | |
| 	if (IS_ERR(bh)) {
 | |
| 		err = PTR_ERR(bh);
 | |
| 		goto fail_alloc;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We want to check superblock checksum, the type is stored inside.
 | |
| 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
 | |
| 	 */
 | |
| 	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
 | |
| 		btrfs_err(fs_info, "superblock checksum mismatch");
 | |
| 		err = -EINVAL;
 | |
| 		brelse(bh);
 | |
| 		goto fail_alloc;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * super_copy is zeroed at allocation time and we never touch the
 | |
| 	 * following bytes up to INFO_SIZE, the checksum is calculated from
 | |
| 	 * the whole block of INFO_SIZE
 | |
| 	 */
 | |
| 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
 | |
| 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
 | |
| 	       sizeof(*fs_info->super_for_commit));
 | |
| 	brelse(bh);
 | |
| 
 | |
| 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
 | |
| 
 | |
| 	ret = btrfs_check_super_valid(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "superblock contains fatal errors");
 | |
| 		err = -EINVAL;
 | |
| 		goto fail_alloc;
 | |
| 	}
 | |
| 
 | |
| 	disk_super = fs_info->super_copy;
 | |
| 	if (!btrfs_super_root(disk_super))
 | |
| 		goto fail_alloc;
 | |
| 
 | |
| 	/* check FS state, whether FS is broken. */
 | |
| 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
 | |
| 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
 | |
| 
 | |
| 	/*
 | |
| 	 * run through our array of backup supers and setup
 | |
| 	 * our ring pointer to the oldest one
 | |
| 	 */
 | |
| 	generation = btrfs_super_generation(disk_super);
 | |
| 	find_oldest_super_backup(fs_info, generation);
 | |
| 
 | |
| 	/*
 | |
| 	 * In the long term, we'll store the compression type in the super
 | |
| 	 * block, and it'll be used for per file compression control.
 | |
| 	 */
 | |
| 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
 | |
| 
 | |
| 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
 | |
| 	if (ret) {
 | |
| 		err = ret;
 | |
| 		goto fail_alloc;
 | |
| 	}
 | |
| 
 | |
| 	features = btrfs_super_incompat_flags(disk_super) &
 | |
| 		~BTRFS_FEATURE_INCOMPAT_SUPP;
 | |
| 	if (features) {
 | |
| 		btrfs_err(fs_info,
 | |
| 		    "cannot mount because of unsupported optional features (%llx)",
 | |
| 		    features);
 | |
| 		err = -EINVAL;
 | |
| 		goto fail_alloc;
 | |
| 	}
 | |
| 
 | |
| 	features = btrfs_super_incompat_flags(disk_super);
 | |
| 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
 | |
| 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
 | |
| 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
 | |
| 
 | |
| 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
 | |
| 		btrfs_info(fs_info, "has skinny extents");
 | |
| 
 | |
| 	/*
 | |
| 	 * flag our filesystem as having big metadata blocks if
 | |
| 	 * they are bigger than the page size
 | |
| 	 */
 | |
| 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
 | |
| 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
 | |
| 			btrfs_info(fs_info,
 | |
| 				"flagging fs with big metadata feature");
 | |
| 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
 | |
| 	}
 | |
| 
 | |
| 	nodesize = btrfs_super_nodesize(disk_super);
 | |
| 	sectorsize = btrfs_super_sectorsize(disk_super);
 | |
| 	stripesize = sectorsize;
 | |
| 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
 | |
| 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
 | |
| 
 | |
| 	/* Cache block sizes */
 | |
| 	fs_info->nodesize = nodesize;
 | |
| 	fs_info->sectorsize = sectorsize;
 | |
| 	fs_info->stripesize = stripesize;
 | |
| 
 | |
| 	/*
 | |
| 	 * mixed block groups end up with duplicate but slightly offset
 | |
| 	 * extent buffers for the same range.  It leads to corruptions
 | |
| 	 */
 | |
| 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
 | |
| 	    (sectorsize != nodesize)) {
 | |
| 		btrfs_err(fs_info,
 | |
| "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
 | |
| 			nodesize, sectorsize);
 | |
| 		goto fail_alloc;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Needn't use the lock because there is no other task which will
 | |
| 	 * update the flag.
 | |
| 	 */
 | |
| 	btrfs_set_super_incompat_flags(disk_super, features);
 | |
| 
 | |
| 	features = btrfs_super_compat_ro_flags(disk_super) &
 | |
| 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
 | |
| 	if (!(sb->s_flags & MS_RDONLY) && features) {
 | |
| 		btrfs_err(fs_info,
 | |
| 	"cannot mount read-write because of unsupported optional features (%llx)",
 | |
| 		       features);
 | |
| 		err = -EINVAL;
 | |
| 		goto fail_alloc;
 | |
| 	}
 | |
| 
 | |
| 	max_active = fs_info->thread_pool_size;
 | |
| 
 | |
| 	ret = btrfs_init_workqueues(fs_info, fs_devices);
 | |
| 	if (ret) {
 | |
| 		err = ret;
 | |
| 		goto fail_sb_buffer;
 | |
| 	}
 | |
| 
 | |
| 	sb->s_bdi->congested_fn = btrfs_congested_fn;
 | |
| 	sb->s_bdi->congested_data = fs_info;
 | |
| 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
 | |
| 	sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
 | |
| 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
 | |
| 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
 | |
| 
 | |
| 	sb->s_blocksize = sectorsize;
 | |
| 	sb->s_blocksize_bits = blksize_bits(sectorsize);
 | |
| 
 | |
| 	mutex_lock(&fs_info->chunk_mutex);
 | |
| 	ret = btrfs_read_sys_array(fs_info);
 | |
| 	mutex_unlock(&fs_info->chunk_mutex);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
 | |
| 		goto fail_sb_buffer;
 | |
| 	}
 | |
| 
 | |
| 	generation = btrfs_super_chunk_root_generation(disk_super);
 | |
| 
 | |
| 	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
 | |
| 
 | |
| 	chunk_root->node = read_tree_block(fs_info,
 | |
| 					   btrfs_super_chunk_root(disk_super),
 | |
| 					   generation);
 | |
| 	if (IS_ERR(chunk_root->node) ||
 | |
| 	    !extent_buffer_uptodate(chunk_root->node)) {
 | |
| 		btrfs_err(fs_info, "failed to read chunk root");
 | |
| 		if (!IS_ERR(chunk_root->node))
 | |
| 			free_extent_buffer(chunk_root->node);
 | |
| 		chunk_root->node = NULL;
 | |
| 		goto fail_tree_roots;
 | |
| 	}
 | |
| 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
 | |
| 	chunk_root->commit_root = btrfs_root_node(chunk_root);
 | |
| 
 | |
| 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
 | |
| 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
 | |
| 
 | |
| 	ret = btrfs_read_chunk_tree(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
 | |
| 		goto fail_tree_roots;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * keep the device that is marked to be the target device for the
 | |
| 	 * dev_replace procedure
 | |
| 	 */
 | |
| 	btrfs_close_extra_devices(fs_devices, 0);
 | |
| 
 | |
| 	if (!fs_devices->latest_bdev) {
 | |
| 		btrfs_err(fs_info, "failed to read devices");
 | |
| 		goto fail_tree_roots;
 | |
| 	}
 | |
| 
 | |
| retry_root_backup:
 | |
| 	generation = btrfs_super_generation(disk_super);
 | |
| 
 | |
| 	tree_root->node = read_tree_block(fs_info,
 | |
| 					  btrfs_super_root(disk_super),
 | |
| 					  generation);
 | |
| 	if (IS_ERR(tree_root->node) ||
 | |
| 	    !extent_buffer_uptodate(tree_root->node)) {
 | |
| 		btrfs_warn(fs_info, "failed to read tree root");
 | |
| 		if (!IS_ERR(tree_root->node))
 | |
| 			free_extent_buffer(tree_root->node);
 | |
| 		tree_root->node = NULL;
 | |
| 		goto recovery_tree_root;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
 | |
| 	tree_root->commit_root = btrfs_root_node(tree_root);
 | |
| 	btrfs_set_root_refs(&tree_root->root_item, 1);
 | |
| 
 | |
| 	mutex_lock(&tree_root->objectid_mutex);
 | |
| 	ret = btrfs_find_highest_objectid(tree_root,
 | |
| 					&tree_root->highest_objectid);
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&tree_root->objectid_mutex);
 | |
| 		goto recovery_tree_root;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
 | |
| 
 | |
| 	mutex_unlock(&tree_root->objectid_mutex);
 | |
| 
 | |
| 	ret = btrfs_read_roots(fs_info);
 | |
| 	if (ret)
 | |
| 		goto recovery_tree_root;
 | |
| 
 | |
| 	fs_info->generation = generation;
 | |
| 	fs_info->last_trans_committed = generation;
 | |
| 
 | |
| 	ret = btrfs_recover_balance(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
 | |
| 		goto fail_block_groups;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_init_dev_stats(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
 | |
| 		goto fail_block_groups;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_init_dev_replace(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
 | |
| 		goto fail_block_groups;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_close_extra_devices(fs_devices, 1);
 | |
| 
 | |
| 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
 | |
| 				ret);
 | |
| 		goto fail_block_groups;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_sysfs_add_device(fs_devices);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
 | |
| 				ret);
 | |
| 		goto fail_fsdev_sysfs;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_sysfs_add_mounted(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
 | |
| 		goto fail_fsdev_sysfs;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_init_space_info(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
 | |
| 		goto fail_sysfs;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_read_block_groups(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
 | |
| 		goto fail_sysfs;
 | |
| 	}
 | |
| 	fs_info->num_tolerated_disk_barrier_failures =
 | |
| 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
 | |
| 	if (fs_info->fs_devices->missing_devices >
 | |
| 	     fs_info->num_tolerated_disk_barrier_failures &&
 | |
| 	    !(sb->s_flags & MS_RDONLY)) {
 | |
| 		btrfs_warn(fs_info,
 | |
| "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
 | |
| 			fs_info->fs_devices->missing_devices,
 | |
| 			fs_info->num_tolerated_disk_barrier_failures);
 | |
| 		goto fail_sysfs;
 | |
| 	}
 | |
| 
 | |
| 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
 | |
| 					       "btrfs-cleaner");
 | |
| 	if (IS_ERR(fs_info->cleaner_kthread))
 | |
| 		goto fail_sysfs;
 | |
| 
 | |
| 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
 | |
| 						   tree_root,
 | |
| 						   "btrfs-transaction");
 | |
| 	if (IS_ERR(fs_info->transaction_kthread))
 | |
| 		goto fail_cleaner;
 | |
| 
 | |
| 	if (!btrfs_test_opt(fs_info, SSD) &&
 | |
| 	    !btrfs_test_opt(fs_info, NOSSD) &&
 | |
| 	    !fs_info->fs_devices->rotating) {
 | |
| 		btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
 | |
| 		btrfs_set_opt(fs_info->mount_opt, SSD);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Mount does not set all options immediately, we can do it now and do
 | |
| 	 * not have to wait for transaction commit
 | |
| 	 */
 | |
| 	btrfs_apply_pending_changes(fs_info);
 | |
| 
 | |
| #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 | |
| 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
 | |
| 		ret = btrfsic_mount(fs_info, fs_devices,
 | |
| 				    btrfs_test_opt(fs_info,
 | |
| 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
 | |
| 				    1 : 0,
 | |
| 				    fs_info->check_integrity_print_mask);
 | |
| 		if (ret)
 | |
| 			btrfs_warn(fs_info,
 | |
| 				"failed to initialize integrity check module: %d",
 | |
| 				ret);
 | |
| 	}
 | |
| #endif
 | |
| 	ret = btrfs_read_qgroup_config(fs_info);
 | |
| 	if (ret)
 | |
| 		goto fail_trans_kthread;
 | |
| 
 | |
| 	/* do not make disk changes in broken FS or nologreplay is given */
 | |
| 	if (btrfs_super_log_root(disk_super) != 0 &&
 | |
| 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
 | |
| 		ret = btrfs_replay_log(fs_info, fs_devices);
 | |
| 		if (ret) {
 | |
| 			err = ret;
 | |
| 			goto fail_qgroup;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_find_orphan_roots(fs_info);
 | |
| 	if (ret)
 | |
| 		goto fail_qgroup;
 | |
| 
 | |
| 	if (!(sb->s_flags & MS_RDONLY)) {
 | |
| 		ret = btrfs_cleanup_fs_roots(fs_info);
 | |
| 		if (ret)
 | |
| 			goto fail_qgroup;
 | |
| 
 | |
| 		mutex_lock(&fs_info->cleaner_mutex);
 | |
| 		ret = btrfs_recover_relocation(tree_root);
 | |
| 		mutex_unlock(&fs_info->cleaner_mutex);
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_warn(fs_info, "failed to recover relocation: %d",
 | |
| 					ret);
 | |
| 			err = -EINVAL;
 | |
| 			goto fail_qgroup;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	location.objectid = BTRFS_FS_TREE_OBJECTID;
 | |
| 	location.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 	location.offset = 0;
 | |
| 
 | |
| 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
 | |
| 	if (IS_ERR(fs_info->fs_root)) {
 | |
| 		err = PTR_ERR(fs_info->fs_root);
 | |
| 		goto fail_qgroup;
 | |
| 	}
 | |
| 
 | |
| 	if (sb->s_flags & MS_RDONLY)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
 | |
| 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
 | |
| 		clear_free_space_tree = 1;
 | |
| 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
 | |
| 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
 | |
| 		btrfs_warn(fs_info, "free space tree is invalid");
 | |
| 		clear_free_space_tree = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (clear_free_space_tree) {
 | |
| 		btrfs_info(fs_info, "clearing free space tree");
 | |
| 		ret = btrfs_clear_free_space_tree(fs_info);
 | |
| 		if (ret) {
 | |
| 			btrfs_warn(fs_info,
 | |
| 				   "failed to clear free space tree: %d", ret);
 | |
| 			close_ctree(fs_info);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
 | |
| 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
 | |
| 		btrfs_info(fs_info, "creating free space tree");
 | |
| 		ret = btrfs_create_free_space_tree(fs_info);
 | |
| 		if (ret) {
 | |
| 			btrfs_warn(fs_info,
 | |
| 				"failed to create free space tree: %d", ret);
 | |
| 			close_ctree(fs_info);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	down_read(&fs_info->cleanup_work_sem);
 | |
| 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
 | |
| 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
 | |
| 		up_read(&fs_info->cleanup_work_sem);
 | |
| 		close_ctree(fs_info);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	up_read(&fs_info->cleanup_work_sem);
 | |
| 
 | |
| 	ret = btrfs_resume_balance_async(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
 | |
| 		close_ctree(fs_info);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_resume_dev_replace_async(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
 | |
| 		close_ctree(fs_info);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_qgroup_rescan_resume(fs_info);
 | |
| 
 | |
| 	if (!fs_info->uuid_root) {
 | |
| 		btrfs_info(fs_info, "creating UUID tree");
 | |
| 		ret = btrfs_create_uuid_tree(fs_info);
 | |
| 		if (ret) {
 | |
| 			btrfs_warn(fs_info,
 | |
| 				"failed to create the UUID tree: %d", ret);
 | |
| 			close_ctree(fs_info);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
 | |
| 		   fs_info->generation !=
 | |
| 				btrfs_super_uuid_tree_generation(disk_super)) {
 | |
| 		btrfs_info(fs_info, "checking UUID tree");
 | |
| 		ret = btrfs_check_uuid_tree(fs_info);
 | |
| 		if (ret) {
 | |
| 			btrfs_warn(fs_info,
 | |
| 				"failed to check the UUID tree: %d", ret);
 | |
| 			close_ctree(fs_info);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	} else {
 | |
| 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
 | |
| 	}
 | |
| 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
 | |
| 	 * no need to keep the flag
 | |
| 	 */
 | |
| 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail_qgroup:
 | |
| 	btrfs_free_qgroup_config(fs_info);
 | |
| fail_trans_kthread:
 | |
| 	kthread_stop(fs_info->transaction_kthread);
 | |
| 	btrfs_cleanup_transaction(fs_info);
 | |
| 	btrfs_free_fs_roots(fs_info);
 | |
| fail_cleaner:
 | |
| 	kthread_stop(fs_info->cleaner_kthread);
 | |
| 
 | |
| 	/*
 | |
| 	 * make sure we're done with the btree inode before we stop our
 | |
| 	 * kthreads
 | |
| 	 */
 | |
| 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
 | |
| 
 | |
| fail_sysfs:
 | |
| 	btrfs_sysfs_remove_mounted(fs_info);
 | |
| 
 | |
| fail_fsdev_sysfs:
 | |
| 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
 | |
| 
 | |
| fail_block_groups:
 | |
| 	btrfs_put_block_group_cache(fs_info);
 | |
| 
 | |
| fail_tree_roots:
 | |
| 	free_root_pointers(fs_info, 1);
 | |
| 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
 | |
| 
 | |
| fail_sb_buffer:
 | |
| 	btrfs_stop_all_workers(fs_info);
 | |
| 	btrfs_free_block_groups(fs_info);
 | |
| fail_alloc:
 | |
| fail_iput:
 | |
| 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
 | |
| 
 | |
| 	iput(fs_info->btree_inode);
 | |
| fail_bio_counter:
 | |
| 	percpu_counter_destroy(&fs_info->bio_counter);
 | |
| fail_delalloc_bytes:
 | |
| 	percpu_counter_destroy(&fs_info->delalloc_bytes);
 | |
| fail_dirty_metadata_bytes:
 | |
| 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
 | |
| fail_srcu:
 | |
| 	cleanup_srcu_struct(&fs_info->subvol_srcu);
 | |
| fail:
 | |
| 	btrfs_free_stripe_hash_table(fs_info);
 | |
| 	btrfs_close_devices(fs_info->fs_devices);
 | |
| 	return err;
 | |
| 
 | |
| recovery_tree_root:
 | |
| 	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
 | |
| 		goto fail_tree_roots;
 | |
| 
 | |
| 	free_root_pointers(fs_info, 0);
 | |
| 
 | |
| 	/* don't use the log in recovery mode, it won't be valid */
 | |
| 	btrfs_set_super_log_root(disk_super, 0);
 | |
| 
 | |
| 	/* we can't trust the free space cache either */
 | |
| 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
 | |
| 
 | |
| 	ret = next_root_backup(fs_info, fs_info->super_copy,
 | |
| 			       &num_backups_tried, &backup_index);
 | |
| 	if (ret == -1)
 | |
| 		goto fail_block_groups;
 | |
| 	goto retry_root_backup;
 | |
| }
 | |
| 
 | |
| static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 | |
| {
 | |
| 	if (uptodate) {
 | |
| 		set_buffer_uptodate(bh);
 | |
| 	} else {
 | |
| 		struct btrfs_device *device = (struct btrfs_device *)
 | |
| 			bh->b_private;
 | |
| 
 | |
| 		btrfs_warn_rl_in_rcu(device->fs_info,
 | |
| 				"lost page write due to IO error on %s",
 | |
| 					  rcu_str_deref(device->name));
 | |
| 		/* note, we don't set_buffer_write_io_error because we have
 | |
| 		 * our own ways of dealing with the IO errors
 | |
| 		 */
 | |
| 		clear_buffer_uptodate(bh);
 | |
| 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
 | |
| 	}
 | |
| 	unlock_buffer(bh);
 | |
| 	put_bh(bh);
 | |
| }
 | |
| 
 | |
| int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
 | |
| 			struct buffer_head **bh_ret)
 | |
| {
 | |
| 	struct buffer_head *bh;
 | |
| 	struct btrfs_super_block *super;
 | |
| 	u64 bytenr;
 | |
| 
 | |
| 	bytenr = btrfs_sb_offset(copy_num);
 | |
| 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
 | |
| 	/*
 | |
| 	 * If we fail to read from the underlying devices, as of now
 | |
| 	 * the best option we have is to mark it EIO.
 | |
| 	 */
 | |
| 	if (!bh)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	super = (struct btrfs_super_block *)bh->b_data;
 | |
| 	if (btrfs_super_bytenr(super) != bytenr ||
 | |
| 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
 | |
| 		brelse(bh);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	*bh_ret = bh;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
 | |
| {
 | |
| 	struct buffer_head *bh;
 | |
| 	struct buffer_head *latest = NULL;
 | |
| 	struct btrfs_super_block *super;
 | |
| 	int i;
 | |
| 	u64 transid = 0;
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	/* we would like to check all the supers, but that would make
 | |
| 	 * a btrfs mount succeed after a mkfs from a different FS.
 | |
| 	 * So, we need to add a special mount option to scan for
 | |
| 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
 | |
| 	 */
 | |
| 	for (i = 0; i < 1; i++) {
 | |
| 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
 | |
| 		if (ret)
 | |
| 			continue;
 | |
| 
 | |
| 		super = (struct btrfs_super_block *)bh->b_data;
 | |
| 
 | |
| 		if (!latest || btrfs_super_generation(super) > transid) {
 | |
| 			brelse(latest);
 | |
| 			latest = bh;
 | |
| 			transid = btrfs_super_generation(super);
 | |
| 		} else {
 | |
| 			brelse(bh);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!latest)
 | |
| 		return ERR_PTR(ret);
 | |
| 
 | |
| 	return latest;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this should be called twice, once with wait == 0 and
 | |
|  * once with wait == 1.  When wait == 0 is done, all the buffer heads
 | |
|  * we write are pinned.
 | |
|  *
 | |
|  * They are released when wait == 1 is done.
 | |
|  * max_mirrors must be the same for both runs, and it indicates how
 | |
|  * many supers on this one device should be written.
 | |
|  *
 | |
|  * max_mirrors == 0 means to write them all.
 | |
|  */
 | |
| static int write_dev_supers(struct btrfs_device *device,
 | |
| 			    struct btrfs_super_block *sb,
 | |
| 			    int wait, int max_mirrors)
 | |
| {
 | |
| 	struct buffer_head *bh;
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 	int errors = 0;
 | |
| 	u32 crc;
 | |
| 	u64 bytenr;
 | |
| 
 | |
| 	if (max_mirrors == 0)
 | |
| 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
 | |
| 
 | |
| 	for (i = 0; i < max_mirrors; i++) {
 | |
| 		bytenr = btrfs_sb_offset(i);
 | |
| 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
 | |
| 		    device->commit_total_bytes)
 | |
| 			break;
 | |
| 
 | |
| 		if (wait) {
 | |
| 			bh = __find_get_block(device->bdev, bytenr / 4096,
 | |
| 					      BTRFS_SUPER_INFO_SIZE);
 | |
| 			if (!bh) {
 | |
| 				errors++;
 | |
| 				continue;
 | |
| 			}
 | |
| 			wait_on_buffer(bh);
 | |
| 			if (!buffer_uptodate(bh))
 | |
| 				errors++;
 | |
| 
 | |
| 			/* drop our reference */
 | |
| 			brelse(bh);
 | |
| 
 | |
| 			/* drop the reference from the wait == 0 run */
 | |
| 			brelse(bh);
 | |
| 			continue;
 | |
| 		} else {
 | |
| 			btrfs_set_super_bytenr(sb, bytenr);
 | |
| 
 | |
| 			crc = ~(u32)0;
 | |
| 			crc = btrfs_csum_data((const char *)sb +
 | |
| 					      BTRFS_CSUM_SIZE, crc,
 | |
| 					      BTRFS_SUPER_INFO_SIZE -
 | |
| 					      BTRFS_CSUM_SIZE);
 | |
| 			btrfs_csum_final(crc, sb->csum);
 | |
| 
 | |
| 			/*
 | |
| 			 * one reference for us, and we leave it for the
 | |
| 			 * caller
 | |
| 			 */
 | |
| 			bh = __getblk(device->bdev, bytenr / 4096,
 | |
| 				      BTRFS_SUPER_INFO_SIZE);
 | |
| 			if (!bh) {
 | |
| 				btrfs_err(device->fs_info,
 | |
| 				    "couldn't get super buffer head for bytenr %llu",
 | |
| 				    bytenr);
 | |
| 				errors++;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
 | |
| 
 | |
| 			/* one reference for submit_bh */
 | |
| 			get_bh(bh);
 | |
| 
 | |
| 			set_buffer_uptodate(bh);
 | |
| 			lock_buffer(bh);
 | |
| 			bh->b_end_io = btrfs_end_buffer_write_sync;
 | |
| 			bh->b_private = device;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * we fua the first super.  The others we allow
 | |
| 		 * to go down lazy.
 | |
| 		 */
 | |
| 		if (i == 0)
 | |
| 			ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_FUA, bh);
 | |
| 		else
 | |
| 			ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
 | |
| 		if (ret)
 | |
| 			errors++;
 | |
| 	}
 | |
| 	return errors < i ? 0 : -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * endio for the write_dev_flush, this will wake anyone waiting
 | |
|  * for the barrier when it is done
 | |
|  */
 | |
| static void btrfs_end_empty_barrier(struct bio *bio)
 | |
| {
 | |
| 	if (bio->bi_private)
 | |
| 		complete(bio->bi_private);
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
 | |
|  * sent down.  With wait == 1, it waits for the previous flush.
 | |
|  *
 | |
|  * any device where the flush fails with eopnotsupp are flagged as not-barrier
 | |
|  * capable
 | |
|  */
 | |
| static blk_status_t write_dev_flush(struct btrfs_device *device, int wait)
 | |
| {
 | |
| 	struct request_queue *q = bdev_get_queue(device->bdev);
 | |
| 	struct bio *bio;
 | |
| 	blk_status_t ret = 0;
 | |
| 
 | |
| 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (wait) {
 | |
| 		bio = device->flush_bio;
 | |
| 		if (!bio)
 | |
| 			return 0;
 | |
| 
 | |
| 		wait_for_completion(&device->flush_wait);
 | |
| 
 | |
| 		if (bio->bi_status) {
 | |
| 			ret = bio->bi_status;
 | |
| 			btrfs_dev_stat_inc_and_print(device,
 | |
| 				BTRFS_DEV_STAT_FLUSH_ERRS);
 | |
| 		}
 | |
| 
 | |
| 		/* drop the reference from the wait == 0 run */
 | |
| 		bio_put(bio);
 | |
| 		device->flush_bio = NULL;
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * one reference for us, and we leave it for the
 | |
| 	 * caller
 | |
| 	 */
 | |
| 	device->flush_bio = NULL;
 | |
| 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
 | |
| 	if (!bio)
 | |
| 		return BLK_STS_RESOURCE;
 | |
| 
 | |
| 	bio->bi_end_io = btrfs_end_empty_barrier;
 | |
| 	bio->bi_bdev = device->bdev;
 | |
| 	bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
 | |
| 	init_completion(&device->flush_wait);
 | |
| 	bio->bi_private = &device->flush_wait;
 | |
| 	device->flush_bio = bio;
 | |
| 
 | |
| 	bio_get(bio);
 | |
| 	btrfsic_submit_bio(bio);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * send an empty flush down to each device in parallel,
 | |
|  * then wait for them
 | |
|  */
 | |
| static int barrier_all_devices(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	struct list_head *head;
 | |
| 	struct btrfs_device *dev;
 | |
| 	int errors_send = 0;
 | |
| 	int errors_wait = 0;
 | |
| 	blk_status_t ret;
 | |
| 
 | |
| 	/* send down all the barriers */
 | |
| 	head = &info->fs_devices->devices;
 | |
| 	list_for_each_entry_rcu(dev, head, dev_list) {
 | |
| 		if (dev->missing)
 | |
| 			continue;
 | |
| 		if (!dev->bdev) {
 | |
| 			errors_send++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!dev->in_fs_metadata || !dev->writeable)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = write_dev_flush(dev, 0);
 | |
| 		if (ret)
 | |
| 			errors_send++;
 | |
| 	}
 | |
| 
 | |
| 	/* wait for all the barriers */
 | |
| 	list_for_each_entry_rcu(dev, head, dev_list) {
 | |
| 		if (dev->missing)
 | |
| 			continue;
 | |
| 		if (!dev->bdev) {
 | |
| 			errors_wait++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!dev->in_fs_metadata || !dev->writeable)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = write_dev_flush(dev, 1);
 | |
| 		if (ret)
 | |
| 			errors_wait++;
 | |
| 	}
 | |
| 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
 | |
| 	    errors_wait > info->num_tolerated_disk_barrier_failures)
 | |
| 		return -EIO;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
 | |
| {
 | |
| 	int raid_type;
 | |
| 	int min_tolerated = INT_MAX;
 | |
| 
 | |
| 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
 | |
| 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
 | |
| 		min_tolerated = min(min_tolerated,
 | |
| 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
 | |
| 				    tolerated_failures);
 | |
| 
 | |
| 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
 | |
| 		if (raid_type == BTRFS_RAID_SINGLE)
 | |
| 			continue;
 | |
| 		if (!(flags & btrfs_raid_group[raid_type]))
 | |
| 			continue;
 | |
| 		min_tolerated = min(min_tolerated,
 | |
| 				    btrfs_raid_array[raid_type].
 | |
| 				    tolerated_failures);
 | |
| 	}
 | |
| 
 | |
| 	if (min_tolerated == INT_MAX) {
 | |
| 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
 | |
| 		min_tolerated = 0;
 | |
| 	}
 | |
| 
 | |
| 	return min_tolerated;
 | |
| }
 | |
| 
 | |
| int btrfs_calc_num_tolerated_disk_barrier_failures(
 | |
| 	struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_ioctl_space_info space;
 | |
| 	struct btrfs_space_info *sinfo;
 | |
| 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
 | |
| 		       BTRFS_BLOCK_GROUP_SYSTEM,
 | |
| 		       BTRFS_BLOCK_GROUP_METADATA,
 | |
| 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
 | |
| 	int i;
 | |
| 	int c;
 | |
| 	int num_tolerated_disk_barrier_failures =
 | |
| 		(int)fs_info->fs_devices->num_devices;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(types); i++) {
 | |
| 		struct btrfs_space_info *tmp;
 | |
| 
 | |
| 		sinfo = NULL;
 | |
| 		rcu_read_lock();
 | |
| 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
 | |
| 			if (tmp->flags == types[i]) {
 | |
| 				sinfo = tmp;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		if (!sinfo)
 | |
| 			continue;
 | |
| 
 | |
| 		down_read(&sinfo->groups_sem);
 | |
| 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
 | |
| 			u64 flags;
 | |
| 
 | |
| 			if (list_empty(&sinfo->block_groups[c]))
 | |
| 				continue;
 | |
| 
 | |
| 			btrfs_get_block_group_info(&sinfo->block_groups[c],
 | |
| 						   &space);
 | |
| 			if (space.total_bytes == 0 || space.used_bytes == 0)
 | |
| 				continue;
 | |
| 			flags = space.flags;
 | |
| 
 | |
| 			num_tolerated_disk_barrier_failures = min(
 | |
| 				num_tolerated_disk_barrier_failures,
 | |
| 				btrfs_get_num_tolerated_disk_barrier_failures(
 | |
| 					flags));
 | |
| 		}
 | |
| 		up_read(&sinfo->groups_sem);
 | |
| 	}
 | |
| 
 | |
| 	return num_tolerated_disk_barrier_failures;
 | |
| }
 | |
| 
 | |
| int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
 | |
| {
 | |
| 	struct list_head *head;
 | |
| 	struct btrfs_device *dev;
 | |
| 	struct btrfs_super_block *sb;
 | |
| 	struct btrfs_dev_item *dev_item;
 | |
| 	int ret;
 | |
| 	int do_barriers;
 | |
| 	int max_errors;
 | |
| 	int total_errors = 0;
 | |
| 	u64 flags;
 | |
| 
 | |
| 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
 | |
| 	backup_super_roots(fs_info);
 | |
| 
 | |
| 	sb = fs_info->super_for_commit;
 | |
| 	dev_item = &sb->dev_item;
 | |
| 
 | |
| 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
 | |
| 	head = &fs_info->fs_devices->devices;
 | |
| 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
 | |
| 
 | |
| 	if (do_barriers) {
 | |
| 		ret = barrier_all_devices(fs_info);
 | |
| 		if (ret) {
 | |
| 			mutex_unlock(
 | |
| 				&fs_info->fs_devices->device_list_mutex);
 | |
| 			btrfs_handle_fs_error(fs_info, ret,
 | |
| 					      "errors while submitting device barriers.");
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_rcu(dev, head, dev_list) {
 | |
| 		if (!dev->bdev) {
 | |
| 			total_errors++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!dev->in_fs_metadata || !dev->writeable)
 | |
| 			continue;
 | |
| 
 | |
| 		btrfs_set_stack_device_generation(dev_item, 0);
 | |
| 		btrfs_set_stack_device_type(dev_item, dev->type);
 | |
| 		btrfs_set_stack_device_id(dev_item, dev->devid);
 | |
| 		btrfs_set_stack_device_total_bytes(dev_item,
 | |
| 						   dev->commit_total_bytes);
 | |
| 		btrfs_set_stack_device_bytes_used(dev_item,
 | |
| 						  dev->commit_bytes_used);
 | |
| 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
 | |
| 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
 | |
| 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
 | |
| 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
 | |
| 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
 | |
| 
 | |
| 		flags = btrfs_super_flags(sb);
 | |
| 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
 | |
| 
 | |
| 		ret = write_dev_supers(dev, sb, 0, max_mirrors);
 | |
| 		if (ret)
 | |
| 			total_errors++;
 | |
| 	}
 | |
| 	if (total_errors > max_errors) {
 | |
| 		btrfs_err(fs_info, "%d errors while writing supers",
 | |
| 			  total_errors);
 | |
| 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 
 | |
| 		/* FUA is masked off if unsupported and can't be the reason */
 | |
| 		btrfs_handle_fs_error(fs_info, -EIO,
 | |
| 				      "%d errors while writing supers",
 | |
| 				      total_errors);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	total_errors = 0;
 | |
| 	list_for_each_entry_rcu(dev, head, dev_list) {
 | |
| 		if (!dev->bdev)
 | |
| 			continue;
 | |
| 		if (!dev->in_fs_metadata || !dev->writeable)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = write_dev_supers(dev, sb, 1, max_mirrors);
 | |
| 		if (ret)
 | |
| 			total_errors++;
 | |
| 	}
 | |
| 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 	if (total_errors > max_errors) {
 | |
| 		btrfs_handle_fs_error(fs_info, -EIO,
 | |
| 				      "%d errors while writing supers",
 | |
| 				      total_errors);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Drop a fs root from the radix tree and free it. */
 | |
| void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
 | |
| 				  struct btrfs_root *root)
 | |
| {
 | |
| 	spin_lock(&fs_info->fs_roots_radix_lock);
 | |
| 	radix_tree_delete(&fs_info->fs_roots_radix,
 | |
| 			  (unsigned long)root->root_key.objectid);
 | |
| 	spin_unlock(&fs_info->fs_roots_radix_lock);
 | |
| 
 | |
| 	if (btrfs_root_refs(&root->root_item) == 0)
 | |
| 		synchronize_srcu(&fs_info->subvol_srcu);
 | |
| 
 | |
| 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 | |
| 		btrfs_free_log(NULL, root);
 | |
| 		if (root->reloc_root) {
 | |
| 			free_extent_buffer(root->reloc_root->node);
 | |
| 			free_extent_buffer(root->reloc_root->commit_root);
 | |
| 			btrfs_put_fs_root(root->reloc_root);
 | |
| 			root->reloc_root = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (root->free_ino_pinned)
 | |
| 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
 | |
| 	if (root->free_ino_ctl)
 | |
| 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
 | |
| 	free_fs_root(root);
 | |
| }
 | |
| 
 | |
| static void free_fs_root(struct btrfs_root *root)
 | |
| {
 | |
| 	iput(root->ino_cache_inode);
 | |
| 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
 | |
| 	btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
 | |
| 	root->orphan_block_rsv = NULL;
 | |
| 	if (root->anon_dev)
 | |
| 		free_anon_bdev(root->anon_dev);
 | |
| 	if (root->subv_writers)
 | |
| 		btrfs_free_subvolume_writers(root->subv_writers);
 | |
| 	free_extent_buffer(root->node);
 | |
| 	free_extent_buffer(root->commit_root);
 | |
| 	kfree(root->free_ino_ctl);
 | |
| 	kfree(root->free_ino_pinned);
 | |
| 	kfree(root->name);
 | |
| 	btrfs_put_fs_root(root);
 | |
| }
 | |
| 
 | |
| void btrfs_free_fs_root(struct btrfs_root *root)
 | |
| {
 | |
| 	free_fs_root(root);
 | |
| }
 | |
| 
 | |
| int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	u64 root_objectid = 0;
 | |
| 	struct btrfs_root *gang[8];
 | |
| 	int i = 0;
 | |
| 	int err = 0;
 | |
| 	unsigned int ret = 0;
 | |
| 	int index;
 | |
| 
 | |
| 	while (1) {
 | |
| 		index = srcu_read_lock(&fs_info->subvol_srcu);
 | |
| 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
 | |
| 					     (void **)gang, root_objectid,
 | |
| 					     ARRAY_SIZE(gang));
 | |
| 		if (!ret) {
 | |
| 			srcu_read_unlock(&fs_info->subvol_srcu, index);
 | |
| 			break;
 | |
| 		}
 | |
| 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
 | |
| 
 | |
| 		for (i = 0; i < ret; i++) {
 | |
| 			/* Avoid to grab roots in dead_roots */
 | |
| 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
 | |
| 				gang[i] = NULL;
 | |
| 				continue;
 | |
| 			}
 | |
| 			/* grab all the search result for later use */
 | |
| 			gang[i] = btrfs_grab_fs_root(gang[i]);
 | |
| 		}
 | |
| 		srcu_read_unlock(&fs_info->subvol_srcu, index);
 | |
| 
 | |
| 		for (i = 0; i < ret; i++) {
 | |
| 			if (!gang[i])
 | |
| 				continue;
 | |
| 			root_objectid = gang[i]->root_key.objectid;
 | |
| 			err = btrfs_orphan_cleanup(gang[i]);
 | |
| 			if (err)
 | |
| 				break;
 | |
| 			btrfs_put_fs_root(gang[i]);
 | |
| 		}
 | |
| 		root_objectid++;
 | |
| 	}
 | |
| 
 | |
| 	/* release the uncleaned roots due to error */
 | |
| 	for (; i < ret; i++) {
 | |
| 		if (gang[i])
 | |
| 			btrfs_put_fs_root(gang[i]);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int btrfs_commit_super(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *root = fs_info->tree_root;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 
 | |
| 	mutex_lock(&fs_info->cleaner_mutex);
 | |
| 	btrfs_run_delayed_iputs(fs_info);
 | |
| 	mutex_unlock(&fs_info->cleaner_mutex);
 | |
| 	wake_up_process(fs_info->cleaner_kthread);
 | |
| 
 | |
| 	/* wait until ongoing cleanup work done */
 | |
| 	down_write(&fs_info->cleanup_work_sem);
 | |
| 	up_write(&fs_info->cleanup_work_sem);
 | |
| 
 | |
| 	trans = btrfs_join_transaction(root);
 | |
| 	if (IS_ERR(trans))
 | |
| 		return PTR_ERR(trans);
 | |
| 	return btrfs_commit_transaction(trans);
 | |
| }
 | |
| 
 | |
| void close_ctree(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *root = fs_info->tree_root;
 | |
| 	int ret;
 | |
| 
 | |
| 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
 | |
| 
 | |
| 	/* wait for the qgroup rescan worker to stop */
 | |
| 	btrfs_qgroup_wait_for_completion(fs_info, false);
 | |
| 
 | |
| 	/* wait for the uuid_scan task to finish */
 | |
| 	down(&fs_info->uuid_tree_rescan_sem);
 | |
| 	/* avoid complains from lockdep et al., set sem back to initial state */
 | |
| 	up(&fs_info->uuid_tree_rescan_sem);
 | |
| 
 | |
| 	/* pause restriper - we want to resume on mount */
 | |
| 	btrfs_pause_balance(fs_info);
 | |
| 
 | |
| 	btrfs_dev_replace_suspend_for_unmount(fs_info);
 | |
| 
 | |
| 	btrfs_scrub_cancel(fs_info);
 | |
| 
 | |
| 	/* wait for any defraggers to finish */
 | |
| 	wait_event(fs_info->transaction_wait,
 | |
| 		   (atomic_read(&fs_info->defrag_running) == 0));
 | |
| 
 | |
| 	/* clear out the rbtree of defraggable inodes */
 | |
| 	btrfs_cleanup_defrag_inodes(fs_info);
 | |
| 
 | |
| 	cancel_work_sync(&fs_info->async_reclaim_work);
 | |
| 
 | |
| 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
 | |
| 		/*
 | |
| 		 * If the cleaner thread is stopped and there are
 | |
| 		 * block groups queued for removal, the deletion will be
 | |
| 		 * skipped when we quit the cleaner thread.
 | |
| 		 */
 | |
| 		btrfs_delete_unused_bgs(fs_info);
 | |
| 
 | |
| 		ret = btrfs_commit_super(fs_info);
 | |
| 		if (ret)
 | |
| 			btrfs_err(fs_info, "commit super ret %d", ret);
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
 | |
| 		btrfs_error_commit_super(fs_info);
 | |
| 
 | |
| 	kthread_stop(fs_info->transaction_kthread);
 | |
| 	kthread_stop(fs_info->cleaner_kthread);
 | |
| 
 | |
| 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
 | |
| 
 | |
| 	btrfs_free_qgroup_config(fs_info);
 | |
| 
 | |
| 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
 | |
| 		btrfs_info(fs_info, "at unmount delalloc count %lld",
 | |
| 		       percpu_counter_sum(&fs_info->delalloc_bytes));
 | |
| 	}
 | |
| 
 | |
| 	btrfs_sysfs_remove_mounted(fs_info);
 | |
| 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
 | |
| 
 | |
| 	btrfs_free_fs_roots(fs_info);
 | |
| 
 | |
| 	btrfs_put_block_group_cache(fs_info);
 | |
| 
 | |
| 	/*
 | |
| 	 * we must make sure there is not any read request to
 | |
| 	 * submit after we stopping all workers.
 | |
| 	 */
 | |
| 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
 | |
| 	btrfs_stop_all_workers(fs_info);
 | |
| 
 | |
| 	btrfs_free_block_groups(fs_info);
 | |
| 
 | |
| 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
 | |
| 	free_root_pointers(fs_info, 1);
 | |
| 
 | |
| 	iput(fs_info->btree_inode);
 | |
| 
 | |
| #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 | |
| 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
 | |
| 		btrfsic_unmount(fs_info->fs_devices);
 | |
| #endif
 | |
| 
 | |
| 	btrfs_close_devices(fs_info->fs_devices);
 | |
| 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
 | |
| 
 | |
| 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
 | |
| 	percpu_counter_destroy(&fs_info->delalloc_bytes);
 | |
| 	percpu_counter_destroy(&fs_info->bio_counter);
 | |
| 	cleanup_srcu_struct(&fs_info->subvol_srcu);
 | |
| 
 | |
| 	btrfs_free_stripe_hash_table(fs_info);
 | |
| 
 | |
| 	__btrfs_free_block_rsv(root->orphan_block_rsv);
 | |
| 	root->orphan_block_rsv = NULL;
 | |
| 
 | |
| 	mutex_lock(&fs_info->chunk_mutex);
 | |
| 	while (!list_empty(&fs_info->pinned_chunks)) {
 | |
| 		struct extent_map *em;
 | |
| 
 | |
| 		em = list_first_entry(&fs_info->pinned_chunks,
 | |
| 				      struct extent_map, list);
 | |
| 		list_del_init(&em->list);
 | |
| 		free_extent_map(em);
 | |
| 	}
 | |
| 	mutex_unlock(&fs_info->chunk_mutex);
 | |
| }
 | |
| 
 | |
| int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
 | |
| 			  int atomic)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct inode *btree_inode = buf->pages[0]->mapping->host;
 | |
| 
 | |
| 	ret = extent_buffer_uptodate(buf);
 | |
| 	if (!ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
 | |
| 				    parent_transid, atomic);
 | |
| 	if (ret == -EAGAIN)
 | |
| 		return ret;
 | |
| 	return !ret;
 | |
| }
 | |
| 
 | |
| void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info;
 | |
| 	struct btrfs_root *root;
 | |
| 	u64 transid = btrfs_header_generation(buf);
 | |
| 	int was_dirty;
 | |
| 
 | |
| #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 | |
| 	/*
 | |
| 	 * This is a fast path so only do this check if we have sanity tests
 | |
| 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
 | |
| 	 * outside of the sanity tests.
 | |
| 	 */
 | |
| 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
 | |
| 		return;
 | |
| #endif
 | |
| 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
 | |
| 	fs_info = root->fs_info;
 | |
| 	btrfs_assert_tree_locked(buf);
 | |
| 	if (transid != fs_info->generation)
 | |
| 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
 | |
| 			buf->start, transid, fs_info->generation);
 | |
| 	was_dirty = set_extent_buffer_dirty(buf);
 | |
| 	if (!was_dirty)
 | |
| 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
 | |
| 				     buf->len,
 | |
| 				     fs_info->dirty_metadata_batch);
 | |
| #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 | |
| 	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
 | |
| 		btrfs_print_leaf(fs_info, buf);
 | |
| 		ASSERT(0);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
 | |
| 					int flush_delayed)
 | |
| {
 | |
| 	/*
 | |
| 	 * looks as though older kernels can get into trouble with
 | |
| 	 * this code, they end up stuck in balance_dirty_pages forever
 | |
| 	 */
 | |
| 	int ret;
 | |
| 
 | |
| 	if (current->flags & PF_MEMALLOC)
 | |
| 		return;
 | |
| 
 | |
| 	if (flush_delayed)
 | |
| 		btrfs_balance_delayed_items(fs_info);
 | |
| 
 | |
| 	ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 | |
| 				     BTRFS_DIRTY_METADATA_THRESH);
 | |
| 	if (ret > 0) {
 | |
| 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	__btrfs_btree_balance_dirty(fs_info, 1);
 | |
| }
 | |
| 
 | |
| void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	__btrfs_btree_balance_dirty(fs_info, 0);
 | |
| }
 | |
| 
 | |
| int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
 | |
| {
 | |
| 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 
 | |
| 	return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
 | |
| }
 | |
| 
 | |
| static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_super_block *sb = fs_info->super_copy;
 | |
| 	u64 nodesize = btrfs_super_nodesize(sb);
 | |
| 	u64 sectorsize = btrfs_super_sectorsize(sb);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
 | |
| 		btrfs_err(fs_info, "no valid FS found");
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
 | |
| 		btrfs_warn(fs_info, "unrecognized super flag: %llu",
 | |
| 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
 | |
| 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
 | |
| 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
 | |
| 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
 | |
| 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
 | |
| 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
 | |
| 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
 | |
| 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check sectorsize and nodesize first, other check will need it.
 | |
| 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
 | |
| 	 */
 | |
| 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
 | |
| 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
 | |
| 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	/* Only PAGE SIZE is supported yet */
 | |
| 	if (sectorsize != PAGE_SIZE) {
 | |
| 		btrfs_err(fs_info,
 | |
| 			"sectorsize %llu not supported yet, only support %lu",
 | |
| 			sectorsize, PAGE_SIZE);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
 | |
| 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
 | |
| 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
 | |
| 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
 | |
| 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Root alignment check */
 | |
| 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
 | |
| 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
 | |
| 			   btrfs_super_root(sb));
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
 | |
| 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
 | |
| 			   btrfs_super_chunk_root(sb));
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
 | |
| 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
 | |
| 			   btrfs_super_log_root(sb));
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
 | |
| 		btrfs_err(fs_info,
 | |
| 			   "dev_item UUID does not match fsid: %pU != %pU",
 | |
| 			   fs_info->fsid, sb->dev_item.fsid);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
 | |
| 	 * done later
 | |
| 	 */
 | |
| 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
 | |
| 		btrfs_err(fs_info, "bytes_used is too small %llu",
 | |
| 			  btrfs_super_bytes_used(sb));
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
 | |
| 		btrfs_err(fs_info, "invalid stripesize %u",
 | |
| 			  btrfs_super_stripesize(sb));
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	if (btrfs_super_num_devices(sb) > (1UL << 31))
 | |
| 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
 | |
| 			   btrfs_super_num_devices(sb));
 | |
| 	if (btrfs_super_num_devices(sb) == 0) {
 | |
| 		btrfs_err(fs_info, "number of devices is 0");
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
 | |
| 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
 | |
| 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
 | |
| 	 * and one chunk
 | |
| 	 */
 | |
| 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
 | |
| 		btrfs_err(fs_info, "system chunk array too big %u > %u",
 | |
| 			  btrfs_super_sys_array_size(sb),
 | |
| 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
 | |
| 			+ sizeof(struct btrfs_chunk)) {
 | |
| 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
 | |
| 			  btrfs_super_sys_array_size(sb),
 | |
| 			  sizeof(struct btrfs_disk_key)
 | |
| 			  + sizeof(struct btrfs_chunk));
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The generation is a global counter, we'll trust it more than the others
 | |
| 	 * but it's still possible that it's the one that's wrong.
 | |
| 	 */
 | |
| 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
 | |
| 		btrfs_warn(fs_info,
 | |
| 			"suspicious: generation < chunk_root_generation: %llu < %llu",
 | |
| 			btrfs_super_generation(sb),
 | |
| 			btrfs_super_chunk_root_generation(sb));
 | |
| 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
 | |
| 	    && btrfs_super_cache_generation(sb) != (u64)-1)
 | |
| 		btrfs_warn(fs_info,
 | |
| 			"suspicious: generation < cache_generation: %llu < %llu",
 | |
| 			btrfs_super_generation(sb),
 | |
| 			btrfs_super_cache_generation(sb));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	mutex_lock(&fs_info->cleaner_mutex);
 | |
| 	btrfs_run_delayed_iputs(fs_info);
 | |
| 	mutex_unlock(&fs_info->cleaner_mutex);
 | |
| 
 | |
| 	down_write(&fs_info->cleanup_work_sem);
 | |
| 	up_write(&fs_info->cleanup_work_sem);
 | |
| 
 | |
| 	/* cleanup FS via transaction */
 | |
| 	btrfs_cleanup_transaction(fs_info);
 | |
| }
 | |
| 
 | |
| static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_ordered_extent *ordered;
 | |
| 
 | |
| 	spin_lock(&root->ordered_extent_lock);
 | |
| 	/*
 | |
| 	 * This will just short circuit the ordered completion stuff which will
 | |
| 	 * make sure the ordered extent gets properly cleaned up.
 | |
| 	 */
 | |
| 	list_for_each_entry(ordered, &root->ordered_extents,
 | |
| 			    root_extent_list)
 | |
| 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
 | |
| 	spin_unlock(&root->ordered_extent_lock);
 | |
| }
 | |
| 
 | |
| static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *root;
 | |
| 	struct list_head splice;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&splice);
 | |
| 
 | |
| 	spin_lock(&fs_info->ordered_root_lock);
 | |
| 	list_splice_init(&fs_info->ordered_roots, &splice);
 | |
| 	while (!list_empty(&splice)) {
 | |
| 		root = list_first_entry(&splice, struct btrfs_root,
 | |
| 					ordered_root);
 | |
| 		list_move_tail(&root->ordered_root,
 | |
| 			       &fs_info->ordered_roots);
 | |
| 
 | |
| 		spin_unlock(&fs_info->ordered_root_lock);
 | |
| 		btrfs_destroy_ordered_extents(root);
 | |
| 
 | |
| 		cond_resched();
 | |
| 		spin_lock(&fs_info->ordered_root_lock);
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->ordered_root_lock);
 | |
| }
 | |
| 
 | |
| static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
 | |
| 				      struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_delayed_ref_root *delayed_refs;
 | |
| 	struct btrfs_delayed_ref_node *ref;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	delayed_refs = &trans->delayed_refs;
 | |
| 
 | |
| 	spin_lock(&delayed_refs->lock);
 | |
| 	if (atomic_read(&delayed_refs->num_entries) == 0) {
 | |
| 		spin_unlock(&delayed_refs->lock);
 | |
| 		btrfs_info(fs_info, "delayed_refs has NO entry");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
 | |
| 		struct btrfs_delayed_ref_head *head;
 | |
| 		struct btrfs_delayed_ref_node *tmp;
 | |
| 		bool pin_bytes = false;
 | |
| 
 | |
| 		head = rb_entry(node, struct btrfs_delayed_ref_head,
 | |
| 				href_node);
 | |
| 		if (!mutex_trylock(&head->mutex)) {
 | |
| 			refcount_inc(&head->node.refs);
 | |
| 			spin_unlock(&delayed_refs->lock);
 | |
| 
 | |
| 			mutex_lock(&head->mutex);
 | |
| 			mutex_unlock(&head->mutex);
 | |
| 			btrfs_put_delayed_ref(&head->node);
 | |
| 			spin_lock(&delayed_refs->lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 		spin_lock(&head->lock);
 | |
| 		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
 | |
| 						 list) {
 | |
| 			ref->in_tree = 0;
 | |
| 			list_del(&ref->list);
 | |
| 			if (!list_empty(&ref->add_list))
 | |
| 				list_del(&ref->add_list);
 | |
| 			atomic_dec(&delayed_refs->num_entries);
 | |
| 			btrfs_put_delayed_ref(ref);
 | |
| 		}
 | |
| 		if (head->must_insert_reserved)
 | |
| 			pin_bytes = true;
 | |
| 		btrfs_free_delayed_extent_op(head->extent_op);
 | |
| 		delayed_refs->num_heads--;
 | |
| 		if (head->processing == 0)
 | |
| 			delayed_refs->num_heads_ready--;
 | |
| 		atomic_dec(&delayed_refs->num_entries);
 | |
| 		head->node.in_tree = 0;
 | |
| 		rb_erase(&head->href_node, &delayed_refs->href_root);
 | |
| 		spin_unlock(&head->lock);
 | |
| 		spin_unlock(&delayed_refs->lock);
 | |
| 		mutex_unlock(&head->mutex);
 | |
| 
 | |
| 		if (pin_bytes)
 | |
| 			btrfs_pin_extent(fs_info, head->node.bytenr,
 | |
| 					 head->node.num_bytes, 1);
 | |
| 		btrfs_put_delayed_ref(&head->node);
 | |
| 		cond_resched();
 | |
| 		spin_lock(&delayed_refs->lock);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&delayed_refs->lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_inode *btrfs_inode;
 | |
| 	struct list_head splice;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&splice);
 | |
| 
 | |
| 	spin_lock(&root->delalloc_lock);
 | |
| 	list_splice_init(&root->delalloc_inodes, &splice);
 | |
| 
 | |
| 	while (!list_empty(&splice)) {
 | |
| 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
 | |
| 					       delalloc_inodes);
 | |
| 
 | |
| 		list_del_init(&btrfs_inode->delalloc_inodes);
 | |
| 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
 | |
| 			  &btrfs_inode->runtime_flags);
 | |
| 		spin_unlock(&root->delalloc_lock);
 | |
| 
 | |
| 		btrfs_invalidate_inodes(btrfs_inode->root);
 | |
| 
 | |
| 		spin_lock(&root->delalloc_lock);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&root->delalloc_lock);
 | |
| }
 | |
| 
 | |
| static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *root;
 | |
| 	struct list_head splice;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&splice);
 | |
| 
 | |
| 	spin_lock(&fs_info->delalloc_root_lock);
 | |
| 	list_splice_init(&fs_info->delalloc_roots, &splice);
 | |
| 	while (!list_empty(&splice)) {
 | |
| 		root = list_first_entry(&splice, struct btrfs_root,
 | |
| 					 delalloc_root);
 | |
| 		list_del_init(&root->delalloc_root);
 | |
| 		root = btrfs_grab_fs_root(root);
 | |
| 		BUG_ON(!root);
 | |
| 		spin_unlock(&fs_info->delalloc_root_lock);
 | |
| 
 | |
| 		btrfs_destroy_delalloc_inodes(root);
 | |
| 		btrfs_put_fs_root(root);
 | |
| 
 | |
| 		spin_lock(&fs_info->delalloc_root_lock);
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->delalloc_root_lock);
 | |
| }
 | |
| 
 | |
| static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
 | |
| 					struct extent_io_tree *dirty_pages,
 | |
| 					int mark)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct extent_buffer *eb;
 | |
| 	u64 start = 0;
 | |
| 	u64 end;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
 | |
| 					    mark, NULL);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		clear_extent_bits(dirty_pages, start, end, mark);
 | |
| 		while (start <= end) {
 | |
| 			eb = find_extent_buffer(fs_info, start);
 | |
| 			start += fs_info->nodesize;
 | |
| 			if (!eb)
 | |
| 				continue;
 | |
| 			wait_on_extent_buffer_writeback(eb);
 | |
| 
 | |
| 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
 | |
| 					       &eb->bflags))
 | |
| 				clear_extent_buffer_dirty(eb);
 | |
| 			free_extent_buffer_stale(eb);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
 | |
| 				       struct extent_io_tree *pinned_extents)
 | |
| {
 | |
| 	struct extent_io_tree *unpin;
 | |
| 	u64 start;
 | |
| 	u64 end;
 | |
| 	int ret;
 | |
| 	bool loop = true;
 | |
| 
 | |
| 	unpin = pinned_extents;
 | |
| again:
 | |
| 	while (1) {
 | |
| 		ret = find_first_extent_bit(unpin, 0, &start, &end,
 | |
| 					    EXTENT_DIRTY, NULL);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		clear_extent_dirty(unpin, start, end);
 | |
| 		btrfs_error_unpin_extent_range(fs_info, start, end);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	if (loop) {
 | |
| 		if (unpin == &fs_info->freed_extents[0])
 | |
| 			unpin = &fs_info->freed_extents[1];
 | |
| 		else
 | |
| 			unpin = &fs_info->freed_extents[0];
 | |
| 		loop = false;
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 
 | |
| 	inode = cache->io_ctl.inode;
 | |
| 	if (inode) {
 | |
| 		invalidate_inode_pages2(inode->i_mapping);
 | |
| 		BTRFS_I(inode)->generation = 0;
 | |
| 		cache->io_ctl.inode = NULL;
 | |
| 		iput(inode);
 | |
| 	}
 | |
| 	btrfs_put_block_group(cache);
 | |
| }
 | |
| 
 | |
| void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
 | |
| 			     struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *cache;
 | |
| 
 | |
| 	spin_lock(&cur_trans->dirty_bgs_lock);
 | |
| 	while (!list_empty(&cur_trans->dirty_bgs)) {
 | |
| 		cache = list_first_entry(&cur_trans->dirty_bgs,
 | |
| 					 struct btrfs_block_group_cache,
 | |
| 					 dirty_list);
 | |
| 		if (!cache) {
 | |
| 			btrfs_err(fs_info, "orphan block group dirty_bgs list");
 | |
| 			spin_unlock(&cur_trans->dirty_bgs_lock);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (!list_empty(&cache->io_list)) {
 | |
| 			spin_unlock(&cur_trans->dirty_bgs_lock);
 | |
| 			list_del_init(&cache->io_list);
 | |
| 			btrfs_cleanup_bg_io(cache);
 | |
| 			spin_lock(&cur_trans->dirty_bgs_lock);
 | |
| 		}
 | |
| 
 | |
| 		list_del_init(&cache->dirty_list);
 | |
| 		spin_lock(&cache->lock);
 | |
| 		cache->disk_cache_state = BTRFS_DC_ERROR;
 | |
| 		spin_unlock(&cache->lock);
 | |
| 
 | |
| 		spin_unlock(&cur_trans->dirty_bgs_lock);
 | |
| 		btrfs_put_block_group(cache);
 | |
| 		spin_lock(&cur_trans->dirty_bgs_lock);
 | |
| 	}
 | |
| 	spin_unlock(&cur_trans->dirty_bgs_lock);
 | |
| 
 | |
| 	while (!list_empty(&cur_trans->io_bgs)) {
 | |
| 		cache = list_first_entry(&cur_trans->io_bgs,
 | |
| 					 struct btrfs_block_group_cache,
 | |
| 					 io_list);
 | |
| 		if (!cache) {
 | |
| 			btrfs_err(fs_info, "orphan block group on io_bgs list");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		list_del_init(&cache->io_list);
 | |
| 		spin_lock(&cache->lock);
 | |
| 		cache->disk_cache_state = BTRFS_DC_ERROR;
 | |
| 		spin_unlock(&cache->lock);
 | |
| 		btrfs_cleanup_bg_io(cache);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
 | |
| 				   struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
 | |
| 	ASSERT(list_empty(&cur_trans->dirty_bgs));
 | |
| 	ASSERT(list_empty(&cur_trans->io_bgs));
 | |
| 
 | |
| 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
 | |
| 
 | |
| 	cur_trans->state = TRANS_STATE_COMMIT_START;
 | |
| 	wake_up(&fs_info->transaction_blocked_wait);
 | |
| 
 | |
| 	cur_trans->state = TRANS_STATE_UNBLOCKED;
 | |
| 	wake_up(&fs_info->transaction_wait);
 | |
| 
 | |
| 	btrfs_destroy_delayed_inodes(fs_info);
 | |
| 	btrfs_assert_delayed_root_empty(fs_info);
 | |
| 
 | |
| 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
 | |
| 				     EXTENT_DIRTY);
 | |
| 	btrfs_destroy_pinned_extent(fs_info,
 | |
| 				    fs_info->pinned_extents);
 | |
| 
 | |
| 	cur_trans->state =TRANS_STATE_COMPLETED;
 | |
| 	wake_up(&cur_trans->commit_wait);
 | |
| 
 | |
| 	/*
 | |
| 	memset(cur_trans, 0, sizeof(*cur_trans));
 | |
| 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
 | |
| 	*/
 | |
| }
 | |
| 
 | |
| static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_transaction *t;
 | |
| 
 | |
| 	mutex_lock(&fs_info->transaction_kthread_mutex);
 | |
| 
 | |
| 	spin_lock(&fs_info->trans_lock);
 | |
| 	while (!list_empty(&fs_info->trans_list)) {
 | |
| 		t = list_first_entry(&fs_info->trans_list,
 | |
| 				     struct btrfs_transaction, list);
 | |
| 		if (t->state >= TRANS_STATE_COMMIT_START) {
 | |
| 			refcount_inc(&t->use_count);
 | |
| 			spin_unlock(&fs_info->trans_lock);
 | |
| 			btrfs_wait_for_commit(fs_info, t->transid);
 | |
| 			btrfs_put_transaction(t);
 | |
| 			spin_lock(&fs_info->trans_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (t == fs_info->running_transaction) {
 | |
| 			t->state = TRANS_STATE_COMMIT_DOING;
 | |
| 			spin_unlock(&fs_info->trans_lock);
 | |
| 			/*
 | |
| 			 * We wait for 0 num_writers since we don't hold a trans
 | |
| 			 * handle open currently for this transaction.
 | |
| 			 */
 | |
| 			wait_event(t->writer_wait,
 | |
| 				   atomic_read(&t->num_writers) == 0);
 | |
| 		} else {
 | |
| 			spin_unlock(&fs_info->trans_lock);
 | |
| 		}
 | |
| 		btrfs_cleanup_one_transaction(t, fs_info);
 | |
| 
 | |
| 		spin_lock(&fs_info->trans_lock);
 | |
| 		if (t == fs_info->running_transaction)
 | |
| 			fs_info->running_transaction = NULL;
 | |
| 		list_del_init(&t->list);
 | |
| 		spin_unlock(&fs_info->trans_lock);
 | |
| 
 | |
| 		btrfs_put_transaction(t);
 | |
| 		trace_btrfs_transaction_commit(fs_info->tree_root);
 | |
| 		spin_lock(&fs_info->trans_lock);
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->trans_lock);
 | |
| 	btrfs_destroy_all_ordered_extents(fs_info);
 | |
| 	btrfs_destroy_delayed_inodes(fs_info);
 | |
| 	btrfs_assert_delayed_root_empty(fs_info);
 | |
| 	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
 | |
| 	btrfs_destroy_all_delalloc_inodes(fs_info);
 | |
| 	mutex_unlock(&fs_info->transaction_kthread_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct extent_io_ops btree_extent_io_ops = {
 | |
| 	/* mandatory callbacks */
 | |
| 	.submit_bio_hook = btree_submit_bio_hook,
 | |
| 	.readpage_end_io_hook = btree_readpage_end_io_hook,
 | |
| 	/* note we're sharing with inode.c for the merge bio hook */
 | |
| 	.merge_bio_hook = btrfs_merge_bio_hook,
 | |
| 	.readpage_io_failed_hook = btree_io_failed_hook,
 | |
| 
 | |
| 	/* optional callbacks */
 | |
| };
 |