mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 570eb97bac
			
		
	
	
		570eb97bac
		
	
	
	
	
		
			
			We have two variants of lock/unlock extent, one set that takes a cached state, another that does not. This is slightly annoying, and generally speaking there are only a few places where we don't have a cached state. Simplify this by making lock_extent/unlock_extent the only variant and make it take a cached state, then convert all the callers appropriately. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
		
			
				
	
	
		
			930 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			930 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| 
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/iversion.h>
 | |
| #include "compression.h"
 | |
| #include "ctree.h"
 | |
| #include "delalloc-space.h"
 | |
| #include "disk-io.h"
 | |
| #include "reflink.h"
 | |
| #include "transaction.h"
 | |
| #include "subpage.h"
 | |
| 
 | |
| #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
 | |
| 
 | |
| static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
 | |
| 				     struct inode *inode,
 | |
| 				     u64 endoff,
 | |
| 				     const u64 destoff,
 | |
| 				     const u64 olen,
 | |
| 				     int no_time_update)
 | |
| {
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	int ret;
 | |
| 
 | |
| 	inode_inc_iversion(inode);
 | |
| 	if (!no_time_update) {
 | |
| 		inode->i_mtime = current_time(inode);
 | |
| 		inode->i_ctime = inode->i_mtime;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * We round up to the block size at eof when determining which
 | |
| 	 * extents to clone above, but shouldn't round up the file size.
 | |
| 	 */
 | |
| 	if (endoff > destoff + olen)
 | |
| 		endoff = destoff + olen;
 | |
| 	if (endoff > inode->i_size) {
 | |
| 		i_size_write(inode, endoff);
 | |
| 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		btrfs_end_transaction(trans);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ret = btrfs_end_transaction(trans);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int copy_inline_to_page(struct btrfs_inode *inode,
 | |
| 			       const u64 file_offset,
 | |
| 			       char *inline_data,
 | |
| 			       const u64 size,
 | |
| 			       const u64 datal,
 | |
| 			       const u8 comp_type)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	const u32 block_size = fs_info->sectorsize;
 | |
| 	const u64 range_end = file_offset + block_size - 1;
 | |
| 	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
 | |
| 	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
 | |
| 	struct extent_changeset *data_reserved = NULL;
 | |
| 	struct page *page = NULL;
 | |
| 	struct address_space *mapping = inode->vfs_inode.i_mapping;
 | |
| 	int ret;
 | |
| 
 | |
| 	ASSERT(IS_ALIGNED(file_offset, block_size));
 | |
| 
 | |
| 	/*
 | |
| 	 * We have flushed and locked the ranges of the source and destination
 | |
| 	 * inodes, we also have locked the inodes, so we are safe to do a
 | |
| 	 * reservation here. Also we must not do the reservation while holding
 | |
| 	 * a transaction open, otherwise we would deadlock.
 | |
| 	 */
 | |
| 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
 | |
| 					   block_size);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
 | |
| 				   btrfs_alloc_write_mask(mapping));
 | |
| 	if (!page) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	ret = set_page_extent_mapped(page);
 | |
| 	if (ret < 0)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	clear_extent_bit(&inode->io_tree, file_offset, range_end,
 | |
| 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 | |
| 			 0, NULL);
 | |
| 	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * After dirtying the page our caller will need to start a transaction,
 | |
| 	 * and if we are low on metadata free space, that can cause flushing of
 | |
| 	 * delalloc for all inodes in order to get metadata space released.
 | |
| 	 * However we are holding the range locked for the whole duration of
 | |
| 	 * the clone/dedupe operation, so we may deadlock if that happens and no
 | |
| 	 * other task releases enough space. So mark this inode as not being
 | |
| 	 * possible to flush to avoid such deadlock. We will clear that flag
 | |
| 	 * when we finish cloning all extents, since a transaction is started
 | |
| 	 * after finding each extent to clone.
 | |
| 	 */
 | |
| 	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
 | |
| 
 | |
| 	if (comp_type == BTRFS_COMPRESS_NONE) {
 | |
| 		memcpy_to_page(page, offset_in_page(file_offset), data_start,
 | |
| 			       datal);
 | |
| 	} else {
 | |
| 		ret = btrfs_decompress(comp_type, data_start, page,
 | |
| 				       offset_in_page(file_offset),
 | |
| 				       inline_size, datal);
 | |
| 		if (ret)
 | |
| 			goto out_unlock;
 | |
| 		flush_dcache_page(page);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If our inline data is smaller then the block/page size, then the
 | |
| 	 * remaining of the block/page is equivalent to zeroes. We had something
 | |
| 	 * like the following done:
 | |
| 	 *
 | |
| 	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
 | |
| 	 * $ sync  # (or fsync)
 | |
| 	 * $ xfs_io -c "falloc 0 4K" file
 | |
| 	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
 | |
| 	 *
 | |
| 	 * So what's in the range [500, 4095] corresponds to zeroes.
 | |
| 	 */
 | |
| 	if (datal < block_size)
 | |
| 		memzero_page(page, datal, block_size - datal);
 | |
| 
 | |
| 	btrfs_page_set_uptodate(fs_info, page, file_offset, block_size);
 | |
| 	btrfs_page_clear_checked(fs_info, page, file_offset, block_size);
 | |
| 	btrfs_page_set_dirty(fs_info, page, file_offset, block_size);
 | |
| out_unlock:
 | |
| 	if (page) {
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 	}
 | |
| 	if (ret)
 | |
| 		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
 | |
| 					     block_size, true);
 | |
| 	btrfs_delalloc_release_extents(inode, block_size);
 | |
| out:
 | |
| 	extent_changeset_free(data_reserved);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Deal with cloning of inline extents. We try to copy the inline extent from
 | |
|  * the source inode to destination inode when possible. When not possible we
 | |
|  * copy the inline extent's data into the respective page of the inode.
 | |
|  */
 | |
| static int clone_copy_inline_extent(struct inode *dst,
 | |
| 				    struct btrfs_path *path,
 | |
| 				    struct btrfs_key *new_key,
 | |
| 				    const u64 drop_start,
 | |
| 				    const u64 datal,
 | |
| 				    const u64 size,
 | |
| 				    const u8 comp_type,
 | |
| 				    char *inline_data,
 | |
| 				    struct btrfs_trans_handle **trans_out)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
 | |
| 	struct btrfs_root *root = BTRFS_I(dst)->root;
 | |
| 	const u64 aligned_end = ALIGN(new_key->offset + datal,
 | |
| 				      fs_info->sectorsize);
 | |
| 	struct btrfs_trans_handle *trans = NULL;
 | |
| 	struct btrfs_drop_extents_args drop_args = { 0 };
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	if (new_key->offset > 0) {
 | |
| 		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
 | |
| 					  inline_data, size, datal, comp_type);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	key.objectid = btrfs_ino(BTRFS_I(dst));
 | |
| 	key.type = BTRFS_EXTENT_DATA_KEY;
 | |
| 	key.offset = 0;
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0) {
 | |
| 		return ret;
 | |
| 	} else if (ret > 0) {
 | |
| 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 			else if (ret > 0)
 | |
| 				goto copy_inline_extent;
 | |
| 		}
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | |
| 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
 | |
| 		    key.type == BTRFS_EXTENT_DATA_KEY) {
 | |
| 			/*
 | |
| 			 * There's an implicit hole at file offset 0, copy the
 | |
| 			 * inline extent's data to the page.
 | |
| 			 */
 | |
| 			ASSERT(key.offset > 0);
 | |
| 			goto copy_to_page;
 | |
| 		}
 | |
| 	} else if (i_size_read(dst) <= datal) {
 | |
| 		struct btrfs_file_extent_item *ei;
 | |
| 
 | |
| 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 				    struct btrfs_file_extent_item);
 | |
| 		/*
 | |
| 		 * If it's an inline extent replace it with the source inline
 | |
| 		 * extent, otherwise copy the source inline extent data into
 | |
| 		 * the respective page at the destination inode.
 | |
| 		 */
 | |
| 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
 | |
| 		    BTRFS_FILE_EXTENT_INLINE)
 | |
| 			goto copy_inline_extent;
 | |
| 
 | |
| 		goto copy_to_page;
 | |
| 	}
 | |
| 
 | |
| copy_inline_extent:
 | |
| 	/*
 | |
| 	 * We have no extent items, or we have an extent at offset 0 which may
 | |
| 	 * or may not be inlined. All these cases are dealt the same way.
 | |
| 	 */
 | |
| 	if (i_size_read(dst) > datal) {
 | |
| 		/*
 | |
| 		 * At the destination offset 0 we have either a hole, a regular
 | |
| 		 * extent or an inline extent larger then the one we want to
 | |
| 		 * clone. Deal with all these cases by copying the inline extent
 | |
| 		 * data into the respective page at the destination inode.
 | |
| 		 */
 | |
| 		goto copy_to_page;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Release path before starting a new transaction so we don't hold locks
 | |
| 	 * that would confuse lockdep.
 | |
| 	 */
 | |
| 	btrfs_release_path(path);
 | |
| 	/*
 | |
| 	 * If we end up here it means were copy the inline extent into a leaf
 | |
| 	 * of the destination inode. We know we will drop or adjust at most one
 | |
| 	 * extent item in the destination root.
 | |
| 	 *
 | |
| 	 * 1 unit - adjusting old extent (we may have to split it)
 | |
| 	 * 1 unit - add new extent
 | |
| 	 * 1 unit - inode update
 | |
| 	 */
 | |
| 	trans = btrfs_start_transaction(root, 3);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		ret = PTR_ERR(trans);
 | |
| 		trans = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	drop_args.path = path;
 | |
| 	drop_args.start = drop_start;
 | |
| 	drop_args.end = aligned_end;
 | |
| 	drop_args.drop_cache = true;
 | |
| 	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	write_extent_buffer(path->nodes[0], inline_data,
 | |
| 			    btrfs_item_ptr_offset(path->nodes[0],
 | |
| 						  path->slots[0]),
 | |
| 			    size);
 | |
| 	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
 | |
| 	btrfs_set_inode_full_sync(BTRFS_I(dst));
 | |
| 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
 | |
| out:
 | |
| 	if (!ret && !trans) {
 | |
| 		/*
 | |
| 		 * No transaction here means we copied the inline extent into a
 | |
| 		 * page of the destination inode.
 | |
| 		 *
 | |
| 		 * 1 unit to update inode item
 | |
| 		 */
 | |
| 		trans = btrfs_start_transaction(root, 1);
 | |
| 		if (IS_ERR(trans)) {
 | |
| 			ret = PTR_ERR(trans);
 | |
| 			trans = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	if (ret && trans) {
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		btrfs_end_transaction(trans);
 | |
| 	}
 | |
| 	if (!ret)
 | |
| 		*trans_out = trans;
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| copy_to_page:
 | |
| 	/*
 | |
| 	 * Release our path because we don't need it anymore and also because
 | |
| 	 * copy_inline_to_page() needs to reserve data and metadata, which may
 | |
| 	 * need to flush delalloc when we are low on available space and
 | |
| 	 * therefore cause a deadlock if writeback of an inline extent needs to
 | |
| 	 * write to the same leaf or an ordered extent completion needs to write
 | |
| 	 * to the same leaf.
 | |
| 	 */
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
 | |
| 				  inline_data, size, datal, comp_type);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * btrfs_clone() - clone a range from inode file to another
 | |
|  *
 | |
|  * @src: Inode to clone from
 | |
|  * @inode: Inode to clone to
 | |
|  * @off: Offset within source to start clone from
 | |
|  * @olen: Original length, passed by user, of range to clone
 | |
|  * @olen_aligned: Block-aligned value of olen
 | |
|  * @destoff: Offset within @inode to start clone
 | |
|  * @no_time_update: Whether to update mtime/ctime on the target inode
 | |
|  */
 | |
| static int btrfs_clone(struct inode *src, struct inode *inode,
 | |
| 		       const u64 off, const u64 olen, const u64 olen_aligned,
 | |
| 		       const u64 destoff, int no_time_update)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | |
| 	struct btrfs_path *path = NULL;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	char *buf = NULL;
 | |
| 	struct btrfs_key key;
 | |
| 	u32 nritems;
 | |
| 	int slot;
 | |
| 	int ret;
 | |
| 	const u64 len = olen_aligned;
 | |
| 	u64 last_dest_end = destoff;
 | |
| 	u64 prev_extent_end = off;
 | |
| 
 | |
| 	ret = -ENOMEM;
 | |
| 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		return ret;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path) {
 | |
| 		kvfree(buf);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	path->reada = READA_FORWARD;
 | |
| 	/* Clone data */
 | |
| 	key.objectid = btrfs_ino(BTRFS_I(src));
 | |
| 	key.type = BTRFS_EXTENT_DATA_KEY;
 | |
| 	key.offset = off;
 | |
| 
 | |
| 	while (1) {
 | |
| 		struct btrfs_file_extent_item *extent;
 | |
| 		u64 extent_gen;
 | |
| 		int type;
 | |
| 		u32 size;
 | |
| 		struct btrfs_key new_key;
 | |
| 		u64 disko = 0, diskl = 0;
 | |
| 		u64 datao = 0, datal = 0;
 | |
| 		u8 comp;
 | |
| 		u64 drop_start;
 | |
| 
 | |
| 		/* Note the key will change type as we walk through the tree */
 | |
| 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
 | |
| 				0, 0);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 		/*
 | |
| 		 * First search, if no extent item that starts at offset off was
 | |
| 		 * found but the previous item is an extent item, it's possible
 | |
| 		 * it might overlap our target range, therefore process it.
 | |
| 		 */
 | |
| 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
 | |
| 			btrfs_item_key_to_cpu(path->nodes[0], &key,
 | |
| 					      path->slots[0] - 1);
 | |
| 			if (key.type == BTRFS_EXTENT_DATA_KEY)
 | |
| 				path->slots[0]--;
 | |
| 		}
 | |
| 
 | |
| 		nritems = btrfs_header_nritems(path->nodes[0]);
 | |
| process_slot:
 | |
| 		if (path->slots[0] >= nritems) {
 | |
| 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
 | |
| 			if (ret < 0)
 | |
| 				goto out;
 | |
| 			if (ret > 0)
 | |
| 				break;
 | |
| 			nritems = btrfs_header_nritems(path->nodes[0]);
 | |
| 		}
 | |
| 		leaf = path->nodes[0];
 | |
| 		slot = path->slots[0];
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, slot);
 | |
| 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
 | |
| 		    key.objectid != btrfs_ino(BTRFS_I(src)))
 | |
| 			break;
 | |
| 
 | |
| 		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
 | |
| 
 | |
| 		extent = btrfs_item_ptr(leaf, slot,
 | |
| 					struct btrfs_file_extent_item);
 | |
| 		extent_gen = btrfs_file_extent_generation(leaf, extent);
 | |
| 		comp = btrfs_file_extent_compression(leaf, extent);
 | |
| 		type = btrfs_file_extent_type(leaf, extent);
 | |
| 		if (type == BTRFS_FILE_EXTENT_REG ||
 | |
| 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
 | |
| 			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
 | |
| 			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
 | |
| 			datao = btrfs_file_extent_offset(leaf, extent);
 | |
| 			datal = btrfs_file_extent_num_bytes(leaf, extent);
 | |
| 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
 | |
| 			/* Take upper bound, may be compressed */
 | |
| 			datal = btrfs_file_extent_ram_bytes(leaf, extent);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The first search might have left us at an extent item that
 | |
| 		 * ends before our target range's start, can happen if we have
 | |
| 		 * holes and NO_HOLES feature enabled.
 | |
| 		 *
 | |
| 		 * Subsequent searches may leave us on a file range we have
 | |
| 		 * processed before - this happens due to a race with ordered
 | |
| 		 * extent completion for a file range that is outside our source
 | |
| 		 * range, but that range was part of a file extent item that
 | |
| 		 * also covered a leading part of our source range.
 | |
| 		 */
 | |
| 		if (key.offset + datal <= prev_extent_end) {
 | |
| 			path->slots[0]++;
 | |
| 			goto process_slot;
 | |
| 		} else if (key.offset >= off + len) {
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		prev_extent_end = key.offset + datal;
 | |
| 		size = btrfs_item_size(leaf, slot);
 | |
| 		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
 | |
| 				   size);
 | |
| 
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		memcpy(&new_key, &key, sizeof(new_key));
 | |
| 		new_key.objectid = btrfs_ino(BTRFS_I(inode));
 | |
| 		if (off <= key.offset)
 | |
| 			new_key.offset = key.offset + destoff - off;
 | |
| 		else
 | |
| 			new_key.offset = destoff;
 | |
| 
 | |
| 		/*
 | |
| 		 * Deal with a hole that doesn't have an extent item that
 | |
| 		 * represents it (NO_HOLES feature enabled).
 | |
| 		 * This hole is either in the middle of the cloning range or at
 | |
| 		 * the beginning (fully overlaps it or partially overlaps it).
 | |
| 		 */
 | |
| 		if (new_key.offset != last_dest_end)
 | |
| 			drop_start = last_dest_end;
 | |
| 		else
 | |
| 			drop_start = new_key.offset;
 | |
| 
 | |
| 		if (type == BTRFS_FILE_EXTENT_REG ||
 | |
| 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
 | |
| 			struct btrfs_replace_extent_info clone_info;
 | |
| 
 | |
| 			/*
 | |
| 			 *    a  | --- range to clone ---|  b
 | |
| 			 * | ------------- extent ------------- |
 | |
| 			 */
 | |
| 
 | |
| 			/* Subtract range b */
 | |
| 			if (key.offset + datal > off + len)
 | |
| 				datal = off + len - key.offset;
 | |
| 
 | |
| 			/* Subtract range a */
 | |
| 			if (off > key.offset) {
 | |
| 				datao += off - key.offset;
 | |
| 				datal -= off - key.offset;
 | |
| 			}
 | |
| 
 | |
| 			clone_info.disk_offset = disko;
 | |
| 			clone_info.disk_len = diskl;
 | |
| 			clone_info.data_offset = datao;
 | |
| 			clone_info.data_len = datal;
 | |
| 			clone_info.file_offset = new_key.offset;
 | |
| 			clone_info.extent_buf = buf;
 | |
| 			clone_info.is_new_extent = false;
 | |
| 			clone_info.update_times = !no_time_update;
 | |
| 			ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
 | |
| 					drop_start, new_key.offset + datal - 1,
 | |
| 					&clone_info, &trans);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 		} else {
 | |
| 			ASSERT(type == BTRFS_FILE_EXTENT_INLINE);
 | |
| 			/*
 | |
| 			 * Inline extents always have to start at file offset 0
 | |
| 			 * and can never be bigger then the sector size. We can
 | |
| 			 * never clone only parts of an inline extent, since all
 | |
| 			 * reflink operations must start at a sector size aligned
 | |
| 			 * offset, and the length must be aligned too or end at
 | |
| 			 * the i_size (which implies the whole inlined data).
 | |
| 			 */
 | |
| 			ASSERT(key.offset == 0);
 | |
| 			ASSERT(datal <= fs_info->sectorsize);
 | |
| 			if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) ||
 | |
| 			    WARN_ON(key.offset != 0) ||
 | |
| 			    WARN_ON(datal > fs_info->sectorsize)) {
 | |
| 				ret = -EUCLEAN;
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			ret = clone_copy_inline_extent(inode, path, &new_key,
 | |
| 						       drop_start, datal, size,
 | |
| 						       comp, buf, &trans);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		/*
 | |
| 		 * Whenever we share an extent we update the last_reflink_trans
 | |
| 		 * of each inode to the current transaction. This is needed to
 | |
| 		 * make sure fsync does not log multiple checksum items with
 | |
| 		 * overlapping ranges (because some extent items might refer
 | |
| 		 * only to sections of the original extent). For the destination
 | |
| 		 * inode we do this regardless of the generation of the extents
 | |
| 		 * or even if they are inline extents or explicit holes, to make
 | |
| 		 * sure a full fsync does not skip them. For the source inode,
 | |
| 		 * we only need to update last_reflink_trans in case it's a new
 | |
| 		 * extent that is not a hole or an inline extent, to deal with
 | |
| 		 * the checksums problem on fsync.
 | |
| 		 */
 | |
| 		if (extent_gen == trans->transid && disko > 0)
 | |
| 			BTRFS_I(src)->last_reflink_trans = trans->transid;
 | |
| 
 | |
| 		BTRFS_I(inode)->last_reflink_trans = trans->transid;
 | |
| 
 | |
| 		last_dest_end = ALIGN(new_key.offset + datal,
 | |
| 				      fs_info->sectorsize);
 | |
| 		ret = clone_finish_inode_update(trans, inode, last_dest_end,
 | |
| 						destoff, olen, no_time_update);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 		if (new_key.offset + datal >= destoff + len)
 | |
| 			break;
 | |
| 
 | |
| 		btrfs_release_path(path);
 | |
| 		key.offset = prev_extent_end;
 | |
| 
 | |
| 		if (fatal_signal_pending(current)) {
 | |
| 			ret = -EINTR;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	ret = 0;
 | |
| 
 | |
| 	if (last_dest_end < destoff + len) {
 | |
| 		/*
 | |
| 		 * We have an implicit hole that fully or partially overlaps our
 | |
| 		 * cloning range at its end. This means that we either have the
 | |
| 		 * NO_HOLES feature enabled or the implicit hole happened due to
 | |
| 		 * mixing buffered and direct IO writes against this file.
 | |
| 		 */
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		/*
 | |
| 		 * When using NO_HOLES and we are cloning a range that covers
 | |
| 		 * only a hole (no extents) into a range beyond the current
 | |
| 		 * i_size, punching a hole in the target range will not create
 | |
| 		 * an extent map defining a hole, because the range starts at or
 | |
| 		 * beyond current i_size. If the file previously had an i_size
 | |
| 		 * greater than the new i_size set by this clone operation, we
 | |
| 		 * need to make sure the next fsync is a full fsync, so that it
 | |
| 		 * detects and logs a hole covering a range from the current
 | |
| 		 * i_size to the new i_size. If the clone range covers extents,
 | |
| 		 * besides a hole, then we know the full sync flag was already
 | |
| 		 * set by previous calls to btrfs_replace_file_extents() that
 | |
| 		 * replaced file extent items.
 | |
| 		 */
 | |
| 		if (last_dest_end >= i_size_read(inode))
 | |
| 			btrfs_set_inode_full_sync(BTRFS_I(inode));
 | |
| 
 | |
| 		ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
 | |
| 				last_dest_end, destoff + len - 1, NULL, &trans);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		ret = clone_finish_inode_update(trans, inode, destoff + len,
 | |
| 						destoff, olen, no_time_update);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	kvfree(buf);
 | |
| 	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
 | |
| 				       struct inode *inode2, u64 loff2, u64 len)
 | |
| {
 | |
| 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1, NULL);
 | |
| 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1, NULL);
 | |
| }
 | |
| 
 | |
| static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
 | |
| 				     struct inode *inode2, u64 loff2, u64 len)
 | |
| {
 | |
| 	u64 range1_end = loff1 + len - 1;
 | |
| 	u64 range2_end = loff2 + len - 1;
 | |
| 
 | |
| 	if (inode1 < inode2) {
 | |
| 		swap(inode1, inode2);
 | |
| 		swap(loff1, loff2);
 | |
| 		swap(range1_end, range2_end);
 | |
| 	} else if (inode1 == inode2 && loff2 < loff1) {
 | |
| 		swap(loff1, loff2);
 | |
| 		swap(range1_end, range2_end);
 | |
| 	}
 | |
| 
 | |
| 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, range1_end, NULL);
 | |
| 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, range2_end, NULL);
 | |
| 
 | |
| 	btrfs_assert_inode_range_clean(BTRFS_I(inode1), loff1, range1_end);
 | |
| 	btrfs_assert_inode_range_clean(BTRFS_I(inode2), loff2, range2_end);
 | |
| }
 | |
| 
 | |
| static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
 | |
| {
 | |
| 	if (inode1 < inode2)
 | |
| 		swap(inode1, inode2);
 | |
| 	down_write(&BTRFS_I(inode1)->i_mmap_lock);
 | |
| 	down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
 | |
| }
 | |
| 
 | |
| static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
 | |
| {
 | |
| 	up_write(&BTRFS_I(inode1)->i_mmap_lock);
 | |
| 	up_write(&BTRFS_I(inode2)->i_mmap_lock);
 | |
| }
 | |
| 
 | |
| static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
 | |
| 				   struct inode *dst, u64 dst_loff)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = BTRFS_I(src)->root->fs_info;
 | |
| 	const u64 bs = fs_info->sb->s_blocksize;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Lock destination range to serialize with concurrent readahead() and
 | |
| 	 * source range to serialize with relocation.
 | |
| 	 */
 | |
| 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
 | |
| 	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
 | |
| 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
 | |
| 
 | |
| 	btrfs_btree_balance_dirty(fs_info);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
 | |
| 			     struct inode *dst, u64 dst_loff)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	u64 i, tail_len, chunk_count;
 | |
| 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
 | |
| 
 | |
| 	spin_lock(&root_dst->root_item_lock);
 | |
| 	if (root_dst->send_in_progress) {
 | |
| 		btrfs_warn_rl(root_dst->fs_info,
 | |
| "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
 | |
| 			      root_dst->root_key.objectid,
 | |
| 			      root_dst->send_in_progress);
 | |
| 		spin_unlock(&root_dst->root_item_lock);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 	root_dst->dedupe_in_progress++;
 | |
| 	spin_unlock(&root_dst->root_item_lock);
 | |
| 
 | |
| 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
 | |
| 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
 | |
| 
 | |
| 	for (i = 0; i < chunk_count; i++) {
 | |
| 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
 | |
| 					      dst, dst_loff);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		loff += BTRFS_MAX_DEDUPE_LEN;
 | |
| 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
 | |
| 	}
 | |
| 
 | |
| 	if (tail_len > 0)
 | |
| 		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
 | |
| out:
 | |
| 	spin_lock(&root_dst->root_item_lock);
 | |
| 	root_dst->dedupe_in_progress--;
 | |
| 	spin_unlock(&root_dst->root_item_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
 | |
| 					u64 off, u64 olen, u64 destoff)
 | |
| {
 | |
| 	struct inode *inode = file_inode(file);
 | |
| 	struct inode *src = file_inode(file_src);
 | |
| 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | |
| 	int ret;
 | |
| 	int wb_ret;
 | |
| 	u64 len = olen;
 | |
| 	u64 bs = fs_info->sb->s_blocksize;
 | |
| 
 | |
| 	/*
 | |
| 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
 | |
| 	 * eof block into the middle of a file, which would result in corruption
 | |
| 	 * if the file size is not blocksize aligned. So we don't need to check
 | |
| 	 * for that case here.
 | |
| 	 */
 | |
| 	if (off + len == src->i_size)
 | |
| 		len = ALIGN(src->i_size, bs) - off;
 | |
| 
 | |
| 	if (destoff > inode->i_size) {
 | |
| 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
 | |
| 
 | |
| 		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		/*
 | |
| 		 * We may have truncated the last block if the inode's size is
 | |
| 		 * not sector size aligned, so we need to wait for writeback to
 | |
| 		 * complete before proceeding further, otherwise we can race
 | |
| 		 * with cloning and attempt to increment a reference to an
 | |
| 		 * extent that no longer exists (writeback completed right after
 | |
| 		 * we found the previous extent covering eof and before we
 | |
| 		 * attempted to increment its reference count).
 | |
| 		 */
 | |
| 		ret = btrfs_wait_ordered_range(inode, wb_start,
 | |
| 					       destoff - wb_start);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Lock destination range to serialize with concurrent readahead() and
 | |
| 	 * source range to serialize with relocation.
 | |
| 	 */
 | |
| 	btrfs_double_extent_lock(src, off, inode, destoff, len);
 | |
| 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
 | |
| 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
 | |
| 
 | |
| 	/*
 | |
| 	 * We may have copied an inline extent into a page of the destination
 | |
| 	 * range, so wait for writeback to complete before truncating pages
 | |
| 	 * from the page cache. This is a rare case.
 | |
| 	 */
 | |
| 	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
 | |
| 	ret = ret ? ret : wb_ret;
 | |
| 	/*
 | |
| 	 * Truncate page cache pages so that future reads will see the cloned
 | |
| 	 * data immediately and not the previous data.
 | |
| 	 */
 | |
| 	truncate_inode_pages_range(&inode->i_data,
 | |
| 				round_down(destoff, PAGE_SIZE),
 | |
| 				round_up(destoff + len, PAGE_SIZE) - 1);
 | |
| 
 | |
| 	btrfs_btree_balance_dirty(fs_info);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
 | |
| 				       struct file *file_out, loff_t pos_out,
 | |
| 				       loff_t *len, unsigned int remap_flags)
 | |
| {
 | |
| 	struct inode *inode_in = file_inode(file_in);
 | |
| 	struct inode *inode_out = file_inode(file_out);
 | |
| 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
 | |
| 	u64 wb_len;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
 | |
| 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
 | |
| 
 | |
| 		if (btrfs_root_readonly(root_out))
 | |
| 			return -EROFS;
 | |
| 
 | |
| 		ASSERT(inode_in->i_sb == inode_out->i_sb);
 | |
| 	}
 | |
| 
 | |
| 	/* Don't make the dst file partly checksummed */
 | |
| 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
 | |
| 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that the inodes are locked, we need to start writeback ourselves
 | |
| 	 * and can not rely on the writeback from the VFS's generic helper
 | |
| 	 * generic_remap_file_range_prep() because:
 | |
| 	 *
 | |
| 	 * 1) For compression we must call filemap_fdatawrite_range() range
 | |
| 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
 | |
| 	 *    helper only calls it once;
 | |
| 	 *
 | |
| 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
 | |
| 	 *    waits for the writeback to complete, i.e. for IO to be done, and
 | |
| 	 *    not for the ordered extents to complete. We need to wait for them
 | |
| 	 *    to complete so that new file extent items are in the fs tree.
 | |
| 	 */
 | |
| 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
 | |
| 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
 | |
| 	else
 | |
| 		wb_len = ALIGN(*len, bs);
 | |
| 
 | |
| 	/*
 | |
| 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
 | |
| 	 *
 | |
| 	 * Btrfs' back references do not have a block level granularity, they
 | |
| 	 * work at the whole extent level.
 | |
| 	 * NOCOW buffered write without data space reserved may not be able
 | |
| 	 * to fall back to CoW due to lack of data space, thus could cause
 | |
| 	 * data loss.
 | |
| 	 *
 | |
| 	 * Here we take a shortcut by flushing the whole inode, so that all
 | |
| 	 * nocow write should reach disk as nocow before we increase the
 | |
| 	 * reference of the extent. We could do better by only flushing NOCOW
 | |
| 	 * data, but that needs extra accounting.
 | |
| 	 *
 | |
| 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
 | |
| 	 * CoWed anyway, not affecting nocow part.
 | |
| 	 */
 | |
| 	ret = filemap_flush(inode_in->i_mapping);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
 | |
| 				       wb_len);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
 | |
| 				       wb_len);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
 | |
| 					    len, remap_flags);
 | |
| }
 | |
| 
 | |
| static bool file_sync_write(const struct file *file)
 | |
| {
 | |
| 	if (file->f_flags & (__O_SYNC | O_DSYNC))
 | |
| 		return true;
 | |
| 	if (IS_SYNC(file_inode(file)))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
 | |
| 		struct file *dst_file, loff_t destoff, loff_t len,
 | |
| 		unsigned int remap_flags)
 | |
| {
 | |
| 	struct inode *src_inode = file_inode(src_file);
 | |
| 	struct inode *dst_inode = file_inode(dst_file);
 | |
| 	bool same_inode = dst_inode == src_inode;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (same_inode) {
 | |
| 		btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP);
 | |
| 	} else {
 | |
| 		lock_two_nondirectories(src_inode, dst_inode);
 | |
| 		btrfs_double_mmap_lock(src_inode, dst_inode);
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
 | |
| 					  &len, remap_flags);
 | |
| 	if (ret < 0 || len == 0)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (remap_flags & REMAP_FILE_DEDUP)
 | |
| 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
 | |
| 	else
 | |
| 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
 | |
| 
 | |
| out_unlock:
 | |
| 	if (same_inode) {
 | |
| 		btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP);
 | |
| 	} else {
 | |
| 		btrfs_double_mmap_unlock(src_inode, dst_inode);
 | |
| 		unlock_two_nondirectories(src_inode, dst_inode);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If either the source or the destination file was opened with O_SYNC,
 | |
| 	 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
 | |
| 	 * source files/ranges, so that after a successful return (0) followed
 | |
| 	 * by a power failure results in the reflinked data to be readable from
 | |
| 	 * both files/ranges.
 | |
| 	 */
 | |
| 	if (ret == 0 && len > 0 &&
 | |
| 	    (file_sync_write(src_file) || file_sync_write(dst_file))) {
 | |
| 		ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
 | |
| 		if (ret == 0)
 | |
| 			ret = btrfs_sync_file(dst_file, destoff,
 | |
| 					      destoff + len - 1, 0);
 | |
| 	}
 | |
| 
 | |
| 	return ret < 0 ? ret : len;
 | |
| }
 |