mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 5636cf7d6d
			
		
	
	
		5636cf7d6d
		
	
	
	
	
		
			
			This is no longer used anywhere, remove all of it. Signed-off-by: Josef Bacik <jbacik@fb.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
		
			
				
	
	
		
			6001 lines
		
	
	
	
		
			159 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6001 lines
		
	
	
	
		
			159 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2008 Oracle.  All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/list_sort.h>
 | |
| #include <linux/iversion.h>
 | |
| #include "ctree.h"
 | |
| #include "tree-log.h"
 | |
| #include "disk-io.h"
 | |
| #include "locking.h"
 | |
| #include "print-tree.h"
 | |
| #include "backref.h"
 | |
| #include "compression.h"
 | |
| #include "qgroup.h"
 | |
| #include "inode-map.h"
 | |
| 
 | |
| /* magic values for the inode_only field in btrfs_log_inode:
 | |
|  *
 | |
|  * LOG_INODE_ALL means to log everything
 | |
|  * LOG_INODE_EXISTS means to log just enough to recreate the inode
 | |
|  * during log replay
 | |
|  */
 | |
| #define LOG_INODE_ALL 0
 | |
| #define LOG_INODE_EXISTS 1
 | |
| #define LOG_OTHER_INODE 2
 | |
| 
 | |
| /*
 | |
|  * directory trouble cases
 | |
|  *
 | |
|  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
 | |
|  * log, we must force a full commit before doing an fsync of the directory
 | |
|  * where the unlink was done.
 | |
|  * ---> record transid of last unlink/rename per directory
 | |
|  *
 | |
|  * mkdir foo/some_dir
 | |
|  * normal commit
 | |
|  * rename foo/some_dir foo2/some_dir
 | |
|  * mkdir foo/some_dir
 | |
|  * fsync foo/some_dir/some_file
 | |
|  *
 | |
|  * The fsync above will unlink the original some_dir without recording
 | |
|  * it in its new location (foo2).  After a crash, some_dir will be gone
 | |
|  * unless the fsync of some_file forces a full commit
 | |
|  *
 | |
|  * 2) we must log any new names for any file or dir that is in the fsync
 | |
|  * log. ---> check inode while renaming/linking.
 | |
|  *
 | |
|  * 2a) we must log any new names for any file or dir during rename
 | |
|  * when the directory they are being removed from was logged.
 | |
|  * ---> check inode and old parent dir during rename
 | |
|  *
 | |
|  *  2a is actually the more important variant.  With the extra logging
 | |
|  *  a crash might unlink the old name without recreating the new one
 | |
|  *
 | |
|  * 3) after a crash, we must go through any directories with a link count
 | |
|  * of zero and redo the rm -rf
 | |
|  *
 | |
|  * mkdir f1/foo
 | |
|  * normal commit
 | |
|  * rm -rf f1/foo
 | |
|  * fsync(f1)
 | |
|  *
 | |
|  * The directory f1 was fully removed from the FS, but fsync was never
 | |
|  * called on f1, only its parent dir.  After a crash the rm -rf must
 | |
|  * be replayed.  This must be able to recurse down the entire
 | |
|  * directory tree.  The inode link count fixup code takes care of the
 | |
|  * ugly details.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * stages for the tree walking.  The first
 | |
|  * stage (0) is to only pin down the blocks we find
 | |
|  * the second stage (1) is to make sure that all the inodes
 | |
|  * we find in the log are created in the subvolume.
 | |
|  *
 | |
|  * The last stage is to deal with directories and links and extents
 | |
|  * and all the other fun semantics
 | |
|  */
 | |
| #define LOG_WALK_PIN_ONLY 0
 | |
| #define LOG_WALK_REPLAY_INODES 1
 | |
| #define LOG_WALK_REPLAY_DIR_INDEX 2
 | |
| #define LOG_WALK_REPLAY_ALL 3
 | |
| 
 | |
| static int btrfs_log_inode(struct btrfs_trans_handle *trans,
 | |
| 			   struct btrfs_root *root, struct btrfs_inode *inode,
 | |
| 			   int inode_only,
 | |
| 			   const loff_t start,
 | |
| 			   const loff_t end,
 | |
| 			   struct btrfs_log_ctx *ctx);
 | |
| static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 | |
| 			     struct btrfs_root *root,
 | |
| 			     struct btrfs_path *path, u64 objectid);
 | |
| static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 | |
| 				       struct btrfs_root *root,
 | |
| 				       struct btrfs_root *log,
 | |
| 				       struct btrfs_path *path,
 | |
| 				       u64 dirid, int del_all);
 | |
| 
 | |
| /*
 | |
|  * tree logging is a special write ahead log used to make sure that
 | |
|  * fsyncs and O_SYNCs can happen without doing full tree commits.
 | |
|  *
 | |
|  * Full tree commits are expensive because they require commonly
 | |
|  * modified blocks to be recowed, creating many dirty pages in the
 | |
|  * extent tree an 4x-6x higher write load than ext3.
 | |
|  *
 | |
|  * Instead of doing a tree commit on every fsync, we use the
 | |
|  * key ranges and transaction ids to find items for a given file or directory
 | |
|  * that have changed in this transaction.  Those items are copied into
 | |
|  * a special tree (one per subvolume root), that tree is written to disk
 | |
|  * and then the fsync is considered complete.
 | |
|  *
 | |
|  * After a crash, items are copied out of the log-tree back into the
 | |
|  * subvolume tree.  Any file data extents found are recorded in the extent
 | |
|  * allocation tree, and the log-tree freed.
 | |
|  *
 | |
|  * The log tree is read three times, once to pin down all the extents it is
 | |
|  * using in ram and once, once to create all the inodes logged in the tree
 | |
|  * and once to do all the other items.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * start a sub transaction and setup the log tree
 | |
|  * this increments the log tree writer count to make the people
 | |
|  * syncing the tree wait for us to finish
 | |
|  */
 | |
| static int start_log_trans(struct btrfs_trans_handle *trans,
 | |
| 			   struct btrfs_root *root,
 | |
| 			   struct btrfs_log_ctx *ctx)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&root->log_mutex);
 | |
| 
 | |
| 	if (root->log_root) {
 | |
| 		if (btrfs_need_log_full_commit(fs_info, trans)) {
 | |
| 			ret = -EAGAIN;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (!root->log_start_pid) {
 | |
| 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 | |
| 			root->log_start_pid = current->pid;
 | |
| 		} else if (root->log_start_pid != current->pid) {
 | |
| 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 | |
| 		}
 | |
| 	} else {
 | |
| 		mutex_lock(&fs_info->tree_log_mutex);
 | |
| 		if (!fs_info->log_root_tree)
 | |
| 			ret = btrfs_init_log_root_tree(trans, fs_info);
 | |
| 		mutex_unlock(&fs_info->tree_log_mutex);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		ret = btrfs_add_log_tree(trans, root);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 | |
| 		root->log_start_pid = current->pid;
 | |
| 	}
 | |
| 
 | |
| 	atomic_inc(&root->log_batch);
 | |
| 	atomic_inc(&root->log_writers);
 | |
| 	if (ctx) {
 | |
| 		int index = root->log_transid % 2;
 | |
| 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
 | |
| 		ctx->log_transid = root->log_transid;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&root->log_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * returns 0 if there was a log transaction running and we were able
 | |
|  * to join, or returns -ENOENT if there were not transactions
 | |
|  * in progress
 | |
|  */
 | |
| static int join_running_log_trans(struct btrfs_root *root)
 | |
| {
 | |
| 	int ret = -ENOENT;
 | |
| 
 | |
| 	smp_mb();
 | |
| 	if (!root->log_root)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	mutex_lock(&root->log_mutex);
 | |
| 	if (root->log_root) {
 | |
| 		ret = 0;
 | |
| 		atomic_inc(&root->log_writers);
 | |
| 	}
 | |
| 	mutex_unlock(&root->log_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This either makes the current running log transaction wait
 | |
|  * until you call btrfs_end_log_trans() or it makes any future
 | |
|  * log transactions wait until you call btrfs_end_log_trans()
 | |
|  */
 | |
| int btrfs_pin_log_trans(struct btrfs_root *root)
 | |
| {
 | |
| 	int ret = -ENOENT;
 | |
| 
 | |
| 	mutex_lock(&root->log_mutex);
 | |
| 	atomic_inc(&root->log_writers);
 | |
| 	mutex_unlock(&root->log_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * indicate we're done making changes to the log tree
 | |
|  * and wake up anyone waiting to do a sync
 | |
|  */
 | |
| void btrfs_end_log_trans(struct btrfs_root *root)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&root->log_writers)) {
 | |
| 		/* atomic_dec_and_test implies a barrier */
 | |
| 		cond_wake_up_nomb(&root->log_writer_wait);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * the walk control struct is used to pass state down the chain when
 | |
|  * processing the log tree.  The stage field tells us which part
 | |
|  * of the log tree processing we are currently doing.  The others
 | |
|  * are state fields used for that specific part
 | |
|  */
 | |
| struct walk_control {
 | |
| 	/* should we free the extent on disk when done?  This is used
 | |
| 	 * at transaction commit time while freeing a log tree
 | |
| 	 */
 | |
| 	int free;
 | |
| 
 | |
| 	/* should we write out the extent buffer?  This is used
 | |
| 	 * while flushing the log tree to disk during a sync
 | |
| 	 */
 | |
| 	int write;
 | |
| 
 | |
| 	/* should we wait for the extent buffer io to finish?  Also used
 | |
| 	 * while flushing the log tree to disk for a sync
 | |
| 	 */
 | |
| 	int wait;
 | |
| 
 | |
| 	/* pin only walk, we record which extents on disk belong to the
 | |
| 	 * log trees
 | |
| 	 */
 | |
| 	int pin;
 | |
| 
 | |
| 	/* what stage of the replay code we're currently in */
 | |
| 	int stage;
 | |
| 
 | |
| 	/* the root we are currently replaying */
 | |
| 	struct btrfs_root *replay_dest;
 | |
| 
 | |
| 	/* the trans handle for the current replay */
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 
 | |
| 	/* the function that gets used to process blocks we find in the
 | |
| 	 * tree.  Note the extent_buffer might not be up to date when it is
 | |
| 	 * passed in, and it must be checked or read if you need the data
 | |
| 	 * inside it
 | |
| 	 */
 | |
| 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 | |
| 			    struct walk_control *wc, u64 gen, int level);
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * process_func used to pin down extents, write them or wait on them
 | |
|  */
 | |
| static int process_one_buffer(struct btrfs_root *log,
 | |
| 			      struct extent_buffer *eb,
 | |
| 			      struct walk_control *wc, u64 gen, int level)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = log->fs_info;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this fs is mixed then we need to be able to process the leaves to
 | |
| 	 * pin down any logged extents, so we have to read the block.
 | |
| 	 */
 | |
| 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 | |
| 		ret = btrfs_read_buffer(eb, gen, level, NULL);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (wc->pin)
 | |
| 		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
 | |
| 						      eb->len);
 | |
| 
 | |
| 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
 | |
| 		if (wc->pin && btrfs_header_level(eb) == 0)
 | |
| 			ret = btrfs_exclude_logged_extents(fs_info, eb);
 | |
| 		if (wc->write)
 | |
| 			btrfs_write_tree_block(eb);
 | |
| 		if (wc->wait)
 | |
| 			btrfs_wait_tree_block_writeback(eb);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 | |
|  * to the src data we are copying out.
 | |
|  *
 | |
|  * root is the tree we are copying into, and path is a scratch
 | |
|  * path for use in this function (it should be released on entry and
 | |
|  * will be released on exit).
 | |
|  *
 | |
|  * If the key is already in the destination tree the existing item is
 | |
|  * overwritten.  If the existing item isn't big enough, it is extended.
 | |
|  * If it is too large, it is truncated.
 | |
|  *
 | |
|  * If the key isn't in the destination yet, a new item is inserted.
 | |
|  */
 | |
| static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_root *root,
 | |
| 				   struct btrfs_path *path,
 | |
| 				   struct extent_buffer *eb, int slot,
 | |
| 				   struct btrfs_key *key)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	int ret;
 | |
| 	u32 item_size;
 | |
| 	u64 saved_i_size = 0;
 | |
| 	int save_old_i_size = 0;
 | |
| 	unsigned long src_ptr;
 | |
| 	unsigned long dst_ptr;
 | |
| 	int overwrite_root = 0;
 | |
| 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 | |
| 
 | |
| 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 | |
| 		overwrite_root = 1;
 | |
| 
 | |
| 	item_size = btrfs_item_size_nr(eb, slot);
 | |
| 	src_ptr = btrfs_item_ptr_offset(eb, slot);
 | |
| 
 | |
| 	/* look for the key in the destination tree */
 | |
| 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (ret == 0) {
 | |
| 		char *src_copy;
 | |
| 		char *dst_copy;
 | |
| 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 | |
| 						  path->slots[0]);
 | |
| 		if (dst_size != item_size)
 | |
| 			goto insert;
 | |
| 
 | |
| 		if (item_size == 0) {
 | |
| 			btrfs_release_path(path);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		dst_copy = kmalloc(item_size, GFP_NOFS);
 | |
| 		src_copy = kmalloc(item_size, GFP_NOFS);
 | |
| 		if (!dst_copy || !src_copy) {
 | |
| 			btrfs_release_path(path);
 | |
| 			kfree(dst_copy);
 | |
| 			kfree(src_copy);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 | |
| 
 | |
| 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 | |
| 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 | |
| 				   item_size);
 | |
| 		ret = memcmp(dst_copy, src_copy, item_size);
 | |
| 
 | |
| 		kfree(dst_copy);
 | |
| 		kfree(src_copy);
 | |
| 		/*
 | |
| 		 * they have the same contents, just return, this saves
 | |
| 		 * us from cowing blocks in the destination tree and doing
 | |
| 		 * extra writes that may not have been done by a previous
 | |
| 		 * sync
 | |
| 		 */
 | |
| 		if (ret == 0) {
 | |
| 			btrfs_release_path(path);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to load the old nbytes into the inode so when we
 | |
| 		 * replay the extents we've logged we get the right nbytes.
 | |
| 		 */
 | |
| 		if (inode_item) {
 | |
| 			struct btrfs_inode_item *item;
 | |
| 			u64 nbytes;
 | |
| 			u32 mode;
 | |
| 
 | |
| 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 					      struct btrfs_inode_item);
 | |
| 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 | |
| 			item = btrfs_item_ptr(eb, slot,
 | |
| 					      struct btrfs_inode_item);
 | |
| 			btrfs_set_inode_nbytes(eb, item, nbytes);
 | |
| 
 | |
| 			/*
 | |
| 			 * If this is a directory we need to reset the i_size to
 | |
| 			 * 0 so that we can set it up properly when replaying
 | |
| 			 * the rest of the items in this log.
 | |
| 			 */
 | |
| 			mode = btrfs_inode_mode(eb, item);
 | |
| 			if (S_ISDIR(mode))
 | |
| 				btrfs_set_inode_size(eb, item, 0);
 | |
| 		}
 | |
| 	} else if (inode_item) {
 | |
| 		struct btrfs_inode_item *item;
 | |
| 		u32 mode;
 | |
| 
 | |
| 		/*
 | |
| 		 * New inode, set nbytes to 0 so that the nbytes comes out
 | |
| 		 * properly when we replay the extents.
 | |
| 		 */
 | |
| 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 | |
| 		btrfs_set_inode_nbytes(eb, item, 0);
 | |
| 
 | |
| 		/*
 | |
| 		 * If this is a directory we need to reset the i_size to 0 so
 | |
| 		 * that we can set it up properly when replaying the rest of
 | |
| 		 * the items in this log.
 | |
| 		 */
 | |
| 		mode = btrfs_inode_mode(eb, item);
 | |
| 		if (S_ISDIR(mode))
 | |
| 			btrfs_set_inode_size(eb, item, 0);
 | |
| 	}
 | |
| insert:
 | |
| 	btrfs_release_path(path);
 | |
| 	/* try to insert the key into the destination tree */
 | |
| 	path->skip_release_on_error = 1;
 | |
| 	ret = btrfs_insert_empty_item(trans, root, path,
 | |
| 				      key, item_size);
 | |
| 	path->skip_release_on_error = 0;
 | |
| 
 | |
| 	/* make sure any existing item is the correct size */
 | |
| 	if (ret == -EEXIST || ret == -EOVERFLOW) {
 | |
| 		u32 found_size;
 | |
| 		found_size = btrfs_item_size_nr(path->nodes[0],
 | |
| 						path->slots[0]);
 | |
| 		if (found_size > item_size)
 | |
| 			btrfs_truncate_item(fs_info, path, item_size, 1);
 | |
| 		else if (found_size < item_size)
 | |
| 			btrfs_extend_item(fs_info, path,
 | |
| 					  item_size - found_size);
 | |
| 	} else if (ret) {
 | |
| 		return ret;
 | |
| 	}
 | |
| 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 | |
| 					path->slots[0]);
 | |
| 
 | |
| 	/* don't overwrite an existing inode if the generation number
 | |
| 	 * was logged as zero.  This is done when the tree logging code
 | |
| 	 * is just logging an inode to make sure it exists after recovery.
 | |
| 	 *
 | |
| 	 * Also, don't overwrite i_size on directories during replay.
 | |
| 	 * log replay inserts and removes directory items based on the
 | |
| 	 * state of the tree found in the subvolume, and i_size is modified
 | |
| 	 * as it goes
 | |
| 	 */
 | |
| 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 | |
| 		struct btrfs_inode_item *src_item;
 | |
| 		struct btrfs_inode_item *dst_item;
 | |
| 
 | |
| 		src_item = (struct btrfs_inode_item *)src_ptr;
 | |
| 		dst_item = (struct btrfs_inode_item *)dst_ptr;
 | |
| 
 | |
| 		if (btrfs_inode_generation(eb, src_item) == 0) {
 | |
| 			struct extent_buffer *dst_eb = path->nodes[0];
 | |
| 			const u64 ino_size = btrfs_inode_size(eb, src_item);
 | |
| 
 | |
| 			/*
 | |
| 			 * For regular files an ino_size == 0 is used only when
 | |
| 			 * logging that an inode exists, as part of a directory
 | |
| 			 * fsync, and the inode wasn't fsynced before. In this
 | |
| 			 * case don't set the size of the inode in the fs/subvol
 | |
| 			 * tree, otherwise we would be throwing valid data away.
 | |
| 			 */
 | |
| 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 | |
| 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 | |
| 			    ino_size != 0) {
 | |
| 				struct btrfs_map_token token;
 | |
| 
 | |
| 				btrfs_init_map_token(&token);
 | |
| 				btrfs_set_token_inode_size(dst_eb, dst_item,
 | |
| 							   ino_size, &token);
 | |
| 			}
 | |
| 			goto no_copy;
 | |
| 		}
 | |
| 
 | |
| 		if (overwrite_root &&
 | |
| 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 | |
| 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 | |
| 			save_old_i_size = 1;
 | |
| 			saved_i_size = btrfs_inode_size(path->nodes[0],
 | |
| 							dst_item);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 | |
| 			   src_ptr, item_size);
 | |
| 
 | |
| 	if (save_old_i_size) {
 | |
| 		struct btrfs_inode_item *dst_item;
 | |
| 		dst_item = (struct btrfs_inode_item *)dst_ptr;
 | |
| 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 | |
| 	}
 | |
| 
 | |
| 	/* make sure the generation is filled in */
 | |
| 	if (key->type == BTRFS_INODE_ITEM_KEY) {
 | |
| 		struct btrfs_inode_item *dst_item;
 | |
| 		dst_item = (struct btrfs_inode_item *)dst_ptr;
 | |
| 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 | |
| 			btrfs_set_inode_generation(path->nodes[0], dst_item,
 | |
| 						   trans->transid);
 | |
| 		}
 | |
| 	}
 | |
| no_copy:
 | |
| 	btrfs_mark_buffer_dirty(path->nodes[0]);
 | |
| 	btrfs_release_path(path);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * simple helper to read an inode off the disk from a given root
 | |
|  * This can only be called for subvolume roots and not for the log
 | |
|  */
 | |
| static noinline struct inode *read_one_inode(struct btrfs_root *root,
 | |
| 					     u64 objectid)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct inode *inode;
 | |
| 
 | |
| 	key.objectid = objectid;
 | |
| 	key.type = BTRFS_INODE_ITEM_KEY;
 | |
| 	key.offset = 0;
 | |
| 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 | |
| 	if (IS_ERR(inode)) {
 | |
| 		inode = NULL;
 | |
| 	} else if (is_bad_inode(inode)) {
 | |
| 		iput(inode);
 | |
| 		inode = NULL;
 | |
| 	}
 | |
| 	return inode;
 | |
| }
 | |
| 
 | |
| /* replays a single extent in 'eb' at 'slot' with 'key' into the
 | |
|  * subvolume 'root'.  path is released on entry and should be released
 | |
|  * on exit.
 | |
|  *
 | |
|  * extents in the log tree have not been allocated out of the extent
 | |
|  * tree yet.  So, this completes the allocation, taking a reference
 | |
|  * as required if the extent already exists or creating a new extent
 | |
|  * if it isn't in the extent allocation tree yet.
 | |
|  *
 | |
|  * The extent is inserted into the file, dropping any existing extents
 | |
|  * from the file that overlap the new one.
 | |
|  */
 | |
| static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 | |
| 				      struct btrfs_root *root,
 | |
| 				      struct btrfs_path *path,
 | |
| 				      struct extent_buffer *eb, int slot,
 | |
| 				      struct btrfs_key *key)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	int found_type;
 | |
| 	u64 extent_end;
 | |
| 	u64 start = key->offset;
 | |
| 	u64 nbytes = 0;
 | |
| 	struct btrfs_file_extent_item *item;
 | |
| 	struct inode *inode = NULL;
 | |
| 	unsigned long size;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 | |
| 	found_type = btrfs_file_extent_type(eb, item);
 | |
| 
 | |
| 	if (found_type == BTRFS_FILE_EXTENT_REG ||
 | |
| 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 | |
| 		nbytes = btrfs_file_extent_num_bytes(eb, item);
 | |
| 		extent_end = start + nbytes;
 | |
| 
 | |
| 		/*
 | |
| 		 * We don't add to the inodes nbytes if we are prealloc or a
 | |
| 		 * hole.
 | |
| 		 */
 | |
| 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 | |
| 			nbytes = 0;
 | |
| 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 | |
| 		size = btrfs_file_extent_inline_len(eb, slot, item);
 | |
| 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
 | |
| 		extent_end = ALIGN(start + size,
 | |
| 				   fs_info->sectorsize);
 | |
| 	} else {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	inode = read_one_inode(root, key->objectid);
 | |
| 	if (!inode) {
 | |
| 		ret = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * first check to see if we already have this extent in the
 | |
| 	 * file.  This must be done before the btrfs_drop_extents run
 | |
| 	 * so we don't try to drop this extent.
 | |
| 	 */
 | |
| 	ret = btrfs_lookup_file_extent(trans, root, path,
 | |
| 			btrfs_ino(BTRFS_I(inode)), start, 0);
 | |
| 
 | |
| 	if (ret == 0 &&
 | |
| 	    (found_type == BTRFS_FILE_EXTENT_REG ||
 | |
| 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 | |
| 		struct btrfs_file_extent_item cmp1;
 | |
| 		struct btrfs_file_extent_item cmp2;
 | |
| 		struct btrfs_file_extent_item *existing;
 | |
| 		struct extent_buffer *leaf;
 | |
| 
 | |
| 		leaf = path->nodes[0];
 | |
| 		existing = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					  struct btrfs_file_extent_item);
 | |
| 
 | |
| 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 | |
| 				   sizeof(cmp1));
 | |
| 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 | |
| 				   sizeof(cmp2));
 | |
| 
 | |
| 		/*
 | |
| 		 * we already have a pointer to this exact extent,
 | |
| 		 * we don't have to do anything
 | |
| 		 */
 | |
| 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 | |
| 			btrfs_release_path(path);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	/* drop any overlapping extents */
 | |
| 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (found_type == BTRFS_FILE_EXTENT_REG ||
 | |
| 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 | |
| 		u64 offset;
 | |
| 		unsigned long dest_offset;
 | |
| 		struct btrfs_key ins;
 | |
| 
 | |
| 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
 | |
| 		    btrfs_fs_incompat(fs_info, NO_HOLES))
 | |
| 			goto update_inode;
 | |
| 
 | |
| 		ret = btrfs_insert_empty_item(trans, root, path, key,
 | |
| 					      sizeof(*item));
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 | |
| 						    path->slots[0]);
 | |
| 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 | |
| 				(unsigned long)item,  sizeof(*item));
 | |
| 
 | |
| 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 | |
| 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 | |
| 		ins.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 		offset = key->offset - btrfs_file_extent_offset(eb, item);
 | |
| 
 | |
| 		/*
 | |
| 		 * Manually record dirty extent, as here we did a shallow
 | |
| 		 * file extent item copy and skip normal backref update,
 | |
| 		 * but modifying extent tree all by ourselves.
 | |
| 		 * So need to manually record dirty extent for qgroup,
 | |
| 		 * as the owner of the file extent changed from log tree
 | |
| 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
 | |
| 		 */
 | |
| 		ret = btrfs_qgroup_trace_extent(trans, fs_info,
 | |
| 				btrfs_file_extent_disk_bytenr(eb, item),
 | |
| 				btrfs_file_extent_disk_num_bytes(eb, item),
 | |
| 				GFP_NOFS);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (ins.objectid > 0) {
 | |
| 			u64 csum_start;
 | |
| 			u64 csum_end;
 | |
| 			LIST_HEAD(ordered_sums);
 | |
| 			/*
 | |
| 			 * is this extent already allocated in the extent
 | |
| 			 * allocation tree?  If so, just add a reference
 | |
| 			 */
 | |
| 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
 | |
| 						ins.offset);
 | |
| 			if (ret == 0) {
 | |
| 				ret = btrfs_inc_extent_ref(trans, root,
 | |
| 						ins.objectid, ins.offset,
 | |
| 						0, root->root_key.objectid,
 | |
| 						key->objectid, offset);
 | |
| 				if (ret)
 | |
| 					goto out;
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * insert the extent pointer in the extent
 | |
| 				 * allocation tree
 | |
| 				 */
 | |
| 				ret = btrfs_alloc_logged_file_extent(trans,
 | |
| 						fs_info,
 | |
| 						root->root_key.objectid,
 | |
| 						key->objectid, offset, &ins);
 | |
| 				if (ret)
 | |
| 					goto out;
 | |
| 			}
 | |
| 			btrfs_release_path(path);
 | |
| 
 | |
| 			if (btrfs_file_extent_compression(eb, item)) {
 | |
| 				csum_start = ins.objectid;
 | |
| 				csum_end = csum_start + ins.offset;
 | |
| 			} else {
 | |
| 				csum_start = ins.objectid +
 | |
| 					btrfs_file_extent_offset(eb, item);
 | |
| 				csum_end = csum_start +
 | |
| 					btrfs_file_extent_num_bytes(eb, item);
 | |
| 			}
 | |
| 
 | |
| 			ret = btrfs_lookup_csums_range(root->log_root,
 | |
| 						csum_start, csum_end - 1,
 | |
| 						&ordered_sums, 0);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 			/*
 | |
| 			 * Now delete all existing cums in the csum root that
 | |
| 			 * cover our range. We do this because we can have an
 | |
| 			 * extent that is completely referenced by one file
 | |
| 			 * extent item and partially referenced by another
 | |
| 			 * file extent item (like after using the clone or
 | |
| 			 * extent_same ioctls). In this case if we end up doing
 | |
| 			 * the replay of the one that partially references the
 | |
| 			 * extent first, and we do not do the csum deletion
 | |
| 			 * below, we can get 2 csum items in the csum tree that
 | |
| 			 * overlap each other. For example, imagine our log has
 | |
| 			 * the two following file extent items:
 | |
| 			 *
 | |
| 			 * key (257 EXTENT_DATA 409600)
 | |
| 			 *     extent data disk byte 12845056 nr 102400
 | |
| 			 *     extent data offset 20480 nr 20480 ram 102400
 | |
| 			 *
 | |
| 			 * key (257 EXTENT_DATA 819200)
 | |
| 			 *     extent data disk byte 12845056 nr 102400
 | |
| 			 *     extent data offset 0 nr 102400 ram 102400
 | |
| 			 *
 | |
| 			 * Where the second one fully references the 100K extent
 | |
| 			 * that starts at disk byte 12845056, and the log tree
 | |
| 			 * has a single csum item that covers the entire range
 | |
| 			 * of the extent:
 | |
| 			 *
 | |
| 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 | |
| 			 *
 | |
| 			 * After the first file extent item is replayed, the
 | |
| 			 * csum tree gets the following csum item:
 | |
| 			 *
 | |
| 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 | |
| 			 *
 | |
| 			 * Which covers the 20K sub-range starting at offset 20K
 | |
| 			 * of our extent. Now when we replay the second file
 | |
| 			 * extent item, if we do not delete existing csum items
 | |
| 			 * that cover any of its blocks, we end up getting two
 | |
| 			 * csum items in our csum tree that overlap each other:
 | |
| 			 *
 | |
| 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 | |
| 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 | |
| 			 *
 | |
| 			 * Which is a problem, because after this anyone trying
 | |
| 			 * to lookup up for the checksum of any block of our
 | |
| 			 * extent starting at an offset of 40K or higher, will
 | |
| 			 * end up looking at the second csum item only, which
 | |
| 			 * does not contain the checksum for any block starting
 | |
| 			 * at offset 40K or higher of our extent.
 | |
| 			 */
 | |
| 			while (!list_empty(&ordered_sums)) {
 | |
| 				struct btrfs_ordered_sum *sums;
 | |
| 				sums = list_entry(ordered_sums.next,
 | |
| 						struct btrfs_ordered_sum,
 | |
| 						list);
 | |
| 				if (!ret)
 | |
| 					ret = btrfs_del_csums(trans, fs_info,
 | |
| 							      sums->bytenr,
 | |
| 							      sums->len);
 | |
| 				if (!ret)
 | |
| 					ret = btrfs_csum_file_blocks(trans,
 | |
| 						fs_info->csum_root, sums);
 | |
| 				list_del(&sums->list);
 | |
| 				kfree(sums);
 | |
| 			}
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 		} else {
 | |
| 			btrfs_release_path(path);
 | |
| 		}
 | |
| 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 | |
| 		/* inline extents are easy, we just overwrite them */
 | |
| 		ret = overwrite_item(trans, root, path, eb, slot, key);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	inode_add_bytes(inode, nbytes);
 | |
| update_inode:
 | |
| 	ret = btrfs_update_inode(trans, root, inode);
 | |
| out:
 | |
| 	if (inode)
 | |
| 		iput(inode);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * when cleaning up conflicts between the directory names in the
 | |
|  * subvolume, directory names in the log and directory names in the
 | |
|  * inode back references, we may have to unlink inodes from directories.
 | |
|  *
 | |
|  * This is a helper function to do the unlink of a specific directory
 | |
|  * item
 | |
|  */
 | |
| static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 | |
| 				      struct btrfs_root *root,
 | |
| 				      struct btrfs_path *path,
 | |
| 				      struct btrfs_inode *dir,
 | |
| 				      struct btrfs_dir_item *di)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	char *name;
 | |
| 	int name_len;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key location;
 | |
| 	int ret;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 
 | |
| 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 | |
| 	name_len = btrfs_dir_name_len(leaf, di);
 | |
| 	name = kmalloc(name_len, GFP_NOFS);
 | |
| 	if (!name)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	inode = read_one_inode(root, location.objectid);
 | |
| 	if (!inode) {
 | |
| 		ret = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
 | |
| 			name_len);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	else
 | |
| 		ret = btrfs_run_delayed_items(trans);
 | |
| out:
 | |
| 	kfree(name);
 | |
| 	iput(inode);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to see if a given name and sequence number found
 | |
|  * in an inode back reference are already in a directory and correctly
 | |
|  * point to this inode
 | |
|  */
 | |
| static noinline int inode_in_dir(struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 u64 dirid, u64 objectid, u64 index,
 | |
| 				 const char *name, int name_len)
 | |
| {
 | |
| 	struct btrfs_dir_item *di;
 | |
| 	struct btrfs_key location;
 | |
| 	int match = 0;
 | |
| 
 | |
| 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 | |
| 					 index, name, name_len, 0);
 | |
| 	if (di && !IS_ERR(di)) {
 | |
| 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 | |
| 		if (location.objectid != objectid)
 | |
| 			goto out;
 | |
| 	} else
 | |
| 		goto out;
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 | |
| 	if (di && !IS_ERR(di)) {
 | |
| 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 | |
| 		if (location.objectid != objectid)
 | |
| 			goto out;
 | |
| 	} else
 | |
| 		goto out;
 | |
| 	match = 1;
 | |
| out:
 | |
| 	btrfs_release_path(path);
 | |
| 	return match;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to check a log tree for a named back reference in
 | |
|  * an inode.  This is used to decide if a back reference that is
 | |
|  * found in the subvolume conflicts with what we find in the log.
 | |
|  *
 | |
|  * inode backreferences may have multiple refs in a single item,
 | |
|  * during replay we process one reference at a time, and we don't
 | |
|  * want to delete valid links to a file from the subvolume if that
 | |
|  * link is also in the log.
 | |
|  */
 | |
| static noinline int backref_in_log(struct btrfs_root *log,
 | |
| 				   struct btrfs_key *key,
 | |
| 				   u64 ref_objectid,
 | |
| 				   const char *name, int namelen)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_inode_ref *ref;
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long ptr_end;
 | |
| 	unsigned long name_ptr;
 | |
| 	int found_name_len;
 | |
| 	int item_size;
 | |
| 	int ret;
 | |
| 	int match = 0;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 | |
| 	if (ret != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 | |
| 
 | |
| 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
 | |
| 		if (btrfs_find_name_in_ext_backref(path->nodes[0],
 | |
| 						   path->slots[0],
 | |
| 						   ref_objectid,
 | |
| 						   name, namelen, NULL))
 | |
| 			match = 1;
 | |
| 
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 | |
| 	ptr_end = ptr + item_size;
 | |
| 	while (ptr < ptr_end) {
 | |
| 		ref = (struct btrfs_inode_ref *)ptr;
 | |
| 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 | |
| 		if (found_name_len == namelen) {
 | |
| 			name_ptr = (unsigned long)(ref + 1);
 | |
| 			ret = memcmp_extent_buffer(path->nodes[0], name,
 | |
| 						   name_ptr, namelen);
 | |
| 			if (ret == 0) {
 | |
| 				match = 1;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		ptr = (unsigned long)(ref + 1) + found_name_len;
 | |
| 	}
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return match;
 | |
| }
 | |
| 
 | |
| static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
 | |
| 				  struct btrfs_root *root,
 | |
| 				  struct btrfs_path *path,
 | |
| 				  struct btrfs_root *log_root,
 | |
| 				  struct btrfs_inode *dir,
 | |
| 				  struct btrfs_inode *inode,
 | |
| 				  u64 inode_objectid, u64 parent_objectid,
 | |
| 				  u64 ref_index, char *name, int namelen,
 | |
| 				  int *search_done)
 | |
| {
 | |
| 	int ret;
 | |
| 	char *victim_name;
 | |
| 	int victim_name_len;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_dir_item *di;
 | |
| 	struct btrfs_key search_key;
 | |
| 	struct btrfs_inode_extref *extref;
 | |
| 
 | |
| again:
 | |
| 	/* Search old style refs */
 | |
| 	search_key.objectid = inode_objectid;
 | |
| 	search_key.type = BTRFS_INODE_REF_KEY;
 | |
| 	search_key.offset = parent_objectid;
 | |
| 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 | |
| 	if (ret == 0) {
 | |
| 		struct btrfs_inode_ref *victim_ref;
 | |
| 		unsigned long ptr;
 | |
| 		unsigned long ptr_end;
 | |
| 
 | |
| 		leaf = path->nodes[0];
 | |
| 
 | |
| 		/* are we trying to overwrite a back ref for the root directory
 | |
| 		 * if so, just jump out, we're done
 | |
| 		 */
 | |
| 		if (search_key.objectid == search_key.offset)
 | |
| 			return 1;
 | |
| 
 | |
| 		/* check all the names in this back reference to see
 | |
| 		 * if they are in the log.  if so, we allow them to stay
 | |
| 		 * otherwise they must be unlinked as a conflict
 | |
| 		 */
 | |
| 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
 | |
| 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
 | |
| 		while (ptr < ptr_end) {
 | |
| 			victim_ref = (struct btrfs_inode_ref *)ptr;
 | |
| 			victim_name_len = btrfs_inode_ref_name_len(leaf,
 | |
| 								   victim_ref);
 | |
| 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
 | |
| 			if (!victim_name)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			read_extent_buffer(leaf, victim_name,
 | |
| 					   (unsigned long)(victim_ref + 1),
 | |
| 					   victim_name_len);
 | |
| 
 | |
| 			if (!backref_in_log(log_root, &search_key,
 | |
| 					    parent_objectid,
 | |
| 					    victim_name,
 | |
| 					    victim_name_len)) {
 | |
| 				inc_nlink(&inode->vfs_inode);
 | |
| 				btrfs_release_path(path);
 | |
| 
 | |
| 				ret = btrfs_unlink_inode(trans, root, dir, inode,
 | |
| 						victim_name, victim_name_len);
 | |
| 				kfree(victim_name);
 | |
| 				if (ret)
 | |
| 					return ret;
 | |
| 				ret = btrfs_run_delayed_items(trans);
 | |
| 				if (ret)
 | |
| 					return ret;
 | |
| 				*search_done = 1;
 | |
| 				goto again;
 | |
| 			}
 | |
| 			kfree(victim_name);
 | |
| 
 | |
| 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * NOTE: we have searched root tree and checked the
 | |
| 		 * corresponding ref, it does not need to check again.
 | |
| 		 */
 | |
| 		*search_done = 1;
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	/* Same search but for extended refs */
 | |
| 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
 | |
| 					   inode_objectid, parent_objectid, 0,
 | |
| 					   0);
 | |
| 	if (!IS_ERR_OR_NULL(extref)) {
 | |
| 		u32 item_size;
 | |
| 		u32 cur_offset = 0;
 | |
| 		unsigned long base;
 | |
| 		struct inode *victim_parent;
 | |
| 
 | |
| 		leaf = path->nodes[0];
 | |
| 
 | |
| 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 | |
| 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
 | |
| 
 | |
| 		while (cur_offset < item_size) {
 | |
| 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
 | |
| 
 | |
| 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
 | |
| 
 | |
| 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
 | |
| 				goto next;
 | |
| 
 | |
| 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
 | |
| 			if (!victim_name)
 | |
| 				return -ENOMEM;
 | |
| 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
 | |
| 					   victim_name_len);
 | |
| 
 | |
| 			search_key.objectid = inode_objectid;
 | |
| 			search_key.type = BTRFS_INODE_EXTREF_KEY;
 | |
| 			search_key.offset = btrfs_extref_hash(parent_objectid,
 | |
| 							      victim_name,
 | |
| 							      victim_name_len);
 | |
| 			ret = 0;
 | |
| 			if (!backref_in_log(log_root, &search_key,
 | |
| 					    parent_objectid, victim_name,
 | |
| 					    victim_name_len)) {
 | |
| 				ret = -ENOENT;
 | |
| 				victim_parent = read_one_inode(root,
 | |
| 						parent_objectid);
 | |
| 				if (victim_parent) {
 | |
| 					inc_nlink(&inode->vfs_inode);
 | |
| 					btrfs_release_path(path);
 | |
| 
 | |
| 					ret = btrfs_unlink_inode(trans, root,
 | |
| 							BTRFS_I(victim_parent),
 | |
| 							inode,
 | |
| 							victim_name,
 | |
| 							victim_name_len);
 | |
| 					if (!ret)
 | |
| 						ret = btrfs_run_delayed_items(
 | |
| 								  trans);
 | |
| 				}
 | |
| 				iput(victim_parent);
 | |
| 				kfree(victim_name);
 | |
| 				if (ret)
 | |
| 					return ret;
 | |
| 				*search_done = 1;
 | |
| 				goto again;
 | |
| 			}
 | |
| 			kfree(victim_name);
 | |
| next:
 | |
| 			cur_offset += victim_name_len + sizeof(*extref);
 | |
| 		}
 | |
| 		*search_done = 1;
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	/* look for a conflicting sequence number */
 | |
| 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
 | |
| 					 ref_index, name, namelen, 0);
 | |
| 	if (di && !IS_ERR(di)) {
 | |
| 		ret = drop_one_dir_item(trans, root, path, dir, di);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	/* look for a conflicing name */
 | |
| 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
 | |
| 				   name, namelen, 0);
 | |
| 	if (di && !IS_ERR(di)) {
 | |
| 		ret = drop_one_dir_item(trans, root, path, dir, di);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
 | |
| 			     u32 *namelen, char **name, u64 *index,
 | |
| 			     u64 *parent_objectid)
 | |
| {
 | |
| 	struct btrfs_inode_extref *extref;
 | |
| 
 | |
| 	extref = (struct btrfs_inode_extref *)ref_ptr;
 | |
| 
 | |
| 	*namelen = btrfs_inode_extref_name_len(eb, extref);
 | |
| 	*name = kmalloc(*namelen, GFP_NOFS);
 | |
| 	if (*name == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
 | |
| 			   *namelen);
 | |
| 
 | |
| 	if (index)
 | |
| 		*index = btrfs_inode_extref_index(eb, extref);
 | |
| 	if (parent_objectid)
 | |
| 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
 | |
| 			  u32 *namelen, char **name, u64 *index)
 | |
| {
 | |
| 	struct btrfs_inode_ref *ref;
 | |
| 
 | |
| 	ref = (struct btrfs_inode_ref *)ref_ptr;
 | |
| 
 | |
| 	*namelen = btrfs_inode_ref_name_len(eb, ref);
 | |
| 	*name = kmalloc(*namelen, GFP_NOFS);
 | |
| 	if (*name == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
 | |
| 
 | |
| 	if (index)
 | |
| 		*index = btrfs_inode_ref_index(eb, ref);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Take an inode reference item from the log tree and iterate all names from the
 | |
|  * inode reference item in the subvolume tree with the same key (if it exists).
 | |
|  * For any name that is not in the inode reference item from the log tree, do a
 | |
|  * proper unlink of that name (that is, remove its entry from the inode
 | |
|  * reference item and both dir index keys).
 | |
|  */
 | |
| static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 struct btrfs_inode *inode,
 | |
| 				 struct extent_buffer *log_eb,
 | |
| 				 int log_slot,
 | |
| 				 struct btrfs_key *key)
 | |
| {
 | |
| 	int ret;
 | |
| 	unsigned long ref_ptr;
 | |
| 	unsigned long ref_end;
 | |
| 	struct extent_buffer *eb;
 | |
| 
 | |
| again:
 | |
| 	btrfs_release_path(path);
 | |
| 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 | |
| 	if (ret > 0) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	eb = path->nodes[0];
 | |
| 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
 | |
| 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
 | |
| 	while (ref_ptr < ref_end) {
 | |
| 		char *name = NULL;
 | |
| 		int namelen;
 | |
| 		u64 parent_id;
 | |
| 
 | |
| 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
 | |
| 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
 | |
| 						NULL, &parent_id);
 | |
| 		} else {
 | |
| 			parent_id = key->offset;
 | |
| 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
 | |
| 					     NULL);
 | |
| 		}
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (key->type == BTRFS_INODE_EXTREF_KEY)
 | |
| 			ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
 | |
| 							     parent_id, name,
 | |
| 							     namelen, NULL);
 | |
| 		else
 | |
| 			ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
 | |
| 							 namelen, NULL);
 | |
| 
 | |
| 		if (!ret) {
 | |
| 			struct inode *dir;
 | |
| 
 | |
| 			btrfs_release_path(path);
 | |
| 			dir = read_one_inode(root, parent_id);
 | |
| 			if (!dir) {
 | |
| 				ret = -ENOENT;
 | |
| 				kfree(name);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
 | |
| 						 inode, name, namelen);
 | |
| 			kfree(name);
 | |
| 			iput(dir);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 			goto again;
 | |
| 		}
 | |
| 
 | |
| 		kfree(name);
 | |
| 		ref_ptr += namelen;
 | |
| 		if (key->type == BTRFS_INODE_EXTREF_KEY)
 | |
| 			ref_ptr += sizeof(struct btrfs_inode_extref);
 | |
| 		else
 | |
| 			ref_ptr += sizeof(struct btrfs_inode_ref);
 | |
| 	}
 | |
| 	ret = 0;
 | |
|  out:
 | |
| 	btrfs_release_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * replay one inode back reference item found in the log tree.
 | |
|  * eb, slot and key refer to the buffer and key found in the log tree.
 | |
|  * root is the destination we are replaying into, and path is for temp
 | |
|  * use by this function.  (it should be released on return).
 | |
|  */
 | |
| static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
 | |
| 				  struct btrfs_root *root,
 | |
| 				  struct btrfs_root *log,
 | |
| 				  struct btrfs_path *path,
 | |
| 				  struct extent_buffer *eb, int slot,
 | |
| 				  struct btrfs_key *key)
 | |
| {
 | |
| 	struct inode *dir = NULL;
 | |
| 	struct inode *inode = NULL;
 | |
| 	unsigned long ref_ptr;
 | |
| 	unsigned long ref_end;
 | |
| 	char *name = NULL;
 | |
| 	int namelen;
 | |
| 	int ret;
 | |
| 	int search_done = 0;
 | |
| 	int log_ref_ver = 0;
 | |
| 	u64 parent_objectid;
 | |
| 	u64 inode_objectid;
 | |
| 	u64 ref_index = 0;
 | |
| 	int ref_struct_size;
 | |
| 
 | |
| 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
 | |
| 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
 | |
| 
 | |
| 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
 | |
| 		struct btrfs_inode_extref *r;
 | |
| 
 | |
| 		ref_struct_size = sizeof(struct btrfs_inode_extref);
 | |
| 		log_ref_ver = 1;
 | |
| 		r = (struct btrfs_inode_extref *)ref_ptr;
 | |
| 		parent_objectid = btrfs_inode_extref_parent(eb, r);
 | |
| 	} else {
 | |
| 		ref_struct_size = sizeof(struct btrfs_inode_ref);
 | |
| 		parent_objectid = key->offset;
 | |
| 	}
 | |
| 	inode_objectid = key->objectid;
 | |
| 
 | |
| 	/*
 | |
| 	 * it is possible that we didn't log all the parent directories
 | |
| 	 * for a given inode.  If we don't find the dir, just don't
 | |
| 	 * copy the back ref in.  The link count fixup code will take
 | |
| 	 * care of the rest
 | |
| 	 */
 | |
| 	dir = read_one_inode(root, parent_objectid);
 | |
| 	if (!dir) {
 | |
| 		ret = -ENOENT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	inode = read_one_inode(root, inode_objectid);
 | |
| 	if (!inode) {
 | |
| 		ret = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	while (ref_ptr < ref_end) {
 | |
| 		if (log_ref_ver) {
 | |
| 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
 | |
| 						&ref_index, &parent_objectid);
 | |
| 			/*
 | |
| 			 * parent object can change from one array
 | |
| 			 * item to another.
 | |
| 			 */
 | |
| 			if (!dir)
 | |
| 				dir = read_one_inode(root, parent_objectid);
 | |
| 			if (!dir) {
 | |
| 				ret = -ENOENT;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		} else {
 | |
| 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
 | |
| 					     &ref_index);
 | |
| 		}
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		/* if we already have a perfect match, we're done */
 | |
| 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
 | |
| 					btrfs_ino(BTRFS_I(inode)), ref_index,
 | |
| 					name, namelen)) {
 | |
| 			/*
 | |
| 			 * look for a conflicting back reference in the
 | |
| 			 * metadata. if we find one we have to unlink that name
 | |
| 			 * of the file before we add our new link.  Later on, we
 | |
| 			 * overwrite any existing back reference, and we don't
 | |
| 			 * want to create dangling pointers in the directory.
 | |
| 			 */
 | |
| 
 | |
| 			if (!search_done) {
 | |
| 				ret = __add_inode_ref(trans, root, path, log,
 | |
| 						      BTRFS_I(dir),
 | |
| 						      BTRFS_I(inode),
 | |
| 						      inode_objectid,
 | |
| 						      parent_objectid,
 | |
| 						      ref_index, name, namelen,
 | |
| 						      &search_done);
 | |
| 				if (ret) {
 | |
| 					if (ret == 1)
 | |
| 						ret = 0;
 | |
| 					goto out;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/* insert our name */
 | |
| 			ret = btrfs_add_link(trans, BTRFS_I(dir),
 | |
| 					BTRFS_I(inode),
 | |
| 					name, namelen, 0, ref_index);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 
 | |
| 			btrfs_update_inode(trans, root, inode);
 | |
| 		}
 | |
| 
 | |
| 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
 | |
| 		kfree(name);
 | |
| 		name = NULL;
 | |
| 		if (log_ref_ver) {
 | |
| 			iput(dir);
 | |
| 			dir = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Before we overwrite the inode reference item in the subvolume tree
 | |
| 	 * with the item from the log tree, we must unlink all names from the
 | |
| 	 * parent directory that are in the subvolume's tree inode reference
 | |
| 	 * item, otherwise we end up with an inconsistent subvolume tree where
 | |
| 	 * dir index entries exist for a name but there is no inode reference
 | |
| 	 * item with the same name.
 | |
| 	 */
 | |
| 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
 | |
| 				    key);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* finally write the back reference in the inode */
 | |
| 	ret = overwrite_item(trans, root, path, eb, slot, key);
 | |
| out:
 | |
| 	btrfs_release_path(path);
 | |
| 	kfree(name);
 | |
| 	iput(dir);
 | |
| 	iput(inode);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int insert_orphan_item(struct btrfs_trans_handle *trans,
 | |
| 			      struct btrfs_root *root, u64 ino)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_insert_orphan_item(trans, root, ino);
 | |
| 	if (ret == -EEXIST)
 | |
| 		ret = 0;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int count_inode_extrefs(struct btrfs_root *root,
 | |
| 		struct btrfs_inode *inode, struct btrfs_path *path)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int name_len;
 | |
| 	unsigned int nlink = 0;
 | |
| 	u32 item_size;
 | |
| 	u32 cur_offset = 0;
 | |
| 	u64 inode_objectid = btrfs_ino(inode);
 | |
| 	u64 offset = 0;
 | |
| 	unsigned long ptr;
 | |
| 	struct btrfs_inode_extref *extref;
 | |
| 	struct extent_buffer *leaf;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
 | |
| 					    &extref, &offset);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		leaf = path->nodes[0];
 | |
| 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 | |
| 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
 | |
| 		cur_offset = 0;
 | |
| 
 | |
| 		while (cur_offset < item_size) {
 | |
| 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
 | |
| 			name_len = btrfs_inode_extref_name_len(leaf, extref);
 | |
| 
 | |
| 			nlink++;
 | |
| 
 | |
| 			cur_offset += name_len + sizeof(*extref);
 | |
| 		}
 | |
| 
 | |
| 		offset++;
 | |
| 		btrfs_release_path(path);
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	if (ret < 0 && ret != -ENOENT)
 | |
| 		return ret;
 | |
| 	return nlink;
 | |
| }
 | |
| 
 | |
| static int count_inode_refs(struct btrfs_root *root,
 | |
| 			struct btrfs_inode *inode, struct btrfs_path *path)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	unsigned int nlink = 0;
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long ptr_end;
 | |
| 	int name_len;
 | |
| 	u64 ino = btrfs_ino(inode);
 | |
| 
 | |
| 	key.objectid = ino;
 | |
| 	key.type = BTRFS_INODE_REF_KEY;
 | |
| 	key.offset = (u64)-1;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 		if (ret > 0) {
 | |
| 			if (path->slots[0] == 0)
 | |
| 				break;
 | |
| 			path->slots[0]--;
 | |
| 		}
 | |
| process_slot:
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &key,
 | |
| 				      path->slots[0]);
 | |
| 		if (key.objectid != ino ||
 | |
| 		    key.type != BTRFS_INODE_REF_KEY)
 | |
| 			break;
 | |
| 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 | |
| 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
 | |
| 						   path->slots[0]);
 | |
| 		while (ptr < ptr_end) {
 | |
| 			struct btrfs_inode_ref *ref;
 | |
| 
 | |
| 			ref = (struct btrfs_inode_ref *)ptr;
 | |
| 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
 | |
| 							    ref);
 | |
| 			ptr = (unsigned long)(ref + 1) + name_len;
 | |
| 			nlink++;
 | |
| 		}
 | |
| 
 | |
| 		if (key.offset == 0)
 | |
| 			break;
 | |
| 		if (path->slots[0] > 0) {
 | |
| 			path->slots[0]--;
 | |
| 			goto process_slot;
 | |
| 		}
 | |
| 		key.offset--;
 | |
| 		btrfs_release_path(path);
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	return nlink;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There are a few corners where the link count of the file can't
 | |
|  * be properly maintained during replay.  So, instead of adding
 | |
|  * lots of complexity to the log code, we just scan the backrefs
 | |
|  * for any file that has been through replay.
 | |
|  *
 | |
|  * The scan will update the link count on the inode to reflect the
 | |
|  * number of back refs found.  If it goes down to zero, the iput
 | |
|  * will free the inode.
 | |
|  */
 | |
| static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
 | |
| 					   struct btrfs_root *root,
 | |
| 					   struct inode *inode)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	int ret;
 | |
| 	u64 nlink = 0;
 | |
| 	u64 ino = btrfs_ino(BTRFS_I(inode));
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = count_inode_refs(root, BTRFS_I(inode), path);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	nlink = ret;
 | |
| 
 | |
| 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	nlink += ret;
 | |
| 
 | |
| 	ret = 0;
 | |
| 
 | |
| 	if (nlink != inode->i_nlink) {
 | |
| 		set_nlink(inode, nlink);
 | |
| 		btrfs_update_inode(trans, root, inode);
 | |
| 	}
 | |
| 	BTRFS_I(inode)->index_cnt = (u64)-1;
 | |
| 
 | |
| 	if (inode->i_nlink == 0) {
 | |
| 		if (S_ISDIR(inode->i_mode)) {
 | |
| 			ret = replay_dir_deletes(trans, root, NULL, path,
 | |
| 						 ino, 1);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 		}
 | |
| 		ret = insert_orphan_item(trans, root, ino);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
 | |
| 					    struct btrfs_root *root,
 | |
| 					    struct btrfs_path *path)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	struct inode *inode;
 | |
| 
 | |
| 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
 | |
| 	key.type = BTRFS_ORPHAN_ITEM_KEY;
 | |
| 	key.offset = (u64)-1;
 | |
| 	while (1) {
 | |
| 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (ret == 1) {
 | |
| 			if (path->slots[0] == 0)
 | |
| 				break;
 | |
| 			path->slots[0]--;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | |
| 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
 | |
| 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
 | |
| 			break;
 | |
| 
 | |
| 		ret = btrfs_del_item(trans, root, path);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		btrfs_release_path(path);
 | |
| 		inode = read_one_inode(root, key.offset);
 | |
| 		if (!inode)
 | |
| 			return -EIO;
 | |
| 
 | |
| 		ret = fixup_inode_link_count(trans, root, inode);
 | |
| 		iput(inode);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		/*
 | |
| 		 * fixup on a directory may create new entries,
 | |
| 		 * make sure we always look for the highset possible
 | |
| 		 * offset
 | |
| 		 */
 | |
| 		key.offset = (u64)-1;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	btrfs_release_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * record a given inode in the fixup dir so we can check its link
 | |
|  * count when replay is done.  The link count is incremented here
 | |
|  * so the inode won't go away until we check it
 | |
|  */
 | |
| static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 | |
| 				      struct btrfs_root *root,
 | |
| 				      struct btrfs_path *path,
 | |
| 				      u64 objectid)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	int ret = 0;
 | |
| 	struct inode *inode;
 | |
| 
 | |
| 	inode = read_one_inode(root, objectid);
 | |
| 	if (!inode)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
 | |
| 	key.type = BTRFS_ORPHAN_ITEM_KEY;
 | |
| 	key.offset = objectid;
 | |
| 
 | |
| 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
 | |
| 
 | |
| 	btrfs_release_path(path);
 | |
| 	if (ret == 0) {
 | |
| 		if (!inode->i_nlink)
 | |
| 			set_nlink(inode, 1);
 | |
| 		else
 | |
| 			inc_nlink(inode);
 | |
| 		ret = btrfs_update_inode(trans, root, inode);
 | |
| 	} else if (ret == -EEXIST) {
 | |
| 		ret = 0;
 | |
| 	} else {
 | |
| 		BUG(); /* Logic Error */
 | |
| 	}
 | |
| 	iput(inode);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * when replaying the log for a directory, we only insert names
 | |
|  * for inodes that actually exist.  This means an fsync on a directory
 | |
|  * does not implicitly fsync all the new files in it
 | |
|  */
 | |
| static noinline int insert_one_name(struct btrfs_trans_handle *trans,
 | |
| 				    struct btrfs_root *root,
 | |
| 				    u64 dirid, u64 index,
 | |
| 				    char *name, int name_len,
 | |
| 				    struct btrfs_key *location)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	struct inode *dir;
 | |
| 	int ret;
 | |
| 
 | |
| 	inode = read_one_inode(root, location->objectid);
 | |
| 	if (!inode)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	dir = read_one_inode(root, dirid);
 | |
| 	if (!dir) {
 | |
| 		iput(inode);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
 | |
| 			name_len, 1, index);
 | |
| 
 | |
| 	/* FIXME, put inode into FIXUP list */
 | |
| 
 | |
| 	iput(inode);
 | |
| 	iput(dir);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if an inode reference exists in the log for the given name,
 | |
|  * inode and parent inode.
 | |
|  */
 | |
| static bool name_in_log_ref(struct btrfs_root *log_root,
 | |
| 			    const char *name, const int name_len,
 | |
| 			    const u64 dirid, const u64 ino)
 | |
| {
 | |
| 	struct btrfs_key search_key;
 | |
| 
 | |
| 	search_key.objectid = ino;
 | |
| 	search_key.type = BTRFS_INODE_REF_KEY;
 | |
| 	search_key.offset = dirid;
 | |
| 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
 | |
| 		return true;
 | |
| 
 | |
| 	search_key.type = BTRFS_INODE_EXTREF_KEY;
 | |
| 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
 | |
| 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * take a single entry in a log directory item and replay it into
 | |
|  * the subvolume.
 | |
|  *
 | |
|  * if a conflicting item exists in the subdirectory already,
 | |
|  * the inode it points to is unlinked and put into the link count
 | |
|  * fix up tree.
 | |
|  *
 | |
|  * If a name from the log points to a file or directory that does
 | |
|  * not exist in the FS, it is skipped.  fsyncs on directories
 | |
|  * do not force down inodes inside that directory, just changes to the
 | |
|  * names or unlinks in a directory.
 | |
|  *
 | |
|  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
 | |
|  * non-existing inode) and 1 if the name was replayed.
 | |
|  */
 | |
| static noinline int replay_one_name(struct btrfs_trans_handle *trans,
 | |
| 				    struct btrfs_root *root,
 | |
| 				    struct btrfs_path *path,
 | |
| 				    struct extent_buffer *eb,
 | |
| 				    struct btrfs_dir_item *di,
 | |
| 				    struct btrfs_key *key)
 | |
| {
 | |
| 	char *name;
 | |
| 	int name_len;
 | |
| 	struct btrfs_dir_item *dst_di;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct btrfs_key log_key;
 | |
| 	struct inode *dir;
 | |
| 	u8 log_type;
 | |
| 	int exists;
 | |
| 	int ret = 0;
 | |
| 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
 | |
| 	bool name_added = false;
 | |
| 
 | |
| 	dir = read_one_inode(root, key->objectid);
 | |
| 	if (!dir)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	name_len = btrfs_dir_name_len(eb, di);
 | |
| 	name = kmalloc(name_len, GFP_NOFS);
 | |
| 	if (!name) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	log_type = btrfs_dir_type(eb, di);
 | |
| 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
 | |
| 		   name_len);
 | |
| 
 | |
| 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
 | |
| 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
 | |
| 	if (exists == 0)
 | |
| 		exists = 1;
 | |
| 	else
 | |
| 		exists = 0;
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	if (key->type == BTRFS_DIR_ITEM_KEY) {
 | |
| 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
 | |
| 				       name, name_len, 1);
 | |
| 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
 | |
| 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
 | |
| 						     key->objectid,
 | |
| 						     key->offset, name,
 | |
| 						     name_len, 1);
 | |
| 	} else {
 | |
| 		/* Corruption */
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (IS_ERR_OR_NULL(dst_di)) {
 | |
| 		/* we need a sequence number to insert, so we only
 | |
| 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
 | |
| 		 */
 | |
| 		if (key->type != BTRFS_DIR_INDEX_KEY)
 | |
| 			goto out;
 | |
| 		goto insert;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
 | |
| 	/* the existing item matches the logged item */
 | |
| 	if (found_key.objectid == log_key.objectid &&
 | |
| 	    found_key.type == log_key.type &&
 | |
| 	    found_key.offset == log_key.offset &&
 | |
| 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
 | |
| 		update_size = false;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * don't drop the conflicting directory entry if the inode
 | |
| 	 * for the new entry doesn't exist
 | |
| 	 */
 | |
| 	if (!exists)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (key->type == BTRFS_DIR_INDEX_KEY)
 | |
| 		goto insert;
 | |
| out:
 | |
| 	btrfs_release_path(path);
 | |
| 	if (!ret && update_size) {
 | |
| 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
 | |
| 		ret = btrfs_update_inode(trans, root, dir);
 | |
| 	}
 | |
| 	kfree(name);
 | |
| 	iput(dir);
 | |
| 	if (!ret && name_added)
 | |
| 		ret = 1;
 | |
| 	return ret;
 | |
| 
 | |
| insert:
 | |
| 	if (name_in_log_ref(root->log_root, name, name_len,
 | |
| 			    key->objectid, log_key.objectid)) {
 | |
| 		/* The dentry will be added later. */
 | |
| 		ret = 0;
 | |
| 		update_size = false;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 	ret = insert_one_name(trans, root, key->objectid, key->offset,
 | |
| 			      name, name_len, &log_key);
 | |
| 	if (ret && ret != -ENOENT && ret != -EEXIST)
 | |
| 		goto out;
 | |
| 	if (!ret)
 | |
| 		name_added = true;
 | |
| 	update_size = false;
 | |
| 	ret = 0;
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find all the names in a directory item and reconcile them into
 | |
|  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
 | |
|  * one name in a directory item, but the same code gets used for
 | |
|  * both directory index types
 | |
|  */
 | |
| static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
 | |
| 					struct btrfs_root *root,
 | |
| 					struct btrfs_path *path,
 | |
| 					struct extent_buffer *eb, int slot,
 | |
| 					struct btrfs_key *key)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	u32 item_size = btrfs_item_size_nr(eb, slot);
 | |
| 	struct btrfs_dir_item *di;
 | |
| 	int name_len;
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long ptr_end;
 | |
| 	struct btrfs_path *fixup_path = NULL;
 | |
| 
 | |
| 	ptr = btrfs_item_ptr_offset(eb, slot);
 | |
| 	ptr_end = ptr + item_size;
 | |
| 	while (ptr < ptr_end) {
 | |
| 		di = (struct btrfs_dir_item *)ptr;
 | |
| 		name_len = btrfs_dir_name_len(eb, di);
 | |
| 		ret = replay_one_name(trans, root, path, eb, di, key);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 		ptr = (unsigned long)(di + 1);
 | |
| 		ptr += name_len;
 | |
| 
 | |
| 		/*
 | |
| 		 * If this entry refers to a non-directory (directories can not
 | |
| 		 * have a link count > 1) and it was added in the transaction
 | |
| 		 * that was not committed, make sure we fixup the link count of
 | |
| 		 * the inode it the entry points to. Otherwise something like
 | |
| 		 * the following would result in a directory pointing to an
 | |
| 		 * inode with a wrong link that does not account for this dir
 | |
| 		 * entry:
 | |
| 		 *
 | |
| 		 * mkdir testdir
 | |
| 		 * touch testdir/foo
 | |
| 		 * touch testdir/bar
 | |
| 		 * sync
 | |
| 		 *
 | |
| 		 * ln testdir/bar testdir/bar_link
 | |
| 		 * ln testdir/foo testdir/foo_link
 | |
| 		 * xfs_io -c "fsync" testdir/bar
 | |
| 		 *
 | |
| 		 * <power failure>
 | |
| 		 *
 | |
| 		 * mount fs, log replay happens
 | |
| 		 *
 | |
| 		 * File foo would remain with a link count of 1 when it has two
 | |
| 		 * entries pointing to it in the directory testdir. This would
 | |
| 		 * make it impossible to ever delete the parent directory has
 | |
| 		 * it would result in stale dentries that can never be deleted.
 | |
| 		 */
 | |
| 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
 | |
| 			struct btrfs_key di_key;
 | |
| 
 | |
| 			if (!fixup_path) {
 | |
| 				fixup_path = btrfs_alloc_path();
 | |
| 				if (!fixup_path) {
 | |
| 					ret = -ENOMEM;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
 | |
| 			ret = link_to_fixup_dir(trans, root, fixup_path,
 | |
| 						di_key.objectid);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 	btrfs_free_path(fixup_path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * directory replay has two parts.  There are the standard directory
 | |
|  * items in the log copied from the subvolume, and range items
 | |
|  * created in the log while the subvolume was logged.
 | |
|  *
 | |
|  * The range items tell us which parts of the key space the log
 | |
|  * is authoritative for.  During replay, if a key in the subvolume
 | |
|  * directory is in a logged range item, but not actually in the log
 | |
|  * that means it was deleted from the directory before the fsync
 | |
|  * and should be removed.
 | |
|  */
 | |
| static noinline int find_dir_range(struct btrfs_root *root,
 | |
| 				   struct btrfs_path *path,
 | |
| 				   u64 dirid, int key_type,
 | |
| 				   u64 *start_ret, u64 *end_ret)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	u64 found_end;
 | |
| 	struct btrfs_dir_log_item *item;
 | |
| 	int ret;
 | |
| 	int nritems;
 | |
| 
 | |
| 	if (*start_ret == (u64)-1)
 | |
| 		return 1;
 | |
| 
 | |
| 	key.objectid = dirid;
 | |
| 	key.type = key_type;
 | |
| 	key.offset = *start_ret;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	if (ret > 0) {
 | |
| 		if (path->slots[0] == 0)
 | |
| 			goto out;
 | |
| 		path->slots[0]--;
 | |
| 	}
 | |
| 	if (ret != 0)
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | |
| 
 | |
| 	if (key.type != key_type || key.objectid != dirid) {
 | |
| 		ret = 1;
 | |
| 		goto next;
 | |
| 	}
 | |
| 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 			      struct btrfs_dir_log_item);
 | |
| 	found_end = btrfs_dir_log_end(path->nodes[0], item);
 | |
| 
 | |
| 	if (*start_ret >= key.offset && *start_ret <= found_end) {
 | |
| 		ret = 0;
 | |
| 		*start_ret = key.offset;
 | |
| 		*end_ret = found_end;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ret = 1;
 | |
| next:
 | |
| 	/* check the next slot in the tree to see if it is a valid item */
 | |
| 	nritems = btrfs_header_nritems(path->nodes[0]);
 | |
| 	path->slots[0]++;
 | |
| 	if (path->slots[0] >= nritems) {
 | |
| 		ret = btrfs_next_leaf(root, path);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | |
| 
 | |
| 	if (key.type != key_type || key.objectid != dirid) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 			      struct btrfs_dir_log_item);
 | |
| 	found_end = btrfs_dir_log_end(path->nodes[0], item);
 | |
| 	*start_ret = key.offset;
 | |
| 	*end_ret = found_end;
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	btrfs_release_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this looks for a given directory item in the log.  If the directory
 | |
|  * item is not in the log, the item is removed and the inode it points
 | |
|  * to is unlinked
 | |
|  */
 | |
| static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
 | |
| 				      struct btrfs_root *root,
 | |
| 				      struct btrfs_root *log,
 | |
| 				      struct btrfs_path *path,
 | |
| 				      struct btrfs_path *log_path,
 | |
| 				      struct inode *dir,
 | |
| 				      struct btrfs_key *dir_key)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct extent_buffer *eb;
 | |
| 	int slot;
 | |
| 	u32 item_size;
 | |
| 	struct btrfs_dir_item *di;
 | |
| 	struct btrfs_dir_item *log_di;
 | |
| 	int name_len;
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long ptr_end;
 | |
| 	char *name;
 | |
| 	struct inode *inode;
 | |
| 	struct btrfs_key location;
 | |
| 
 | |
| again:
 | |
| 	eb = path->nodes[0];
 | |
| 	slot = path->slots[0];
 | |
| 	item_size = btrfs_item_size_nr(eb, slot);
 | |
| 	ptr = btrfs_item_ptr_offset(eb, slot);
 | |
| 	ptr_end = ptr + item_size;
 | |
| 	while (ptr < ptr_end) {
 | |
| 		di = (struct btrfs_dir_item *)ptr;
 | |
| 		name_len = btrfs_dir_name_len(eb, di);
 | |
| 		name = kmalloc(name_len, GFP_NOFS);
 | |
| 		if (!name) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
 | |
| 				  name_len);
 | |
| 		log_di = NULL;
 | |
| 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
 | |
| 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
 | |
| 						       dir_key->objectid,
 | |
| 						       name, name_len, 0);
 | |
| 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
 | |
| 			log_di = btrfs_lookup_dir_index_item(trans, log,
 | |
| 						     log_path,
 | |
| 						     dir_key->objectid,
 | |
| 						     dir_key->offset,
 | |
| 						     name, name_len, 0);
 | |
| 		}
 | |
| 		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
 | |
| 			btrfs_dir_item_key_to_cpu(eb, di, &location);
 | |
| 			btrfs_release_path(path);
 | |
| 			btrfs_release_path(log_path);
 | |
| 			inode = read_one_inode(root, location.objectid);
 | |
| 			if (!inode) {
 | |
| 				kfree(name);
 | |
| 				return -EIO;
 | |
| 			}
 | |
| 
 | |
| 			ret = link_to_fixup_dir(trans, root,
 | |
| 						path, location.objectid);
 | |
| 			if (ret) {
 | |
| 				kfree(name);
 | |
| 				iput(inode);
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			inc_nlink(inode);
 | |
| 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
 | |
| 					BTRFS_I(inode), name, name_len);
 | |
| 			if (!ret)
 | |
| 				ret = btrfs_run_delayed_items(trans);
 | |
| 			kfree(name);
 | |
| 			iput(inode);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 
 | |
| 			/* there might still be more names under this key
 | |
| 			 * check and repeat if required
 | |
| 			 */
 | |
| 			ret = btrfs_search_slot(NULL, root, dir_key, path,
 | |
| 						0, 0);
 | |
| 			if (ret == 0)
 | |
| 				goto again;
 | |
| 			ret = 0;
 | |
| 			goto out;
 | |
| 		} else if (IS_ERR(log_di)) {
 | |
| 			kfree(name);
 | |
| 			return PTR_ERR(log_di);
 | |
| 		}
 | |
| 		btrfs_release_path(log_path);
 | |
| 		kfree(name);
 | |
| 
 | |
| 		ptr = (unsigned long)(di + 1);
 | |
| 		ptr += name_len;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	btrfs_release_path(path);
 | |
| 	btrfs_release_path(log_path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
 | |
| 			      struct btrfs_root *root,
 | |
| 			      struct btrfs_root *log,
 | |
| 			      struct btrfs_path *path,
 | |
| 			      const u64 ino)
 | |
| {
 | |
| 	struct btrfs_key search_key;
 | |
| 	struct btrfs_path *log_path;
 | |
| 	int i;
 | |
| 	int nritems;
 | |
| 	int ret;
 | |
| 
 | |
| 	log_path = btrfs_alloc_path();
 | |
| 	if (!log_path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	search_key.objectid = ino;
 | |
| 	search_key.type = BTRFS_XATTR_ITEM_KEY;
 | |
| 	search_key.offset = 0;
 | |
| again:
 | |
| 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| process_leaf:
 | |
| 	nritems = btrfs_header_nritems(path->nodes[0]);
 | |
| 	for (i = path->slots[0]; i < nritems; i++) {
 | |
| 		struct btrfs_key key;
 | |
| 		struct btrfs_dir_item *di;
 | |
| 		struct btrfs_dir_item *log_di;
 | |
| 		u32 total_size;
 | |
| 		u32 cur;
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
 | |
| 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
 | |
| 			ret = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
 | |
| 		total_size = btrfs_item_size_nr(path->nodes[0], i);
 | |
| 		cur = 0;
 | |
| 		while (cur < total_size) {
 | |
| 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
 | |
| 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
 | |
| 			u32 this_len = sizeof(*di) + name_len + data_len;
 | |
| 			char *name;
 | |
| 
 | |
| 			name = kmalloc(name_len, GFP_NOFS);
 | |
| 			if (!name) {
 | |
| 				ret = -ENOMEM;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			read_extent_buffer(path->nodes[0], name,
 | |
| 					   (unsigned long)(di + 1), name_len);
 | |
| 
 | |
| 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
 | |
| 						    name, name_len, 0);
 | |
| 			btrfs_release_path(log_path);
 | |
| 			if (!log_di) {
 | |
| 				/* Doesn't exist in log tree, so delete it. */
 | |
| 				btrfs_release_path(path);
 | |
| 				di = btrfs_lookup_xattr(trans, root, path, ino,
 | |
| 							name, name_len, -1);
 | |
| 				kfree(name);
 | |
| 				if (IS_ERR(di)) {
 | |
| 					ret = PTR_ERR(di);
 | |
| 					goto out;
 | |
| 				}
 | |
| 				ASSERT(di);
 | |
| 				ret = btrfs_delete_one_dir_name(trans, root,
 | |
| 								path, di);
 | |
| 				if (ret)
 | |
| 					goto out;
 | |
| 				btrfs_release_path(path);
 | |
| 				search_key = key;
 | |
| 				goto again;
 | |
| 			}
 | |
| 			kfree(name);
 | |
| 			if (IS_ERR(log_di)) {
 | |
| 				ret = PTR_ERR(log_di);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			cur += this_len;
 | |
| 			di = (struct btrfs_dir_item *)((char *)di + this_len);
 | |
| 		}
 | |
| 	}
 | |
| 	ret = btrfs_next_leaf(root, path);
 | |
| 	if (ret > 0)
 | |
| 		ret = 0;
 | |
| 	else if (ret == 0)
 | |
| 		goto process_leaf;
 | |
| out:
 | |
| 	btrfs_free_path(log_path);
 | |
| 	btrfs_release_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * deletion replay happens before we copy any new directory items
 | |
|  * out of the log or out of backreferences from inodes.  It
 | |
|  * scans the log to find ranges of keys that log is authoritative for,
 | |
|  * and then scans the directory to find items in those ranges that are
 | |
|  * not present in the log.
 | |
|  *
 | |
|  * Anything we don't find in the log is unlinked and removed from the
 | |
|  * directory.
 | |
|  */
 | |
| static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 | |
| 				       struct btrfs_root *root,
 | |
| 				       struct btrfs_root *log,
 | |
| 				       struct btrfs_path *path,
 | |
| 				       u64 dirid, int del_all)
 | |
| {
 | |
| 	u64 range_start;
 | |
| 	u64 range_end;
 | |
| 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
 | |
| 	int ret = 0;
 | |
| 	struct btrfs_key dir_key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct btrfs_path *log_path;
 | |
| 	struct inode *dir;
 | |
| 
 | |
| 	dir_key.objectid = dirid;
 | |
| 	dir_key.type = BTRFS_DIR_ITEM_KEY;
 | |
| 	log_path = btrfs_alloc_path();
 | |
| 	if (!log_path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	dir = read_one_inode(root, dirid);
 | |
| 	/* it isn't an error if the inode isn't there, that can happen
 | |
| 	 * because we replay the deletes before we copy in the inode item
 | |
| 	 * from the log
 | |
| 	 */
 | |
| 	if (!dir) {
 | |
| 		btrfs_free_path(log_path);
 | |
| 		return 0;
 | |
| 	}
 | |
| again:
 | |
| 	range_start = 0;
 | |
| 	range_end = 0;
 | |
| 	while (1) {
 | |
| 		if (del_all)
 | |
| 			range_end = (u64)-1;
 | |
| 		else {
 | |
| 			ret = find_dir_range(log, path, dirid, key_type,
 | |
| 					     &range_start, &range_end);
 | |
| 			if (ret != 0)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		dir_key.offset = range_start;
 | |
| 		while (1) {
 | |
| 			int nritems;
 | |
| 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
 | |
| 						0, 0);
 | |
| 			if (ret < 0)
 | |
| 				goto out;
 | |
| 
 | |
| 			nritems = btrfs_header_nritems(path->nodes[0]);
 | |
| 			if (path->slots[0] >= nritems) {
 | |
| 				ret = btrfs_next_leaf(root, path);
 | |
| 				if (ret == 1)
 | |
| 					break;
 | |
| 				else if (ret < 0)
 | |
| 					goto out;
 | |
| 			}
 | |
| 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 | |
| 					      path->slots[0]);
 | |
| 			if (found_key.objectid != dirid ||
 | |
| 			    found_key.type != dir_key.type)
 | |
| 				goto next_type;
 | |
| 
 | |
| 			if (found_key.offset > range_end)
 | |
| 				break;
 | |
| 
 | |
| 			ret = check_item_in_log(trans, root, log, path,
 | |
| 						log_path, dir,
 | |
| 						&found_key);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 			if (found_key.offset == (u64)-1)
 | |
| 				break;
 | |
| 			dir_key.offset = found_key.offset + 1;
 | |
| 		}
 | |
| 		btrfs_release_path(path);
 | |
| 		if (range_end == (u64)-1)
 | |
| 			break;
 | |
| 		range_start = range_end + 1;
 | |
| 	}
 | |
| 
 | |
| next_type:
 | |
| 	ret = 0;
 | |
| 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
 | |
| 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
 | |
| 		dir_key.type = BTRFS_DIR_INDEX_KEY;
 | |
| 		btrfs_release_path(path);
 | |
| 		goto again;
 | |
| 	}
 | |
| out:
 | |
| 	btrfs_release_path(path);
 | |
| 	btrfs_free_path(log_path);
 | |
| 	iput(dir);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the process_func used to replay items from the log tree.  This
 | |
|  * gets called in two different stages.  The first stage just looks
 | |
|  * for inodes and makes sure they are all copied into the subvolume.
 | |
|  *
 | |
|  * The second stage copies all the other item types from the log into
 | |
|  * the subvolume.  The two stage approach is slower, but gets rid of
 | |
|  * lots of complexity around inodes referencing other inodes that exist
 | |
|  * only in the log (references come from either directory items or inode
 | |
|  * back refs).
 | |
|  */
 | |
| static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
 | |
| 			     struct walk_control *wc, u64 gen, int level)
 | |
| {
 | |
| 	int nritems;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_root *root = wc->replay_dest;
 | |
| 	struct btrfs_key key;
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_read_buffer(eb, gen, level, NULL);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	level = btrfs_header_level(eb);
 | |
| 
 | |
| 	if (level != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	nritems = btrfs_header_nritems(eb);
 | |
| 	for (i = 0; i < nritems; i++) {
 | |
| 		btrfs_item_key_to_cpu(eb, &key, i);
 | |
| 
 | |
| 		/* inode keys are done during the first stage */
 | |
| 		if (key.type == BTRFS_INODE_ITEM_KEY &&
 | |
| 		    wc->stage == LOG_WALK_REPLAY_INODES) {
 | |
| 			struct btrfs_inode_item *inode_item;
 | |
| 			u32 mode;
 | |
| 
 | |
| 			inode_item = btrfs_item_ptr(eb, i,
 | |
| 					    struct btrfs_inode_item);
 | |
| 			ret = replay_xattr_deletes(wc->trans, root, log,
 | |
| 						   path, key.objectid);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 			mode = btrfs_inode_mode(eb, inode_item);
 | |
| 			if (S_ISDIR(mode)) {
 | |
| 				ret = replay_dir_deletes(wc->trans,
 | |
| 					 root, log, path, key.objectid, 0);
 | |
| 				if (ret)
 | |
| 					break;
 | |
| 			}
 | |
| 			ret = overwrite_item(wc->trans, root, path,
 | |
| 					     eb, i, &key);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 
 | |
| 			/*
 | |
| 			 * Before replaying extents, truncate the inode to its
 | |
| 			 * size. We need to do it now and not after log replay
 | |
| 			 * because before an fsync we can have prealloc extents
 | |
| 			 * added beyond the inode's i_size. If we did it after,
 | |
| 			 * through orphan cleanup for example, we would drop
 | |
| 			 * those prealloc extents just after replaying them.
 | |
| 			 */
 | |
| 			if (S_ISREG(mode)) {
 | |
| 				struct inode *inode;
 | |
| 				u64 from;
 | |
| 
 | |
| 				inode = read_one_inode(root, key.objectid);
 | |
| 				if (!inode) {
 | |
| 					ret = -EIO;
 | |
| 					break;
 | |
| 				}
 | |
| 				from = ALIGN(i_size_read(inode),
 | |
| 					     root->fs_info->sectorsize);
 | |
| 				ret = btrfs_drop_extents(wc->trans, root, inode,
 | |
| 							 from, (u64)-1, 1);
 | |
| 				/*
 | |
| 				 * If the nlink count is zero here, the iput
 | |
| 				 * will free the inode.  We bump it to make
 | |
| 				 * sure it doesn't get freed until the link
 | |
| 				 * count fixup is done.
 | |
| 				 */
 | |
| 				if (!ret) {
 | |
| 					if (inode->i_nlink == 0)
 | |
| 						inc_nlink(inode);
 | |
| 					/* Update link count and nbytes. */
 | |
| 					ret = btrfs_update_inode(wc->trans,
 | |
| 								 root, inode);
 | |
| 				}
 | |
| 				iput(inode);
 | |
| 				if (ret)
 | |
| 					break;
 | |
| 			}
 | |
| 
 | |
| 			ret = link_to_fixup_dir(wc->trans, root,
 | |
| 						path, key.objectid);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (key.type == BTRFS_DIR_INDEX_KEY &&
 | |
| 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
 | |
| 			ret = replay_one_dir_item(wc->trans, root, path,
 | |
| 						  eb, i, &key);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (wc->stage < LOG_WALK_REPLAY_ALL)
 | |
| 			continue;
 | |
| 
 | |
| 		/* these keys are simply copied */
 | |
| 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
 | |
| 			ret = overwrite_item(wc->trans, root, path,
 | |
| 					     eb, i, &key);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		} else if (key.type == BTRFS_INODE_REF_KEY ||
 | |
| 			   key.type == BTRFS_INODE_EXTREF_KEY) {
 | |
| 			ret = add_inode_ref(wc->trans, root, log, path,
 | |
| 					    eb, i, &key);
 | |
| 			if (ret && ret != -ENOENT)
 | |
| 				break;
 | |
| 			ret = 0;
 | |
| 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
 | |
| 			ret = replay_one_extent(wc->trans, root, path,
 | |
| 						eb, i, &key);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
 | |
| 			ret = replay_one_dir_item(wc->trans, root, path,
 | |
| 						  eb, i, &key);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_root *root,
 | |
| 				   struct btrfs_path *path, int *level,
 | |
| 				   struct walk_control *wc)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	u64 root_owner;
 | |
| 	u64 bytenr;
 | |
| 	u64 ptr_gen;
 | |
| 	struct extent_buffer *next;
 | |
| 	struct extent_buffer *cur;
 | |
| 	struct extent_buffer *parent;
 | |
| 	u32 blocksize;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	WARN_ON(*level < 0);
 | |
| 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
 | |
| 
 | |
| 	while (*level > 0) {
 | |
| 		struct btrfs_key first_key;
 | |
| 
 | |
| 		WARN_ON(*level < 0);
 | |
| 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
 | |
| 		cur = path->nodes[*level];
 | |
| 
 | |
| 		WARN_ON(btrfs_header_level(cur) != *level);
 | |
| 
 | |
| 		if (path->slots[*level] >=
 | |
| 		    btrfs_header_nritems(cur))
 | |
| 			break;
 | |
| 
 | |
| 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
 | |
| 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
 | |
| 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
 | |
| 		blocksize = fs_info->nodesize;
 | |
| 
 | |
| 		parent = path->nodes[*level];
 | |
| 		root_owner = btrfs_header_owner(parent);
 | |
| 
 | |
| 		next = btrfs_find_create_tree_block(fs_info, bytenr);
 | |
| 		if (IS_ERR(next))
 | |
| 			return PTR_ERR(next);
 | |
| 
 | |
| 		if (*level == 1) {
 | |
| 			ret = wc->process_func(root, next, wc, ptr_gen,
 | |
| 					       *level - 1);
 | |
| 			if (ret) {
 | |
| 				free_extent_buffer(next);
 | |
| 				return ret;
 | |
| 			}
 | |
| 
 | |
| 			path->slots[*level]++;
 | |
| 			if (wc->free) {
 | |
| 				ret = btrfs_read_buffer(next, ptr_gen,
 | |
| 							*level - 1, &first_key);
 | |
| 				if (ret) {
 | |
| 					free_extent_buffer(next);
 | |
| 					return ret;
 | |
| 				}
 | |
| 
 | |
| 				if (trans) {
 | |
| 					btrfs_tree_lock(next);
 | |
| 					btrfs_set_lock_blocking(next);
 | |
| 					clean_tree_block(fs_info, next);
 | |
| 					btrfs_wait_tree_block_writeback(next);
 | |
| 					btrfs_tree_unlock(next);
 | |
| 				} else {
 | |
| 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
 | |
| 						clear_extent_buffer_dirty(next);
 | |
| 				}
 | |
| 
 | |
| 				WARN_ON(root_owner !=
 | |
| 					BTRFS_TREE_LOG_OBJECTID);
 | |
| 				ret = btrfs_free_and_pin_reserved_extent(
 | |
| 							fs_info, bytenr,
 | |
| 							blocksize);
 | |
| 				if (ret) {
 | |
| 					free_extent_buffer(next);
 | |
| 					return ret;
 | |
| 				}
 | |
| 			}
 | |
| 			free_extent_buffer(next);
 | |
| 			continue;
 | |
| 		}
 | |
| 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
 | |
| 		if (ret) {
 | |
| 			free_extent_buffer(next);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		WARN_ON(*level <= 0);
 | |
| 		if (path->nodes[*level-1])
 | |
| 			free_extent_buffer(path->nodes[*level-1]);
 | |
| 		path->nodes[*level-1] = next;
 | |
| 		*level = btrfs_header_level(next);
 | |
| 		path->slots[*level] = 0;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	WARN_ON(*level < 0);
 | |
| 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
 | |
| 
 | |
| 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
 | |
| 
 | |
| 	cond_resched();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path, int *level,
 | |
| 				 struct walk_control *wc)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	u64 root_owner;
 | |
| 	int i;
 | |
| 	int slot;
 | |
| 	int ret;
 | |
| 
 | |
| 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
 | |
| 		slot = path->slots[i];
 | |
| 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
 | |
| 			path->slots[i]++;
 | |
| 			*level = i;
 | |
| 			WARN_ON(*level == 0);
 | |
| 			return 0;
 | |
| 		} else {
 | |
| 			struct extent_buffer *parent;
 | |
| 			if (path->nodes[*level] == root->node)
 | |
| 				parent = path->nodes[*level];
 | |
| 			else
 | |
| 				parent = path->nodes[*level + 1];
 | |
| 
 | |
| 			root_owner = btrfs_header_owner(parent);
 | |
| 			ret = wc->process_func(root, path->nodes[*level], wc,
 | |
| 				 btrfs_header_generation(path->nodes[*level]),
 | |
| 				 *level);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 
 | |
| 			if (wc->free) {
 | |
| 				struct extent_buffer *next;
 | |
| 
 | |
| 				next = path->nodes[*level];
 | |
| 
 | |
| 				if (trans) {
 | |
| 					btrfs_tree_lock(next);
 | |
| 					btrfs_set_lock_blocking(next);
 | |
| 					clean_tree_block(fs_info, next);
 | |
| 					btrfs_wait_tree_block_writeback(next);
 | |
| 					btrfs_tree_unlock(next);
 | |
| 				} else {
 | |
| 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
 | |
| 						clear_extent_buffer_dirty(next);
 | |
| 				}
 | |
| 
 | |
| 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
 | |
| 				ret = btrfs_free_and_pin_reserved_extent(
 | |
| 						fs_info,
 | |
| 						path->nodes[*level]->start,
 | |
| 						path->nodes[*level]->len);
 | |
| 				if (ret)
 | |
| 					return ret;
 | |
| 			}
 | |
| 			free_extent_buffer(path->nodes[*level]);
 | |
| 			path->nodes[*level] = NULL;
 | |
| 			*level = i + 1;
 | |
| 		}
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * drop the reference count on the tree rooted at 'snap'.  This traverses
 | |
|  * the tree freeing any blocks that have a ref count of zero after being
 | |
|  * decremented.
 | |
|  */
 | |
| static int walk_log_tree(struct btrfs_trans_handle *trans,
 | |
| 			 struct btrfs_root *log, struct walk_control *wc)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = log->fs_info;
 | |
| 	int ret = 0;
 | |
| 	int wret;
 | |
| 	int level;
 | |
| 	struct btrfs_path *path;
 | |
| 	int orig_level;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	level = btrfs_header_level(log->node);
 | |
| 	orig_level = level;
 | |
| 	path->nodes[level] = log->node;
 | |
| 	extent_buffer_get(log->node);
 | |
| 	path->slots[level] = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		wret = walk_down_log_tree(trans, log, path, &level, wc);
 | |
| 		if (wret > 0)
 | |
| 			break;
 | |
| 		if (wret < 0) {
 | |
| 			ret = wret;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		wret = walk_up_log_tree(trans, log, path, &level, wc);
 | |
| 		if (wret > 0)
 | |
| 			break;
 | |
| 		if (wret < 0) {
 | |
| 			ret = wret;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* was the root node processed? if not, catch it here */
 | |
| 	if (path->nodes[orig_level]) {
 | |
| 		ret = wc->process_func(log, path->nodes[orig_level], wc,
 | |
| 			 btrfs_header_generation(path->nodes[orig_level]),
 | |
| 			 orig_level);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 		if (wc->free) {
 | |
| 			struct extent_buffer *next;
 | |
| 
 | |
| 			next = path->nodes[orig_level];
 | |
| 
 | |
| 			if (trans) {
 | |
| 				btrfs_tree_lock(next);
 | |
| 				btrfs_set_lock_blocking(next);
 | |
| 				clean_tree_block(fs_info, next);
 | |
| 				btrfs_wait_tree_block_writeback(next);
 | |
| 				btrfs_tree_unlock(next);
 | |
| 			} else {
 | |
| 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
 | |
| 					clear_extent_buffer_dirty(next);
 | |
| 			}
 | |
| 
 | |
| 			WARN_ON(log->root_key.objectid !=
 | |
| 				BTRFS_TREE_LOG_OBJECTID);
 | |
| 			ret = btrfs_free_and_pin_reserved_extent(fs_info,
 | |
| 							next->start, next->len);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to update the item for a given subvolumes log root
 | |
|  * in the tree of log roots
 | |
|  */
 | |
| static int update_log_root(struct btrfs_trans_handle *trans,
 | |
| 			   struct btrfs_root *log)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = log->fs_info;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (log->log_transid == 1) {
 | |
| 		/* insert root item on the first sync */
 | |
| 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
 | |
| 				&log->root_key, &log->root_item);
 | |
| 	} else {
 | |
| 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
 | |
| 				&log->root_key, &log->root_item);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void wait_log_commit(struct btrfs_root *root, int transid)
 | |
| {
 | |
| 	DEFINE_WAIT(wait);
 | |
| 	int index = transid % 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * we only allow two pending log transactions at a time,
 | |
| 	 * so we know that if ours is more than 2 older than the
 | |
| 	 * current transaction, we're done
 | |
| 	 */
 | |
| 	for (;;) {
 | |
| 		prepare_to_wait(&root->log_commit_wait[index],
 | |
| 				&wait, TASK_UNINTERRUPTIBLE);
 | |
| 
 | |
| 		if (!(root->log_transid_committed < transid &&
 | |
| 		      atomic_read(&root->log_commit[index])))
 | |
| 			break;
 | |
| 
 | |
| 		mutex_unlock(&root->log_mutex);
 | |
| 		schedule();
 | |
| 		mutex_lock(&root->log_mutex);
 | |
| 	}
 | |
| 	finish_wait(&root->log_commit_wait[index], &wait);
 | |
| }
 | |
| 
 | |
| static void wait_for_writer(struct btrfs_root *root)
 | |
| {
 | |
| 	DEFINE_WAIT(wait);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		prepare_to_wait(&root->log_writer_wait, &wait,
 | |
| 				TASK_UNINTERRUPTIBLE);
 | |
| 		if (!atomic_read(&root->log_writers))
 | |
| 			break;
 | |
| 
 | |
| 		mutex_unlock(&root->log_mutex);
 | |
| 		schedule();
 | |
| 		mutex_lock(&root->log_mutex);
 | |
| 	}
 | |
| 	finish_wait(&root->log_writer_wait, &wait);
 | |
| }
 | |
| 
 | |
| static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
 | |
| 					struct btrfs_log_ctx *ctx)
 | |
| {
 | |
| 	if (!ctx)
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&root->log_mutex);
 | |
| 	list_del_init(&ctx->list);
 | |
| 	mutex_unlock(&root->log_mutex);
 | |
| }
 | |
| 
 | |
| /* 
 | |
|  * Invoked in log mutex context, or be sure there is no other task which
 | |
|  * can access the list.
 | |
|  */
 | |
| static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
 | |
| 					     int index, int error)
 | |
| {
 | |
| 	struct btrfs_log_ctx *ctx;
 | |
| 	struct btrfs_log_ctx *safe;
 | |
| 
 | |
| 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
 | |
| 		list_del_init(&ctx->list);
 | |
| 		ctx->log_ret = error;
 | |
| 	}
 | |
| 
 | |
| 	INIT_LIST_HEAD(&root->log_ctxs[index]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * btrfs_sync_log does sends a given tree log down to the disk and
 | |
|  * updates the super blocks to record it.  When this call is done,
 | |
|  * you know that any inodes previously logged are safely on disk only
 | |
|  * if it returns 0.
 | |
|  *
 | |
|  * Any other return value means you need to call btrfs_commit_transaction.
 | |
|  * Some of the edge cases for fsyncing directories that have had unlinks
 | |
|  * or renames done in the past mean that sometimes the only safe
 | |
|  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
 | |
|  * that has happened.
 | |
|  */
 | |
| int btrfs_sync_log(struct btrfs_trans_handle *trans,
 | |
| 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
 | |
| {
 | |
| 	int index1;
 | |
| 	int index2;
 | |
| 	int mark;
 | |
| 	int ret;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_root *log = root->log_root;
 | |
| 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
 | |
| 	int log_transid = 0;
 | |
| 	struct btrfs_log_ctx root_log_ctx;
 | |
| 	struct blk_plug plug;
 | |
| 
 | |
| 	mutex_lock(&root->log_mutex);
 | |
| 	log_transid = ctx->log_transid;
 | |
| 	if (root->log_transid_committed >= log_transid) {
 | |
| 		mutex_unlock(&root->log_mutex);
 | |
| 		return ctx->log_ret;
 | |
| 	}
 | |
| 
 | |
| 	index1 = log_transid % 2;
 | |
| 	if (atomic_read(&root->log_commit[index1])) {
 | |
| 		wait_log_commit(root, log_transid);
 | |
| 		mutex_unlock(&root->log_mutex);
 | |
| 		return ctx->log_ret;
 | |
| 	}
 | |
| 	ASSERT(log_transid == root->log_transid);
 | |
| 	atomic_set(&root->log_commit[index1], 1);
 | |
| 
 | |
| 	/* wait for previous tree log sync to complete */
 | |
| 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
 | |
| 		wait_log_commit(root, log_transid - 1);
 | |
| 
 | |
| 	while (1) {
 | |
| 		int batch = atomic_read(&root->log_batch);
 | |
| 		/* when we're on an ssd, just kick the log commit out */
 | |
| 		if (!btrfs_test_opt(fs_info, SSD) &&
 | |
| 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
 | |
| 			mutex_unlock(&root->log_mutex);
 | |
| 			schedule_timeout_uninterruptible(1);
 | |
| 			mutex_lock(&root->log_mutex);
 | |
| 		}
 | |
| 		wait_for_writer(root);
 | |
| 		if (batch == atomic_read(&root->log_batch))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* bail out if we need to do a full commit */
 | |
| 	if (btrfs_need_log_full_commit(fs_info, trans)) {
 | |
| 		ret = -EAGAIN;
 | |
| 		mutex_unlock(&root->log_mutex);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (log_transid % 2 == 0)
 | |
| 		mark = EXTENT_DIRTY;
 | |
| 	else
 | |
| 		mark = EXTENT_NEW;
 | |
| 
 | |
| 	/* we start IO on  all the marked extents here, but we don't actually
 | |
| 	 * wait for them until later.
 | |
| 	 */
 | |
| 	blk_start_plug(&plug);
 | |
| 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
 | |
| 	if (ret) {
 | |
| 		blk_finish_plug(&plug);
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		btrfs_set_log_full_commit(fs_info, trans);
 | |
| 		mutex_unlock(&root->log_mutex);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_set_root_node(&log->root_item, log->node);
 | |
| 
 | |
| 	root->log_transid++;
 | |
| 	log->log_transid = root->log_transid;
 | |
| 	root->log_start_pid = 0;
 | |
| 	/*
 | |
| 	 * IO has been started, blocks of the log tree have WRITTEN flag set
 | |
| 	 * in their headers. new modifications of the log will be written to
 | |
| 	 * new positions. so it's safe to allow log writers to go in.
 | |
| 	 */
 | |
| 	mutex_unlock(&root->log_mutex);
 | |
| 
 | |
| 	btrfs_init_log_ctx(&root_log_ctx, NULL);
 | |
| 
 | |
| 	mutex_lock(&log_root_tree->log_mutex);
 | |
| 	atomic_inc(&log_root_tree->log_batch);
 | |
| 	atomic_inc(&log_root_tree->log_writers);
 | |
| 
 | |
| 	index2 = log_root_tree->log_transid % 2;
 | |
| 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
 | |
| 	root_log_ctx.log_transid = log_root_tree->log_transid;
 | |
| 
 | |
| 	mutex_unlock(&log_root_tree->log_mutex);
 | |
| 
 | |
| 	ret = update_log_root(trans, log);
 | |
| 
 | |
| 	mutex_lock(&log_root_tree->log_mutex);
 | |
| 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
 | |
| 		/* atomic_dec_and_test implies a barrier */
 | |
| 		cond_wake_up_nomb(&log_root_tree->log_writer_wait);
 | |
| 	}
 | |
| 
 | |
| 	if (ret) {
 | |
| 		if (!list_empty(&root_log_ctx.list))
 | |
| 			list_del_init(&root_log_ctx.list);
 | |
| 
 | |
| 		blk_finish_plug(&plug);
 | |
| 		btrfs_set_log_full_commit(fs_info, trans);
 | |
| 
 | |
| 		if (ret != -ENOSPC) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			mutex_unlock(&log_root_tree->log_mutex);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		btrfs_wait_tree_log_extents(log, mark);
 | |
| 		mutex_unlock(&log_root_tree->log_mutex);
 | |
| 		ret = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
 | |
| 		blk_finish_plug(&plug);
 | |
| 		list_del_init(&root_log_ctx.list);
 | |
| 		mutex_unlock(&log_root_tree->log_mutex);
 | |
| 		ret = root_log_ctx.log_ret;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	index2 = root_log_ctx.log_transid % 2;
 | |
| 	if (atomic_read(&log_root_tree->log_commit[index2])) {
 | |
| 		blk_finish_plug(&plug);
 | |
| 		ret = btrfs_wait_tree_log_extents(log, mark);
 | |
| 		wait_log_commit(log_root_tree,
 | |
| 				root_log_ctx.log_transid);
 | |
| 		mutex_unlock(&log_root_tree->log_mutex);
 | |
| 		if (!ret)
 | |
| 			ret = root_log_ctx.log_ret;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
 | |
| 	atomic_set(&log_root_tree->log_commit[index2], 1);
 | |
| 
 | |
| 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
 | |
| 		wait_log_commit(log_root_tree,
 | |
| 				root_log_ctx.log_transid - 1);
 | |
| 	}
 | |
| 
 | |
| 	wait_for_writer(log_root_tree);
 | |
| 
 | |
| 	/*
 | |
| 	 * now that we've moved on to the tree of log tree roots,
 | |
| 	 * check the full commit flag again
 | |
| 	 */
 | |
| 	if (btrfs_need_log_full_commit(fs_info, trans)) {
 | |
| 		blk_finish_plug(&plug);
 | |
| 		btrfs_wait_tree_log_extents(log, mark);
 | |
| 		mutex_unlock(&log_root_tree->log_mutex);
 | |
| 		ret = -EAGAIN;
 | |
| 		goto out_wake_log_root;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_write_marked_extents(fs_info,
 | |
| 					 &log_root_tree->dirty_log_pages,
 | |
| 					 EXTENT_DIRTY | EXTENT_NEW);
 | |
| 	blk_finish_plug(&plug);
 | |
| 	if (ret) {
 | |
| 		btrfs_set_log_full_commit(fs_info, trans);
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		mutex_unlock(&log_root_tree->log_mutex);
 | |
| 		goto out_wake_log_root;
 | |
| 	}
 | |
| 	ret = btrfs_wait_tree_log_extents(log, mark);
 | |
| 	if (!ret)
 | |
| 		ret = btrfs_wait_tree_log_extents(log_root_tree,
 | |
| 						  EXTENT_NEW | EXTENT_DIRTY);
 | |
| 	if (ret) {
 | |
| 		btrfs_set_log_full_commit(fs_info, trans);
 | |
| 		mutex_unlock(&log_root_tree->log_mutex);
 | |
| 		goto out_wake_log_root;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_set_super_log_root(fs_info->super_for_commit,
 | |
| 				 log_root_tree->node->start);
 | |
| 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
 | |
| 				       btrfs_header_level(log_root_tree->node));
 | |
| 
 | |
| 	log_root_tree->log_transid++;
 | |
| 	mutex_unlock(&log_root_tree->log_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * nobody else is going to jump in and write the the ctree
 | |
| 	 * super here because the log_commit atomic below is protecting
 | |
| 	 * us.  We must be called with a transaction handle pinning
 | |
| 	 * the running transaction open, so a full commit can't hop
 | |
| 	 * in and cause problems either.
 | |
| 	 */
 | |
| 	ret = write_all_supers(fs_info, 1);
 | |
| 	if (ret) {
 | |
| 		btrfs_set_log_full_commit(fs_info, trans);
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		goto out_wake_log_root;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&root->log_mutex);
 | |
| 	if (root->last_log_commit < log_transid)
 | |
| 		root->last_log_commit = log_transid;
 | |
| 	mutex_unlock(&root->log_mutex);
 | |
| 
 | |
| out_wake_log_root:
 | |
| 	mutex_lock(&log_root_tree->log_mutex);
 | |
| 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
 | |
| 
 | |
| 	log_root_tree->log_transid_committed++;
 | |
| 	atomic_set(&log_root_tree->log_commit[index2], 0);
 | |
| 	mutex_unlock(&log_root_tree->log_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
 | |
| 	 * all the updates above are seen by the woken threads. It might not be
 | |
| 	 * necessary, but proving that seems to be hard.
 | |
| 	 */
 | |
| 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
 | |
| out:
 | |
| 	mutex_lock(&root->log_mutex);
 | |
| 	btrfs_remove_all_log_ctxs(root, index1, ret);
 | |
| 	root->log_transid_committed++;
 | |
| 	atomic_set(&root->log_commit[index1], 0);
 | |
| 	mutex_unlock(&root->log_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
 | |
| 	 * all the updates above are seen by the woken threads. It might not be
 | |
| 	 * necessary, but proving that seems to be hard.
 | |
| 	 */
 | |
| 	cond_wake_up(&root->log_commit_wait[index1]);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void free_log_tree(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_root *log)
 | |
| {
 | |
| 	int ret;
 | |
| 	u64 start;
 | |
| 	u64 end;
 | |
| 	struct walk_control wc = {
 | |
| 		.free = 1,
 | |
| 		.process_func = process_one_buffer
 | |
| 	};
 | |
| 
 | |
| 	ret = walk_log_tree(trans, log, &wc);
 | |
| 	/* I don't think this can happen but just in case */
 | |
| 	if (ret)
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = find_first_extent_bit(&log->dirty_log_pages,
 | |
| 				0, &start, &end,
 | |
| 				EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
 | |
| 				NULL);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		clear_extent_bits(&log->dirty_log_pages, start, end,
 | |
| 				  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
 | |
| 	}
 | |
| 
 | |
| 	free_extent_buffer(log->node);
 | |
| 	kfree(log);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * free all the extents used by the tree log.  This should be called
 | |
|  * at commit time of the full transaction
 | |
|  */
 | |
| int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
 | |
| {
 | |
| 	if (root->log_root) {
 | |
| 		free_log_tree(trans, root->log_root);
 | |
| 		root->log_root = NULL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
 | |
| 			     struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	if (fs_info->log_root_tree) {
 | |
| 		free_log_tree(trans, fs_info->log_root_tree);
 | |
| 		fs_info->log_root_tree = NULL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If both a file and directory are logged, and unlinks or renames are
 | |
|  * mixed in, we have a few interesting corners:
 | |
|  *
 | |
|  * create file X in dir Y
 | |
|  * link file X to X.link in dir Y
 | |
|  * fsync file X
 | |
|  * unlink file X but leave X.link
 | |
|  * fsync dir Y
 | |
|  *
 | |
|  * After a crash we would expect only X.link to exist.  But file X
 | |
|  * didn't get fsync'd again so the log has back refs for X and X.link.
 | |
|  *
 | |
|  * We solve this by removing directory entries and inode backrefs from the
 | |
|  * log when a file that was logged in the current transaction is
 | |
|  * unlinked.  Any later fsync will include the updated log entries, and
 | |
|  * we'll be able to reconstruct the proper directory items from backrefs.
 | |
|  *
 | |
|  * This optimizations allows us to avoid relogging the entire inode
 | |
|  * or the entire directory.
 | |
|  */
 | |
| int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 const char *name, int name_len,
 | |
| 				 struct btrfs_inode *dir, u64 index)
 | |
| {
 | |
| 	struct btrfs_root *log;
 | |
| 	struct btrfs_dir_item *di;
 | |
| 	struct btrfs_path *path;
 | |
| 	int ret;
 | |
| 	int err = 0;
 | |
| 	int bytes_del = 0;
 | |
| 	u64 dir_ino = btrfs_ino(dir);
 | |
| 
 | |
| 	if (dir->logged_trans < trans->transid)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = join_running_log_trans(root);
 | |
| 	if (ret)
 | |
| 		return 0;
 | |
| 
 | |
| 	mutex_lock(&dir->log_mutex);
 | |
| 
 | |
| 	log = root->log_root;
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
 | |
| 				   name, name_len, -1);
 | |
| 	if (IS_ERR(di)) {
 | |
| 		err = PTR_ERR(di);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	if (di) {
 | |
| 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
 | |
| 		bytes_del += name_len;
 | |
| 		if (ret) {
 | |
| 			err = ret;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
 | |
| 					 index, name, name_len, -1);
 | |
| 	if (IS_ERR(di)) {
 | |
| 		err = PTR_ERR(di);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	if (di) {
 | |
| 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
 | |
| 		bytes_del += name_len;
 | |
| 		if (ret) {
 | |
| 			err = ret;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* update the directory size in the log to reflect the names
 | |
| 	 * we have removed
 | |
| 	 */
 | |
| 	if (bytes_del) {
 | |
| 		struct btrfs_key key;
 | |
| 
 | |
| 		key.objectid = dir_ino;
 | |
| 		key.offset = 0;
 | |
| 		key.type = BTRFS_INODE_ITEM_KEY;
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
 | |
| 		if (ret < 0) {
 | |
| 			err = ret;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 		if (ret == 0) {
 | |
| 			struct btrfs_inode_item *item;
 | |
| 			u64 i_size;
 | |
| 
 | |
| 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 					      struct btrfs_inode_item);
 | |
| 			i_size = btrfs_inode_size(path->nodes[0], item);
 | |
| 			if (i_size > bytes_del)
 | |
| 				i_size -= bytes_del;
 | |
| 			else
 | |
| 				i_size = 0;
 | |
| 			btrfs_set_inode_size(path->nodes[0], item, i_size);
 | |
| 			btrfs_mark_buffer_dirty(path->nodes[0]);
 | |
| 		} else
 | |
| 			ret = 0;
 | |
| 		btrfs_release_path(path);
 | |
| 	}
 | |
| fail:
 | |
| 	btrfs_free_path(path);
 | |
| out_unlock:
 | |
| 	mutex_unlock(&dir->log_mutex);
 | |
| 	if (ret == -ENOSPC) {
 | |
| 		btrfs_set_log_full_commit(root->fs_info, trans);
 | |
| 		ret = 0;
 | |
| 	} else if (ret < 0)
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 
 | |
| 	btrfs_end_log_trans(root);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* see comments for btrfs_del_dir_entries_in_log */
 | |
| int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_root *root,
 | |
| 			       const char *name, int name_len,
 | |
| 			       struct btrfs_inode *inode, u64 dirid)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_root *log;
 | |
| 	u64 index;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (inode->logged_trans < trans->transid)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = join_running_log_trans(root);
 | |
| 	if (ret)
 | |
| 		return 0;
 | |
| 	log = root->log_root;
 | |
| 	mutex_lock(&inode->log_mutex);
 | |
| 
 | |
| 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
 | |
| 				  dirid, &index);
 | |
| 	mutex_unlock(&inode->log_mutex);
 | |
| 	if (ret == -ENOSPC) {
 | |
| 		btrfs_set_log_full_commit(fs_info, trans);
 | |
| 		ret = 0;
 | |
| 	} else if (ret < 0 && ret != -ENOENT)
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 	btrfs_end_log_trans(root);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * creates a range item in the log for 'dirid'.  first_offset and
 | |
|  * last_offset tell us which parts of the key space the log should
 | |
|  * be considered authoritative for.
 | |
|  */
 | |
| static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
 | |
| 				       struct btrfs_root *log,
 | |
| 				       struct btrfs_path *path,
 | |
| 				       int key_type, u64 dirid,
 | |
| 				       u64 first_offset, u64 last_offset)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_dir_log_item *item;
 | |
| 
 | |
| 	key.objectid = dirid;
 | |
| 	key.offset = first_offset;
 | |
| 	if (key_type == BTRFS_DIR_ITEM_KEY)
 | |
| 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
 | |
| 	else
 | |
| 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
 | |
| 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 			      struct btrfs_dir_log_item);
 | |
| 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
 | |
| 	btrfs_mark_buffer_dirty(path->nodes[0]);
 | |
| 	btrfs_release_path(path);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * log all the items included in the current transaction for a given
 | |
|  * directory.  This also creates the range items in the log tree required
 | |
|  * to replay anything deleted before the fsync
 | |
|  */
 | |
| static noinline int log_dir_items(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_root *root, struct btrfs_inode *inode,
 | |
| 			  struct btrfs_path *path,
 | |
| 			  struct btrfs_path *dst_path, int key_type,
 | |
| 			  struct btrfs_log_ctx *ctx,
 | |
| 			  u64 min_offset, u64 *last_offset_ret)
 | |
| {
 | |
| 	struct btrfs_key min_key;
 | |
| 	struct btrfs_root *log = root->log_root;
 | |
| 	struct extent_buffer *src;
 | |
| 	int err = 0;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 	int nritems;
 | |
| 	u64 first_offset = min_offset;
 | |
| 	u64 last_offset = (u64)-1;
 | |
| 	u64 ino = btrfs_ino(inode);
 | |
| 
 | |
| 	log = root->log_root;
 | |
| 
 | |
| 	min_key.objectid = ino;
 | |
| 	min_key.type = key_type;
 | |
| 	min_key.offset = min_offset;
 | |
| 
 | |
| 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
 | |
| 
 | |
| 	/*
 | |
| 	 * we didn't find anything from this transaction, see if there
 | |
| 	 * is anything at all
 | |
| 	 */
 | |
| 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
 | |
| 		min_key.objectid = ino;
 | |
| 		min_key.type = key_type;
 | |
| 		min_key.offset = (u64)-1;
 | |
| 		btrfs_release_path(path);
 | |
| 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_release_path(path);
 | |
| 			return ret;
 | |
| 		}
 | |
| 		ret = btrfs_previous_item(root, path, ino, key_type);
 | |
| 
 | |
| 		/* if ret == 0 there are items for this type,
 | |
| 		 * create a range to tell us the last key of this type.
 | |
| 		 * otherwise, there are no items in this directory after
 | |
| 		 * *min_offset, and we create a range to indicate that.
 | |
| 		 */
 | |
| 		if (ret == 0) {
 | |
| 			struct btrfs_key tmp;
 | |
| 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
 | |
| 					      path->slots[0]);
 | |
| 			if (key_type == tmp.type)
 | |
| 				first_offset = max(min_offset, tmp.offset) + 1;
 | |
| 		}
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* go backward to find any previous key */
 | |
| 	ret = btrfs_previous_item(root, path, ino, key_type);
 | |
| 	if (ret == 0) {
 | |
| 		struct btrfs_key tmp;
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
 | |
| 		if (key_type == tmp.type) {
 | |
| 			first_offset = tmp.offset;
 | |
| 			ret = overwrite_item(trans, log, dst_path,
 | |
| 					     path->nodes[0], path->slots[0],
 | |
| 					     &tmp);
 | |
| 			if (ret) {
 | |
| 				err = ret;
 | |
| 				goto done;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	/* find the first key from this transaction again */
 | |
| 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
 | |
| 	if (WARN_ON(ret != 0))
 | |
| 		goto done;
 | |
| 
 | |
| 	/*
 | |
| 	 * we have a block from this transaction, log every item in it
 | |
| 	 * from our directory
 | |
| 	 */
 | |
| 	while (1) {
 | |
| 		struct btrfs_key tmp;
 | |
| 		src = path->nodes[0];
 | |
| 		nritems = btrfs_header_nritems(src);
 | |
| 		for (i = path->slots[0]; i < nritems; i++) {
 | |
| 			struct btrfs_dir_item *di;
 | |
| 
 | |
| 			btrfs_item_key_to_cpu(src, &min_key, i);
 | |
| 
 | |
| 			if (min_key.objectid != ino || min_key.type != key_type)
 | |
| 				goto done;
 | |
| 			ret = overwrite_item(trans, log, dst_path, src, i,
 | |
| 					     &min_key);
 | |
| 			if (ret) {
 | |
| 				err = ret;
 | |
| 				goto done;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * We must make sure that when we log a directory entry,
 | |
| 			 * the corresponding inode, after log replay, has a
 | |
| 			 * matching link count. For example:
 | |
| 			 *
 | |
| 			 * touch foo
 | |
| 			 * mkdir mydir
 | |
| 			 * sync
 | |
| 			 * ln foo mydir/bar
 | |
| 			 * xfs_io -c "fsync" mydir
 | |
| 			 * <crash>
 | |
| 			 * <mount fs and log replay>
 | |
| 			 *
 | |
| 			 * Would result in a fsync log that when replayed, our
 | |
| 			 * file inode would have a link count of 1, but we get
 | |
| 			 * two directory entries pointing to the same inode.
 | |
| 			 * After removing one of the names, it would not be
 | |
| 			 * possible to remove the other name, which resulted
 | |
| 			 * always in stale file handle errors, and would not
 | |
| 			 * be possible to rmdir the parent directory, since
 | |
| 			 * its i_size could never decrement to the value
 | |
| 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
 | |
| 			 */
 | |
| 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
 | |
| 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
 | |
| 			if (ctx &&
 | |
| 			    (btrfs_dir_transid(src, di) == trans->transid ||
 | |
| 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
 | |
| 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
 | |
| 				ctx->log_new_dentries = true;
 | |
| 		}
 | |
| 		path->slots[0] = nritems;
 | |
| 
 | |
| 		/*
 | |
| 		 * look ahead to the next item and see if it is also
 | |
| 		 * from this directory and from this transaction
 | |
| 		 */
 | |
| 		ret = btrfs_next_leaf(root, path);
 | |
| 		if (ret) {
 | |
| 			if (ret == 1)
 | |
| 				last_offset = (u64)-1;
 | |
| 			else
 | |
| 				err = ret;
 | |
| 			goto done;
 | |
| 		}
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
 | |
| 		if (tmp.objectid != ino || tmp.type != key_type) {
 | |
| 			last_offset = (u64)-1;
 | |
| 			goto done;
 | |
| 		}
 | |
| 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
 | |
| 			ret = overwrite_item(trans, log, dst_path,
 | |
| 					     path->nodes[0], path->slots[0],
 | |
| 					     &tmp);
 | |
| 			if (ret)
 | |
| 				err = ret;
 | |
| 			else
 | |
| 				last_offset = tmp.offset;
 | |
| 			goto done;
 | |
| 		}
 | |
| 	}
 | |
| done:
 | |
| 	btrfs_release_path(path);
 | |
| 	btrfs_release_path(dst_path);
 | |
| 
 | |
| 	if (err == 0) {
 | |
| 		*last_offset_ret = last_offset;
 | |
| 		/*
 | |
| 		 * insert the log range keys to indicate where the log
 | |
| 		 * is valid
 | |
| 		 */
 | |
| 		ret = insert_dir_log_key(trans, log, path, key_type,
 | |
| 					 ino, first_offset, last_offset);
 | |
| 		if (ret)
 | |
| 			err = ret;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * logging directories is very similar to logging inodes, We find all the items
 | |
|  * from the current transaction and write them to the log.
 | |
|  *
 | |
|  * The recovery code scans the directory in the subvolume, and if it finds a
 | |
|  * key in the range logged that is not present in the log tree, then it means
 | |
|  * that dir entry was unlinked during the transaction.
 | |
|  *
 | |
|  * In order for that scan to work, we must include one key smaller than
 | |
|  * the smallest logged by this transaction and one key larger than the largest
 | |
|  * key logged by this transaction.
 | |
|  */
 | |
| static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_root *root, struct btrfs_inode *inode,
 | |
| 			  struct btrfs_path *path,
 | |
| 			  struct btrfs_path *dst_path,
 | |
| 			  struct btrfs_log_ctx *ctx)
 | |
| {
 | |
| 	u64 min_key;
 | |
| 	u64 max_key;
 | |
| 	int ret;
 | |
| 	int key_type = BTRFS_DIR_ITEM_KEY;
 | |
| 
 | |
| again:
 | |
| 	min_key = 0;
 | |
| 	max_key = 0;
 | |
| 	while (1) {
 | |
| 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
 | |
| 				ctx, min_key, &max_key);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		if (max_key == (u64)-1)
 | |
| 			break;
 | |
| 		min_key = max_key + 1;
 | |
| 	}
 | |
| 
 | |
| 	if (key_type == BTRFS_DIR_ITEM_KEY) {
 | |
| 		key_type = BTRFS_DIR_INDEX_KEY;
 | |
| 		goto again;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * a helper function to drop items from the log before we relog an
 | |
|  * inode.  max_key_type indicates the highest item type to remove.
 | |
|  * This cannot be run for file data extents because it does not
 | |
|  * free the extents they point to.
 | |
|  */
 | |
| static int drop_objectid_items(struct btrfs_trans_handle *trans,
 | |
| 				  struct btrfs_root *log,
 | |
| 				  struct btrfs_path *path,
 | |
| 				  u64 objectid, int max_key_type)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	int start_slot;
 | |
| 
 | |
| 	key.objectid = objectid;
 | |
| 	key.type = max_key_type;
 | |
| 	key.offset = (u64)-1;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
 | |
| 		BUG_ON(ret == 0); /* Logic error */
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (path->slots[0] == 0)
 | |
| 			break;
 | |
| 
 | |
| 		path->slots[0]--;
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 | |
| 				      path->slots[0]);
 | |
| 
 | |
| 		if (found_key.objectid != objectid)
 | |
| 			break;
 | |
| 
 | |
| 		found_key.offset = 0;
 | |
| 		found_key.type = 0;
 | |
| 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
 | |
| 				       &start_slot);
 | |
| 
 | |
| 		ret = btrfs_del_items(trans, log, path, start_slot,
 | |
| 				      path->slots[0] - start_slot + 1);
 | |
| 		/*
 | |
| 		 * If start slot isn't 0 then we don't need to re-search, we've
 | |
| 		 * found the last guy with the objectid in this tree.
 | |
| 		 */
 | |
| 		if (ret || start_slot != 0)
 | |
| 			break;
 | |
| 		btrfs_release_path(path);
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 	if (ret > 0)
 | |
| 		ret = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void fill_inode_item(struct btrfs_trans_handle *trans,
 | |
| 			    struct extent_buffer *leaf,
 | |
| 			    struct btrfs_inode_item *item,
 | |
| 			    struct inode *inode, int log_inode_only,
 | |
| 			    u64 logged_isize)
 | |
| {
 | |
| 	struct btrfs_map_token token;
 | |
| 
 | |
| 	btrfs_init_map_token(&token);
 | |
| 
 | |
| 	if (log_inode_only) {
 | |
| 		/* set the generation to zero so the recover code
 | |
| 		 * can tell the difference between an logging
 | |
| 		 * just to say 'this inode exists' and a logging
 | |
| 		 * to say 'update this inode with these values'
 | |
| 		 */
 | |
| 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
 | |
| 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
 | |
| 	} else {
 | |
| 		btrfs_set_token_inode_generation(leaf, item,
 | |
| 						 BTRFS_I(inode)->generation,
 | |
| 						 &token);
 | |
| 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
 | |
| 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
 | |
| 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
 | |
| 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
 | |
| 
 | |
| 	btrfs_set_token_timespec_sec(leaf, &item->atime,
 | |
| 				     inode->i_atime.tv_sec, &token);
 | |
| 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
 | |
| 				      inode->i_atime.tv_nsec, &token);
 | |
| 
 | |
| 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
 | |
| 				     inode->i_mtime.tv_sec, &token);
 | |
| 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
 | |
| 				      inode->i_mtime.tv_nsec, &token);
 | |
| 
 | |
| 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
 | |
| 				     inode->i_ctime.tv_sec, &token);
 | |
| 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
 | |
| 				      inode->i_ctime.tv_nsec, &token);
 | |
| 
 | |
| 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
 | |
| 				     &token);
 | |
| 
 | |
| 	btrfs_set_token_inode_sequence(leaf, item,
 | |
| 				       inode_peek_iversion(inode), &token);
 | |
| 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
 | |
| 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
 | |
| 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
 | |
| 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
 | |
| }
 | |
| 
 | |
| static int log_inode_item(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_root *log, struct btrfs_path *path,
 | |
| 			  struct btrfs_inode *inode)
 | |
| {
 | |
| 	struct btrfs_inode_item *inode_item;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_insert_empty_item(trans, log, path,
 | |
| 				      &inode->location, sizeof(*inode_item));
 | |
| 	if (ret && ret != -EEXIST)
 | |
| 		return ret;
 | |
| 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 				    struct btrfs_inode_item);
 | |
| 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
 | |
| 			0, 0);
 | |
| 	btrfs_release_path(path);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline int copy_items(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_inode *inode,
 | |
| 			       struct btrfs_path *dst_path,
 | |
| 			       struct btrfs_path *src_path, u64 *last_extent,
 | |
| 			       int start_slot, int nr, int inode_only,
 | |
| 			       u64 logged_isize)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
 | |
| 	unsigned long src_offset;
 | |
| 	unsigned long dst_offset;
 | |
| 	struct btrfs_root *log = inode->root->log_root;
 | |
| 	struct btrfs_file_extent_item *extent;
 | |
| 	struct btrfs_inode_item *inode_item;
 | |
| 	struct extent_buffer *src = src_path->nodes[0];
 | |
| 	struct btrfs_key first_key, last_key, key;
 | |
| 	int ret;
 | |
| 	struct btrfs_key *ins_keys;
 | |
| 	u32 *ins_sizes;
 | |
| 	char *ins_data;
 | |
| 	int i;
 | |
| 	struct list_head ordered_sums;
 | |
| 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
 | |
| 	bool has_extents = false;
 | |
| 	bool need_find_last_extent = true;
 | |
| 	bool done = false;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&ordered_sums);
 | |
| 
 | |
| 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
 | |
| 			   nr * sizeof(u32), GFP_NOFS);
 | |
| 	if (!ins_data)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	first_key.objectid = (u64)-1;
 | |
| 
 | |
| 	ins_sizes = (u32 *)ins_data;
 | |
| 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
 | |
| 
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
 | |
| 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
 | |
| 	}
 | |
| 	ret = btrfs_insert_empty_items(trans, log, dst_path,
 | |
| 				       ins_keys, ins_sizes, nr);
 | |
| 	if (ret) {
 | |
| 		kfree(ins_data);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
 | |
| 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
 | |
| 						   dst_path->slots[0]);
 | |
| 
 | |
| 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
 | |
| 
 | |
| 		if (i == nr - 1)
 | |
| 			last_key = ins_keys[i];
 | |
| 
 | |
| 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
 | |
| 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
 | |
| 						    dst_path->slots[0],
 | |
| 						    struct btrfs_inode_item);
 | |
| 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
 | |
| 					&inode->vfs_inode,
 | |
| 					inode_only == LOG_INODE_EXISTS,
 | |
| 					logged_isize);
 | |
| 		} else {
 | |
| 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
 | |
| 					   src_offset, ins_sizes[i]);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We set need_find_last_extent here in case we know we were
 | |
| 		 * processing other items and then walk into the first extent in
 | |
| 		 * the inode.  If we don't hit an extent then nothing changes,
 | |
| 		 * we'll do the last search the next time around.
 | |
| 		 */
 | |
| 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
 | |
| 			has_extents = true;
 | |
| 			if (first_key.objectid == (u64)-1)
 | |
| 				first_key = ins_keys[i];
 | |
| 		} else {
 | |
| 			need_find_last_extent = false;
 | |
| 		}
 | |
| 
 | |
| 		/* take a reference on file data extents so that truncates
 | |
| 		 * or deletes of this inode don't have to relog the inode
 | |
| 		 * again
 | |
| 		 */
 | |
| 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
 | |
| 		    !skip_csum) {
 | |
| 			int found_type;
 | |
| 			extent = btrfs_item_ptr(src, start_slot + i,
 | |
| 						struct btrfs_file_extent_item);
 | |
| 
 | |
| 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
 | |
| 				continue;
 | |
| 
 | |
| 			found_type = btrfs_file_extent_type(src, extent);
 | |
| 			if (found_type == BTRFS_FILE_EXTENT_REG) {
 | |
| 				u64 ds, dl, cs, cl;
 | |
| 				ds = btrfs_file_extent_disk_bytenr(src,
 | |
| 								extent);
 | |
| 				/* ds == 0 is a hole */
 | |
| 				if (ds == 0)
 | |
| 					continue;
 | |
| 
 | |
| 				dl = btrfs_file_extent_disk_num_bytes(src,
 | |
| 								extent);
 | |
| 				cs = btrfs_file_extent_offset(src, extent);
 | |
| 				cl = btrfs_file_extent_num_bytes(src,
 | |
| 								extent);
 | |
| 				if (btrfs_file_extent_compression(src,
 | |
| 								  extent)) {
 | |
| 					cs = 0;
 | |
| 					cl = dl;
 | |
| 				}
 | |
| 
 | |
| 				ret = btrfs_lookup_csums_range(
 | |
| 						fs_info->csum_root,
 | |
| 						ds + cs, ds + cs + cl - 1,
 | |
| 						&ordered_sums, 0);
 | |
| 				if (ret) {
 | |
| 					btrfs_release_path(dst_path);
 | |
| 					kfree(ins_data);
 | |
| 					return ret;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
 | |
| 	btrfs_release_path(dst_path);
 | |
| 	kfree(ins_data);
 | |
| 
 | |
| 	/*
 | |
| 	 * we have to do this after the loop above to avoid changing the
 | |
| 	 * log tree while trying to change the log tree.
 | |
| 	 */
 | |
| 	ret = 0;
 | |
| 	while (!list_empty(&ordered_sums)) {
 | |
| 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
 | |
| 						   struct btrfs_ordered_sum,
 | |
| 						   list);
 | |
| 		if (!ret)
 | |
| 			ret = btrfs_csum_file_blocks(trans, log, sums);
 | |
| 		list_del(&sums->list);
 | |
| 		kfree(sums);
 | |
| 	}
 | |
| 
 | |
| 	if (!has_extents)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (need_find_last_extent && *last_extent == first_key.offset) {
 | |
| 		/*
 | |
| 		 * We don't have any leafs between our current one and the one
 | |
| 		 * we processed before that can have file extent items for our
 | |
| 		 * inode (and have a generation number smaller than our current
 | |
| 		 * transaction id).
 | |
| 		 */
 | |
| 		need_find_last_extent = false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Because we use btrfs_search_forward we could skip leaves that were
 | |
| 	 * not modified and then assume *last_extent is valid when it really
 | |
| 	 * isn't.  So back up to the previous leaf and read the end of the last
 | |
| 	 * extent before we go and fill in holes.
 | |
| 	 */
 | |
| 	if (need_find_last_extent) {
 | |
| 		u64 len;
 | |
| 
 | |
| 		ret = btrfs_prev_leaf(inode->root, src_path);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		if (ret)
 | |
| 			goto fill_holes;
 | |
| 		if (src_path->slots[0])
 | |
| 			src_path->slots[0]--;
 | |
| 		src = src_path->nodes[0];
 | |
| 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
 | |
| 		if (key.objectid != btrfs_ino(inode) ||
 | |
| 		    key.type != BTRFS_EXTENT_DATA_KEY)
 | |
| 			goto fill_holes;
 | |
| 		extent = btrfs_item_ptr(src, src_path->slots[0],
 | |
| 					struct btrfs_file_extent_item);
 | |
| 		if (btrfs_file_extent_type(src, extent) ==
 | |
| 		    BTRFS_FILE_EXTENT_INLINE) {
 | |
| 			len = btrfs_file_extent_inline_len(src,
 | |
| 							   src_path->slots[0],
 | |
| 							   extent);
 | |
| 			*last_extent = ALIGN(key.offset + len,
 | |
| 					     fs_info->sectorsize);
 | |
| 		} else {
 | |
| 			len = btrfs_file_extent_num_bytes(src, extent);
 | |
| 			*last_extent = key.offset + len;
 | |
| 		}
 | |
| 	}
 | |
| fill_holes:
 | |
| 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
 | |
| 	 * things could have happened
 | |
| 	 *
 | |
| 	 * 1) A merge could have happened, so we could currently be on a leaf
 | |
| 	 * that holds what we were copying in the first place.
 | |
| 	 * 2) A split could have happened, and now not all of the items we want
 | |
| 	 * are on the same leaf.
 | |
| 	 *
 | |
| 	 * So we need to adjust how we search for holes, we need to drop the
 | |
| 	 * path and re-search for the first extent key we found, and then walk
 | |
| 	 * forward until we hit the last one we copied.
 | |
| 	 */
 | |
| 	if (need_find_last_extent) {
 | |
| 		/* btrfs_prev_leaf could return 1 without releasing the path */
 | |
| 		btrfs_release_path(src_path);
 | |
| 		ret = btrfs_search_slot(NULL, inode->root, &first_key,
 | |
| 				src_path, 0, 0);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		ASSERT(ret == 0);
 | |
| 		src = src_path->nodes[0];
 | |
| 		i = src_path->slots[0];
 | |
| 	} else {
 | |
| 		i = start_slot;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok so here we need to go through and fill in any holes we may have
 | |
| 	 * to make sure that holes are punched for those areas in case they had
 | |
| 	 * extents previously.
 | |
| 	 */
 | |
| 	while (!done) {
 | |
| 		u64 offset, len;
 | |
| 		u64 extent_end;
 | |
| 
 | |
| 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
 | |
| 			ret = btrfs_next_leaf(inode->root, src_path);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 			ASSERT(ret == 0);
 | |
| 			src = src_path->nodes[0];
 | |
| 			i = 0;
 | |
| 			need_find_last_extent = true;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(src, &key, i);
 | |
| 		if (!btrfs_comp_cpu_keys(&key, &last_key))
 | |
| 			done = true;
 | |
| 		if (key.objectid != btrfs_ino(inode) ||
 | |
| 		    key.type != BTRFS_EXTENT_DATA_KEY) {
 | |
| 			i++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
 | |
| 		if (btrfs_file_extent_type(src, extent) ==
 | |
| 		    BTRFS_FILE_EXTENT_INLINE) {
 | |
| 			len = btrfs_file_extent_inline_len(src, i, extent);
 | |
| 			extent_end = ALIGN(key.offset + len,
 | |
| 					   fs_info->sectorsize);
 | |
| 		} else {
 | |
| 			len = btrfs_file_extent_num_bytes(src, extent);
 | |
| 			extent_end = key.offset + len;
 | |
| 		}
 | |
| 		i++;
 | |
| 
 | |
| 		if (*last_extent == key.offset) {
 | |
| 			*last_extent = extent_end;
 | |
| 			continue;
 | |
| 		}
 | |
| 		offset = *last_extent;
 | |
| 		len = key.offset - *last_extent;
 | |
| 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
 | |
| 				offset, 0, 0, len, 0, len, 0, 0, 0);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		*last_extent = extent_end;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if there is a hole between the last extent found in our leaf
 | |
| 	 * and the first extent in the next leaf. If there is one, we need to
 | |
| 	 * log an explicit hole so that at replay time we can punch the hole.
 | |
| 	 */
 | |
| 	if (ret == 0 &&
 | |
| 	    key.objectid == btrfs_ino(inode) &&
 | |
| 	    key.type == BTRFS_EXTENT_DATA_KEY &&
 | |
| 	    i == btrfs_header_nritems(src_path->nodes[0])) {
 | |
| 		ret = btrfs_next_leaf(inode->root, src_path);
 | |
| 		need_find_last_extent = true;
 | |
| 		if (ret > 0) {
 | |
| 			ret = 0;
 | |
| 		} else if (ret == 0) {
 | |
| 			btrfs_item_key_to_cpu(src_path->nodes[0], &key,
 | |
| 					      src_path->slots[0]);
 | |
| 			if (key.objectid == btrfs_ino(inode) &&
 | |
| 			    key.type == BTRFS_EXTENT_DATA_KEY &&
 | |
| 			    *last_extent < key.offset) {
 | |
| 				const u64 len = key.offset - *last_extent;
 | |
| 
 | |
| 				ret = btrfs_insert_file_extent(trans, log,
 | |
| 							       btrfs_ino(inode),
 | |
| 							       *last_extent, 0,
 | |
| 							       0, len, 0, len,
 | |
| 							       0, 0, 0);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Need to let the callers know we dropped the path so they should
 | |
| 	 * re-search.
 | |
| 	 */
 | |
| 	if (!ret && need_find_last_extent)
 | |
| 		ret = 1;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
 | |
| {
 | |
| 	struct extent_map *em1, *em2;
 | |
| 
 | |
| 	em1 = list_entry(a, struct extent_map, list);
 | |
| 	em2 = list_entry(b, struct extent_map, list);
 | |
| 
 | |
| 	if (em1->start < em2->start)
 | |
| 		return -1;
 | |
| 	else if (em1->start > em2->start)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int log_extent_csums(struct btrfs_trans_handle *trans,
 | |
| 			    struct btrfs_inode *inode,
 | |
| 			    struct btrfs_root *root,
 | |
| 			    const struct extent_map *em)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_root *log = root->log_root;
 | |
| 	u64 csum_offset;
 | |
| 	u64 csum_len;
 | |
| 	LIST_HEAD(ordered_sums);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (inode->flags & BTRFS_INODE_NODATASUM ||
 | |
| 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
 | |
| 	    em->block_start == EXTENT_MAP_HOLE)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If we're compressed we have to save the entire range of csums. */
 | |
| 	if (em->compress_type) {
 | |
| 		csum_offset = 0;
 | |
| 		csum_len = max(em->block_len, em->orig_block_len);
 | |
| 	} else {
 | |
| 		csum_offset = em->mod_start - em->start;
 | |
| 		csum_len = em->mod_len;
 | |
| 	}
 | |
| 
 | |
| 	/* block start is already adjusted for the file extent offset. */
 | |
| 	ret = btrfs_lookup_csums_range(fs_info->csum_root,
 | |
| 				       em->block_start + csum_offset,
 | |
| 				       em->block_start + csum_offset +
 | |
| 				       csum_len - 1, &ordered_sums, 0);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	while (!list_empty(&ordered_sums)) {
 | |
| 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
 | |
| 						   struct btrfs_ordered_sum,
 | |
| 						   list);
 | |
| 		if (!ret)
 | |
| 			ret = btrfs_csum_file_blocks(trans, log, sums);
 | |
| 		list_del(&sums->list);
 | |
| 		kfree(sums);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int log_one_extent(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_inode *inode, struct btrfs_root *root,
 | |
| 			  const struct extent_map *em,
 | |
| 			  struct btrfs_path *path,
 | |
| 			  struct btrfs_log_ctx *ctx)
 | |
| {
 | |
| 	struct btrfs_root *log = root->log_root;
 | |
| 	struct btrfs_file_extent_item *fi;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_map_token token;
 | |
| 	struct btrfs_key key;
 | |
| 	u64 extent_offset = em->start - em->orig_start;
 | |
| 	u64 block_len;
 | |
| 	int ret;
 | |
| 	int extent_inserted = 0;
 | |
| 
 | |
| 	ret = log_extent_csums(trans, inode, root, em);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	btrfs_init_map_token(&token);
 | |
| 
 | |
| 	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
 | |
| 				   em->start + em->len, NULL, 0, 1,
 | |
| 				   sizeof(*fi), &extent_inserted);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (!extent_inserted) {
 | |
| 		key.objectid = btrfs_ino(inode);
 | |
| 		key.type = BTRFS_EXTENT_DATA_KEY;
 | |
| 		key.offset = em->start;
 | |
| 
 | |
| 		ret = btrfs_insert_empty_item(trans, log, path, &key,
 | |
| 					      sizeof(*fi));
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 	leaf = path->nodes[0];
 | |
| 	fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 			    struct btrfs_file_extent_item);
 | |
| 
 | |
| 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
 | |
| 					       &token);
 | |
| 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
 | |
| 		btrfs_set_token_file_extent_type(leaf, fi,
 | |
| 						 BTRFS_FILE_EXTENT_PREALLOC,
 | |
| 						 &token);
 | |
| 	else
 | |
| 		btrfs_set_token_file_extent_type(leaf, fi,
 | |
| 						 BTRFS_FILE_EXTENT_REG,
 | |
| 						 &token);
 | |
| 
 | |
| 	block_len = max(em->block_len, em->orig_block_len);
 | |
| 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
 | |
| 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
 | |
| 							em->block_start,
 | |
| 							&token);
 | |
| 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
 | |
| 							   &token);
 | |
| 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 | |
| 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
 | |
| 							em->block_start -
 | |
| 							extent_offset, &token);
 | |
| 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
 | |
| 							   &token);
 | |
| 	} else {
 | |
| 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
 | |
| 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
 | |
| 							   &token);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
 | |
| 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
 | |
| 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
 | |
| 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
 | |
| 						&token);
 | |
| 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
 | |
| 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| 
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Log all prealloc extents beyond the inode's i_size to make sure we do not
 | |
|  * lose them after doing a fast fsync and replaying the log. We scan the
 | |
|  * subvolume's root instead of iterating the inode's extent map tree because
 | |
|  * otherwise we can log incorrect extent items based on extent map conversion.
 | |
|  * That can happen due to the fact that extent maps are merged when they
 | |
|  * are not in the extent map tree's list of modified extents.
 | |
|  */
 | |
| static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
 | |
| 				      struct btrfs_inode *inode,
 | |
| 				      struct btrfs_path *path)
 | |
| {
 | |
| 	struct btrfs_root *root = inode->root;
 | |
| 	struct btrfs_key key;
 | |
| 	const u64 i_size = i_size_read(&inode->vfs_inode);
 | |
| 	const u64 ino = btrfs_ino(inode);
 | |
| 	struct btrfs_path *dst_path = NULL;
 | |
| 	u64 last_extent = (u64)-1;
 | |
| 	int ins_nr = 0;
 | |
| 	int start_slot;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
 | |
| 		return 0;
 | |
| 
 | |
| 	key.objectid = ino;
 | |
| 	key.type = BTRFS_EXTENT_DATA_KEY;
 | |
| 	key.offset = i_size;
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	while (true) {
 | |
| 		struct extent_buffer *leaf = path->nodes[0];
 | |
| 		int slot = path->slots[0];
 | |
| 
 | |
| 		if (slot >= btrfs_header_nritems(leaf)) {
 | |
| 			if (ins_nr > 0) {
 | |
| 				ret = copy_items(trans, inode, dst_path, path,
 | |
| 						 &last_extent, start_slot,
 | |
| 						 ins_nr, 1, 0);
 | |
| 				if (ret < 0)
 | |
| 					goto out;
 | |
| 				ins_nr = 0;
 | |
| 			}
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret < 0)
 | |
| 				goto out;
 | |
| 			if (ret > 0) {
 | |
| 				ret = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, slot);
 | |
| 		if (key.objectid > ino)
 | |
| 			break;
 | |
| 		if (WARN_ON_ONCE(key.objectid < ino) ||
 | |
| 		    key.type < BTRFS_EXTENT_DATA_KEY ||
 | |
| 		    key.offset < i_size) {
 | |
| 			path->slots[0]++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (last_extent == (u64)-1) {
 | |
| 			last_extent = key.offset;
 | |
| 			/*
 | |
| 			 * Avoid logging extent items logged in past fsync calls
 | |
| 			 * and leading to duplicate keys in the log tree.
 | |
| 			 */
 | |
| 			do {
 | |
| 				ret = btrfs_truncate_inode_items(trans,
 | |
| 							 root->log_root,
 | |
| 							 &inode->vfs_inode,
 | |
| 							 i_size,
 | |
| 							 BTRFS_EXTENT_DATA_KEY);
 | |
| 			} while (ret == -EAGAIN);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 		}
 | |
| 		if (ins_nr == 0)
 | |
| 			start_slot = slot;
 | |
| 		ins_nr++;
 | |
| 		path->slots[0]++;
 | |
| 		if (!dst_path) {
 | |
| 			dst_path = btrfs_alloc_path();
 | |
| 			if (!dst_path) {
 | |
| 				ret = -ENOMEM;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (ins_nr > 0) {
 | |
| 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
 | |
| 				 start_slot, ins_nr, 1, 0);
 | |
| 		if (ret > 0)
 | |
| 			ret = 0;
 | |
| 	}
 | |
| out:
 | |
| 	btrfs_release_path(path);
 | |
| 	btrfs_free_path(dst_path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
 | |
| 				     struct btrfs_root *root,
 | |
| 				     struct btrfs_inode *inode,
 | |
| 				     struct btrfs_path *path,
 | |
| 				     struct btrfs_log_ctx *ctx,
 | |
| 				     const u64 start,
 | |
| 				     const u64 end)
 | |
| {
 | |
| 	struct extent_map *em, *n;
 | |
| 	struct list_head extents;
 | |
| 	struct extent_map_tree *tree = &inode->extent_tree;
 | |
| 	u64 logged_start, logged_end;
 | |
| 	u64 test_gen;
 | |
| 	int ret = 0;
 | |
| 	int num = 0;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&extents);
 | |
| 
 | |
| 	down_write(&inode->dio_sem);
 | |
| 	write_lock(&tree->lock);
 | |
| 	test_gen = root->fs_info->last_trans_committed;
 | |
| 	logged_start = start;
 | |
| 	logged_end = end;
 | |
| 
 | |
| 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
 | |
| 		list_del_init(&em->list);
 | |
| 		/*
 | |
| 		 * Just an arbitrary number, this can be really CPU intensive
 | |
| 		 * once we start getting a lot of extents, and really once we
 | |
| 		 * have a bunch of extents we just want to commit since it will
 | |
| 		 * be faster.
 | |
| 		 */
 | |
| 		if (++num > 32768) {
 | |
| 			list_del_init(&tree->modified_extents);
 | |
| 			ret = -EFBIG;
 | |
| 			goto process;
 | |
| 		}
 | |
| 
 | |
| 		if (em->generation <= test_gen)
 | |
| 			continue;
 | |
| 
 | |
| 		/* We log prealloc extents beyond eof later. */
 | |
| 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
 | |
| 		    em->start >= i_size_read(&inode->vfs_inode))
 | |
| 			continue;
 | |
| 
 | |
| 		if (em->start < logged_start)
 | |
| 			logged_start = em->start;
 | |
| 		if ((em->start + em->len - 1) > logged_end)
 | |
| 			logged_end = em->start + em->len - 1;
 | |
| 
 | |
| 		/* Need a ref to keep it from getting evicted from cache */
 | |
| 		refcount_inc(&em->refs);
 | |
| 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
 | |
| 		list_add_tail(&em->list, &extents);
 | |
| 		num++;
 | |
| 	}
 | |
| 
 | |
| 	list_sort(NULL, &extents, extent_cmp);
 | |
| process:
 | |
| 	while (!list_empty(&extents)) {
 | |
| 		em = list_entry(extents.next, struct extent_map, list);
 | |
| 
 | |
| 		list_del_init(&em->list);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we had an error we just need to delete everybody from our
 | |
| 		 * private list.
 | |
| 		 */
 | |
| 		if (ret) {
 | |
| 			clear_em_logging(tree, em);
 | |
| 			free_extent_map(em);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		write_unlock(&tree->lock);
 | |
| 
 | |
| 		ret = log_one_extent(trans, inode, root, em, path, ctx);
 | |
| 		write_lock(&tree->lock);
 | |
| 		clear_em_logging(tree, em);
 | |
| 		free_extent_map(em);
 | |
| 	}
 | |
| 	WARN_ON(!list_empty(&extents));
 | |
| 	write_unlock(&tree->lock);
 | |
| 	up_write(&inode->dio_sem);
 | |
| 
 | |
| 	btrfs_release_path(path);
 | |
| 	if (!ret)
 | |
| 		ret = btrfs_log_prealloc_extents(trans, inode, path);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
 | |
| 			     struct btrfs_path *path, u64 *size_ret)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	int ret;
 | |
| 
 | |
| 	key.objectid = btrfs_ino(inode);
 | |
| 	key.type = BTRFS_INODE_ITEM_KEY;
 | |
| 	key.offset = 0;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
 | |
| 	if (ret < 0) {
 | |
| 		return ret;
 | |
| 	} else if (ret > 0) {
 | |
| 		*size_ret = 0;
 | |
| 	} else {
 | |
| 		struct btrfs_inode_item *item;
 | |
| 
 | |
| 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 				      struct btrfs_inode_item);
 | |
| 		*size_ret = btrfs_inode_size(path->nodes[0], item);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_release_path(path);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * At the moment we always log all xattrs. This is to figure out at log replay
 | |
|  * time which xattrs must have their deletion replayed. If a xattr is missing
 | |
|  * in the log tree and exists in the fs/subvol tree, we delete it. This is
 | |
|  * because if a xattr is deleted, the inode is fsynced and a power failure
 | |
|  * happens, causing the log to be replayed the next time the fs is mounted,
 | |
|  * we want the xattr to not exist anymore (same behaviour as other filesystems
 | |
|  * with a journal, ext3/4, xfs, f2fs, etc).
 | |
|  */
 | |
| static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
 | |
| 				struct btrfs_root *root,
 | |
| 				struct btrfs_inode *inode,
 | |
| 				struct btrfs_path *path,
 | |
| 				struct btrfs_path *dst_path)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	const u64 ino = btrfs_ino(inode);
 | |
| 	int ins_nr = 0;
 | |
| 	int start_slot = 0;
 | |
| 
 | |
| 	key.objectid = ino;
 | |
| 	key.type = BTRFS_XATTR_ITEM_KEY;
 | |
| 	key.offset = 0;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	while (true) {
 | |
| 		int slot = path->slots[0];
 | |
| 		struct extent_buffer *leaf = path->nodes[0];
 | |
| 		int nritems = btrfs_header_nritems(leaf);
 | |
| 
 | |
| 		if (slot >= nritems) {
 | |
| 			if (ins_nr > 0) {
 | |
| 				u64 last_extent = 0;
 | |
| 
 | |
| 				ret = copy_items(trans, inode, dst_path, path,
 | |
| 						 &last_extent, start_slot,
 | |
| 						 ins_nr, 1, 0);
 | |
| 				/* can't be 1, extent items aren't processed */
 | |
| 				ASSERT(ret <= 0);
 | |
| 				if (ret < 0)
 | |
| 					return ret;
 | |
| 				ins_nr = 0;
 | |
| 			}
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 			else if (ret > 0)
 | |
| 				break;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, slot);
 | |
| 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
 | |
| 			break;
 | |
| 
 | |
| 		if (ins_nr == 0)
 | |
| 			start_slot = slot;
 | |
| 		ins_nr++;
 | |
| 		path->slots[0]++;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	if (ins_nr > 0) {
 | |
| 		u64 last_extent = 0;
 | |
| 
 | |
| 		ret = copy_items(trans, inode, dst_path, path,
 | |
| 				 &last_extent, start_slot,
 | |
| 				 ins_nr, 1, 0);
 | |
| 		/* can't be 1, extent items aren't processed */
 | |
| 		ASSERT(ret <= 0);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the no holes feature is enabled we need to make sure any hole between the
 | |
|  * last extent and the i_size of our inode is explicitly marked in the log. This
 | |
|  * is to make sure that doing something like:
 | |
|  *
 | |
|  *      1) create file with 128Kb of data
 | |
|  *      2) truncate file to 64Kb
 | |
|  *      3) truncate file to 256Kb
 | |
|  *      4) fsync file
 | |
|  *      5) <crash/power failure>
 | |
|  *      6) mount fs and trigger log replay
 | |
|  *
 | |
|  * Will give us a file with a size of 256Kb, the first 64Kb of data match what
 | |
|  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
 | |
|  * file correspond to a hole. The presence of explicit holes in a log tree is
 | |
|  * what guarantees that log replay will remove/adjust file extent items in the
 | |
|  * fs/subvol tree.
 | |
|  *
 | |
|  * Here we do not need to care about holes between extents, that is already done
 | |
|  * by copy_items(). We also only need to do this in the full sync path, where we
 | |
|  * lookup for extents from the fs/subvol tree only. In the fast path case, we
 | |
|  * lookup the list of modified extent maps and if any represents a hole, we
 | |
|  * insert a corresponding extent representing a hole in the log tree.
 | |
|  */
 | |
| static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_root *root,
 | |
| 				   struct btrfs_inode *inode,
 | |
| 				   struct btrfs_path *path)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	u64 hole_start;
 | |
| 	u64 hole_size;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_root *log = root->log_root;
 | |
| 	const u64 ino = btrfs_ino(inode);
 | |
| 	const u64 i_size = i_size_read(&inode->vfs_inode);
 | |
| 
 | |
| 	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
 | |
| 		return 0;
 | |
| 
 | |
| 	key.objectid = ino;
 | |
| 	key.type = BTRFS_EXTENT_DATA_KEY;
 | |
| 	key.offset = (u64)-1;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	ASSERT(ret != 0);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	ASSERT(path->slots[0] > 0);
 | |
| 	path->slots[0]--;
 | |
| 	leaf = path->nodes[0];
 | |
| 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 
 | |
| 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
 | |
| 		/* inode does not have any extents */
 | |
| 		hole_start = 0;
 | |
| 		hole_size = i_size;
 | |
| 	} else {
 | |
| 		struct btrfs_file_extent_item *extent;
 | |
| 		u64 len;
 | |
| 
 | |
| 		/*
 | |
| 		 * If there's an extent beyond i_size, an explicit hole was
 | |
| 		 * already inserted by copy_items().
 | |
| 		 */
 | |
| 		if (key.offset >= i_size)
 | |
| 			return 0;
 | |
| 
 | |
| 		extent = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					struct btrfs_file_extent_item);
 | |
| 
 | |
| 		if (btrfs_file_extent_type(leaf, extent) ==
 | |
| 		    BTRFS_FILE_EXTENT_INLINE) {
 | |
| 			len = btrfs_file_extent_inline_len(leaf,
 | |
| 							   path->slots[0],
 | |
| 							   extent);
 | |
| 			ASSERT(len == i_size ||
 | |
| 			       (len == fs_info->sectorsize &&
 | |
| 				btrfs_file_extent_compression(leaf, extent) !=
 | |
| 				BTRFS_COMPRESS_NONE));
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		len = btrfs_file_extent_num_bytes(leaf, extent);
 | |
| 		/* Last extent goes beyond i_size, no need to log a hole. */
 | |
| 		if (key.offset + len > i_size)
 | |
| 			return 0;
 | |
| 		hole_start = key.offset + len;
 | |
| 		hole_size = i_size - hole_start;
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	/* Last extent ends at i_size. */
 | |
| 	if (hole_size == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	hole_size = ALIGN(hole_size, fs_info->sectorsize);
 | |
| 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
 | |
| 				       hole_size, 0, hole_size, 0, 0, 0);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When we are logging a new inode X, check if it doesn't have a reference that
 | |
|  * matches the reference from some other inode Y created in a past transaction
 | |
|  * and that was renamed in the current transaction. If we don't do this, then at
 | |
|  * log replay time we can lose inode Y (and all its files if it's a directory):
 | |
|  *
 | |
|  * mkdir /mnt/x
 | |
|  * echo "hello world" > /mnt/x/foobar
 | |
|  * sync
 | |
|  * mv /mnt/x /mnt/y
 | |
|  * mkdir /mnt/x                 # or touch /mnt/x
 | |
|  * xfs_io -c fsync /mnt/x
 | |
|  * <power fail>
 | |
|  * mount fs, trigger log replay
 | |
|  *
 | |
|  * After the log replay procedure, we would lose the first directory and all its
 | |
|  * files (file foobar).
 | |
|  * For the case where inode Y is not a directory we simply end up losing it:
 | |
|  *
 | |
|  * echo "123" > /mnt/foo
 | |
|  * sync
 | |
|  * mv /mnt/foo /mnt/bar
 | |
|  * echo "abc" > /mnt/foo
 | |
|  * xfs_io -c fsync /mnt/foo
 | |
|  * <power fail>
 | |
|  *
 | |
|  * We also need this for cases where a snapshot entry is replaced by some other
 | |
|  * entry (file or directory) otherwise we end up with an unreplayable log due to
 | |
|  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
 | |
|  * if it were a regular entry:
 | |
|  *
 | |
|  * mkdir /mnt/x
 | |
|  * btrfs subvolume snapshot /mnt /mnt/x/snap
 | |
|  * btrfs subvolume delete /mnt/x/snap
 | |
|  * rmdir /mnt/x
 | |
|  * mkdir /mnt/x
 | |
|  * fsync /mnt/x or fsync some new file inside it
 | |
|  * <power fail>
 | |
|  *
 | |
|  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
 | |
|  * the same transaction.
 | |
|  */
 | |
| static int btrfs_check_ref_name_override(struct extent_buffer *eb,
 | |
| 					 const int slot,
 | |
| 					 const struct btrfs_key *key,
 | |
| 					 struct btrfs_inode *inode,
 | |
| 					 u64 *other_ino)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_path *search_path;
 | |
| 	char *name = NULL;
 | |
| 	u32 name_len = 0;
 | |
| 	u32 item_size = btrfs_item_size_nr(eb, slot);
 | |
| 	u32 cur_offset = 0;
 | |
| 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
 | |
| 
 | |
| 	search_path = btrfs_alloc_path();
 | |
| 	if (!search_path)
 | |
| 		return -ENOMEM;
 | |
| 	search_path->search_commit_root = 1;
 | |
| 	search_path->skip_locking = 1;
 | |
| 
 | |
| 	while (cur_offset < item_size) {
 | |
| 		u64 parent;
 | |
| 		u32 this_name_len;
 | |
| 		u32 this_len;
 | |
| 		unsigned long name_ptr;
 | |
| 		struct btrfs_dir_item *di;
 | |
| 
 | |
| 		if (key->type == BTRFS_INODE_REF_KEY) {
 | |
| 			struct btrfs_inode_ref *iref;
 | |
| 
 | |
| 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
 | |
| 			parent = key->offset;
 | |
| 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
 | |
| 			name_ptr = (unsigned long)(iref + 1);
 | |
| 			this_len = sizeof(*iref) + this_name_len;
 | |
| 		} else {
 | |
| 			struct btrfs_inode_extref *extref;
 | |
| 
 | |
| 			extref = (struct btrfs_inode_extref *)(ptr +
 | |
| 							       cur_offset);
 | |
| 			parent = btrfs_inode_extref_parent(eb, extref);
 | |
| 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
 | |
| 			name_ptr = (unsigned long)&extref->name;
 | |
| 			this_len = sizeof(*extref) + this_name_len;
 | |
| 		}
 | |
| 
 | |
| 		if (this_name_len > name_len) {
 | |
| 			char *new_name;
 | |
| 
 | |
| 			new_name = krealloc(name, this_name_len, GFP_NOFS);
 | |
| 			if (!new_name) {
 | |
| 				ret = -ENOMEM;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			name_len = this_name_len;
 | |
| 			name = new_name;
 | |
| 		}
 | |
| 
 | |
| 		read_extent_buffer(eb, name, name_ptr, this_name_len);
 | |
| 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
 | |
| 				parent, name, this_name_len, 0);
 | |
| 		if (di && !IS_ERR(di)) {
 | |
| 			struct btrfs_key di_key;
 | |
| 
 | |
| 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
 | |
| 						  di, &di_key);
 | |
| 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
 | |
| 				ret = 1;
 | |
| 				*other_ino = di_key.objectid;
 | |
| 			} else {
 | |
| 				ret = -EAGAIN;
 | |
| 			}
 | |
| 			goto out;
 | |
| 		} else if (IS_ERR(di)) {
 | |
| 			ret = PTR_ERR(di);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		btrfs_release_path(search_path);
 | |
| 
 | |
| 		cur_offset += this_len;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	btrfs_free_path(search_path);
 | |
| 	kfree(name);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* log a single inode in the tree log.
 | |
|  * At least one parent directory for this inode must exist in the tree
 | |
|  * or be logged already.
 | |
|  *
 | |
|  * Any items from this inode changed by the current transaction are copied
 | |
|  * to the log tree.  An extra reference is taken on any extents in this
 | |
|  * file, allowing us to avoid a whole pile of corner cases around logging
 | |
|  * blocks that have been removed from the tree.
 | |
|  *
 | |
|  * See LOG_INODE_ALL and related defines for a description of what inode_only
 | |
|  * does.
 | |
|  *
 | |
|  * This handles both files and directories.
 | |
|  */
 | |
| static int btrfs_log_inode(struct btrfs_trans_handle *trans,
 | |
| 			   struct btrfs_root *root, struct btrfs_inode *inode,
 | |
| 			   int inode_only,
 | |
| 			   const loff_t start,
 | |
| 			   const loff_t end,
 | |
| 			   struct btrfs_log_ctx *ctx)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_path *dst_path;
 | |
| 	struct btrfs_key min_key;
 | |
| 	struct btrfs_key max_key;
 | |
| 	struct btrfs_root *log = root->log_root;
 | |
| 	u64 last_extent = 0;
 | |
| 	int err = 0;
 | |
| 	int ret;
 | |
| 	int nritems;
 | |
| 	int ins_start_slot = 0;
 | |
| 	int ins_nr;
 | |
| 	bool fast_search = false;
 | |
| 	u64 ino = btrfs_ino(inode);
 | |
| 	struct extent_map_tree *em_tree = &inode->extent_tree;
 | |
| 	u64 logged_isize = 0;
 | |
| 	bool need_log_inode_item = true;
 | |
| 	bool xattrs_logged = false;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 	dst_path = btrfs_alloc_path();
 | |
| 	if (!dst_path) {
 | |
| 		btrfs_free_path(path);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	min_key.objectid = ino;
 | |
| 	min_key.type = BTRFS_INODE_ITEM_KEY;
 | |
| 	min_key.offset = 0;
 | |
| 
 | |
| 	max_key.objectid = ino;
 | |
| 
 | |
| 
 | |
| 	/* today the code can only do partial logging of directories */
 | |
| 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
 | |
| 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
 | |
| 		       &inode->runtime_flags) &&
 | |
| 	     inode_only >= LOG_INODE_EXISTS))
 | |
| 		max_key.type = BTRFS_XATTR_ITEM_KEY;
 | |
| 	else
 | |
| 		max_key.type = (u8)-1;
 | |
| 	max_key.offset = (u64)-1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only run delayed items if we are a dir or a new file.
 | |
| 	 * Otherwise commit the delayed inode only, which is needed in
 | |
| 	 * order for the log replay code to mark inodes for link count
 | |
| 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
 | |
| 	 */
 | |
| 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
 | |
| 	    inode->generation > fs_info->last_trans_committed)
 | |
| 		ret = btrfs_commit_inode_delayed_items(trans, inode);
 | |
| 	else
 | |
| 		ret = btrfs_commit_inode_delayed_inode(inode);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		btrfs_free_path(path);
 | |
| 		btrfs_free_path(dst_path);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (inode_only == LOG_OTHER_INODE) {
 | |
| 		inode_only = LOG_INODE_EXISTS;
 | |
| 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
 | |
| 	} else {
 | |
| 		mutex_lock(&inode->log_mutex);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * a brute force approach to making sure we get the most uptodate
 | |
| 	 * copies of everything.
 | |
| 	 */
 | |
| 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
 | |
| 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
 | |
| 
 | |
| 		if (inode_only == LOG_INODE_EXISTS)
 | |
| 			max_key_type = BTRFS_XATTR_ITEM_KEY;
 | |
| 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
 | |
| 	} else {
 | |
| 		if (inode_only == LOG_INODE_EXISTS) {
 | |
| 			/*
 | |
| 			 * Make sure the new inode item we write to the log has
 | |
| 			 * the same isize as the current one (if it exists).
 | |
| 			 * This is necessary to prevent data loss after log
 | |
| 			 * replay, and also to prevent doing a wrong expanding
 | |
| 			 * truncate - for e.g. create file, write 4K into offset
 | |
| 			 * 0, fsync, write 4K into offset 4096, add hard link,
 | |
| 			 * fsync some other file (to sync log), power fail - if
 | |
| 			 * we use the inode's current i_size, after log replay
 | |
| 			 * we get a 8Kb file, with the last 4Kb extent as a hole
 | |
| 			 * (zeroes), as if an expanding truncate happened,
 | |
| 			 * instead of getting a file of 4Kb only.
 | |
| 			 */
 | |
| 			err = logged_inode_size(log, inode, path, &logged_isize);
 | |
| 			if (err)
 | |
| 				goto out_unlock;
 | |
| 		}
 | |
| 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
 | |
| 			     &inode->runtime_flags)) {
 | |
| 			if (inode_only == LOG_INODE_EXISTS) {
 | |
| 				max_key.type = BTRFS_XATTR_ITEM_KEY;
 | |
| 				ret = drop_objectid_items(trans, log, path, ino,
 | |
| 							  max_key.type);
 | |
| 			} else {
 | |
| 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
 | |
| 					  &inode->runtime_flags);
 | |
| 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
 | |
| 					  &inode->runtime_flags);
 | |
| 				while(1) {
 | |
| 					ret = btrfs_truncate_inode_items(trans,
 | |
| 						log, &inode->vfs_inode, 0, 0);
 | |
| 					if (ret != -EAGAIN)
 | |
| 						break;
 | |
| 				}
 | |
| 			}
 | |
| 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
 | |
| 					      &inode->runtime_flags) ||
 | |
| 			   inode_only == LOG_INODE_EXISTS) {
 | |
| 			if (inode_only == LOG_INODE_ALL)
 | |
| 				fast_search = true;
 | |
| 			max_key.type = BTRFS_XATTR_ITEM_KEY;
 | |
| 			ret = drop_objectid_items(trans, log, path, ino,
 | |
| 						  max_key.type);
 | |
| 		} else {
 | |
| 			if (inode_only == LOG_INODE_ALL)
 | |
| 				fast_search = true;
 | |
| 			goto log_extents;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	if (ret) {
 | |
| 		err = ret;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		ins_nr = 0;
 | |
| 		ret = btrfs_search_forward(root, &min_key,
 | |
| 					   path, trans->transid);
 | |
| 		if (ret < 0) {
 | |
| 			err = ret;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 		if (ret != 0)
 | |
| 			break;
 | |
| again:
 | |
| 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
 | |
| 		if (min_key.objectid != ino)
 | |
| 			break;
 | |
| 		if (min_key.type > max_key.type)
 | |
| 			break;
 | |
| 
 | |
| 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
 | |
| 			need_log_inode_item = false;
 | |
| 
 | |
| 		if ((min_key.type == BTRFS_INODE_REF_KEY ||
 | |
| 		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
 | |
| 		    inode->generation == trans->transid) {
 | |
| 			u64 other_ino = 0;
 | |
| 
 | |
| 			ret = btrfs_check_ref_name_override(path->nodes[0],
 | |
| 					path->slots[0], &min_key, inode,
 | |
| 					&other_ino);
 | |
| 			if (ret < 0) {
 | |
| 				err = ret;
 | |
| 				goto out_unlock;
 | |
| 			} else if (ret > 0 && ctx &&
 | |
| 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
 | |
| 				struct btrfs_key inode_key;
 | |
| 				struct inode *other_inode;
 | |
| 
 | |
| 				if (ins_nr > 0) {
 | |
| 					ins_nr++;
 | |
| 				} else {
 | |
| 					ins_nr = 1;
 | |
| 					ins_start_slot = path->slots[0];
 | |
| 				}
 | |
| 				ret = copy_items(trans, inode, dst_path, path,
 | |
| 						 &last_extent, ins_start_slot,
 | |
| 						 ins_nr, inode_only,
 | |
| 						 logged_isize);
 | |
| 				if (ret < 0) {
 | |
| 					err = ret;
 | |
| 					goto out_unlock;
 | |
| 				}
 | |
| 				ins_nr = 0;
 | |
| 				btrfs_release_path(path);
 | |
| 				inode_key.objectid = other_ino;
 | |
| 				inode_key.type = BTRFS_INODE_ITEM_KEY;
 | |
| 				inode_key.offset = 0;
 | |
| 				other_inode = btrfs_iget(fs_info->sb,
 | |
| 							 &inode_key, root,
 | |
| 							 NULL);
 | |
| 				/*
 | |
| 				 * If the other inode that had a conflicting dir
 | |
| 				 * entry was deleted in the current transaction,
 | |
| 				 * we don't need to do more work nor fallback to
 | |
| 				 * a transaction commit.
 | |
| 				 */
 | |
| 				if (IS_ERR(other_inode) &&
 | |
| 				    PTR_ERR(other_inode) == -ENOENT) {
 | |
| 					goto next_key;
 | |
| 				} else if (IS_ERR(other_inode)) {
 | |
| 					err = PTR_ERR(other_inode);
 | |
| 					goto out_unlock;
 | |
| 				}
 | |
| 				/*
 | |
| 				 * We are safe logging the other inode without
 | |
| 				 * acquiring its i_mutex as long as we log with
 | |
| 				 * the LOG_INODE_EXISTS mode. We're safe against
 | |
| 				 * concurrent renames of the other inode as well
 | |
| 				 * because during a rename we pin the log and
 | |
| 				 * update the log with the new name before we
 | |
| 				 * unpin it.
 | |
| 				 */
 | |
| 				err = btrfs_log_inode(trans, root,
 | |
| 						BTRFS_I(other_inode),
 | |
| 						LOG_OTHER_INODE, 0, LLONG_MAX,
 | |
| 						ctx);
 | |
| 				iput(other_inode);
 | |
| 				if (err)
 | |
| 					goto out_unlock;
 | |
| 				else
 | |
| 					goto next_key;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
 | |
| 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
 | |
| 			if (ins_nr == 0)
 | |
| 				goto next_slot;
 | |
| 			ret = copy_items(trans, inode, dst_path, path,
 | |
| 					 &last_extent, ins_start_slot,
 | |
| 					 ins_nr, inode_only, logged_isize);
 | |
| 			if (ret < 0) {
 | |
| 				err = ret;
 | |
| 				goto out_unlock;
 | |
| 			}
 | |
| 			ins_nr = 0;
 | |
| 			if (ret) {
 | |
| 				btrfs_release_path(path);
 | |
| 				continue;
 | |
| 			}
 | |
| 			goto next_slot;
 | |
| 		}
 | |
| 
 | |
| 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
 | |
| 			ins_nr++;
 | |
| 			goto next_slot;
 | |
| 		} else if (!ins_nr) {
 | |
| 			ins_start_slot = path->slots[0];
 | |
| 			ins_nr = 1;
 | |
| 			goto next_slot;
 | |
| 		}
 | |
| 
 | |
| 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
 | |
| 				 ins_start_slot, ins_nr, inode_only,
 | |
| 				 logged_isize);
 | |
| 		if (ret < 0) {
 | |
| 			err = ret;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 		if (ret) {
 | |
| 			ins_nr = 0;
 | |
| 			btrfs_release_path(path);
 | |
| 			continue;
 | |
| 		}
 | |
| 		ins_nr = 1;
 | |
| 		ins_start_slot = path->slots[0];
 | |
| next_slot:
 | |
| 
 | |
| 		nritems = btrfs_header_nritems(path->nodes[0]);
 | |
| 		path->slots[0]++;
 | |
| 		if (path->slots[0] < nritems) {
 | |
| 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
 | |
| 					      path->slots[0]);
 | |
| 			goto again;
 | |
| 		}
 | |
| 		if (ins_nr) {
 | |
| 			ret = copy_items(trans, inode, dst_path, path,
 | |
| 					 &last_extent, ins_start_slot,
 | |
| 					 ins_nr, inode_only, logged_isize);
 | |
| 			if (ret < 0) {
 | |
| 				err = ret;
 | |
| 				goto out_unlock;
 | |
| 			}
 | |
| 			ret = 0;
 | |
| 			ins_nr = 0;
 | |
| 		}
 | |
| 		btrfs_release_path(path);
 | |
| next_key:
 | |
| 		if (min_key.offset < (u64)-1) {
 | |
| 			min_key.offset++;
 | |
| 		} else if (min_key.type < max_key.type) {
 | |
| 			min_key.type++;
 | |
| 			min_key.offset = 0;
 | |
| 		} else {
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (ins_nr) {
 | |
| 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
 | |
| 				 ins_start_slot, ins_nr, inode_only,
 | |
| 				 logged_isize);
 | |
| 		if (ret < 0) {
 | |
| 			err = ret;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 		ret = 0;
 | |
| 		ins_nr = 0;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_release_path(path);
 | |
| 	btrfs_release_path(dst_path);
 | |
| 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
 | |
| 	if (err)
 | |
| 		goto out_unlock;
 | |
| 	xattrs_logged = true;
 | |
| 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
 | |
| 		btrfs_release_path(path);
 | |
| 		btrfs_release_path(dst_path);
 | |
| 		err = btrfs_log_trailing_hole(trans, root, inode, path);
 | |
| 		if (err)
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| log_extents:
 | |
| 	btrfs_release_path(path);
 | |
| 	btrfs_release_path(dst_path);
 | |
| 	if (need_log_inode_item) {
 | |
| 		err = log_inode_item(trans, log, dst_path, inode);
 | |
| 		if (!err && !xattrs_logged) {
 | |
| 			err = btrfs_log_all_xattrs(trans, root, inode, path,
 | |
| 						   dst_path);
 | |
| 			btrfs_release_path(path);
 | |
| 		}
 | |
| 		if (err)
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 	if (fast_search) {
 | |
| 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
 | |
| 						ctx, start, end);
 | |
| 		if (ret) {
 | |
| 			err = ret;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 	} else if (inode_only == LOG_INODE_ALL) {
 | |
| 		struct extent_map *em, *n;
 | |
| 
 | |
| 		write_lock(&em_tree->lock);
 | |
| 		/*
 | |
| 		 * We can't just remove every em if we're called for a ranged
 | |
| 		 * fsync - that is, one that doesn't cover the whole possible
 | |
| 		 * file range (0 to LLONG_MAX). This is because we can have
 | |
| 		 * em's that fall outside the range we're logging and therefore
 | |
| 		 * their ordered operations haven't completed yet
 | |
| 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
 | |
| 		 * didn't get their respective file extent item in the fs/subvol
 | |
| 		 * tree yet, and need to let the next fast fsync (one which
 | |
| 		 * consults the list of modified extent maps) find the em so
 | |
| 		 * that it logs a matching file extent item and waits for the
 | |
| 		 * respective ordered operation to complete (if it's still
 | |
| 		 * running).
 | |
| 		 *
 | |
| 		 * Removing every em outside the range we're logging would make
 | |
| 		 * the next fast fsync not log their matching file extent items,
 | |
| 		 * therefore making us lose data after a log replay.
 | |
| 		 */
 | |
| 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
 | |
| 					 list) {
 | |
| 			const u64 mod_end = em->mod_start + em->mod_len - 1;
 | |
| 
 | |
| 			if (em->mod_start >= start && mod_end <= end)
 | |
| 				list_del_init(&em->list);
 | |
| 		}
 | |
| 		write_unlock(&em_tree->lock);
 | |
| 	}
 | |
| 
 | |
| 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
 | |
| 		ret = log_directory_changes(trans, root, inode, path, dst_path,
 | |
| 					ctx);
 | |
| 		if (ret) {
 | |
| 			err = ret;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&inode->lock);
 | |
| 	inode->logged_trans = trans->transid;
 | |
| 	inode->last_log_commit = inode->last_sub_trans;
 | |
| 	spin_unlock(&inode->lock);
 | |
| out_unlock:
 | |
| 	mutex_unlock(&inode->log_mutex);
 | |
| 
 | |
| 	btrfs_free_path(path);
 | |
| 	btrfs_free_path(dst_path);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if we must fallback to a transaction commit when logging an inode.
 | |
|  * This must be called after logging the inode and is used only in the context
 | |
|  * when fsyncing an inode requires the need to log some other inode - in which
 | |
|  * case we can't lock the i_mutex of each other inode we need to log as that
 | |
|  * can lead to deadlocks with concurrent fsync against other inodes (as we can
 | |
|  * log inodes up or down in the hierarchy) or rename operations for example. So
 | |
|  * we take the log_mutex of the inode after we have logged it and then check for
 | |
|  * its last_unlink_trans value - this is safe because any task setting
 | |
|  * last_unlink_trans must take the log_mutex and it must do this before it does
 | |
|  * the actual unlink operation, so if we do this check before a concurrent task
 | |
|  * sets last_unlink_trans it means we've logged a consistent version/state of
 | |
|  * all the inode items, otherwise we are not sure and must do a transaction
 | |
|  * commit (the concurrent task might have only updated last_unlink_trans before
 | |
|  * we logged the inode or it might have also done the unlink).
 | |
|  */
 | |
| static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
 | |
| 					  struct btrfs_inode *inode)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	mutex_lock(&inode->log_mutex);
 | |
| 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
 | |
| 		/*
 | |
| 		 * Make sure any commits to the log are forced to be full
 | |
| 		 * commits.
 | |
| 		 */
 | |
| 		btrfs_set_log_full_commit(fs_info, trans);
 | |
| 		ret = true;
 | |
| 	}
 | |
| 	mutex_unlock(&inode->log_mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * follow the dentry parent pointers up the chain and see if any
 | |
|  * of the directories in it require a full commit before they can
 | |
|  * be logged.  Returns zero if nothing special needs to be done or 1 if
 | |
|  * a full commit is required.
 | |
|  */
 | |
| static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
 | |
| 					       struct btrfs_inode *inode,
 | |
| 					       struct dentry *parent,
 | |
| 					       struct super_block *sb,
 | |
| 					       u64 last_committed)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct dentry *old_parent = NULL;
 | |
| 	struct btrfs_inode *orig_inode = inode;
 | |
| 
 | |
| 	/*
 | |
| 	 * for regular files, if its inode is already on disk, we don't
 | |
| 	 * have to worry about the parents at all.  This is because
 | |
| 	 * we can use the last_unlink_trans field to record renames
 | |
| 	 * and other fun in this file.
 | |
| 	 */
 | |
| 	if (S_ISREG(inode->vfs_inode.i_mode) &&
 | |
| 	    inode->generation <= last_committed &&
 | |
| 	    inode->last_unlink_trans <= last_committed)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
 | |
| 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
 | |
| 			goto out;
 | |
| 		inode = BTRFS_I(d_inode(parent));
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		/*
 | |
| 		 * If we are logging a directory then we start with our inode,
 | |
| 		 * not our parent's inode, so we need to skip setting the
 | |
| 		 * logged_trans so that further down in the log code we don't
 | |
| 		 * think this inode has already been logged.
 | |
| 		 */
 | |
| 		if (inode != orig_inode)
 | |
| 			inode->logged_trans = trans->transid;
 | |
| 		smp_mb();
 | |
| 
 | |
| 		if (btrfs_must_commit_transaction(trans, inode)) {
 | |
| 			ret = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
 | |
| 			break;
 | |
| 
 | |
| 		if (IS_ROOT(parent)) {
 | |
| 			inode = BTRFS_I(d_inode(parent));
 | |
| 			if (btrfs_must_commit_transaction(trans, inode))
 | |
| 				ret = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		parent = dget_parent(parent);
 | |
| 		dput(old_parent);
 | |
| 		old_parent = parent;
 | |
| 		inode = BTRFS_I(d_inode(parent));
 | |
| 
 | |
| 	}
 | |
| 	dput(old_parent);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct btrfs_dir_list {
 | |
| 	u64 ino;
 | |
| 	struct list_head list;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Log the inodes of the new dentries of a directory. See log_dir_items() for
 | |
|  * details about the why it is needed.
 | |
|  * This is a recursive operation - if an existing dentry corresponds to a
 | |
|  * directory, that directory's new entries are logged too (same behaviour as
 | |
|  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
 | |
|  * the dentries point to we do not lock their i_mutex, otherwise lockdep
 | |
|  * complains about the following circular lock dependency / possible deadlock:
 | |
|  *
 | |
|  *        CPU0                                        CPU1
 | |
|  *        ----                                        ----
 | |
|  * lock(&type->i_mutex_dir_key#3/2);
 | |
|  *                                            lock(sb_internal#2);
 | |
|  *                                            lock(&type->i_mutex_dir_key#3/2);
 | |
|  * lock(&sb->s_type->i_mutex_key#14);
 | |
|  *
 | |
|  * Where sb_internal is the lock (a counter that works as a lock) acquired by
 | |
|  * sb_start_intwrite() in btrfs_start_transaction().
 | |
|  * Not locking i_mutex of the inodes is still safe because:
 | |
|  *
 | |
|  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
 | |
|  *    that while logging the inode new references (names) are added or removed
 | |
|  *    from the inode, leaving the logged inode item with a link count that does
 | |
|  *    not match the number of logged inode reference items. This is fine because
 | |
|  *    at log replay time we compute the real number of links and correct the
 | |
|  *    link count in the inode item (see replay_one_buffer() and
 | |
|  *    link_to_fixup_dir());
 | |
|  *
 | |
|  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
 | |
|  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
 | |
|  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
 | |
|  *    has a size that doesn't match the sum of the lengths of all the logged
 | |
|  *    names. This does not result in a problem because if a dir_item key is
 | |
|  *    logged but its matching dir_index key is not logged, at log replay time we
 | |
|  *    don't use it to replay the respective name (see replay_one_name()). On the
 | |
|  *    other hand if only the dir_index key ends up being logged, the respective
 | |
|  *    name is added to the fs/subvol tree with both the dir_item and dir_index
 | |
|  *    keys created (see replay_one_name()).
 | |
|  *    The directory's inode item with a wrong i_size is not a problem as well,
 | |
|  *    since we don't use it at log replay time to set the i_size in the inode
 | |
|  *    item of the fs/subvol tree (see overwrite_item()).
 | |
|  */
 | |
| static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
 | |
| 				struct btrfs_root *root,
 | |
| 				struct btrfs_inode *start_inode,
 | |
| 				struct btrfs_log_ctx *ctx)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_root *log = root->log_root;
 | |
| 	struct btrfs_path *path;
 | |
| 	LIST_HEAD(dir_list);
 | |
| 	struct btrfs_dir_list *dir_elem;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
 | |
| 	if (!dir_elem) {
 | |
| 		btrfs_free_path(path);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	dir_elem->ino = btrfs_ino(start_inode);
 | |
| 	list_add_tail(&dir_elem->list, &dir_list);
 | |
| 
 | |
| 	while (!list_empty(&dir_list)) {
 | |
| 		struct extent_buffer *leaf;
 | |
| 		struct btrfs_key min_key;
 | |
| 		int nritems;
 | |
| 		int i;
 | |
| 
 | |
| 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
 | |
| 					    list);
 | |
| 		if (ret)
 | |
| 			goto next_dir_inode;
 | |
| 
 | |
| 		min_key.objectid = dir_elem->ino;
 | |
| 		min_key.type = BTRFS_DIR_ITEM_KEY;
 | |
| 		min_key.offset = 0;
 | |
| again:
 | |
| 		btrfs_release_path(path);
 | |
| 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
 | |
| 		if (ret < 0) {
 | |
| 			goto next_dir_inode;
 | |
| 		} else if (ret > 0) {
 | |
| 			ret = 0;
 | |
| 			goto next_dir_inode;
 | |
| 		}
 | |
| 
 | |
| process_leaf:
 | |
| 		leaf = path->nodes[0];
 | |
| 		nritems = btrfs_header_nritems(leaf);
 | |
| 		for (i = path->slots[0]; i < nritems; i++) {
 | |
| 			struct btrfs_dir_item *di;
 | |
| 			struct btrfs_key di_key;
 | |
| 			struct inode *di_inode;
 | |
| 			struct btrfs_dir_list *new_dir_elem;
 | |
| 			int log_mode = LOG_INODE_EXISTS;
 | |
| 			int type;
 | |
| 
 | |
| 			btrfs_item_key_to_cpu(leaf, &min_key, i);
 | |
| 			if (min_key.objectid != dir_elem->ino ||
 | |
| 			    min_key.type != BTRFS_DIR_ITEM_KEY)
 | |
| 				goto next_dir_inode;
 | |
| 
 | |
| 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
 | |
| 			type = btrfs_dir_type(leaf, di);
 | |
| 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
 | |
| 			    type != BTRFS_FT_DIR)
 | |
| 				continue;
 | |
| 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
 | |
| 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
 | |
| 				continue;
 | |
| 
 | |
| 			btrfs_release_path(path);
 | |
| 			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
 | |
| 			if (IS_ERR(di_inode)) {
 | |
| 				ret = PTR_ERR(di_inode);
 | |
| 				goto next_dir_inode;
 | |
| 			}
 | |
| 
 | |
| 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
 | |
| 				iput(di_inode);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			ctx->log_new_dentries = false;
 | |
| 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
 | |
| 				log_mode = LOG_INODE_ALL;
 | |
| 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
 | |
| 					      log_mode, 0, LLONG_MAX, ctx);
 | |
| 			if (!ret &&
 | |
| 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
 | |
| 				ret = 1;
 | |
| 			iput(di_inode);
 | |
| 			if (ret)
 | |
| 				goto next_dir_inode;
 | |
| 			if (ctx->log_new_dentries) {
 | |
| 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
 | |
| 						       GFP_NOFS);
 | |
| 				if (!new_dir_elem) {
 | |
| 					ret = -ENOMEM;
 | |
| 					goto next_dir_inode;
 | |
| 				}
 | |
| 				new_dir_elem->ino = di_key.objectid;
 | |
| 				list_add_tail(&new_dir_elem->list, &dir_list);
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		if (i == nritems) {
 | |
| 			ret = btrfs_next_leaf(log, path);
 | |
| 			if (ret < 0) {
 | |
| 				goto next_dir_inode;
 | |
| 			} else if (ret > 0) {
 | |
| 				ret = 0;
 | |
| 				goto next_dir_inode;
 | |
| 			}
 | |
| 			goto process_leaf;
 | |
| 		}
 | |
| 		if (min_key.offset < (u64)-1) {
 | |
| 			min_key.offset++;
 | |
| 			goto again;
 | |
| 		}
 | |
| next_dir_inode:
 | |
| 		list_del(&dir_elem->list);
 | |
| 		kfree(dir_elem);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_inode *inode,
 | |
| 				 struct btrfs_log_ctx *ctx)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
 | |
| 	int ret;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_root *root = inode->root;
 | |
| 	const u64 ino = btrfs_ino(inode);
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 	path->skip_locking = 1;
 | |
| 	path->search_commit_root = 1;
 | |
| 
 | |
| 	key.objectid = ino;
 | |
| 	key.type = BTRFS_INODE_REF_KEY;
 | |
| 	key.offset = 0;
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	while (true) {
 | |
| 		struct extent_buffer *leaf = path->nodes[0];
 | |
| 		int slot = path->slots[0];
 | |
| 		u32 cur_offset = 0;
 | |
| 		u32 item_size;
 | |
| 		unsigned long ptr;
 | |
| 
 | |
| 		if (slot >= btrfs_header_nritems(leaf)) {
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret < 0)
 | |
| 				goto out;
 | |
| 			else if (ret > 0)
 | |
| 				break;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, slot);
 | |
| 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
 | |
| 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
 | |
| 			break;
 | |
| 
 | |
| 		item_size = btrfs_item_size_nr(leaf, slot);
 | |
| 		ptr = btrfs_item_ptr_offset(leaf, slot);
 | |
| 		while (cur_offset < item_size) {
 | |
| 			struct btrfs_key inode_key;
 | |
| 			struct inode *dir_inode;
 | |
| 
 | |
| 			inode_key.type = BTRFS_INODE_ITEM_KEY;
 | |
| 			inode_key.offset = 0;
 | |
| 
 | |
| 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
 | |
| 				struct btrfs_inode_extref *extref;
 | |
| 
 | |
| 				extref = (struct btrfs_inode_extref *)
 | |
| 					(ptr + cur_offset);
 | |
| 				inode_key.objectid = btrfs_inode_extref_parent(
 | |
| 					leaf, extref);
 | |
| 				cur_offset += sizeof(*extref);
 | |
| 				cur_offset += btrfs_inode_extref_name_len(leaf,
 | |
| 					extref);
 | |
| 			} else {
 | |
| 				inode_key.objectid = key.offset;
 | |
| 				cur_offset = item_size;
 | |
| 			}
 | |
| 
 | |
| 			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
 | |
| 					       root, NULL);
 | |
| 			/* If parent inode was deleted, skip it. */
 | |
| 			if (IS_ERR(dir_inode))
 | |
| 				continue;
 | |
| 
 | |
| 			if (ctx)
 | |
| 				ctx->log_new_dentries = false;
 | |
| 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
 | |
| 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
 | |
| 			if (!ret &&
 | |
| 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
 | |
| 				ret = 1;
 | |
| 			if (!ret && ctx && ctx->log_new_dentries)
 | |
| 				ret = log_new_dir_dentries(trans, root,
 | |
| 						   BTRFS_I(dir_inode), ctx);
 | |
| 			iput(dir_inode);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 		}
 | |
| 		path->slots[0]++;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function around btrfs_log_inode to make sure newly created
 | |
|  * parent directories also end up in the log.  A minimal inode and backref
 | |
|  * only logging is done of any parent directories that are older than
 | |
|  * the last committed transaction
 | |
|  */
 | |
| static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
 | |
| 				  struct btrfs_inode *inode,
 | |
| 				  struct dentry *parent,
 | |
| 				  const loff_t start,
 | |
| 				  const loff_t end,
 | |
| 				  int inode_only,
 | |
| 				  struct btrfs_log_ctx *ctx)
 | |
| {
 | |
| 	struct btrfs_root *root = inode->root;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct super_block *sb;
 | |
| 	struct dentry *old_parent = NULL;
 | |
| 	int ret = 0;
 | |
| 	u64 last_committed = fs_info->last_trans_committed;
 | |
| 	bool log_dentries = false;
 | |
| 	struct btrfs_inode *orig_inode = inode;
 | |
| 
 | |
| 	sb = inode->vfs_inode.i_sb;
 | |
| 
 | |
| 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
 | |
| 		ret = 1;
 | |
| 		goto end_no_trans;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The prev transaction commit doesn't complete, we need do
 | |
| 	 * full commit by ourselves.
 | |
| 	 */
 | |
| 	if (fs_info->last_trans_log_full_commit >
 | |
| 	    fs_info->last_trans_committed) {
 | |
| 		ret = 1;
 | |
| 		goto end_no_trans;
 | |
| 	}
 | |
| 
 | |
| 	if (btrfs_root_refs(&root->root_item) == 0) {
 | |
| 		ret = 1;
 | |
| 		goto end_no_trans;
 | |
| 	}
 | |
| 
 | |
| 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
 | |
| 			last_committed);
 | |
| 	if (ret)
 | |
| 		goto end_no_trans;
 | |
| 
 | |
| 	if (btrfs_inode_in_log(inode, trans->transid)) {
 | |
| 		ret = BTRFS_NO_LOG_SYNC;
 | |
| 		goto end_no_trans;
 | |
| 	}
 | |
| 
 | |
| 	ret = start_log_trans(trans, root, ctx);
 | |
| 	if (ret)
 | |
| 		goto end_no_trans;
 | |
| 
 | |
| 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
 | |
| 	if (ret)
 | |
| 		goto end_trans;
 | |
| 
 | |
| 	/*
 | |
| 	 * for regular files, if its inode is already on disk, we don't
 | |
| 	 * have to worry about the parents at all.  This is because
 | |
| 	 * we can use the last_unlink_trans field to record renames
 | |
| 	 * and other fun in this file.
 | |
| 	 */
 | |
| 	if (S_ISREG(inode->vfs_inode.i_mode) &&
 | |
| 	    inode->generation <= last_committed &&
 | |
| 	    inode->last_unlink_trans <= last_committed) {
 | |
| 		ret = 0;
 | |
| 		goto end_trans;
 | |
| 	}
 | |
| 
 | |
| 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
 | |
| 		log_dentries = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * On unlink we must make sure all our current and old parent directory
 | |
| 	 * inodes are fully logged. This is to prevent leaving dangling
 | |
| 	 * directory index entries in directories that were our parents but are
 | |
| 	 * not anymore. Not doing this results in old parent directory being
 | |
| 	 * impossible to delete after log replay (rmdir will always fail with
 | |
| 	 * error -ENOTEMPTY).
 | |
| 	 *
 | |
| 	 * Example 1:
 | |
| 	 *
 | |
| 	 * mkdir testdir
 | |
| 	 * touch testdir/foo
 | |
| 	 * ln testdir/foo testdir/bar
 | |
| 	 * sync
 | |
| 	 * unlink testdir/bar
 | |
| 	 * xfs_io -c fsync testdir/foo
 | |
| 	 * <power failure>
 | |
| 	 * mount fs, triggers log replay
 | |
| 	 *
 | |
| 	 * If we don't log the parent directory (testdir), after log replay the
 | |
| 	 * directory still has an entry pointing to the file inode using the bar
 | |
| 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
 | |
| 	 * the file inode has a link count of 1.
 | |
| 	 *
 | |
| 	 * Example 2:
 | |
| 	 *
 | |
| 	 * mkdir testdir
 | |
| 	 * touch foo
 | |
| 	 * ln foo testdir/foo2
 | |
| 	 * ln foo testdir/foo3
 | |
| 	 * sync
 | |
| 	 * unlink testdir/foo3
 | |
| 	 * xfs_io -c fsync foo
 | |
| 	 * <power failure>
 | |
| 	 * mount fs, triggers log replay
 | |
| 	 *
 | |
| 	 * Similar as the first example, after log replay the parent directory
 | |
| 	 * testdir still has an entry pointing to the inode file with name foo3
 | |
| 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
 | |
| 	 * and has a link count of 2.
 | |
| 	 */
 | |
| 	if (inode->last_unlink_trans > last_committed) {
 | |
| 		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
 | |
| 		if (ret)
 | |
| 			goto end_trans;
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
 | |
| 			break;
 | |
| 
 | |
| 		inode = BTRFS_I(d_inode(parent));
 | |
| 		if (root != inode->root)
 | |
| 			break;
 | |
| 
 | |
| 		if (inode->generation > last_committed) {
 | |
| 			ret = btrfs_log_inode(trans, root, inode,
 | |
| 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
 | |
| 			if (ret)
 | |
| 				goto end_trans;
 | |
| 		}
 | |
| 		if (IS_ROOT(parent))
 | |
| 			break;
 | |
| 
 | |
| 		parent = dget_parent(parent);
 | |
| 		dput(old_parent);
 | |
| 		old_parent = parent;
 | |
| 	}
 | |
| 	if (log_dentries)
 | |
| 		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
 | |
| 	else
 | |
| 		ret = 0;
 | |
| end_trans:
 | |
| 	dput(old_parent);
 | |
| 	if (ret < 0) {
 | |
| 		btrfs_set_log_full_commit(fs_info, trans);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (ret)
 | |
| 		btrfs_remove_log_ctx(root, ctx);
 | |
| 	btrfs_end_log_trans(root);
 | |
| end_no_trans:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * it is not safe to log dentry if the chunk root has added new
 | |
|  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
 | |
|  * If this returns 1, you must commit the transaction to safely get your
 | |
|  * data on disk.
 | |
|  */
 | |
| int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
 | |
| 			  struct dentry *dentry,
 | |
| 			  const loff_t start,
 | |
| 			  const loff_t end,
 | |
| 			  struct btrfs_log_ctx *ctx)
 | |
| {
 | |
| 	struct dentry *parent = dget_parent(dentry);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
 | |
| 				     start, end, LOG_INODE_ALL, ctx);
 | |
| 	dput(parent);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * should be called during mount to recover any replay any log trees
 | |
|  * from the FS
 | |
|  */
 | |
| int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct btrfs_key tmp_key;
 | |
| 	struct btrfs_root *log;
 | |
| 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
 | |
| 	struct walk_control wc = {
 | |
| 		.process_func = process_one_buffer,
 | |
| 		.stage = 0,
 | |
| 	};
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
 | |
| 
 | |
| 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		ret = PTR_ERR(trans);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	wc.trans = trans;
 | |
| 	wc.pin = 1;
 | |
| 
 | |
| 	ret = walk_log_tree(trans, log_root_tree, &wc);
 | |
| 	if (ret) {
 | |
| 		btrfs_handle_fs_error(fs_info, ret,
 | |
| 			"Failed to pin buffers while recovering log root tree.");
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| again:
 | |
| 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
 | |
| 	key.offset = (u64)-1;
 | |
| 	key.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
 | |
| 
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_handle_fs_error(fs_info, ret,
 | |
| 				    "Couldn't find tree log root.");
 | |
| 			goto error;
 | |
| 		}
 | |
| 		if (ret > 0) {
 | |
| 			if (path->slots[0] == 0)
 | |
| 				break;
 | |
| 			path->slots[0]--;
 | |
| 		}
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 | |
| 				      path->slots[0]);
 | |
| 		btrfs_release_path(path);
 | |
| 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 | |
| 			break;
 | |
| 
 | |
| 		log = btrfs_read_fs_root(log_root_tree, &found_key);
 | |
| 		if (IS_ERR(log)) {
 | |
| 			ret = PTR_ERR(log);
 | |
| 			btrfs_handle_fs_error(fs_info, ret,
 | |
| 				    "Couldn't read tree log root.");
 | |
| 			goto error;
 | |
| 		}
 | |
| 
 | |
| 		tmp_key.objectid = found_key.offset;
 | |
| 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 		tmp_key.offset = (u64)-1;
 | |
| 
 | |
| 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
 | |
| 		if (IS_ERR(wc.replay_dest)) {
 | |
| 			ret = PTR_ERR(wc.replay_dest);
 | |
| 			free_extent_buffer(log->node);
 | |
| 			free_extent_buffer(log->commit_root);
 | |
| 			kfree(log);
 | |
| 			btrfs_handle_fs_error(fs_info, ret,
 | |
| 				"Couldn't read target root for tree log recovery.");
 | |
| 			goto error;
 | |
| 		}
 | |
| 
 | |
| 		wc.replay_dest->log_root = log;
 | |
| 		btrfs_record_root_in_trans(trans, wc.replay_dest);
 | |
| 		ret = walk_log_tree(trans, log, &wc);
 | |
| 
 | |
| 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
 | |
| 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
 | |
| 						      path);
 | |
| 		}
 | |
| 
 | |
| 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
 | |
| 			struct btrfs_root *root = wc.replay_dest;
 | |
| 
 | |
| 			btrfs_release_path(path);
 | |
| 
 | |
| 			/*
 | |
| 			 * We have just replayed everything, and the highest
 | |
| 			 * objectid of fs roots probably has changed in case
 | |
| 			 * some inode_item's got replayed.
 | |
| 			 *
 | |
| 			 * root->objectid_mutex is not acquired as log replay
 | |
| 			 * could only happen during mount.
 | |
| 			 */
 | |
| 			ret = btrfs_find_highest_objectid(root,
 | |
| 						  &root->highest_objectid);
 | |
| 		}
 | |
| 
 | |
| 		key.offset = found_key.offset - 1;
 | |
| 		wc.replay_dest->log_root = NULL;
 | |
| 		free_extent_buffer(log->node);
 | |
| 		free_extent_buffer(log->commit_root);
 | |
| 		kfree(log);
 | |
| 
 | |
| 		if (ret)
 | |
| 			goto error;
 | |
| 
 | |
| 		if (found_key.offset == 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	/* step one is to pin it all, step two is to replay just inodes */
 | |
| 	if (wc.pin) {
 | |
| 		wc.pin = 0;
 | |
| 		wc.process_func = replay_one_buffer;
 | |
| 		wc.stage = LOG_WALK_REPLAY_INODES;
 | |
| 		goto again;
 | |
| 	}
 | |
| 	/* step three is to replay everything */
 | |
| 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
 | |
| 		wc.stage++;
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_free_path(path);
 | |
| 
 | |
| 	/* step 4: commit the transaction, which also unpins the blocks */
 | |
| 	ret = btrfs_commit_transaction(trans);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	free_extent_buffer(log_root_tree->node);
 | |
| 	log_root_tree->log_root = NULL;
 | |
| 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
 | |
| 	kfree(log_root_tree);
 | |
| 
 | |
| 	return 0;
 | |
| error:
 | |
| 	if (wc.trans)
 | |
| 		btrfs_end_transaction(wc.trans);
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * there are some corner cases where we want to force a full
 | |
|  * commit instead of allowing a directory to be logged.
 | |
|  *
 | |
|  * They revolve around files there were unlinked from the directory, and
 | |
|  * this function updates the parent directory so that a full commit is
 | |
|  * properly done if it is fsync'd later after the unlinks are done.
 | |
|  *
 | |
|  * Must be called before the unlink operations (updates to the subvolume tree,
 | |
|  * inodes, etc) are done.
 | |
|  */
 | |
| void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
 | |
| 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
 | |
| 			     int for_rename)
 | |
| {
 | |
| 	/*
 | |
| 	 * when we're logging a file, if it hasn't been renamed
 | |
| 	 * or unlinked, and its inode is fully committed on disk,
 | |
| 	 * we don't have to worry about walking up the directory chain
 | |
| 	 * to log its parents.
 | |
| 	 *
 | |
| 	 * So, we use the last_unlink_trans field to put this transid
 | |
| 	 * into the file.  When the file is logged we check it and
 | |
| 	 * don't log the parents if the file is fully on disk.
 | |
| 	 */
 | |
| 	mutex_lock(&inode->log_mutex);
 | |
| 	inode->last_unlink_trans = trans->transid;
 | |
| 	mutex_unlock(&inode->log_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * if this directory was already logged any new
 | |
| 	 * names for this file/dir will get recorded
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	if (dir->logged_trans == trans->transid)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * if the inode we're about to unlink was logged,
 | |
| 	 * the log will be properly updated for any new names
 | |
| 	 */
 | |
| 	if (inode->logged_trans == trans->transid)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * when renaming files across directories, if the directory
 | |
| 	 * there we're unlinking from gets fsync'd later on, there's
 | |
| 	 * no way to find the destination directory later and fsync it
 | |
| 	 * properly.  So, we have to be conservative and force commits
 | |
| 	 * so the new name gets discovered.
 | |
| 	 */
 | |
| 	if (for_rename)
 | |
| 		goto record;
 | |
| 
 | |
| 	/* we can safely do the unlink without any special recording */
 | |
| 	return;
 | |
| 
 | |
| record:
 | |
| 	mutex_lock(&dir->log_mutex);
 | |
| 	dir->last_unlink_trans = trans->transid;
 | |
| 	mutex_unlock(&dir->log_mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Make sure that if someone attempts to fsync the parent directory of a deleted
 | |
|  * snapshot, it ends up triggering a transaction commit. This is to guarantee
 | |
|  * that after replaying the log tree of the parent directory's root we will not
 | |
|  * see the snapshot anymore and at log replay time we will not see any log tree
 | |
|  * corresponding to the deleted snapshot's root, which could lead to replaying
 | |
|  * it after replaying the log tree of the parent directory (which would replay
 | |
|  * the snapshot delete operation).
 | |
|  *
 | |
|  * Must be called before the actual snapshot destroy operation (updates to the
 | |
|  * parent root and tree of tree roots trees, etc) are done.
 | |
|  */
 | |
| void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_inode *dir)
 | |
| {
 | |
| 	mutex_lock(&dir->log_mutex);
 | |
| 	dir->last_unlink_trans = trans->transid;
 | |
| 	mutex_unlock(&dir->log_mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Call this after adding a new name for a file and it will properly
 | |
|  * update the log to reflect the new name.
 | |
|  *
 | |
|  * It will return zero if all goes well, and it will return 1 if a
 | |
|  * full transaction commit is required.
 | |
|  */
 | |
| int btrfs_log_new_name(struct btrfs_trans_handle *trans,
 | |
| 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
 | |
| 			struct dentry *parent)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
 | |
| 
 | |
| 	/*
 | |
| 	 * this will force the logging code to walk the dentry chain
 | |
| 	 * up for the file
 | |
| 	 */
 | |
| 	if (!S_ISDIR(inode->vfs_inode.i_mode))
 | |
| 		inode->last_unlink_trans = trans->transid;
 | |
| 
 | |
| 	/*
 | |
| 	 * if this inode hasn't been logged and directory we're renaming it
 | |
| 	 * from hasn't been logged, we don't need to log it
 | |
| 	 */
 | |
| 	if (inode->logged_trans <= fs_info->last_trans_committed &&
 | |
| 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
 | |
| 		return 0;
 | |
| 
 | |
| 	return btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
 | |
| 				      LOG_INODE_EXISTS, NULL);
 | |
| }
 | |
| 
 |