mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	Make memblock_is_map/region_memory return bool due to these two functions only using either true or false as its return value. No functional change. Link: http://lkml.kernel.org/r/1513266622-15860-2-git-send-email-baiyaowei@cmss.chinamobile.com Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1877 lines
		
	
	
	
		
			52 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1877 lines
		
	
	
	
		
			52 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Procedures for maintaining information about logical memory blocks.
 | 
						|
 *
 | 
						|
 * Peter Bergner, IBM Corp.	June 2001.
 | 
						|
 * Copyright (C) 2001 Peter Bergner.
 | 
						|
 *
 | 
						|
 *      This program is free software; you can redistribute it and/or
 | 
						|
 *      modify it under the terms of the GNU General Public License
 | 
						|
 *      as published by the Free Software Foundation; either version
 | 
						|
 *      2 of the License, or (at your option) any later version.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/bitops.h>
 | 
						|
#include <linux/poison.h>
 | 
						|
#include <linux/pfn.h>
 | 
						|
#include <linux/debugfs.h>
 | 
						|
#include <linux/seq_file.h>
 | 
						|
#include <linux/memblock.h>
 | 
						|
 | 
						|
#include <asm/sections.h>
 | 
						|
#include <linux/io.h>
 | 
						|
 | 
						|
#include "internal.h"
 | 
						|
 | 
						|
static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
 | 
						|
static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
 | 
						|
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 | 
						|
static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
 | 
						|
#endif
 | 
						|
 | 
						|
struct memblock memblock __initdata_memblock = {
 | 
						|
	.memory.regions		= memblock_memory_init_regions,
 | 
						|
	.memory.cnt		= 1,	/* empty dummy entry */
 | 
						|
	.memory.max		= INIT_MEMBLOCK_REGIONS,
 | 
						|
	.memory.name		= "memory",
 | 
						|
 | 
						|
	.reserved.regions	= memblock_reserved_init_regions,
 | 
						|
	.reserved.cnt		= 1,	/* empty dummy entry */
 | 
						|
	.reserved.max		= INIT_MEMBLOCK_REGIONS,
 | 
						|
	.reserved.name		= "reserved",
 | 
						|
 | 
						|
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 | 
						|
	.physmem.regions	= memblock_physmem_init_regions,
 | 
						|
	.physmem.cnt		= 1,	/* empty dummy entry */
 | 
						|
	.physmem.max		= INIT_PHYSMEM_REGIONS,
 | 
						|
	.physmem.name		= "physmem",
 | 
						|
#endif
 | 
						|
 | 
						|
	.bottom_up		= false,
 | 
						|
	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
 | 
						|
};
 | 
						|
 | 
						|
int memblock_debug __initdata_memblock;
 | 
						|
static bool system_has_some_mirror __initdata_memblock = false;
 | 
						|
static int memblock_can_resize __initdata_memblock;
 | 
						|
static int memblock_memory_in_slab __initdata_memblock = 0;
 | 
						|
static int memblock_reserved_in_slab __initdata_memblock = 0;
 | 
						|
 | 
						|
ulong __init_memblock choose_memblock_flags(void)
 | 
						|
{
 | 
						|
	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
 | 
						|
}
 | 
						|
 | 
						|
/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
 | 
						|
static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
 | 
						|
{
 | 
						|
	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Address comparison utilities
 | 
						|
 */
 | 
						|
static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
 | 
						|
				       phys_addr_t base2, phys_addr_t size2)
 | 
						|
{
 | 
						|
	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 | 
						|
}
 | 
						|
 | 
						|
bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
 | 
						|
					phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	unsigned long i;
 | 
						|
 | 
						|
	for (i = 0; i < type->cnt; i++)
 | 
						|
		if (memblock_addrs_overlap(base, size, type->regions[i].base,
 | 
						|
					   type->regions[i].size))
 | 
						|
			break;
 | 
						|
	return i < type->cnt;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 | 
						|
 * @start: start of candidate range
 | 
						|
 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 | 
						|
 * @size: size of free area to find
 | 
						|
 * @align: alignment of free area to find
 | 
						|
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | 
						|
 * @flags: pick from blocks based on memory attributes
 | 
						|
 *
 | 
						|
 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 | 
						|
 *
 | 
						|
 * RETURNS:
 | 
						|
 * Found address on success, 0 on failure.
 | 
						|
 */
 | 
						|
static phys_addr_t __init_memblock
 | 
						|
__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 | 
						|
				phys_addr_t size, phys_addr_t align, int nid,
 | 
						|
				ulong flags)
 | 
						|
{
 | 
						|
	phys_addr_t this_start, this_end, cand;
 | 
						|
	u64 i;
 | 
						|
 | 
						|
	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 | 
						|
		this_start = clamp(this_start, start, end);
 | 
						|
		this_end = clamp(this_end, start, end);
 | 
						|
 | 
						|
		cand = round_up(this_start, align);
 | 
						|
		if (cand < this_end && this_end - cand >= size)
 | 
						|
			return cand;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __memblock_find_range_top_down - find free area utility, in top-down
 | 
						|
 * @start: start of candidate range
 | 
						|
 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 | 
						|
 * @size: size of free area to find
 | 
						|
 * @align: alignment of free area to find
 | 
						|
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | 
						|
 * @flags: pick from blocks based on memory attributes
 | 
						|
 *
 | 
						|
 * Utility called from memblock_find_in_range_node(), find free area top-down.
 | 
						|
 *
 | 
						|
 * RETURNS:
 | 
						|
 * Found address on success, 0 on failure.
 | 
						|
 */
 | 
						|
static phys_addr_t __init_memblock
 | 
						|
__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 | 
						|
			       phys_addr_t size, phys_addr_t align, int nid,
 | 
						|
			       ulong flags)
 | 
						|
{
 | 
						|
	phys_addr_t this_start, this_end, cand;
 | 
						|
	u64 i;
 | 
						|
 | 
						|
	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 | 
						|
					NULL) {
 | 
						|
		this_start = clamp(this_start, start, end);
 | 
						|
		this_end = clamp(this_end, start, end);
 | 
						|
 | 
						|
		if (this_end < size)
 | 
						|
			continue;
 | 
						|
 | 
						|
		cand = round_down(this_end - size, align);
 | 
						|
		if (cand >= this_start)
 | 
						|
			return cand;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * memblock_find_in_range_node - find free area in given range and node
 | 
						|
 * @size: size of free area to find
 | 
						|
 * @align: alignment of free area to find
 | 
						|
 * @start: start of candidate range
 | 
						|
 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 | 
						|
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | 
						|
 * @flags: pick from blocks based on memory attributes
 | 
						|
 *
 | 
						|
 * Find @size free area aligned to @align in the specified range and node.
 | 
						|
 *
 | 
						|
 * When allocation direction is bottom-up, the @start should be greater
 | 
						|
 * than the end of the kernel image. Otherwise, it will be trimmed. The
 | 
						|
 * reason is that we want the bottom-up allocation just near the kernel
 | 
						|
 * image so it is highly likely that the allocated memory and the kernel
 | 
						|
 * will reside in the same node.
 | 
						|
 *
 | 
						|
 * If bottom-up allocation failed, will try to allocate memory top-down.
 | 
						|
 *
 | 
						|
 * RETURNS:
 | 
						|
 * Found address on success, 0 on failure.
 | 
						|
 */
 | 
						|
phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 | 
						|
					phys_addr_t align, phys_addr_t start,
 | 
						|
					phys_addr_t end, int nid, ulong flags)
 | 
						|
{
 | 
						|
	phys_addr_t kernel_end, ret;
 | 
						|
 | 
						|
	/* pump up @end */
 | 
						|
	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
 | 
						|
		end = memblock.current_limit;
 | 
						|
 | 
						|
	/* avoid allocating the first page */
 | 
						|
	start = max_t(phys_addr_t, start, PAGE_SIZE);
 | 
						|
	end = max(start, end);
 | 
						|
	kernel_end = __pa_symbol(_end);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * try bottom-up allocation only when bottom-up mode
 | 
						|
	 * is set and @end is above the kernel image.
 | 
						|
	 */
 | 
						|
	if (memblock_bottom_up() && end > kernel_end) {
 | 
						|
		phys_addr_t bottom_up_start;
 | 
						|
 | 
						|
		/* make sure we will allocate above the kernel */
 | 
						|
		bottom_up_start = max(start, kernel_end);
 | 
						|
 | 
						|
		/* ok, try bottom-up allocation first */
 | 
						|
		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
 | 
						|
						      size, align, nid, flags);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * we always limit bottom-up allocation above the kernel,
 | 
						|
		 * but top-down allocation doesn't have the limit, so
 | 
						|
		 * retrying top-down allocation may succeed when bottom-up
 | 
						|
		 * allocation failed.
 | 
						|
		 *
 | 
						|
		 * bottom-up allocation is expected to be fail very rarely,
 | 
						|
		 * so we use WARN_ONCE() here to see the stack trace if
 | 
						|
		 * fail happens.
 | 
						|
		 */
 | 
						|
		WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
 | 
						|
	}
 | 
						|
 | 
						|
	return __memblock_find_range_top_down(start, end, size, align, nid,
 | 
						|
					      flags);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * memblock_find_in_range - find free area in given range
 | 
						|
 * @start: start of candidate range
 | 
						|
 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 | 
						|
 * @size: size of free area to find
 | 
						|
 * @align: alignment of free area to find
 | 
						|
 *
 | 
						|
 * Find @size free area aligned to @align in the specified range.
 | 
						|
 *
 | 
						|
 * RETURNS:
 | 
						|
 * Found address on success, 0 on failure.
 | 
						|
 */
 | 
						|
phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 | 
						|
					phys_addr_t end, phys_addr_t size,
 | 
						|
					phys_addr_t align)
 | 
						|
{
 | 
						|
	phys_addr_t ret;
 | 
						|
	ulong flags = choose_memblock_flags();
 | 
						|
 | 
						|
again:
 | 
						|
	ret = memblock_find_in_range_node(size, align, start, end,
 | 
						|
					    NUMA_NO_NODE, flags);
 | 
						|
 | 
						|
	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 | 
						|
		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
 | 
						|
			&size);
 | 
						|
		flags &= ~MEMBLOCK_MIRROR;
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 | 
						|
{
 | 
						|
	type->total_size -= type->regions[r].size;
 | 
						|
	memmove(&type->regions[r], &type->regions[r + 1],
 | 
						|
		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 | 
						|
	type->cnt--;
 | 
						|
 | 
						|
	/* Special case for empty arrays */
 | 
						|
	if (type->cnt == 0) {
 | 
						|
		WARN_ON(type->total_size != 0);
 | 
						|
		type->cnt = 1;
 | 
						|
		type->regions[0].base = 0;
 | 
						|
		type->regions[0].size = 0;
 | 
						|
		type->regions[0].flags = 0;
 | 
						|
		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
 | 
						|
/**
 | 
						|
 * Discard memory and reserved arrays if they were allocated
 | 
						|
 */
 | 
						|
void __init memblock_discard(void)
 | 
						|
{
 | 
						|
	phys_addr_t addr, size;
 | 
						|
 | 
						|
	if (memblock.reserved.regions != memblock_reserved_init_regions) {
 | 
						|
		addr = __pa(memblock.reserved.regions);
 | 
						|
		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 | 
						|
				  memblock.reserved.max);
 | 
						|
		__memblock_free_late(addr, size);
 | 
						|
	}
 | 
						|
 | 
						|
	if (memblock.memory.regions != memblock_memory_init_regions) {
 | 
						|
		addr = __pa(memblock.memory.regions);
 | 
						|
		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 | 
						|
				  memblock.memory.max);
 | 
						|
		__memblock_free_late(addr, size);
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * memblock_double_array - double the size of the memblock regions array
 | 
						|
 * @type: memblock type of the regions array being doubled
 | 
						|
 * @new_area_start: starting address of memory range to avoid overlap with
 | 
						|
 * @new_area_size: size of memory range to avoid overlap with
 | 
						|
 *
 | 
						|
 * Double the size of the @type regions array. If memblock is being used to
 | 
						|
 * allocate memory for a new reserved regions array and there is a previously
 | 
						|
 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
 | 
						|
 * waiting to be reserved, ensure the memory used by the new array does
 | 
						|
 * not overlap.
 | 
						|
 *
 | 
						|
 * RETURNS:
 | 
						|
 * 0 on success, -1 on failure.
 | 
						|
 */
 | 
						|
static int __init_memblock memblock_double_array(struct memblock_type *type,
 | 
						|
						phys_addr_t new_area_start,
 | 
						|
						phys_addr_t new_area_size)
 | 
						|
{
 | 
						|
	struct memblock_region *new_array, *old_array;
 | 
						|
	phys_addr_t old_alloc_size, new_alloc_size;
 | 
						|
	phys_addr_t old_size, new_size, addr;
 | 
						|
	int use_slab = slab_is_available();
 | 
						|
	int *in_slab;
 | 
						|
 | 
						|
	/* We don't allow resizing until we know about the reserved regions
 | 
						|
	 * of memory that aren't suitable for allocation
 | 
						|
	 */
 | 
						|
	if (!memblock_can_resize)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	/* Calculate new doubled size */
 | 
						|
	old_size = type->max * sizeof(struct memblock_region);
 | 
						|
	new_size = old_size << 1;
 | 
						|
	/*
 | 
						|
	 * We need to allocated new one align to PAGE_SIZE,
 | 
						|
	 *   so we can free them completely later.
 | 
						|
	 */
 | 
						|
	old_alloc_size = PAGE_ALIGN(old_size);
 | 
						|
	new_alloc_size = PAGE_ALIGN(new_size);
 | 
						|
 | 
						|
	/* Retrieve the slab flag */
 | 
						|
	if (type == &memblock.memory)
 | 
						|
		in_slab = &memblock_memory_in_slab;
 | 
						|
	else
 | 
						|
		in_slab = &memblock_reserved_in_slab;
 | 
						|
 | 
						|
	/* Try to find some space for it.
 | 
						|
	 *
 | 
						|
	 * WARNING: We assume that either slab_is_available() and we use it or
 | 
						|
	 * we use MEMBLOCK for allocations. That means that this is unsafe to
 | 
						|
	 * use when bootmem is currently active (unless bootmem itself is
 | 
						|
	 * implemented on top of MEMBLOCK which isn't the case yet)
 | 
						|
	 *
 | 
						|
	 * This should however not be an issue for now, as we currently only
 | 
						|
	 * call into MEMBLOCK while it's still active, or much later when slab
 | 
						|
	 * is active for memory hotplug operations
 | 
						|
	 */
 | 
						|
	if (use_slab) {
 | 
						|
		new_array = kmalloc(new_size, GFP_KERNEL);
 | 
						|
		addr = new_array ? __pa(new_array) : 0;
 | 
						|
	} else {
 | 
						|
		/* only exclude range when trying to double reserved.regions */
 | 
						|
		if (type != &memblock.reserved)
 | 
						|
			new_area_start = new_area_size = 0;
 | 
						|
 | 
						|
		addr = memblock_find_in_range(new_area_start + new_area_size,
 | 
						|
						memblock.current_limit,
 | 
						|
						new_alloc_size, PAGE_SIZE);
 | 
						|
		if (!addr && new_area_size)
 | 
						|
			addr = memblock_find_in_range(0,
 | 
						|
				min(new_area_start, memblock.current_limit),
 | 
						|
				new_alloc_size, PAGE_SIZE);
 | 
						|
 | 
						|
		new_array = addr ? __va(addr) : NULL;
 | 
						|
	}
 | 
						|
	if (!addr) {
 | 
						|
		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 | 
						|
		       type->name, type->max, type->max * 2);
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
 | 
						|
			type->name, type->max * 2, (u64)addr,
 | 
						|
			(u64)addr + new_size - 1);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Found space, we now need to move the array over before we add the
 | 
						|
	 * reserved region since it may be our reserved array itself that is
 | 
						|
	 * full.
 | 
						|
	 */
 | 
						|
	memcpy(new_array, type->regions, old_size);
 | 
						|
	memset(new_array + type->max, 0, old_size);
 | 
						|
	old_array = type->regions;
 | 
						|
	type->regions = new_array;
 | 
						|
	type->max <<= 1;
 | 
						|
 | 
						|
	/* Free old array. We needn't free it if the array is the static one */
 | 
						|
	if (*in_slab)
 | 
						|
		kfree(old_array);
 | 
						|
	else if (old_array != memblock_memory_init_regions &&
 | 
						|
		 old_array != memblock_reserved_init_regions)
 | 
						|
		memblock_free(__pa(old_array), old_alloc_size);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 | 
						|
	 * needn't do it
 | 
						|
	 */
 | 
						|
	if (!use_slab)
 | 
						|
		BUG_ON(memblock_reserve(addr, new_alloc_size));
 | 
						|
 | 
						|
	/* Update slab flag */
 | 
						|
	*in_slab = use_slab;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * memblock_merge_regions - merge neighboring compatible regions
 | 
						|
 * @type: memblock type to scan
 | 
						|
 *
 | 
						|
 * Scan @type and merge neighboring compatible regions.
 | 
						|
 */
 | 
						|
static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 | 
						|
{
 | 
						|
	int i = 0;
 | 
						|
 | 
						|
	/* cnt never goes below 1 */
 | 
						|
	while (i < type->cnt - 1) {
 | 
						|
		struct memblock_region *this = &type->regions[i];
 | 
						|
		struct memblock_region *next = &type->regions[i + 1];
 | 
						|
 | 
						|
		if (this->base + this->size != next->base ||
 | 
						|
		    memblock_get_region_node(this) !=
 | 
						|
		    memblock_get_region_node(next) ||
 | 
						|
		    this->flags != next->flags) {
 | 
						|
			BUG_ON(this->base + this->size > next->base);
 | 
						|
			i++;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		this->size += next->size;
 | 
						|
		/* move forward from next + 1, index of which is i + 2 */
 | 
						|
		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 | 
						|
		type->cnt--;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * memblock_insert_region - insert new memblock region
 | 
						|
 * @type:	memblock type to insert into
 | 
						|
 * @idx:	index for the insertion point
 | 
						|
 * @base:	base address of the new region
 | 
						|
 * @size:	size of the new region
 | 
						|
 * @nid:	node id of the new region
 | 
						|
 * @flags:	flags of the new region
 | 
						|
 *
 | 
						|
 * Insert new memblock region [@base,@base+@size) into @type at @idx.
 | 
						|
 * @type must already have extra room to accommodate the new region.
 | 
						|
 */
 | 
						|
static void __init_memblock memblock_insert_region(struct memblock_type *type,
 | 
						|
						   int idx, phys_addr_t base,
 | 
						|
						   phys_addr_t size,
 | 
						|
						   int nid, unsigned long flags)
 | 
						|
{
 | 
						|
	struct memblock_region *rgn = &type->regions[idx];
 | 
						|
 | 
						|
	BUG_ON(type->cnt >= type->max);
 | 
						|
	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 | 
						|
	rgn->base = base;
 | 
						|
	rgn->size = size;
 | 
						|
	rgn->flags = flags;
 | 
						|
	memblock_set_region_node(rgn, nid);
 | 
						|
	type->cnt++;
 | 
						|
	type->total_size += size;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * memblock_add_range - add new memblock region
 | 
						|
 * @type: memblock type to add new region into
 | 
						|
 * @base: base address of the new region
 | 
						|
 * @size: size of the new region
 | 
						|
 * @nid: nid of the new region
 | 
						|
 * @flags: flags of the new region
 | 
						|
 *
 | 
						|
 * Add new memblock region [@base,@base+@size) into @type.  The new region
 | 
						|
 * is allowed to overlap with existing ones - overlaps don't affect already
 | 
						|
 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 | 
						|
 * compatible regions are merged) after the addition.
 | 
						|
 *
 | 
						|
 * RETURNS:
 | 
						|
 * 0 on success, -errno on failure.
 | 
						|
 */
 | 
						|
int __init_memblock memblock_add_range(struct memblock_type *type,
 | 
						|
				phys_addr_t base, phys_addr_t size,
 | 
						|
				int nid, unsigned long flags)
 | 
						|
{
 | 
						|
	bool insert = false;
 | 
						|
	phys_addr_t obase = base;
 | 
						|
	phys_addr_t end = base + memblock_cap_size(base, &size);
 | 
						|
	int idx, nr_new;
 | 
						|
	struct memblock_region *rgn;
 | 
						|
 | 
						|
	if (!size)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* special case for empty array */
 | 
						|
	if (type->regions[0].size == 0) {
 | 
						|
		WARN_ON(type->cnt != 1 || type->total_size);
 | 
						|
		type->regions[0].base = base;
 | 
						|
		type->regions[0].size = size;
 | 
						|
		type->regions[0].flags = flags;
 | 
						|
		memblock_set_region_node(&type->regions[0], nid);
 | 
						|
		type->total_size = size;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
repeat:
 | 
						|
	/*
 | 
						|
	 * The following is executed twice.  Once with %false @insert and
 | 
						|
	 * then with %true.  The first counts the number of regions needed
 | 
						|
	 * to accommodate the new area.  The second actually inserts them.
 | 
						|
	 */
 | 
						|
	base = obase;
 | 
						|
	nr_new = 0;
 | 
						|
 | 
						|
	for_each_memblock_type(idx, type, rgn) {
 | 
						|
		phys_addr_t rbase = rgn->base;
 | 
						|
		phys_addr_t rend = rbase + rgn->size;
 | 
						|
 | 
						|
		if (rbase >= end)
 | 
						|
			break;
 | 
						|
		if (rend <= base)
 | 
						|
			continue;
 | 
						|
		/*
 | 
						|
		 * @rgn overlaps.  If it separates the lower part of new
 | 
						|
		 * area, insert that portion.
 | 
						|
		 */
 | 
						|
		if (rbase > base) {
 | 
						|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | 
						|
			WARN_ON(nid != memblock_get_region_node(rgn));
 | 
						|
#endif
 | 
						|
			WARN_ON(flags != rgn->flags);
 | 
						|
			nr_new++;
 | 
						|
			if (insert)
 | 
						|
				memblock_insert_region(type, idx++, base,
 | 
						|
						       rbase - base, nid,
 | 
						|
						       flags);
 | 
						|
		}
 | 
						|
		/* area below @rend is dealt with, forget about it */
 | 
						|
		base = min(rend, end);
 | 
						|
	}
 | 
						|
 | 
						|
	/* insert the remaining portion */
 | 
						|
	if (base < end) {
 | 
						|
		nr_new++;
 | 
						|
		if (insert)
 | 
						|
			memblock_insert_region(type, idx, base, end - base,
 | 
						|
					       nid, flags);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!nr_new)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this was the first round, resize array and repeat for actual
 | 
						|
	 * insertions; otherwise, merge and return.
 | 
						|
	 */
 | 
						|
	if (!insert) {
 | 
						|
		while (type->cnt + nr_new > type->max)
 | 
						|
			if (memblock_double_array(type, obase, size) < 0)
 | 
						|
				return -ENOMEM;
 | 
						|
		insert = true;
 | 
						|
		goto repeat;
 | 
						|
	} else {
 | 
						|
		memblock_merge_regions(type);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 | 
						|
				       int nid)
 | 
						|
{
 | 
						|
	return memblock_add_range(&memblock.memory, base, size, nid, 0);
 | 
						|
}
 | 
						|
 | 
						|
int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	phys_addr_t end = base + size - 1;
 | 
						|
 | 
						|
	memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
 | 
						|
		     &base, &end, (void *)_RET_IP_);
 | 
						|
 | 
						|
	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * memblock_isolate_range - isolate given range into disjoint memblocks
 | 
						|
 * @type: memblock type to isolate range for
 | 
						|
 * @base: base of range to isolate
 | 
						|
 * @size: size of range to isolate
 | 
						|
 * @start_rgn: out parameter for the start of isolated region
 | 
						|
 * @end_rgn: out parameter for the end of isolated region
 | 
						|
 *
 | 
						|
 * Walk @type and ensure that regions don't cross the boundaries defined by
 | 
						|
 * [@base,@base+@size).  Crossing regions are split at the boundaries,
 | 
						|
 * which may create at most two more regions.  The index of the first
 | 
						|
 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 | 
						|
 *
 | 
						|
 * RETURNS:
 | 
						|
 * 0 on success, -errno on failure.
 | 
						|
 */
 | 
						|
static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 | 
						|
					phys_addr_t base, phys_addr_t size,
 | 
						|
					int *start_rgn, int *end_rgn)
 | 
						|
{
 | 
						|
	phys_addr_t end = base + memblock_cap_size(base, &size);
 | 
						|
	int idx;
 | 
						|
	struct memblock_region *rgn;
 | 
						|
 | 
						|
	*start_rgn = *end_rgn = 0;
 | 
						|
 | 
						|
	if (!size)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* we'll create at most two more regions */
 | 
						|
	while (type->cnt + 2 > type->max)
 | 
						|
		if (memblock_double_array(type, base, size) < 0)
 | 
						|
			return -ENOMEM;
 | 
						|
 | 
						|
	for_each_memblock_type(idx, type, rgn) {
 | 
						|
		phys_addr_t rbase = rgn->base;
 | 
						|
		phys_addr_t rend = rbase + rgn->size;
 | 
						|
 | 
						|
		if (rbase >= end)
 | 
						|
			break;
 | 
						|
		if (rend <= base)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (rbase < base) {
 | 
						|
			/*
 | 
						|
			 * @rgn intersects from below.  Split and continue
 | 
						|
			 * to process the next region - the new top half.
 | 
						|
			 */
 | 
						|
			rgn->base = base;
 | 
						|
			rgn->size -= base - rbase;
 | 
						|
			type->total_size -= base - rbase;
 | 
						|
			memblock_insert_region(type, idx, rbase, base - rbase,
 | 
						|
					       memblock_get_region_node(rgn),
 | 
						|
					       rgn->flags);
 | 
						|
		} else if (rend > end) {
 | 
						|
			/*
 | 
						|
			 * @rgn intersects from above.  Split and redo the
 | 
						|
			 * current region - the new bottom half.
 | 
						|
			 */
 | 
						|
			rgn->base = end;
 | 
						|
			rgn->size -= end - rbase;
 | 
						|
			type->total_size -= end - rbase;
 | 
						|
			memblock_insert_region(type, idx--, rbase, end - rbase,
 | 
						|
					       memblock_get_region_node(rgn),
 | 
						|
					       rgn->flags);
 | 
						|
		} else {
 | 
						|
			/* @rgn is fully contained, record it */
 | 
						|
			if (!*end_rgn)
 | 
						|
				*start_rgn = idx;
 | 
						|
			*end_rgn = idx + 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int __init_memblock memblock_remove_range(struct memblock_type *type,
 | 
						|
					  phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	int start_rgn, end_rgn;
 | 
						|
	int i, ret;
 | 
						|
 | 
						|
	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	for (i = end_rgn - 1; i >= start_rgn; i--)
 | 
						|
		memblock_remove_region(type, i);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	return memblock_remove_range(&memblock.memory, base, size);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	phys_addr_t end = base + size - 1;
 | 
						|
 | 
						|
	memblock_dbg("   memblock_free: [%pa-%pa] %pF\n",
 | 
						|
		     &base, &end, (void *)_RET_IP_);
 | 
						|
 | 
						|
	kmemleak_free_part_phys(base, size);
 | 
						|
	return memblock_remove_range(&memblock.reserved, base, size);
 | 
						|
}
 | 
						|
 | 
						|
int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	phys_addr_t end = base + size - 1;
 | 
						|
 | 
						|
	memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
 | 
						|
		     &base, &end, (void *)_RET_IP_);
 | 
						|
 | 
						|
	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 *
 | 
						|
 * This function isolates region [@base, @base + @size), and sets/clears flag
 | 
						|
 *
 | 
						|
 * Return 0 on success, -errno on failure.
 | 
						|
 */
 | 
						|
static int __init_memblock memblock_setclr_flag(phys_addr_t base,
 | 
						|
				phys_addr_t size, int set, int flag)
 | 
						|
{
 | 
						|
	struct memblock_type *type = &memblock.memory;
 | 
						|
	int i, ret, start_rgn, end_rgn;
 | 
						|
 | 
						|
	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	for (i = start_rgn; i < end_rgn; i++)
 | 
						|
		if (set)
 | 
						|
			memblock_set_region_flags(&type->regions[i], flag);
 | 
						|
		else
 | 
						|
			memblock_clear_region_flags(&type->regions[i], flag);
 | 
						|
 | 
						|
	memblock_merge_regions(type);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 | 
						|
 * @base: the base phys addr of the region
 | 
						|
 * @size: the size of the region
 | 
						|
 *
 | 
						|
 * Return 0 on success, -errno on failure.
 | 
						|
 */
 | 
						|
int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 | 
						|
 * @base: the base phys addr of the region
 | 
						|
 * @size: the size of the region
 | 
						|
 *
 | 
						|
 * Return 0 on success, -errno on failure.
 | 
						|
 */
 | 
						|
int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 | 
						|
 * @base: the base phys addr of the region
 | 
						|
 * @size: the size of the region
 | 
						|
 *
 | 
						|
 * Return 0 on success, -errno on failure.
 | 
						|
 */
 | 
						|
int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	system_has_some_mirror = true;
 | 
						|
 | 
						|
	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 | 
						|
 * @base: the base phys addr of the region
 | 
						|
 * @size: the size of the region
 | 
						|
 *
 | 
						|
 * Return 0 on success, -errno on failure.
 | 
						|
 */
 | 
						|
int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
 | 
						|
 * @base: the base phys addr of the region
 | 
						|
 * @size: the size of the region
 | 
						|
 *
 | 
						|
 * Return 0 on success, -errno on failure.
 | 
						|
 */
 | 
						|
int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __next_reserved_mem_region - next function for for_each_reserved_region()
 | 
						|
 * @idx: pointer to u64 loop variable
 | 
						|
 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
 | 
						|
 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
 | 
						|
 *
 | 
						|
 * Iterate over all reserved memory regions.
 | 
						|
 */
 | 
						|
void __init_memblock __next_reserved_mem_region(u64 *idx,
 | 
						|
					   phys_addr_t *out_start,
 | 
						|
					   phys_addr_t *out_end)
 | 
						|
{
 | 
						|
	struct memblock_type *type = &memblock.reserved;
 | 
						|
 | 
						|
	if (*idx < type->cnt) {
 | 
						|
		struct memblock_region *r = &type->regions[*idx];
 | 
						|
		phys_addr_t base = r->base;
 | 
						|
		phys_addr_t size = r->size;
 | 
						|
 | 
						|
		if (out_start)
 | 
						|
			*out_start = base;
 | 
						|
		if (out_end)
 | 
						|
			*out_end = base + size - 1;
 | 
						|
 | 
						|
		*idx += 1;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* signal end of iteration */
 | 
						|
	*idx = ULLONG_MAX;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __next__mem_range - next function for for_each_free_mem_range() etc.
 | 
						|
 * @idx: pointer to u64 loop variable
 | 
						|
 * @nid: node selector, %NUMA_NO_NODE for all nodes
 | 
						|
 * @flags: pick from blocks based on memory attributes
 | 
						|
 * @type_a: pointer to memblock_type from where the range is taken
 | 
						|
 * @type_b: pointer to memblock_type which excludes memory from being taken
 | 
						|
 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 | 
						|
 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 | 
						|
 * @out_nid: ptr to int for nid of the range, can be %NULL
 | 
						|
 *
 | 
						|
 * Find the first area from *@idx which matches @nid, fill the out
 | 
						|
 * parameters, and update *@idx for the next iteration.  The lower 32bit of
 | 
						|
 * *@idx contains index into type_a and the upper 32bit indexes the
 | 
						|
 * areas before each region in type_b.	For example, if type_b regions
 | 
						|
 * look like the following,
 | 
						|
 *
 | 
						|
 *	0:[0-16), 1:[32-48), 2:[128-130)
 | 
						|
 *
 | 
						|
 * The upper 32bit indexes the following regions.
 | 
						|
 *
 | 
						|
 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
 | 
						|
 *
 | 
						|
 * As both region arrays are sorted, the function advances the two indices
 | 
						|
 * in lockstep and returns each intersection.
 | 
						|
 */
 | 
						|
void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
 | 
						|
				      struct memblock_type *type_a,
 | 
						|
				      struct memblock_type *type_b,
 | 
						|
				      phys_addr_t *out_start,
 | 
						|
				      phys_addr_t *out_end, int *out_nid)
 | 
						|
{
 | 
						|
	int idx_a = *idx & 0xffffffff;
 | 
						|
	int idx_b = *idx >> 32;
 | 
						|
 | 
						|
	if (WARN_ONCE(nid == MAX_NUMNODES,
 | 
						|
	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 | 
						|
		nid = NUMA_NO_NODE;
 | 
						|
 | 
						|
	for (; idx_a < type_a->cnt; idx_a++) {
 | 
						|
		struct memblock_region *m = &type_a->regions[idx_a];
 | 
						|
 | 
						|
		phys_addr_t m_start = m->base;
 | 
						|
		phys_addr_t m_end = m->base + m->size;
 | 
						|
		int	    m_nid = memblock_get_region_node(m);
 | 
						|
 | 
						|
		/* only memory regions are associated with nodes, check it */
 | 
						|
		if (nid != NUMA_NO_NODE && nid != m_nid)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* skip hotpluggable memory regions if needed */
 | 
						|
		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* if we want mirror memory skip non-mirror memory regions */
 | 
						|
		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* skip nomap memory unless we were asked for it explicitly */
 | 
						|
		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (!type_b) {
 | 
						|
			if (out_start)
 | 
						|
				*out_start = m_start;
 | 
						|
			if (out_end)
 | 
						|
				*out_end = m_end;
 | 
						|
			if (out_nid)
 | 
						|
				*out_nid = m_nid;
 | 
						|
			idx_a++;
 | 
						|
			*idx = (u32)idx_a | (u64)idx_b << 32;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		/* scan areas before each reservation */
 | 
						|
		for (; idx_b < type_b->cnt + 1; idx_b++) {
 | 
						|
			struct memblock_region *r;
 | 
						|
			phys_addr_t r_start;
 | 
						|
			phys_addr_t r_end;
 | 
						|
 | 
						|
			r = &type_b->regions[idx_b];
 | 
						|
			r_start = idx_b ? r[-1].base + r[-1].size : 0;
 | 
						|
			r_end = idx_b < type_b->cnt ?
 | 
						|
				r->base : ULLONG_MAX;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * if idx_b advanced past idx_a,
 | 
						|
			 * break out to advance idx_a
 | 
						|
			 */
 | 
						|
			if (r_start >= m_end)
 | 
						|
				break;
 | 
						|
			/* if the two regions intersect, we're done */
 | 
						|
			if (m_start < r_end) {
 | 
						|
				if (out_start)
 | 
						|
					*out_start =
 | 
						|
						max(m_start, r_start);
 | 
						|
				if (out_end)
 | 
						|
					*out_end = min(m_end, r_end);
 | 
						|
				if (out_nid)
 | 
						|
					*out_nid = m_nid;
 | 
						|
				/*
 | 
						|
				 * The region which ends first is
 | 
						|
				 * advanced for the next iteration.
 | 
						|
				 */
 | 
						|
				if (m_end <= r_end)
 | 
						|
					idx_a++;
 | 
						|
				else
 | 
						|
					idx_b++;
 | 
						|
				*idx = (u32)idx_a | (u64)idx_b << 32;
 | 
						|
				return;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* signal end of iteration */
 | 
						|
	*idx = ULLONG_MAX;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
 | 
						|
 *
 | 
						|
 * Finds the next range from type_a which is not marked as unsuitable
 | 
						|
 * in type_b.
 | 
						|
 *
 | 
						|
 * @idx: pointer to u64 loop variable
 | 
						|
 * @nid: node selector, %NUMA_NO_NODE for all nodes
 | 
						|
 * @flags: pick from blocks based on memory attributes
 | 
						|
 * @type_a: pointer to memblock_type from where the range is taken
 | 
						|
 * @type_b: pointer to memblock_type which excludes memory from being taken
 | 
						|
 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 | 
						|
 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 | 
						|
 * @out_nid: ptr to int for nid of the range, can be %NULL
 | 
						|
 *
 | 
						|
 * Reverse of __next_mem_range().
 | 
						|
 */
 | 
						|
void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
 | 
						|
					  struct memblock_type *type_a,
 | 
						|
					  struct memblock_type *type_b,
 | 
						|
					  phys_addr_t *out_start,
 | 
						|
					  phys_addr_t *out_end, int *out_nid)
 | 
						|
{
 | 
						|
	int idx_a = *idx & 0xffffffff;
 | 
						|
	int idx_b = *idx >> 32;
 | 
						|
 | 
						|
	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 | 
						|
		nid = NUMA_NO_NODE;
 | 
						|
 | 
						|
	if (*idx == (u64)ULLONG_MAX) {
 | 
						|
		idx_a = type_a->cnt - 1;
 | 
						|
		if (type_b != NULL)
 | 
						|
			idx_b = type_b->cnt;
 | 
						|
		else
 | 
						|
			idx_b = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	for (; idx_a >= 0; idx_a--) {
 | 
						|
		struct memblock_region *m = &type_a->regions[idx_a];
 | 
						|
 | 
						|
		phys_addr_t m_start = m->base;
 | 
						|
		phys_addr_t m_end = m->base + m->size;
 | 
						|
		int m_nid = memblock_get_region_node(m);
 | 
						|
 | 
						|
		/* only memory regions are associated with nodes, check it */
 | 
						|
		if (nid != NUMA_NO_NODE && nid != m_nid)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* skip hotpluggable memory regions if needed */
 | 
						|
		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* if we want mirror memory skip non-mirror memory regions */
 | 
						|
		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* skip nomap memory unless we were asked for it explicitly */
 | 
						|
		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (!type_b) {
 | 
						|
			if (out_start)
 | 
						|
				*out_start = m_start;
 | 
						|
			if (out_end)
 | 
						|
				*out_end = m_end;
 | 
						|
			if (out_nid)
 | 
						|
				*out_nid = m_nid;
 | 
						|
			idx_a--;
 | 
						|
			*idx = (u32)idx_a | (u64)idx_b << 32;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		/* scan areas before each reservation */
 | 
						|
		for (; idx_b >= 0; idx_b--) {
 | 
						|
			struct memblock_region *r;
 | 
						|
			phys_addr_t r_start;
 | 
						|
			phys_addr_t r_end;
 | 
						|
 | 
						|
			r = &type_b->regions[idx_b];
 | 
						|
			r_start = idx_b ? r[-1].base + r[-1].size : 0;
 | 
						|
			r_end = idx_b < type_b->cnt ?
 | 
						|
				r->base : ULLONG_MAX;
 | 
						|
			/*
 | 
						|
			 * if idx_b advanced past idx_a,
 | 
						|
			 * break out to advance idx_a
 | 
						|
			 */
 | 
						|
 | 
						|
			if (r_end <= m_start)
 | 
						|
				break;
 | 
						|
			/* if the two regions intersect, we're done */
 | 
						|
			if (m_end > r_start) {
 | 
						|
				if (out_start)
 | 
						|
					*out_start = max(m_start, r_start);
 | 
						|
				if (out_end)
 | 
						|
					*out_end = min(m_end, r_end);
 | 
						|
				if (out_nid)
 | 
						|
					*out_nid = m_nid;
 | 
						|
				if (m_start >= r_start)
 | 
						|
					idx_a--;
 | 
						|
				else
 | 
						|
					idx_b--;
 | 
						|
				*idx = (u32)idx_a | (u64)idx_b << 32;
 | 
						|
				return;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/* signal end of iteration */
 | 
						|
	*idx = ULLONG_MAX;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | 
						|
/*
 | 
						|
 * Common iterator interface used to define for_each_mem_range().
 | 
						|
 */
 | 
						|
void __init_memblock __next_mem_pfn_range(int *idx, int nid,
 | 
						|
				unsigned long *out_start_pfn,
 | 
						|
				unsigned long *out_end_pfn, int *out_nid)
 | 
						|
{
 | 
						|
	struct memblock_type *type = &memblock.memory;
 | 
						|
	struct memblock_region *r;
 | 
						|
 | 
						|
	while (++*idx < type->cnt) {
 | 
						|
		r = &type->regions[*idx];
 | 
						|
 | 
						|
		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
 | 
						|
			continue;
 | 
						|
		if (nid == MAX_NUMNODES || nid == r->nid)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	if (*idx >= type->cnt) {
 | 
						|
		*idx = -1;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (out_start_pfn)
 | 
						|
		*out_start_pfn = PFN_UP(r->base);
 | 
						|
	if (out_end_pfn)
 | 
						|
		*out_end_pfn = PFN_DOWN(r->base + r->size);
 | 
						|
	if (out_nid)
 | 
						|
		*out_nid = r->nid;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long __init_memblock memblock_next_valid_pfn(unsigned long pfn,
 | 
						|
						      unsigned long max_pfn)
 | 
						|
{
 | 
						|
	struct memblock_type *type = &memblock.memory;
 | 
						|
	unsigned int right = type->cnt;
 | 
						|
	unsigned int mid, left = 0;
 | 
						|
	phys_addr_t addr = PFN_PHYS(pfn + 1);
 | 
						|
 | 
						|
	do {
 | 
						|
		mid = (right + left) / 2;
 | 
						|
 | 
						|
		if (addr < type->regions[mid].base)
 | 
						|
			right = mid;
 | 
						|
		else if (addr >= (type->regions[mid].base +
 | 
						|
				  type->regions[mid].size))
 | 
						|
			left = mid + 1;
 | 
						|
		else {
 | 
						|
			/* addr is within the region, so pfn + 1 is valid */
 | 
						|
			return min(pfn + 1, max_pfn);
 | 
						|
		}
 | 
						|
	} while (left < right);
 | 
						|
 | 
						|
	if (right == type->cnt)
 | 
						|
		return max_pfn;
 | 
						|
	else
 | 
						|
		return min(PHYS_PFN(type->regions[right].base), max_pfn);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * memblock_set_node - set node ID on memblock regions
 | 
						|
 * @base: base of area to set node ID for
 | 
						|
 * @size: size of area to set node ID for
 | 
						|
 * @type: memblock type to set node ID for
 | 
						|
 * @nid: node ID to set
 | 
						|
 *
 | 
						|
 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
 | 
						|
 * Regions which cross the area boundaries are split as necessary.
 | 
						|
 *
 | 
						|
 * RETURNS:
 | 
						|
 * 0 on success, -errno on failure.
 | 
						|
 */
 | 
						|
int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
 | 
						|
				      struct memblock_type *type, int nid)
 | 
						|
{
 | 
						|
	int start_rgn, end_rgn;
 | 
						|
	int i, ret;
 | 
						|
 | 
						|
	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	for (i = start_rgn; i < end_rgn; i++)
 | 
						|
		memblock_set_region_node(&type->regions[i], nid);
 | 
						|
 | 
						|
	memblock_merge_regions(type);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 | 
						|
 | 
						|
static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
 | 
						|
					phys_addr_t align, phys_addr_t start,
 | 
						|
					phys_addr_t end, int nid, ulong flags)
 | 
						|
{
 | 
						|
	phys_addr_t found;
 | 
						|
 | 
						|
	if (!align)
 | 
						|
		align = SMP_CACHE_BYTES;
 | 
						|
 | 
						|
	found = memblock_find_in_range_node(size, align, start, end, nid,
 | 
						|
					    flags);
 | 
						|
	if (found && !memblock_reserve(found, size)) {
 | 
						|
		/*
 | 
						|
		 * The min_count is set to 0 so that memblock allocations are
 | 
						|
		 * never reported as leaks.
 | 
						|
		 */
 | 
						|
		kmemleak_alloc_phys(found, size, 0, 0);
 | 
						|
		return found;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
 | 
						|
					phys_addr_t start, phys_addr_t end,
 | 
						|
					ulong flags)
 | 
						|
{
 | 
						|
	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
 | 
						|
					flags);
 | 
						|
}
 | 
						|
 | 
						|
static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
 | 
						|
					phys_addr_t align, phys_addr_t max_addr,
 | 
						|
					int nid, ulong flags)
 | 
						|
{
 | 
						|
	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
 | 
						|
}
 | 
						|
 | 
						|
phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
 | 
						|
{
 | 
						|
	ulong flags = choose_memblock_flags();
 | 
						|
	phys_addr_t ret;
 | 
						|
 | 
						|
again:
 | 
						|
	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
 | 
						|
				      nid, flags);
 | 
						|
 | 
						|
	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 | 
						|
		flags &= ~MEMBLOCK_MIRROR;
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
 | 
						|
{
 | 
						|
	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
 | 
						|
				       MEMBLOCK_NONE);
 | 
						|
}
 | 
						|
 | 
						|
phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
 | 
						|
{
 | 
						|
	phys_addr_t alloc;
 | 
						|
 | 
						|
	alloc = __memblock_alloc_base(size, align, max_addr);
 | 
						|
 | 
						|
	if (alloc == 0)
 | 
						|
		panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
 | 
						|
		      &size, &max_addr);
 | 
						|
 | 
						|
	return alloc;
 | 
						|
}
 | 
						|
 | 
						|
phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
 | 
						|
{
 | 
						|
	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
 | 
						|
}
 | 
						|
 | 
						|
phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
 | 
						|
{
 | 
						|
	phys_addr_t res = memblock_alloc_nid(size, align, nid);
 | 
						|
 | 
						|
	if (res)
 | 
						|
		return res;
 | 
						|
	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * memblock_virt_alloc_internal - allocate boot memory block
 | 
						|
 * @size: size of memory block to be allocated in bytes
 | 
						|
 * @align: alignment of the region and block's size
 | 
						|
 * @min_addr: the lower bound of the memory region to allocate (phys address)
 | 
						|
 * @max_addr: the upper bound of the memory region to allocate (phys address)
 | 
						|
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | 
						|
 *
 | 
						|
 * The @min_addr limit is dropped if it can not be satisfied and the allocation
 | 
						|
 * will fall back to memory below @min_addr. Also, allocation may fall back
 | 
						|
 * to any node in the system if the specified node can not
 | 
						|
 * hold the requested memory.
 | 
						|
 *
 | 
						|
 * The allocation is performed from memory region limited by
 | 
						|
 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
 | 
						|
 *
 | 
						|
 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
 | 
						|
 *
 | 
						|
 * The phys address of allocated boot memory block is converted to virtual and
 | 
						|
 * allocated memory is reset to 0.
 | 
						|
 *
 | 
						|
 * In addition, function sets the min_count to 0 using kmemleak_alloc for
 | 
						|
 * allocated boot memory block, so that it is never reported as leaks.
 | 
						|
 *
 | 
						|
 * RETURNS:
 | 
						|
 * Virtual address of allocated memory block on success, NULL on failure.
 | 
						|
 */
 | 
						|
static void * __init memblock_virt_alloc_internal(
 | 
						|
				phys_addr_t size, phys_addr_t align,
 | 
						|
				phys_addr_t min_addr, phys_addr_t max_addr,
 | 
						|
				int nid)
 | 
						|
{
 | 
						|
	phys_addr_t alloc;
 | 
						|
	void *ptr;
 | 
						|
	ulong flags = choose_memblock_flags();
 | 
						|
 | 
						|
	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 | 
						|
		nid = NUMA_NO_NODE;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Detect any accidental use of these APIs after slab is ready, as at
 | 
						|
	 * this moment memblock may be deinitialized already and its
 | 
						|
	 * internal data may be destroyed (after execution of free_all_bootmem)
 | 
						|
	 */
 | 
						|
	if (WARN_ON_ONCE(slab_is_available()))
 | 
						|
		return kzalloc_node(size, GFP_NOWAIT, nid);
 | 
						|
 | 
						|
	if (!align)
 | 
						|
		align = SMP_CACHE_BYTES;
 | 
						|
 | 
						|
	if (max_addr > memblock.current_limit)
 | 
						|
		max_addr = memblock.current_limit;
 | 
						|
again:
 | 
						|
	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
 | 
						|
					    nid, flags);
 | 
						|
	if (alloc && !memblock_reserve(alloc, size))
 | 
						|
		goto done;
 | 
						|
 | 
						|
	if (nid != NUMA_NO_NODE) {
 | 
						|
		alloc = memblock_find_in_range_node(size, align, min_addr,
 | 
						|
						    max_addr, NUMA_NO_NODE,
 | 
						|
						    flags);
 | 
						|
		if (alloc && !memblock_reserve(alloc, size))
 | 
						|
			goto done;
 | 
						|
	}
 | 
						|
 | 
						|
	if (min_addr) {
 | 
						|
		min_addr = 0;
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
 | 
						|
	if (flags & MEMBLOCK_MIRROR) {
 | 
						|
		flags &= ~MEMBLOCK_MIRROR;
 | 
						|
		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
 | 
						|
			&size);
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
done:
 | 
						|
	ptr = phys_to_virt(alloc);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The min_count is set to 0 so that bootmem allocated blocks
 | 
						|
	 * are never reported as leaks. This is because many of these blocks
 | 
						|
	 * are only referred via the physical address which is not
 | 
						|
	 * looked up by kmemleak.
 | 
						|
	 */
 | 
						|
	kmemleak_alloc(ptr, size, 0, 0);
 | 
						|
 | 
						|
	return ptr;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
 | 
						|
 * memory and without panicking
 | 
						|
 * @size: size of memory block to be allocated in bytes
 | 
						|
 * @align: alignment of the region and block's size
 | 
						|
 * @min_addr: the lower bound of the memory region from where the allocation
 | 
						|
 *	  is preferred (phys address)
 | 
						|
 * @max_addr: the upper bound of the memory region from where the allocation
 | 
						|
 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
 | 
						|
 *	      allocate only from memory limited by memblock.current_limit value
 | 
						|
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | 
						|
 *
 | 
						|
 * Public function, provides additional debug information (including caller
 | 
						|
 * info), if enabled. Does not zero allocated memory, does not panic if request
 | 
						|
 * cannot be satisfied.
 | 
						|
 *
 | 
						|
 * RETURNS:
 | 
						|
 * Virtual address of allocated memory block on success, NULL on failure.
 | 
						|
 */
 | 
						|
void * __init memblock_virt_alloc_try_nid_raw(
 | 
						|
			phys_addr_t size, phys_addr_t align,
 | 
						|
			phys_addr_t min_addr, phys_addr_t max_addr,
 | 
						|
			int nid)
 | 
						|
{
 | 
						|
	void *ptr;
 | 
						|
 | 
						|
	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
 | 
						|
		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
 | 
						|
		     (u64)max_addr, (void *)_RET_IP_);
 | 
						|
 | 
						|
	ptr = memblock_virt_alloc_internal(size, align,
 | 
						|
					   min_addr, max_addr, nid);
 | 
						|
#ifdef CONFIG_DEBUG_VM
 | 
						|
	if (ptr && size > 0)
 | 
						|
		memset(ptr, 0xff, size);
 | 
						|
#endif
 | 
						|
	return ptr;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
 | 
						|
 * @size: size of memory block to be allocated in bytes
 | 
						|
 * @align: alignment of the region and block's size
 | 
						|
 * @min_addr: the lower bound of the memory region from where the allocation
 | 
						|
 *	  is preferred (phys address)
 | 
						|
 * @max_addr: the upper bound of the memory region from where the allocation
 | 
						|
 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
 | 
						|
 *	      allocate only from memory limited by memblock.current_limit value
 | 
						|
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | 
						|
 *
 | 
						|
 * Public function, provides additional debug information (including caller
 | 
						|
 * info), if enabled. This function zeroes the allocated memory.
 | 
						|
 *
 | 
						|
 * RETURNS:
 | 
						|
 * Virtual address of allocated memory block on success, NULL on failure.
 | 
						|
 */
 | 
						|
void * __init memblock_virt_alloc_try_nid_nopanic(
 | 
						|
				phys_addr_t size, phys_addr_t align,
 | 
						|
				phys_addr_t min_addr, phys_addr_t max_addr,
 | 
						|
				int nid)
 | 
						|
{
 | 
						|
	void *ptr;
 | 
						|
 | 
						|
	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
 | 
						|
		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
 | 
						|
		     (u64)max_addr, (void *)_RET_IP_);
 | 
						|
 | 
						|
	ptr = memblock_virt_alloc_internal(size, align,
 | 
						|
					   min_addr, max_addr, nid);
 | 
						|
	if (ptr)
 | 
						|
		memset(ptr, 0, size);
 | 
						|
	return ptr;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
 | 
						|
 * @size: size of memory block to be allocated in bytes
 | 
						|
 * @align: alignment of the region and block's size
 | 
						|
 * @min_addr: the lower bound of the memory region from where the allocation
 | 
						|
 *	  is preferred (phys address)
 | 
						|
 * @max_addr: the upper bound of the memory region from where the allocation
 | 
						|
 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
 | 
						|
 *	      allocate only from memory limited by memblock.current_limit value
 | 
						|
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | 
						|
 *
 | 
						|
 * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
 | 
						|
 * which provides debug information (including caller info), if enabled,
 | 
						|
 * and panics if the request can not be satisfied.
 | 
						|
 *
 | 
						|
 * RETURNS:
 | 
						|
 * Virtual address of allocated memory block on success, NULL on failure.
 | 
						|
 */
 | 
						|
void * __init memblock_virt_alloc_try_nid(
 | 
						|
			phys_addr_t size, phys_addr_t align,
 | 
						|
			phys_addr_t min_addr, phys_addr_t max_addr,
 | 
						|
			int nid)
 | 
						|
{
 | 
						|
	void *ptr;
 | 
						|
 | 
						|
	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
 | 
						|
		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
 | 
						|
		     (u64)max_addr, (void *)_RET_IP_);
 | 
						|
	ptr = memblock_virt_alloc_internal(size, align,
 | 
						|
					   min_addr, max_addr, nid);
 | 
						|
	if (ptr) {
 | 
						|
		memset(ptr, 0, size);
 | 
						|
		return ptr;
 | 
						|
	}
 | 
						|
 | 
						|
	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
 | 
						|
	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
 | 
						|
	      (u64)max_addr);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __memblock_free_early - free boot memory block
 | 
						|
 * @base: phys starting address of the  boot memory block
 | 
						|
 * @size: size of the boot memory block in bytes
 | 
						|
 *
 | 
						|
 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
 | 
						|
 * The freeing memory will not be released to the buddy allocator.
 | 
						|
 */
 | 
						|
void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
 | 
						|
		     __func__, (u64)base, (u64)base + size - 1,
 | 
						|
		     (void *)_RET_IP_);
 | 
						|
	kmemleak_free_part_phys(base, size);
 | 
						|
	memblock_remove_range(&memblock.reserved, base, size);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * __memblock_free_late - free bootmem block pages directly to buddy allocator
 | 
						|
 * @addr: phys starting address of the  boot memory block
 | 
						|
 * @size: size of the boot memory block in bytes
 | 
						|
 *
 | 
						|
 * This is only useful when the bootmem allocator has already been torn
 | 
						|
 * down, but we are still initializing the system.  Pages are released directly
 | 
						|
 * to the buddy allocator, no bootmem metadata is updated because it is gone.
 | 
						|
 */
 | 
						|
void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	u64 cursor, end;
 | 
						|
 | 
						|
	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
 | 
						|
		     __func__, (u64)base, (u64)base + size - 1,
 | 
						|
		     (void *)_RET_IP_);
 | 
						|
	kmemleak_free_part_phys(base, size);
 | 
						|
	cursor = PFN_UP(base);
 | 
						|
	end = PFN_DOWN(base + size);
 | 
						|
 | 
						|
	for (; cursor < end; cursor++) {
 | 
						|
		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
 | 
						|
		totalram_pages++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Remaining API functions
 | 
						|
 */
 | 
						|
 | 
						|
phys_addr_t __init_memblock memblock_phys_mem_size(void)
 | 
						|
{
 | 
						|
	return memblock.memory.total_size;
 | 
						|
}
 | 
						|
 | 
						|
phys_addr_t __init_memblock memblock_reserved_size(void)
 | 
						|
{
 | 
						|
	return memblock.reserved.total_size;
 | 
						|
}
 | 
						|
 | 
						|
phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
 | 
						|
{
 | 
						|
	unsigned long pages = 0;
 | 
						|
	struct memblock_region *r;
 | 
						|
	unsigned long start_pfn, end_pfn;
 | 
						|
 | 
						|
	for_each_memblock(memory, r) {
 | 
						|
		start_pfn = memblock_region_memory_base_pfn(r);
 | 
						|
		end_pfn = memblock_region_memory_end_pfn(r);
 | 
						|
		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
 | 
						|
		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
 | 
						|
		pages += end_pfn - start_pfn;
 | 
						|
	}
 | 
						|
 | 
						|
	return PFN_PHYS(pages);
 | 
						|
}
 | 
						|
 | 
						|
/* lowest address */
 | 
						|
phys_addr_t __init_memblock memblock_start_of_DRAM(void)
 | 
						|
{
 | 
						|
	return memblock.memory.regions[0].base;
 | 
						|
}
 | 
						|
 | 
						|
phys_addr_t __init_memblock memblock_end_of_DRAM(void)
 | 
						|
{
 | 
						|
	int idx = memblock.memory.cnt - 1;
 | 
						|
 | 
						|
	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
 | 
						|
}
 | 
						|
 | 
						|
static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
 | 
						|
{
 | 
						|
	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
 | 
						|
	struct memblock_region *r;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * translate the memory @limit size into the max address within one of
 | 
						|
	 * the memory memblock regions, if the @limit exceeds the total size
 | 
						|
	 * of those regions, max_addr will keep original value ULLONG_MAX
 | 
						|
	 */
 | 
						|
	for_each_memblock(memory, r) {
 | 
						|
		if (limit <= r->size) {
 | 
						|
			max_addr = r->base + limit;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		limit -= r->size;
 | 
						|
	}
 | 
						|
 | 
						|
	return max_addr;
 | 
						|
}
 | 
						|
 | 
						|
void __init memblock_enforce_memory_limit(phys_addr_t limit)
 | 
						|
{
 | 
						|
	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
 | 
						|
 | 
						|
	if (!limit)
 | 
						|
		return;
 | 
						|
 | 
						|
	max_addr = __find_max_addr(limit);
 | 
						|
 | 
						|
	/* @limit exceeds the total size of the memory, do nothing */
 | 
						|
	if (max_addr == (phys_addr_t)ULLONG_MAX)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* truncate both memory and reserved regions */
 | 
						|
	memblock_remove_range(&memblock.memory, max_addr,
 | 
						|
			      (phys_addr_t)ULLONG_MAX);
 | 
						|
	memblock_remove_range(&memblock.reserved, max_addr,
 | 
						|
			      (phys_addr_t)ULLONG_MAX);
 | 
						|
}
 | 
						|
 | 
						|
void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	int start_rgn, end_rgn;
 | 
						|
	int i, ret;
 | 
						|
 | 
						|
	if (!size)
 | 
						|
		return;
 | 
						|
 | 
						|
	ret = memblock_isolate_range(&memblock.memory, base, size,
 | 
						|
						&start_rgn, &end_rgn);
 | 
						|
	if (ret)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* remove all the MAP regions */
 | 
						|
	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
 | 
						|
		if (!memblock_is_nomap(&memblock.memory.regions[i]))
 | 
						|
			memblock_remove_region(&memblock.memory, i);
 | 
						|
 | 
						|
	for (i = start_rgn - 1; i >= 0; i--)
 | 
						|
		if (!memblock_is_nomap(&memblock.memory.regions[i]))
 | 
						|
			memblock_remove_region(&memblock.memory, i);
 | 
						|
 | 
						|
	/* truncate the reserved regions */
 | 
						|
	memblock_remove_range(&memblock.reserved, 0, base);
 | 
						|
	memblock_remove_range(&memblock.reserved,
 | 
						|
			base + size, (phys_addr_t)ULLONG_MAX);
 | 
						|
}
 | 
						|
 | 
						|
void __init memblock_mem_limit_remove_map(phys_addr_t limit)
 | 
						|
{
 | 
						|
	phys_addr_t max_addr;
 | 
						|
 | 
						|
	if (!limit)
 | 
						|
		return;
 | 
						|
 | 
						|
	max_addr = __find_max_addr(limit);
 | 
						|
 | 
						|
	/* @limit exceeds the total size of the memory, do nothing */
 | 
						|
	if (max_addr == (phys_addr_t)ULLONG_MAX)
 | 
						|
		return;
 | 
						|
 | 
						|
	memblock_cap_memory_range(0, max_addr);
 | 
						|
}
 | 
						|
 | 
						|
static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
 | 
						|
{
 | 
						|
	unsigned int left = 0, right = type->cnt;
 | 
						|
 | 
						|
	do {
 | 
						|
		unsigned int mid = (right + left) / 2;
 | 
						|
 | 
						|
		if (addr < type->regions[mid].base)
 | 
						|
			right = mid;
 | 
						|
		else if (addr >= (type->regions[mid].base +
 | 
						|
				  type->regions[mid].size))
 | 
						|
			left = mid + 1;
 | 
						|
		else
 | 
						|
			return mid;
 | 
						|
	} while (left < right);
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
bool __init memblock_is_reserved(phys_addr_t addr)
 | 
						|
{
 | 
						|
	return memblock_search(&memblock.reserved, addr) != -1;
 | 
						|
}
 | 
						|
 | 
						|
bool __init_memblock memblock_is_memory(phys_addr_t addr)
 | 
						|
{
 | 
						|
	return memblock_search(&memblock.memory, addr) != -1;
 | 
						|
}
 | 
						|
 | 
						|
bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
 | 
						|
{
 | 
						|
	int i = memblock_search(&memblock.memory, addr);
 | 
						|
 | 
						|
	if (i == -1)
 | 
						|
		return false;
 | 
						|
	return !memblock_is_nomap(&memblock.memory.regions[i]);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | 
						|
int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
 | 
						|
			 unsigned long *start_pfn, unsigned long *end_pfn)
 | 
						|
{
 | 
						|
	struct memblock_type *type = &memblock.memory;
 | 
						|
	int mid = memblock_search(type, PFN_PHYS(pfn));
 | 
						|
 | 
						|
	if (mid == -1)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	*start_pfn = PFN_DOWN(type->regions[mid].base);
 | 
						|
	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
 | 
						|
 | 
						|
	return type->regions[mid].nid;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * memblock_is_region_memory - check if a region is a subset of memory
 | 
						|
 * @base: base of region to check
 | 
						|
 * @size: size of region to check
 | 
						|
 *
 | 
						|
 * Check if the region [@base, @base+@size) is a subset of a memory block.
 | 
						|
 *
 | 
						|
 * RETURNS:
 | 
						|
 * 0 if false, non-zero if true
 | 
						|
 */
 | 
						|
bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	int idx = memblock_search(&memblock.memory, base);
 | 
						|
	phys_addr_t end = base + memblock_cap_size(base, &size);
 | 
						|
 | 
						|
	if (idx == -1)
 | 
						|
		return false;
 | 
						|
	return (memblock.memory.regions[idx].base +
 | 
						|
		 memblock.memory.regions[idx].size) >= end;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * memblock_is_region_reserved - check if a region intersects reserved memory
 | 
						|
 * @base: base of region to check
 | 
						|
 * @size: size of region to check
 | 
						|
 *
 | 
						|
 * Check if the region [@base, @base+@size) intersects a reserved memory block.
 | 
						|
 *
 | 
						|
 * RETURNS:
 | 
						|
 * True if they intersect, false if not.
 | 
						|
 */
 | 
						|
bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	memblock_cap_size(base, &size);
 | 
						|
	return memblock_overlaps_region(&memblock.reserved, base, size);
 | 
						|
}
 | 
						|
 | 
						|
void __init_memblock memblock_trim_memory(phys_addr_t align)
 | 
						|
{
 | 
						|
	phys_addr_t start, end, orig_start, orig_end;
 | 
						|
	struct memblock_region *r;
 | 
						|
 | 
						|
	for_each_memblock(memory, r) {
 | 
						|
		orig_start = r->base;
 | 
						|
		orig_end = r->base + r->size;
 | 
						|
		start = round_up(orig_start, align);
 | 
						|
		end = round_down(orig_end, align);
 | 
						|
 | 
						|
		if (start == orig_start && end == orig_end)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (start < end) {
 | 
						|
			r->base = start;
 | 
						|
			r->size = end - start;
 | 
						|
		} else {
 | 
						|
			memblock_remove_region(&memblock.memory,
 | 
						|
					       r - memblock.memory.regions);
 | 
						|
			r--;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void __init_memblock memblock_set_current_limit(phys_addr_t limit)
 | 
						|
{
 | 
						|
	memblock.current_limit = limit;
 | 
						|
}
 | 
						|
 | 
						|
phys_addr_t __init_memblock memblock_get_current_limit(void)
 | 
						|
{
 | 
						|
	return memblock.current_limit;
 | 
						|
}
 | 
						|
 | 
						|
static void __init_memblock memblock_dump(struct memblock_type *type)
 | 
						|
{
 | 
						|
	phys_addr_t base, end, size;
 | 
						|
	unsigned long flags;
 | 
						|
	int idx;
 | 
						|
	struct memblock_region *rgn;
 | 
						|
 | 
						|
	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
 | 
						|
 | 
						|
	for_each_memblock_type(idx, type, rgn) {
 | 
						|
		char nid_buf[32] = "";
 | 
						|
 | 
						|
		base = rgn->base;
 | 
						|
		size = rgn->size;
 | 
						|
		end = base + size - 1;
 | 
						|
		flags = rgn->flags;
 | 
						|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | 
						|
		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
 | 
						|
			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
 | 
						|
				 memblock_get_region_node(rgn));
 | 
						|
#endif
 | 
						|
		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
 | 
						|
			type->name, idx, &base, &end, &size, nid_buf, flags);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
extern unsigned long __init_memblock
 | 
						|
memblock_reserved_memory_within(phys_addr_t start_addr, phys_addr_t end_addr)
 | 
						|
{
 | 
						|
	struct memblock_region *rgn;
 | 
						|
	unsigned long size = 0;
 | 
						|
	int idx;
 | 
						|
 | 
						|
	for_each_memblock_type(idx, (&memblock.reserved), rgn) {
 | 
						|
		phys_addr_t start, end;
 | 
						|
 | 
						|
		if (rgn->base + rgn->size < start_addr)
 | 
						|
			continue;
 | 
						|
		if (rgn->base > end_addr)
 | 
						|
			continue;
 | 
						|
 | 
						|
		start = rgn->base;
 | 
						|
		end = start + rgn->size;
 | 
						|
		size += end - start;
 | 
						|
	}
 | 
						|
 | 
						|
	return size;
 | 
						|
}
 | 
						|
 | 
						|
void __init_memblock __memblock_dump_all(void)
 | 
						|
{
 | 
						|
	pr_info("MEMBLOCK configuration:\n");
 | 
						|
	pr_info(" memory size = %pa reserved size = %pa\n",
 | 
						|
		&memblock.memory.total_size,
 | 
						|
		&memblock.reserved.total_size);
 | 
						|
 | 
						|
	memblock_dump(&memblock.memory);
 | 
						|
	memblock_dump(&memblock.reserved);
 | 
						|
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 | 
						|
	memblock_dump(&memblock.physmem);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void __init memblock_allow_resize(void)
 | 
						|
{
 | 
						|
	memblock_can_resize = 1;
 | 
						|
}
 | 
						|
 | 
						|
static int __init early_memblock(char *p)
 | 
						|
{
 | 
						|
	if (p && strstr(p, "debug"))
 | 
						|
		memblock_debug = 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_param("memblock", early_memblock);
 | 
						|
 | 
						|
#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
 | 
						|
 | 
						|
static int memblock_debug_show(struct seq_file *m, void *private)
 | 
						|
{
 | 
						|
	struct memblock_type *type = m->private;
 | 
						|
	struct memblock_region *reg;
 | 
						|
	int i;
 | 
						|
	phys_addr_t end;
 | 
						|
 | 
						|
	for (i = 0; i < type->cnt; i++) {
 | 
						|
		reg = &type->regions[i];
 | 
						|
		end = reg->base + reg->size - 1;
 | 
						|
 | 
						|
		seq_printf(m, "%4d: ", i);
 | 
						|
		seq_printf(m, "%pa..%pa\n", ®->base, &end);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int memblock_debug_open(struct inode *inode, struct file *file)
 | 
						|
{
 | 
						|
	return single_open(file, memblock_debug_show, inode->i_private);
 | 
						|
}
 | 
						|
 | 
						|
static const struct file_operations memblock_debug_fops = {
 | 
						|
	.open = memblock_debug_open,
 | 
						|
	.read = seq_read,
 | 
						|
	.llseek = seq_lseek,
 | 
						|
	.release = single_release,
 | 
						|
};
 | 
						|
 | 
						|
static int __init memblock_init_debugfs(void)
 | 
						|
{
 | 
						|
	struct dentry *root = debugfs_create_dir("memblock", NULL);
 | 
						|
	if (!root)
 | 
						|
		return -ENXIO;
 | 
						|
	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
 | 
						|
	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
 | 
						|
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 | 
						|
	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
 | 
						|
#endif
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
__initcall(memblock_init_debugfs);
 | 
						|
 | 
						|
#endif /* CONFIG_DEBUG_FS */
 |