mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	We have a central definition for this function since 2023, used by a number of different parts of the kernel. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Carlos Maiolino <cem@kernel.org>
		
			
				
	
	
		
			4168 lines
		
	
	
	
		
			111 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4168 lines
		
	
	
	
		
			111 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
 | 
						|
 * All Rights Reserved.
 | 
						|
 */
 | 
						|
#include "xfs.h"
 | 
						|
#include "xfs_fs.h"
 | 
						|
#include "xfs_format.h"
 | 
						|
#include "xfs_log_format.h"
 | 
						|
#include "xfs_shared.h"
 | 
						|
#include "xfs_trans_resv.h"
 | 
						|
#include "xfs_bit.h"
 | 
						|
#include "xfs_mount.h"
 | 
						|
#include "xfs_defer.h"
 | 
						|
#include "xfs_btree.h"
 | 
						|
#include "xfs_rmap.h"
 | 
						|
#include "xfs_alloc_btree.h"
 | 
						|
#include "xfs_alloc.h"
 | 
						|
#include "xfs_extent_busy.h"
 | 
						|
#include "xfs_errortag.h"
 | 
						|
#include "xfs_error.h"
 | 
						|
#include "xfs_trace.h"
 | 
						|
#include "xfs_trans.h"
 | 
						|
#include "xfs_buf_item.h"
 | 
						|
#include "xfs_log.h"
 | 
						|
#include "xfs_ag.h"
 | 
						|
#include "xfs_ag_resv.h"
 | 
						|
#include "xfs_bmap.h"
 | 
						|
#include "xfs_health.h"
 | 
						|
#include "xfs_extfree_item.h"
 | 
						|
 | 
						|
struct kmem_cache	*xfs_extfree_item_cache;
 | 
						|
 | 
						|
struct workqueue_struct *xfs_alloc_wq;
 | 
						|
 | 
						|
#define	XFSA_FIXUP_BNO_OK	1
 | 
						|
#define	XFSA_FIXUP_CNT_OK	2
 | 
						|
 | 
						|
/*
 | 
						|
 * Size of the AGFL.  For CRC-enabled filesystes we steal a couple of slots in
 | 
						|
 * the beginning of the block for a proper header with the location information
 | 
						|
 * and CRC.
 | 
						|
 */
 | 
						|
unsigned int
 | 
						|
xfs_agfl_size(
 | 
						|
	struct xfs_mount	*mp)
 | 
						|
{
 | 
						|
	unsigned int		size = mp->m_sb.sb_sectsize;
 | 
						|
 | 
						|
	if (xfs_has_crc(mp))
 | 
						|
		size -= sizeof(struct xfs_agfl);
 | 
						|
 | 
						|
	return size / sizeof(xfs_agblock_t);
 | 
						|
}
 | 
						|
 | 
						|
unsigned int
 | 
						|
xfs_refc_block(
 | 
						|
	struct xfs_mount	*mp)
 | 
						|
{
 | 
						|
	if (xfs_has_rmapbt(mp))
 | 
						|
		return XFS_RMAP_BLOCK(mp) + 1;
 | 
						|
	if (xfs_has_finobt(mp))
 | 
						|
		return XFS_FIBT_BLOCK(mp) + 1;
 | 
						|
	return XFS_IBT_BLOCK(mp) + 1;
 | 
						|
}
 | 
						|
 | 
						|
xfs_extlen_t
 | 
						|
xfs_prealloc_blocks(
 | 
						|
	struct xfs_mount	*mp)
 | 
						|
{
 | 
						|
	if (xfs_has_reflink(mp))
 | 
						|
		return xfs_refc_block(mp) + 1;
 | 
						|
	if (xfs_has_rmapbt(mp))
 | 
						|
		return XFS_RMAP_BLOCK(mp) + 1;
 | 
						|
	if (xfs_has_finobt(mp))
 | 
						|
		return XFS_FIBT_BLOCK(mp) + 1;
 | 
						|
	return XFS_IBT_BLOCK(mp) + 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The number of blocks per AG that we withhold from xfs_dec_fdblocks to
 | 
						|
 * guarantee that we can refill the AGFL prior to allocating space in a nearly
 | 
						|
 * full AG.  Although the space described by the free space btrees, the
 | 
						|
 * blocks used by the freesp btrees themselves, and the blocks owned by the
 | 
						|
 * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
 | 
						|
 * free space in the AG drop so low that the free space btrees cannot refill an
 | 
						|
 * empty AGFL up to the minimum level.  Rather than grind through empty AGs
 | 
						|
 * until the fs goes down, we subtract this many AG blocks from the incore
 | 
						|
 * fdblocks to ensure user allocation does not overcommit the space the
 | 
						|
 * filesystem needs for the AGFLs.  The rmap btree uses a per-AG reservation to
 | 
						|
 * withhold space from xfs_dec_fdblocks, so we do not account for that here.
 | 
						|
 */
 | 
						|
#define XFS_ALLOCBT_AGFL_RESERVE	4
 | 
						|
 | 
						|
/*
 | 
						|
 * Compute the number of blocks that we set aside to guarantee the ability to
 | 
						|
 * refill the AGFL and handle a full bmap btree split.
 | 
						|
 *
 | 
						|
 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
 | 
						|
 * AGF buffer (PV 947395), we place constraints on the relationship among
 | 
						|
 * actual allocations for data blocks, freelist blocks, and potential file data
 | 
						|
 * bmap btree blocks. However, these restrictions may result in no actual space
 | 
						|
 * allocated for a delayed extent, for example, a data block in a certain AG is
 | 
						|
 * allocated but there is no additional block for the additional bmap btree
 | 
						|
 * block due to a split of the bmap btree of the file. The result of this may
 | 
						|
 * lead to an infinite loop when the file gets flushed to disk and all delayed
 | 
						|
 * extents need to be actually allocated. To get around this, we explicitly set
 | 
						|
 * aside a few blocks which will not be reserved in delayed allocation.
 | 
						|
 *
 | 
						|
 * For each AG, we need to reserve enough blocks to replenish a totally empty
 | 
						|
 * AGFL and 4 more to handle a potential split of the file's bmap btree.
 | 
						|
 */
 | 
						|
unsigned int
 | 
						|
xfs_alloc_set_aside(
 | 
						|
	struct xfs_mount	*mp)
 | 
						|
{
 | 
						|
	return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * When deciding how much space to allocate out of an AG, we limit the
 | 
						|
 * allocation maximum size to the size the AG. However, we cannot use all the
 | 
						|
 * blocks in the AG - some are permanently used by metadata. These
 | 
						|
 * blocks are generally:
 | 
						|
 *	- the AG superblock, AGF, AGI and AGFL
 | 
						|
 *	- the AGF (bno and cnt) and AGI btree root blocks, and optionally
 | 
						|
 *	  the AGI free inode and rmap btree root blocks.
 | 
						|
 *	- blocks on the AGFL according to xfs_alloc_set_aside() limits
 | 
						|
 *	- the rmapbt root block
 | 
						|
 *
 | 
						|
 * The AG headers are sector sized, so the amount of space they take up is
 | 
						|
 * dependent on filesystem geometry. The others are all single blocks.
 | 
						|
 */
 | 
						|
unsigned int
 | 
						|
xfs_alloc_ag_max_usable(
 | 
						|
	struct xfs_mount	*mp)
 | 
						|
{
 | 
						|
	unsigned int		blocks;
 | 
						|
 | 
						|
	blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
 | 
						|
	blocks += XFS_ALLOCBT_AGFL_RESERVE;
 | 
						|
	blocks += 3;			/* AGF, AGI btree root blocks */
 | 
						|
	if (xfs_has_finobt(mp))
 | 
						|
		blocks++;		/* finobt root block */
 | 
						|
	if (xfs_has_rmapbt(mp))
 | 
						|
		blocks++;		/* rmap root block */
 | 
						|
	if (xfs_has_reflink(mp))
 | 
						|
		blocks++;		/* refcount root block */
 | 
						|
 | 
						|
	return mp->m_sb.sb_agblocks - blocks;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int
 | 
						|
xfs_alloc_lookup(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	xfs_lookup_t		dir,
 | 
						|
	xfs_agblock_t		bno,
 | 
						|
	xfs_extlen_t		len,
 | 
						|
	int			*stat)
 | 
						|
{
 | 
						|
	int			error;
 | 
						|
 | 
						|
	cur->bc_rec.a.ar_startblock = bno;
 | 
						|
	cur->bc_rec.a.ar_blockcount = len;
 | 
						|
	error = xfs_btree_lookup(cur, dir, stat);
 | 
						|
	if (*stat == 1)
 | 
						|
		cur->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE;
 | 
						|
	else
 | 
						|
		cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Lookup the record equal to [bno, len] in the btree given by cur.
 | 
						|
 */
 | 
						|
static inline int				/* error */
 | 
						|
xfs_alloc_lookup_eq(
 | 
						|
	struct xfs_btree_cur	*cur,	/* btree cursor */
 | 
						|
	xfs_agblock_t		bno,	/* starting block of extent */
 | 
						|
	xfs_extlen_t		len,	/* length of extent */
 | 
						|
	int			*stat)	/* success/failure */
 | 
						|
{
 | 
						|
	return xfs_alloc_lookup(cur, XFS_LOOKUP_EQ, bno, len, stat);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Lookup the first record greater than or equal to [bno, len]
 | 
						|
 * in the btree given by cur.
 | 
						|
 */
 | 
						|
int				/* error */
 | 
						|
xfs_alloc_lookup_ge(
 | 
						|
	struct xfs_btree_cur	*cur,	/* btree cursor */
 | 
						|
	xfs_agblock_t		bno,	/* starting block of extent */
 | 
						|
	xfs_extlen_t		len,	/* length of extent */
 | 
						|
	int			*stat)	/* success/failure */
 | 
						|
{
 | 
						|
	return xfs_alloc_lookup(cur, XFS_LOOKUP_GE, bno, len, stat);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Lookup the first record less than or equal to [bno, len]
 | 
						|
 * in the btree given by cur.
 | 
						|
 */
 | 
						|
int					/* error */
 | 
						|
xfs_alloc_lookup_le(
 | 
						|
	struct xfs_btree_cur	*cur,	/* btree cursor */
 | 
						|
	xfs_agblock_t		bno,	/* starting block of extent */
 | 
						|
	xfs_extlen_t		len,	/* length of extent */
 | 
						|
	int			*stat)	/* success/failure */
 | 
						|
{
 | 
						|
	return xfs_alloc_lookup(cur, XFS_LOOKUP_LE, bno, len, stat);
 | 
						|
}
 | 
						|
 | 
						|
static inline bool
 | 
						|
xfs_alloc_cur_active(
 | 
						|
	struct xfs_btree_cur	*cur)
 | 
						|
{
 | 
						|
	return cur && (cur->bc_flags & XFS_BTREE_ALLOCBT_ACTIVE);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Update the record referred to by cur to the value given
 | 
						|
 * by [bno, len].
 | 
						|
 * This either works (return 0) or gets an EFSCORRUPTED error.
 | 
						|
 */
 | 
						|
STATIC int				/* error */
 | 
						|
xfs_alloc_update(
 | 
						|
	struct xfs_btree_cur	*cur,	/* btree cursor */
 | 
						|
	xfs_agblock_t		bno,	/* starting block of extent */
 | 
						|
	xfs_extlen_t		len)	/* length of extent */
 | 
						|
{
 | 
						|
	union xfs_btree_rec	rec;
 | 
						|
 | 
						|
	rec.alloc.ar_startblock = cpu_to_be32(bno);
 | 
						|
	rec.alloc.ar_blockcount = cpu_to_be32(len);
 | 
						|
	return xfs_btree_update(cur, &rec);
 | 
						|
}
 | 
						|
 | 
						|
/* Convert the ondisk btree record to its incore representation. */
 | 
						|
void
 | 
						|
xfs_alloc_btrec_to_irec(
 | 
						|
	const union xfs_btree_rec	*rec,
 | 
						|
	struct xfs_alloc_rec_incore	*irec)
 | 
						|
{
 | 
						|
	irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
 | 
						|
	irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
 | 
						|
}
 | 
						|
 | 
						|
/* Simple checks for free space records. */
 | 
						|
xfs_failaddr_t
 | 
						|
xfs_alloc_check_irec(
 | 
						|
	struct xfs_perag			*pag,
 | 
						|
	const struct xfs_alloc_rec_incore	*irec)
 | 
						|
{
 | 
						|
	if (irec->ar_blockcount == 0)
 | 
						|
		return __this_address;
 | 
						|
 | 
						|
	/* check for valid extent range, including overflow */
 | 
						|
	if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount))
 | 
						|
		return __this_address;
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static inline int
 | 
						|
xfs_alloc_complain_bad_rec(
 | 
						|
	struct xfs_btree_cur		*cur,
 | 
						|
	xfs_failaddr_t			fa,
 | 
						|
	const struct xfs_alloc_rec_incore *irec)
 | 
						|
{
 | 
						|
	struct xfs_mount		*mp = cur->bc_mp;
 | 
						|
 | 
						|
	xfs_warn(mp,
 | 
						|
		"%sbt record corruption in AG %d detected at %pS!",
 | 
						|
		cur->bc_ops->name, cur->bc_group->xg_gno, fa);
 | 
						|
	xfs_warn(mp,
 | 
						|
		"start block 0x%x block count 0x%x", irec->ar_startblock,
 | 
						|
		irec->ar_blockcount);
 | 
						|
	xfs_btree_mark_sick(cur);
 | 
						|
	return -EFSCORRUPTED;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get the data from the pointed-to record.
 | 
						|
 */
 | 
						|
int					/* error */
 | 
						|
xfs_alloc_get_rec(
 | 
						|
	struct xfs_btree_cur	*cur,	/* btree cursor */
 | 
						|
	xfs_agblock_t		*bno,	/* output: starting block of extent */
 | 
						|
	xfs_extlen_t		*len,	/* output: length of extent */
 | 
						|
	int			*stat)	/* output: success/failure */
 | 
						|
{
 | 
						|
	struct xfs_alloc_rec_incore irec;
 | 
						|
	union xfs_btree_rec	*rec;
 | 
						|
	xfs_failaddr_t		fa;
 | 
						|
	int			error;
 | 
						|
 | 
						|
	error = xfs_btree_get_rec(cur, &rec, stat);
 | 
						|
	if (error || !(*stat))
 | 
						|
		return error;
 | 
						|
 | 
						|
	xfs_alloc_btrec_to_irec(rec, &irec);
 | 
						|
	fa = xfs_alloc_check_irec(to_perag(cur->bc_group), &irec);
 | 
						|
	if (fa)
 | 
						|
		return xfs_alloc_complain_bad_rec(cur, fa, &irec);
 | 
						|
 | 
						|
	*bno = irec.ar_startblock;
 | 
						|
	*len = irec.ar_blockcount;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Compute aligned version of the found extent.
 | 
						|
 * Takes alignment and min length into account.
 | 
						|
 */
 | 
						|
STATIC bool
 | 
						|
xfs_alloc_compute_aligned(
 | 
						|
	xfs_alloc_arg_t	*args,		/* allocation argument structure */
 | 
						|
	xfs_agblock_t	foundbno,	/* starting block in found extent */
 | 
						|
	xfs_extlen_t	foundlen,	/* length in found extent */
 | 
						|
	xfs_agblock_t	*resbno,	/* result block number */
 | 
						|
	xfs_extlen_t	*reslen,	/* result length */
 | 
						|
	unsigned	*busy_gen)
 | 
						|
{
 | 
						|
	xfs_agblock_t	bno = foundbno;
 | 
						|
	xfs_extlen_t	len = foundlen;
 | 
						|
	xfs_extlen_t	diff;
 | 
						|
	bool		busy;
 | 
						|
 | 
						|
	/* Trim busy sections out of found extent */
 | 
						|
	busy = xfs_extent_busy_trim(pag_group(args->pag), args->minlen,
 | 
						|
			args->maxlen, &bno, &len, busy_gen);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we have a largish extent that happens to start before min_agbno,
 | 
						|
	 * see if we can shift it into range...
 | 
						|
	 */
 | 
						|
	if (bno < args->min_agbno && bno + len > args->min_agbno) {
 | 
						|
		diff = args->min_agbno - bno;
 | 
						|
		if (len > diff) {
 | 
						|
			bno += diff;
 | 
						|
			len -= diff;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (args->alignment > 1 && len >= args->minlen) {
 | 
						|
		xfs_agblock_t	aligned_bno = roundup(bno, args->alignment);
 | 
						|
 | 
						|
		diff = aligned_bno - bno;
 | 
						|
 | 
						|
		*resbno = aligned_bno;
 | 
						|
		*reslen = diff >= len ? 0 : len - diff;
 | 
						|
	} else {
 | 
						|
		*resbno = bno;
 | 
						|
		*reslen = len;
 | 
						|
	}
 | 
						|
 | 
						|
	return busy;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Compute best start block and diff for "near" allocations.
 | 
						|
 * freelen >= wantlen already checked by caller.
 | 
						|
 */
 | 
						|
STATIC xfs_extlen_t			/* difference value (absolute) */
 | 
						|
xfs_alloc_compute_diff(
 | 
						|
	xfs_agblock_t	wantbno,	/* target starting block */
 | 
						|
	xfs_extlen_t	wantlen,	/* target length */
 | 
						|
	xfs_extlen_t	alignment,	/* target alignment */
 | 
						|
	int		datatype,	/* are we allocating data? */
 | 
						|
	xfs_agblock_t	freebno,	/* freespace's starting block */
 | 
						|
	xfs_extlen_t	freelen,	/* freespace's length */
 | 
						|
	xfs_agblock_t	*newbnop)	/* result: best start block from free */
 | 
						|
{
 | 
						|
	xfs_agblock_t	freeend;	/* end of freespace extent */
 | 
						|
	xfs_agblock_t	newbno1;	/* return block number */
 | 
						|
	xfs_agblock_t	newbno2;	/* other new block number */
 | 
						|
	xfs_extlen_t	newlen1=0;	/* length with newbno1 */
 | 
						|
	xfs_extlen_t	newlen2=0;	/* length with newbno2 */
 | 
						|
	xfs_agblock_t	wantend;	/* end of target extent */
 | 
						|
	bool		userdata = datatype & XFS_ALLOC_USERDATA;
 | 
						|
 | 
						|
	ASSERT(freelen >= wantlen);
 | 
						|
	freeend = freebno + freelen;
 | 
						|
	wantend = wantbno + wantlen;
 | 
						|
	/*
 | 
						|
	 * We want to allocate from the start of a free extent if it is past
 | 
						|
	 * the desired block or if we are allocating user data and the free
 | 
						|
	 * extent is before desired block. The second case is there to allow
 | 
						|
	 * for contiguous allocation from the remaining free space if the file
 | 
						|
	 * grows in the short term.
 | 
						|
	 */
 | 
						|
	if (freebno >= wantbno || (userdata && freeend < wantend)) {
 | 
						|
		if ((newbno1 = roundup(freebno, alignment)) >= freeend)
 | 
						|
			newbno1 = NULLAGBLOCK;
 | 
						|
	} else if (freeend >= wantend && alignment > 1) {
 | 
						|
		newbno1 = roundup(wantbno, alignment);
 | 
						|
		newbno2 = newbno1 - alignment;
 | 
						|
		if (newbno1 >= freeend)
 | 
						|
			newbno1 = NULLAGBLOCK;
 | 
						|
		else
 | 
						|
			newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
 | 
						|
		if (newbno2 < freebno)
 | 
						|
			newbno2 = NULLAGBLOCK;
 | 
						|
		else
 | 
						|
			newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
 | 
						|
		if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
 | 
						|
			if (newlen1 < newlen2 ||
 | 
						|
			    (newlen1 == newlen2 &&
 | 
						|
			     abs_diff(newbno1, wantbno) >
 | 
						|
			     abs_diff(newbno2, wantbno)))
 | 
						|
				newbno1 = newbno2;
 | 
						|
		} else if (newbno2 != NULLAGBLOCK)
 | 
						|
			newbno1 = newbno2;
 | 
						|
	} else if (freeend >= wantend) {
 | 
						|
		newbno1 = wantbno;
 | 
						|
	} else if (alignment > 1) {
 | 
						|
		newbno1 = roundup(freeend - wantlen, alignment);
 | 
						|
		if (newbno1 > freeend - wantlen &&
 | 
						|
		    newbno1 - alignment >= freebno)
 | 
						|
			newbno1 -= alignment;
 | 
						|
		else if (newbno1 >= freeend)
 | 
						|
			newbno1 = NULLAGBLOCK;
 | 
						|
	} else
 | 
						|
		newbno1 = freeend - wantlen;
 | 
						|
	*newbnop = newbno1;
 | 
						|
	return newbno1 == NULLAGBLOCK ? 0 : abs_diff(newbno1, wantbno);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Fix up the length, based on mod and prod.
 | 
						|
 * len should be k * prod + mod for some k.
 | 
						|
 * If len is too small it is returned unchanged.
 | 
						|
 * If len hits maxlen it is left alone.
 | 
						|
 */
 | 
						|
STATIC void
 | 
						|
xfs_alloc_fix_len(
 | 
						|
	xfs_alloc_arg_t	*args)		/* allocation argument structure */
 | 
						|
{
 | 
						|
	xfs_extlen_t	k;
 | 
						|
	xfs_extlen_t	rlen;
 | 
						|
 | 
						|
	ASSERT(args->mod < args->prod);
 | 
						|
	rlen = args->len;
 | 
						|
	ASSERT(rlen >= args->minlen);
 | 
						|
	ASSERT(rlen <= args->maxlen);
 | 
						|
	if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
 | 
						|
	    (args->mod == 0 && rlen < args->prod))
 | 
						|
		return;
 | 
						|
	k = rlen % args->prod;
 | 
						|
	if (k == args->mod)
 | 
						|
		return;
 | 
						|
	if (k > args->mod)
 | 
						|
		rlen = rlen - (k - args->mod);
 | 
						|
	else
 | 
						|
		rlen = rlen - args->prod + (args->mod - k);
 | 
						|
	/* casts to (int) catch length underflows */
 | 
						|
	if ((int)rlen < (int)args->minlen)
 | 
						|
		return;
 | 
						|
	ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
 | 
						|
	ASSERT(rlen % args->prod == args->mod);
 | 
						|
	ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
 | 
						|
		rlen + args->minleft);
 | 
						|
	args->len = rlen;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine if the cursor points to the block that contains the right-most
 | 
						|
 * block of records in the by-count btree. This block contains the largest
 | 
						|
 * contiguous free extent in the AG, so if we modify a record in this block we
 | 
						|
 * need to call xfs_alloc_fixup_longest() once the modifications are done to
 | 
						|
 * ensure the agf->agf_longest field is kept up to date with the longest free
 | 
						|
 * extent tracked by the by-count btree.
 | 
						|
 */
 | 
						|
static bool
 | 
						|
xfs_alloc_cursor_at_lastrec(
 | 
						|
	struct xfs_btree_cur	*cnt_cur)
 | 
						|
{
 | 
						|
	struct xfs_btree_block	*block;
 | 
						|
	union xfs_btree_ptr	ptr;
 | 
						|
	struct xfs_buf		*bp;
 | 
						|
 | 
						|
	block = xfs_btree_get_block(cnt_cur, 0, &bp);
 | 
						|
 | 
						|
	xfs_btree_get_sibling(cnt_cur, block, &ptr, XFS_BB_RIGHTSIB);
 | 
						|
	return xfs_btree_ptr_is_null(cnt_cur, &ptr);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find the rightmost record of the cntbt, and return the longest free space
 | 
						|
 * recorded in it. Simply set both the block number and the length to their
 | 
						|
 * maximum values before searching.
 | 
						|
 */
 | 
						|
static int
 | 
						|
xfs_cntbt_longest(
 | 
						|
	struct xfs_btree_cur	*cnt_cur,
 | 
						|
	xfs_extlen_t		*longest)
 | 
						|
{
 | 
						|
	struct xfs_alloc_rec_incore irec;
 | 
						|
	union xfs_btree_rec	    *rec;
 | 
						|
	int			    stat = 0;
 | 
						|
	int			    error;
 | 
						|
 | 
						|
	memset(&cnt_cur->bc_rec, 0xFF, sizeof(cnt_cur->bc_rec));
 | 
						|
	error = xfs_btree_lookup(cnt_cur, XFS_LOOKUP_LE, &stat);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
	if (!stat) {
 | 
						|
		/* totally empty tree */
 | 
						|
		*longest = 0;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	error = xfs_btree_get_rec(cnt_cur, &rec, &stat);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
	if (XFS_IS_CORRUPT(cnt_cur->bc_mp, !stat)) {
 | 
						|
		xfs_btree_mark_sick(cnt_cur);
 | 
						|
		return -EFSCORRUPTED;
 | 
						|
	}
 | 
						|
 | 
						|
	xfs_alloc_btrec_to_irec(rec, &irec);
 | 
						|
	*longest = irec.ar_blockcount;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Update the longest contiguous free extent in the AG from the by-count cursor
 | 
						|
 * that is passed to us. This should be done at the end of any allocation or
 | 
						|
 * freeing operation that touches the longest extent in the btree.
 | 
						|
 *
 | 
						|
 * Needing to update the longest extent can be determined by calling
 | 
						|
 * xfs_alloc_cursor_at_lastrec() after the cursor is positioned for record
 | 
						|
 * modification but before the modification begins.
 | 
						|
 */
 | 
						|
static int
 | 
						|
xfs_alloc_fixup_longest(
 | 
						|
	struct xfs_btree_cur	*cnt_cur)
 | 
						|
{
 | 
						|
	struct xfs_perag	*pag = to_perag(cnt_cur->bc_group);
 | 
						|
	struct xfs_buf		*bp = cnt_cur->bc_ag.agbp;
 | 
						|
	struct xfs_agf		*agf = bp->b_addr;
 | 
						|
	xfs_extlen_t		longest = 0;
 | 
						|
	int			error;
 | 
						|
 | 
						|
	/* Lookup last rec in order to update AGF. */
 | 
						|
	error = xfs_cntbt_longest(cnt_cur, &longest);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	pag->pagf_longest = longest;
 | 
						|
	agf->agf_longest = cpu_to_be32(pag->pagf_longest);
 | 
						|
	xfs_alloc_log_agf(cnt_cur->bc_tp, bp, XFS_AGF_LONGEST);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Update the two btrees, logically removing from freespace the extent
 | 
						|
 * starting at rbno, rlen blocks.  The extent is contained within the
 | 
						|
 * actual (current) free extent fbno for flen blocks.
 | 
						|
 * Flags are passed in indicating whether the cursors are set to the
 | 
						|
 * relevant records.
 | 
						|
 */
 | 
						|
STATIC int				/* error code */
 | 
						|
xfs_alloc_fixup_trees(
 | 
						|
	struct xfs_btree_cur *cnt_cur,	/* cursor for by-size btree */
 | 
						|
	struct xfs_btree_cur *bno_cur,	/* cursor for by-block btree */
 | 
						|
	xfs_agblock_t	fbno,		/* starting block of free extent */
 | 
						|
	xfs_extlen_t	flen,		/* length of free extent */
 | 
						|
	xfs_agblock_t	rbno,		/* starting block of returned extent */
 | 
						|
	xfs_extlen_t	rlen,		/* length of returned extent */
 | 
						|
	int		flags)		/* flags, XFSA_FIXUP_... */
 | 
						|
{
 | 
						|
	int		error;		/* error code */
 | 
						|
	int		i;		/* operation results */
 | 
						|
	xfs_agblock_t	nfbno1;		/* first new free startblock */
 | 
						|
	xfs_agblock_t	nfbno2;		/* second new free startblock */
 | 
						|
	xfs_extlen_t	nflen1=0;	/* first new free length */
 | 
						|
	xfs_extlen_t	nflen2=0;	/* second new free length */
 | 
						|
	struct xfs_mount *mp;
 | 
						|
	bool		fixup_longest = false;
 | 
						|
 | 
						|
	mp = cnt_cur->bc_mp;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Look up the record in the by-size tree if necessary.
 | 
						|
	 */
 | 
						|
	if (flags & XFSA_FIXUP_CNT_OK) {
 | 
						|
#ifdef DEBUG
 | 
						|
		if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
 | 
						|
			return error;
 | 
						|
		if (XFS_IS_CORRUPT(mp,
 | 
						|
				   i != 1 ||
 | 
						|
				   nfbno1 != fbno ||
 | 
						|
				   nflen1 != flen)) {
 | 
						|
			xfs_btree_mark_sick(cnt_cur);
 | 
						|
			return -EFSCORRUPTED;
 | 
						|
		}
 | 
						|
#endif
 | 
						|
	} else {
 | 
						|
		if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
 | 
						|
			return error;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(cnt_cur);
 | 
						|
			return -EFSCORRUPTED;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Look up the record in the by-block tree if necessary.
 | 
						|
	 */
 | 
						|
	if (flags & XFSA_FIXUP_BNO_OK) {
 | 
						|
#ifdef DEBUG
 | 
						|
		if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
 | 
						|
			return error;
 | 
						|
		if (XFS_IS_CORRUPT(mp,
 | 
						|
				   i != 1 ||
 | 
						|
				   nfbno1 != fbno ||
 | 
						|
				   nflen1 != flen)) {
 | 
						|
			xfs_btree_mark_sick(bno_cur);
 | 
						|
			return -EFSCORRUPTED;
 | 
						|
		}
 | 
						|
#endif
 | 
						|
	} else {
 | 
						|
		if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
 | 
						|
			return error;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(bno_cur);
 | 
						|
			return -EFSCORRUPTED;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
	if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
 | 
						|
		struct xfs_btree_block	*bnoblock;
 | 
						|
		struct xfs_btree_block	*cntblock;
 | 
						|
 | 
						|
		bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
 | 
						|
		cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
 | 
						|
 | 
						|
		if (XFS_IS_CORRUPT(mp,
 | 
						|
				   bnoblock->bb_numrecs !=
 | 
						|
				   cntblock->bb_numrecs)) {
 | 
						|
			xfs_btree_mark_sick(bno_cur);
 | 
						|
			return -EFSCORRUPTED;
 | 
						|
		}
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Deal with all four cases: the allocated record is contained
 | 
						|
	 * within the freespace record, so we can have new freespace
 | 
						|
	 * at either (or both) end, or no freespace remaining.
 | 
						|
	 */
 | 
						|
	if (rbno == fbno && rlen == flen)
 | 
						|
		nfbno1 = nfbno2 = NULLAGBLOCK;
 | 
						|
	else if (rbno == fbno) {
 | 
						|
		nfbno1 = rbno + rlen;
 | 
						|
		nflen1 = flen - rlen;
 | 
						|
		nfbno2 = NULLAGBLOCK;
 | 
						|
	} else if (rbno + rlen == fbno + flen) {
 | 
						|
		nfbno1 = fbno;
 | 
						|
		nflen1 = flen - rlen;
 | 
						|
		nfbno2 = NULLAGBLOCK;
 | 
						|
	} else {
 | 
						|
		nfbno1 = fbno;
 | 
						|
		nflen1 = rbno - fbno;
 | 
						|
		nfbno2 = rbno + rlen;
 | 
						|
		nflen2 = (fbno + flen) - nfbno2;
 | 
						|
	}
 | 
						|
 | 
						|
	if (xfs_alloc_cursor_at_lastrec(cnt_cur))
 | 
						|
		fixup_longest = true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Delete the entry from the by-size btree.
 | 
						|
	 */
 | 
						|
	if ((error = xfs_btree_delete(cnt_cur, &i)))
 | 
						|
		return error;
 | 
						|
	if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
		xfs_btree_mark_sick(cnt_cur);
 | 
						|
		return -EFSCORRUPTED;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Add new by-size btree entry(s).
 | 
						|
	 */
 | 
						|
	if (nfbno1 != NULLAGBLOCK) {
 | 
						|
		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
 | 
						|
			return error;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 0)) {
 | 
						|
			xfs_btree_mark_sick(cnt_cur);
 | 
						|
			return -EFSCORRUPTED;
 | 
						|
		}
 | 
						|
		if ((error = xfs_btree_insert(cnt_cur, &i)))
 | 
						|
			return error;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(cnt_cur);
 | 
						|
			return -EFSCORRUPTED;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (nfbno2 != NULLAGBLOCK) {
 | 
						|
		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
 | 
						|
			return error;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 0)) {
 | 
						|
			xfs_btree_mark_sick(cnt_cur);
 | 
						|
			return -EFSCORRUPTED;
 | 
						|
		}
 | 
						|
		if ((error = xfs_btree_insert(cnt_cur, &i)))
 | 
						|
			return error;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(cnt_cur);
 | 
						|
			return -EFSCORRUPTED;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Fix up the by-block btree entry(s).
 | 
						|
	 */
 | 
						|
	if (nfbno1 == NULLAGBLOCK) {
 | 
						|
		/*
 | 
						|
		 * No remaining freespace, just delete the by-block tree entry.
 | 
						|
		 */
 | 
						|
		if ((error = xfs_btree_delete(bno_cur, &i)))
 | 
						|
			return error;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(bno_cur);
 | 
						|
			return -EFSCORRUPTED;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * Update the by-block entry to start later|be shorter.
 | 
						|
		 */
 | 
						|
		if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
 | 
						|
			return error;
 | 
						|
	}
 | 
						|
	if (nfbno2 != NULLAGBLOCK) {
 | 
						|
		/*
 | 
						|
		 * 2 resulting free entries, need to add one.
 | 
						|
		 */
 | 
						|
		if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
 | 
						|
			return error;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 0)) {
 | 
						|
			xfs_btree_mark_sick(bno_cur);
 | 
						|
			return -EFSCORRUPTED;
 | 
						|
		}
 | 
						|
		if ((error = xfs_btree_insert(bno_cur, &i)))
 | 
						|
			return error;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(bno_cur);
 | 
						|
			return -EFSCORRUPTED;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (fixup_longest)
 | 
						|
		return xfs_alloc_fixup_longest(cnt_cur);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We do not verify the AGFL contents against AGF-based index counters here,
 | 
						|
 * even though we may have access to the perag that contains shadow copies. We
 | 
						|
 * don't know if the AGF based counters have been checked, and if they have they
 | 
						|
 * still may be inconsistent because they haven't yet been reset on the first
 | 
						|
 * allocation after the AGF has been read in.
 | 
						|
 *
 | 
						|
 * This means we can only check that all agfl entries contain valid or null
 | 
						|
 * values because we can't reliably determine the active range to exclude
 | 
						|
 * NULLAGBNO as a valid value.
 | 
						|
 *
 | 
						|
 * However, we can't even do that for v4 format filesystems because there are
 | 
						|
 * old versions of mkfs out there that does not initialise the AGFL to known,
 | 
						|
 * verifiable values. HEnce we can't tell the difference between a AGFL block
 | 
						|
 * allocated by mkfs and a corrupted AGFL block here on v4 filesystems.
 | 
						|
 *
 | 
						|
 * As a result, we can only fully validate AGFL block numbers when we pull them
 | 
						|
 * from the freelist in xfs_alloc_get_freelist().
 | 
						|
 */
 | 
						|
static xfs_failaddr_t
 | 
						|
xfs_agfl_verify(
 | 
						|
	struct xfs_buf	*bp)
 | 
						|
{
 | 
						|
	struct xfs_mount *mp = bp->b_mount;
 | 
						|
	struct xfs_agfl	*agfl = XFS_BUF_TO_AGFL(bp);
 | 
						|
	__be32		*agfl_bno = xfs_buf_to_agfl_bno(bp);
 | 
						|
	int		i;
 | 
						|
 | 
						|
	if (!xfs_has_crc(mp))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
 | 
						|
		return __this_address;
 | 
						|
	if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
 | 
						|
		return __this_address;
 | 
						|
	/*
 | 
						|
	 * during growfs operations, the perag is not fully initialised,
 | 
						|
	 * so we can't use it for any useful checking. growfs ensures we can't
 | 
						|
	 * use it by using uncached buffers that don't have the perag attached
 | 
						|
	 * so we can detect and avoid this problem.
 | 
						|
	 */
 | 
						|
	if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != pag_agno((bp->b_pag)))
 | 
						|
		return __this_address;
 | 
						|
 | 
						|
	for (i = 0; i < xfs_agfl_size(mp); i++) {
 | 
						|
		if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
 | 
						|
		    be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
 | 
						|
			return __this_address;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
 | 
						|
		return __this_address;
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
xfs_agfl_read_verify(
 | 
						|
	struct xfs_buf	*bp)
 | 
						|
{
 | 
						|
	struct xfs_mount *mp = bp->b_mount;
 | 
						|
	xfs_failaddr_t	fa;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * There is no verification of non-crc AGFLs because mkfs does not
 | 
						|
	 * initialise the AGFL to zero or NULL. Hence the only valid part of the
 | 
						|
	 * AGFL is what the AGF says is active. We can't get to the AGF, so we
 | 
						|
	 * can't verify just those entries are valid.
 | 
						|
	 */
 | 
						|
	if (!xfs_has_crc(mp))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
 | 
						|
		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
 | 
						|
	else {
 | 
						|
		fa = xfs_agfl_verify(bp);
 | 
						|
		if (fa)
 | 
						|
			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
xfs_agfl_write_verify(
 | 
						|
	struct xfs_buf	*bp)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = bp->b_mount;
 | 
						|
	struct xfs_buf_log_item	*bip = bp->b_log_item;
 | 
						|
	xfs_failaddr_t		fa;
 | 
						|
 | 
						|
	/* no verification of non-crc AGFLs */
 | 
						|
	if (!xfs_has_crc(mp))
 | 
						|
		return;
 | 
						|
 | 
						|
	fa = xfs_agfl_verify(bp);
 | 
						|
	if (fa) {
 | 
						|
		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (bip)
 | 
						|
		XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 | 
						|
 | 
						|
	xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
 | 
						|
}
 | 
						|
 | 
						|
const struct xfs_buf_ops xfs_agfl_buf_ops = {
 | 
						|
	.name = "xfs_agfl",
 | 
						|
	.magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
 | 
						|
	.verify_read = xfs_agfl_read_verify,
 | 
						|
	.verify_write = xfs_agfl_write_verify,
 | 
						|
	.verify_struct = xfs_agfl_verify,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Read in the allocation group free block array.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_alloc_read_agfl(
 | 
						|
	struct xfs_perag	*pag,
 | 
						|
	struct xfs_trans	*tp,
 | 
						|
	struct xfs_buf		**bpp)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = pag_mount(pag);
 | 
						|
	struct xfs_buf		*bp;
 | 
						|
	int			error;
 | 
						|
 | 
						|
	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
 | 
						|
			XFS_AG_DADDR(mp, pag_agno(pag), XFS_AGFL_DADDR(mp)),
 | 
						|
			XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
 | 
						|
	if (xfs_metadata_is_sick(error))
 | 
						|
		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGFL);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
	xfs_buf_set_ref(bp, XFS_AGFL_REF);
 | 
						|
	*bpp = bp;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
STATIC int
 | 
						|
xfs_alloc_update_counters(
 | 
						|
	struct xfs_trans	*tp,
 | 
						|
	struct xfs_buf		*agbp,
 | 
						|
	long			len)
 | 
						|
{
 | 
						|
	struct xfs_agf		*agf = agbp->b_addr;
 | 
						|
 | 
						|
	agbp->b_pag->pagf_freeblks += len;
 | 
						|
	be32_add_cpu(&agf->agf_freeblks, len);
 | 
						|
 | 
						|
	if (unlikely(be32_to_cpu(agf->agf_freeblks) >
 | 
						|
		     be32_to_cpu(agf->agf_length))) {
 | 
						|
		xfs_buf_mark_corrupt(agbp);
 | 
						|
		xfs_ag_mark_sick(agbp->b_pag, XFS_SICK_AG_AGF);
 | 
						|
		return -EFSCORRUPTED;
 | 
						|
	}
 | 
						|
 | 
						|
	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Block allocation algorithm and data structures.
 | 
						|
 */
 | 
						|
struct xfs_alloc_cur {
 | 
						|
	struct xfs_btree_cur		*cnt;	/* btree cursors */
 | 
						|
	struct xfs_btree_cur		*bnolt;
 | 
						|
	struct xfs_btree_cur		*bnogt;
 | 
						|
	xfs_extlen_t			cur_len;/* current search length */
 | 
						|
	xfs_agblock_t			rec_bno;/* extent startblock */
 | 
						|
	xfs_extlen_t			rec_len;/* extent length */
 | 
						|
	xfs_agblock_t			bno;	/* alloc bno */
 | 
						|
	xfs_extlen_t			len;	/* alloc len */
 | 
						|
	xfs_extlen_t			diff;	/* diff from search bno */
 | 
						|
	unsigned int			busy_gen;/* busy state */
 | 
						|
	bool				busy;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Set up cursors, etc. in the extent allocation cursor. This function can be
 | 
						|
 * called multiple times to reset an initialized structure without having to
 | 
						|
 * reallocate cursors.
 | 
						|
 */
 | 
						|
static int
 | 
						|
xfs_alloc_cur_setup(
 | 
						|
	struct xfs_alloc_arg	*args,
 | 
						|
	struct xfs_alloc_cur	*acur)
 | 
						|
{
 | 
						|
	int			error;
 | 
						|
	int			i;
 | 
						|
 | 
						|
	acur->cur_len = args->maxlen;
 | 
						|
	acur->rec_bno = 0;
 | 
						|
	acur->rec_len = 0;
 | 
						|
	acur->bno = 0;
 | 
						|
	acur->len = 0;
 | 
						|
	acur->diff = -1;
 | 
						|
	acur->busy = false;
 | 
						|
	acur->busy_gen = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Perform an initial cntbt lookup to check for availability of maxlen
 | 
						|
	 * extents. If this fails, we'll return -ENOSPC to signal the caller to
 | 
						|
	 * attempt a small allocation.
 | 
						|
	 */
 | 
						|
	if (!acur->cnt)
 | 
						|
		acur->cnt = xfs_cntbt_init_cursor(args->mp, args->tp,
 | 
						|
					args->agbp, args->pag);
 | 
						|
	error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allocate the bnobt left and right search cursors.
 | 
						|
	 */
 | 
						|
	if (!acur->bnolt)
 | 
						|
		acur->bnolt = xfs_bnobt_init_cursor(args->mp, args->tp,
 | 
						|
					args->agbp, args->pag);
 | 
						|
	if (!acur->bnogt)
 | 
						|
		acur->bnogt = xfs_bnobt_init_cursor(args->mp, args->tp,
 | 
						|
					args->agbp, args->pag);
 | 
						|
	return i == 1 ? 0 : -ENOSPC;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
xfs_alloc_cur_close(
 | 
						|
	struct xfs_alloc_cur	*acur,
 | 
						|
	bool			error)
 | 
						|
{
 | 
						|
	int			cur_error = XFS_BTREE_NOERROR;
 | 
						|
 | 
						|
	if (error)
 | 
						|
		cur_error = XFS_BTREE_ERROR;
 | 
						|
 | 
						|
	if (acur->cnt)
 | 
						|
		xfs_btree_del_cursor(acur->cnt, cur_error);
 | 
						|
	if (acur->bnolt)
 | 
						|
		xfs_btree_del_cursor(acur->bnolt, cur_error);
 | 
						|
	if (acur->bnogt)
 | 
						|
		xfs_btree_del_cursor(acur->bnogt, cur_error);
 | 
						|
	acur->cnt = acur->bnolt = acur->bnogt = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check an extent for allocation and track the best available candidate in the
 | 
						|
 * allocation structure. The cursor is deactivated if it has entered an out of
 | 
						|
 * range state based on allocation arguments. Optionally return the extent
 | 
						|
 * extent geometry and allocation status if requested by the caller.
 | 
						|
 */
 | 
						|
static int
 | 
						|
xfs_alloc_cur_check(
 | 
						|
	struct xfs_alloc_arg	*args,
 | 
						|
	struct xfs_alloc_cur	*acur,
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	int			*new)
 | 
						|
{
 | 
						|
	int			error, i;
 | 
						|
	xfs_agblock_t		bno, bnoa, bnew;
 | 
						|
	xfs_extlen_t		len, lena, diff = -1;
 | 
						|
	bool			busy;
 | 
						|
	unsigned		busy_gen = 0;
 | 
						|
	bool			deactivate = false;
 | 
						|
	bool			isbnobt = xfs_btree_is_bno(cur->bc_ops);
 | 
						|
 | 
						|
	*new = 0;
 | 
						|
 | 
						|
	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
	if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 | 
						|
		xfs_btree_mark_sick(cur);
 | 
						|
		return -EFSCORRUPTED;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check minlen and deactivate a cntbt cursor if out of acceptable size
 | 
						|
	 * range (i.e., walking backwards looking for a minlen extent).
 | 
						|
	 */
 | 
						|
	if (len < args->minlen) {
 | 
						|
		deactivate = !isbnobt;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
 | 
						|
					 &busy_gen);
 | 
						|
	acur->busy |= busy;
 | 
						|
	if (busy)
 | 
						|
		acur->busy_gen = busy_gen;
 | 
						|
	/* deactivate a bnobt cursor outside of locality range */
 | 
						|
	if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
 | 
						|
		deactivate = isbnobt;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	if (lena < args->minlen)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
 | 
						|
	xfs_alloc_fix_len(args);
 | 
						|
	ASSERT(args->len >= args->minlen);
 | 
						|
	if (args->len < acur->len)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We have an aligned record that satisfies minlen and beats or matches
 | 
						|
	 * the candidate extent size. Compare locality for near allocation mode.
 | 
						|
	 */
 | 
						|
	diff = xfs_alloc_compute_diff(args->agbno, args->len,
 | 
						|
				      args->alignment, args->datatype,
 | 
						|
				      bnoa, lena, &bnew);
 | 
						|
	if (bnew == NULLAGBLOCK)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Deactivate a bnobt cursor with worse locality than the current best.
 | 
						|
	 */
 | 
						|
	if (diff > acur->diff) {
 | 
						|
		deactivate = isbnobt;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(args->len > acur->len ||
 | 
						|
	       (args->len == acur->len && diff <= acur->diff));
 | 
						|
	acur->rec_bno = bno;
 | 
						|
	acur->rec_len = len;
 | 
						|
	acur->bno = bnew;
 | 
						|
	acur->len = args->len;
 | 
						|
	acur->diff = diff;
 | 
						|
	*new = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We're done if we found a perfect allocation. This only deactivates
 | 
						|
	 * the current cursor, but this is just an optimization to terminate a
 | 
						|
	 * cntbt search that otherwise runs to the edge of the tree.
 | 
						|
	 */
 | 
						|
	if (acur->diff == 0 && acur->len == args->maxlen)
 | 
						|
		deactivate = true;
 | 
						|
out:
 | 
						|
	if (deactivate)
 | 
						|
		cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
 | 
						|
	trace_xfs_alloc_cur_check(cur, bno, len, diff, *new);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Complete an allocation of a candidate extent. Remove the extent from both
 | 
						|
 * trees and update the args structure.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xfs_alloc_cur_finish(
 | 
						|
	struct xfs_alloc_arg	*args,
 | 
						|
	struct xfs_alloc_cur	*acur)
 | 
						|
{
 | 
						|
	int			error;
 | 
						|
 | 
						|
	ASSERT(acur->cnt && acur->bnolt);
 | 
						|
	ASSERT(acur->bno >= acur->rec_bno);
 | 
						|
	ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
 | 
						|
	ASSERT(xfs_verify_agbext(args->pag, acur->rec_bno, acur->rec_len));
 | 
						|
 | 
						|
	error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
 | 
						|
				      acur->rec_len, acur->bno, acur->len, 0);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	args->agbno = acur->bno;
 | 
						|
	args->len = acur->len;
 | 
						|
	args->wasfromfl = 0;
 | 
						|
 | 
						|
	trace_xfs_alloc_cur(args);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
 | 
						|
 * bno optimized lookup to search for extents with ideal size and locality.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xfs_alloc_cntbt_iter(
 | 
						|
	struct xfs_alloc_arg		*args,
 | 
						|
	struct xfs_alloc_cur		*acur)
 | 
						|
{
 | 
						|
	struct xfs_btree_cur	*cur = acur->cnt;
 | 
						|
	xfs_agblock_t		bno;
 | 
						|
	xfs_extlen_t		len, cur_len;
 | 
						|
	int			error;
 | 
						|
	int			i;
 | 
						|
 | 
						|
	if (!xfs_alloc_cur_active(cur))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* locality optimized lookup */
 | 
						|
	cur_len = acur->cur_len;
 | 
						|
	error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
	if (i == 0)
 | 
						|
		return 0;
 | 
						|
	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	/* check the current record and update search length from it */
 | 
						|
	error = xfs_alloc_cur_check(args, acur, cur, &i);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
	ASSERT(len >= acur->cur_len);
 | 
						|
	acur->cur_len = len;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We looked up the first record >= [agbno, len] above. The agbno is a
 | 
						|
	 * secondary key and so the current record may lie just before or after
 | 
						|
	 * agbno. If it is past agbno, check the previous record too so long as
 | 
						|
	 * the length matches as it may be closer. Don't check a smaller record
 | 
						|
	 * because that could deactivate our cursor.
 | 
						|
	 */
 | 
						|
	if (bno > args->agbno) {
 | 
						|
		error = xfs_btree_decrement(cur, 0, &i);
 | 
						|
		if (!error && i) {
 | 
						|
			error = xfs_alloc_get_rec(cur, &bno, &len, &i);
 | 
						|
			if (!error && i && len == acur->cur_len)
 | 
						|
				error = xfs_alloc_cur_check(args, acur, cur,
 | 
						|
							    &i);
 | 
						|
		}
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Increment the search key until we find at least one allocation
 | 
						|
	 * candidate or if the extent we found was larger. Otherwise, double the
 | 
						|
	 * search key to optimize the search. Efficiency is more important here
 | 
						|
	 * than absolute best locality.
 | 
						|
	 */
 | 
						|
	cur_len <<= 1;
 | 
						|
	if (!acur->len || acur->cur_len >= cur_len)
 | 
						|
		acur->cur_len++;
 | 
						|
	else
 | 
						|
		acur->cur_len = cur_len;
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Deal with the case where only small freespaces remain. Either return the
 | 
						|
 * contents of the last freespace record, or allocate space from the freelist if
 | 
						|
 * there is nothing in the tree.
 | 
						|
 */
 | 
						|
STATIC int			/* error */
 | 
						|
xfs_alloc_ag_vextent_small(
 | 
						|
	struct xfs_alloc_arg	*args,	/* allocation argument structure */
 | 
						|
	struct xfs_btree_cur	*ccur,	/* optional by-size cursor */
 | 
						|
	xfs_agblock_t		*fbnop,	/* result block number */
 | 
						|
	xfs_extlen_t		*flenp,	/* result length */
 | 
						|
	int			*stat)	/* status: 0-freelist, 1-normal/none */
 | 
						|
{
 | 
						|
	struct xfs_agf		*agf = args->agbp->b_addr;
 | 
						|
	int			error = 0;
 | 
						|
	xfs_agblock_t		fbno = NULLAGBLOCK;
 | 
						|
	xfs_extlen_t		flen = 0;
 | 
						|
	int			i = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If a cntbt cursor is provided, try to allocate the largest record in
 | 
						|
	 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
 | 
						|
	 * allocation. Make sure to respect minleft even when pulling from the
 | 
						|
	 * freelist.
 | 
						|
	 */
 | 
						|
	if (ccur)
 | 
						|
		error = xfs_btree_decrement(ccur, 0, &i);
 | 
						|
	if (error)
 | 
						|
		goto error;
 | 
						|
	if (i) {
 | 
						|
		error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
 | 
						|
		if (error)
 | 
						|
			goto error;
 | 
						|
		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(ccur);
 | 
						|
			error = -EFSCORRUPTED;
 | 
						|
			goto error;
 | 
						|
		}
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (args->minlen != 1 || args->alignment != 1 ||
 | 
						|
	    args->resv == XFS_AG_RESV_AGFL ||
 | 
						|
	    be32_to_cpu(agf->agf_flcount) <= args->minleft)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
 | 
						|
			&fbno, 0);
 | 
						|
	if (error)
 | 
						|
		goto error;
 | 
						|
	if (fbno == NULLAGBLOCK)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	xfs_extent_busy_reuse(pag_group(args->pag), fbno, 1,
 | 
						|
			      (args->datatype & XFS_ALLOC_NOBUSY));
 | 
						|
 | 
						|
	if (args->datatype & XFS_ALLOC_USERDATA) {
 | 
						|
		struct xfs_buf	*bp;
 | 
						|
 | 
						|
		error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
 | 
						|
				xfs_agbno_to_daddr(args->pag, fbno),
 | 
						|
				args->mp->m_bsize, 0, &bp);
 | 
						|
		if (error)
 | 
						|
			goto error;
 | 
						|
		xfs_trans_binval(args->tp, bp);
 | 
						|
	}
 | 
						|
	*fbnop = args->agbno = fbno;
 | 
						|
	*flenp = args->len = 1;
 | 
						|
	if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
 | 
						|
		xfs_btree_mark_sick(ccur);
 | 
						|
		error = -EFSCORRUPTED;
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
	args->wasfromfl = 1;
 | 
						|
	trace_xfs_alloc_small_freelist(args);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we're feeding an AGFL block to something that doesn't live in the
 | 
						|
	 * free space, we need to clear out the OWN_AG rmap.
 | 
						|
	 */
 | 
						|
	error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
 | 
						|
			      &XFS_RMAP_OINFO_AG);
 | 
						|
	if (error)
 | 
						|
		goto error;
 | 
						|
 | 
						|
	*stat = 0;
 | 
						|
	return 0;
 | 
						|
 | 
						|
out:
 | 
						|
	/*
 | 
						|
	 * Can't do the allocation, give up.
 | 
						|
	 */
 | 
						|
	if (flen < args->minlen) {
 | 
						|
		args->agbno = NULLAGBLOCK;
 | 
						|
		trace_xfs_alloc_small_notenough(args);
 | 
						|
		flen = 0;
 | 
						|
	}
 | 
						|
	*fbnop = fbno;
 | 
						|
	*flenp = flen;
 | 
						|
	*stat = 1;
 | 
						|
	trace_xfs_alloc_small_done(args);
 | 
						|
	return 0;
 | 
						|
 | 
						|
error:
 | 
						|
	trace_xfs_alloc_small_error(args);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate a variable extent at exactly agno/bno.
 | 
						|
 * Extent's length (returned in *len) will be between minlen and maxlen,
 | 
						|
 * and of the form k * prod + mod unless there's nothing that large.
 | 
						|
 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
 | 
						|
 */
 | 
						|
STATIC int			/* error */
 | 
						|
xfs_alloc_ag_vextent_exact(
 | 
						|
	xfs_alloc_arg_t	*args)	/* allocation argument structure */
 | 
						|
{
 | 
						|
	struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
 | 
						|
	struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
 | 
						|
	int		error;
 | 
						|
	xfs_agblock_t	fbno;	/* start block of found extent */
 | 
						|
	xfs_extlen_t	flen;	/* length of found extent */
 | 
						|
	xfs_agblock_t	tbno;	/* start block of busy extent */
 | 
						|
	xfs_extlen_t	tlen;	/* length of busy extent */
 | 
						|
	xfs_agblock_t	tend;	/* end block of busy extent */
 | 
						|
	int		i;	/* success/failure of operation */
 | 
						|
	unsigned	busy_gen;
 | 
						|
 | 
						|
	ASSERT(args->alignment == 1);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allocate/initialize a cursor for the by-number freespace btree.
 | 
						|
	 */
 | 
						|
	bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp,
 | 
						|
					  args->pag);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
 | 
						|
	 * Look for the closest free block <= bno, it must contain bno
 | 
						|
	 * if any free block does.
 | 
						|
	 */
 | 
						|
	error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
 | 
						|
	if (error)
 | 
						|
		goto error0;
 | 
						|
	if (!i)
 | 
						|
		goto not_found;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Grab the freespace record.
 | 
						|
	 */
 | 
						|
	error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
 | 
						|
	if (error)
 | 
						|
		goto error0;
 | 
						|
	if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 | 
						|
		xfs_btree_mark_sick(bno_cur);
 | 
						|
		error = -EFSCORRUPTED;
 | 
						|
		goto error0;
 | 
						|
	}
 | 
						|
	ASSERT(fbno <= args->agbno);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check for overlapping busy extents.
 | 
						|
	 */
 | 
						|
	tbno = fbno;
 | 
						|
	tlen = flen;
 | 
						|
	xfs_extent_busy_trim(pag_group(args->pag), args->minlen, args->maxlen,
 | 
						|
			&tbno, &tlen, &busy_gen);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Give up if the start of the extent is busy, or the freespace isn't
 | 
						|
	 * long enough for the minimum request.
 | 
						|
	 */
 | 
						|
	if (tbno > args->agbno)
 | 
						|
		goto not_found;
 | 
						|
	if (tlen < args->minlen)
 | 
						|
		goto not_found;
 | 
						|
	tend = tbno + tlen;
 | 
						|
	if (tend < args->agbno + args->minlen)
 | 
						|
		goto not_found;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * End of extent will be smaller of the freespace end and the
 | 
						|
	 * maximal requested end.
 | 
						|
	 *
 | 
						|
	 * Fix the length according to mod and prod if given.
 | 
						|
	 */
 | 
						|
	args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
 | 
						|
						- args->agbno;
 | 
						|
	xfs_alloc_fix_len(args);
 | 
						|
	ASSERT(args->agbno + args->len <= tend);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We are allocating agbno for args->len
 | 
						|
	 * Allocate/initialize a cursor for the by-size btree.
 | 
						|
	 */
 | 
						|
	cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp,
 | 
						|
					args->pag);
 | 
						|
	ASSERT(xfs_verify_agbext(args->pag, args->agbno, args->len));
 | 
						|
	error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
 | 
						|
				      args->len, XFSA_FIXUP_BNO_OK);
 | 
						|
	if (error) {
 | 
						|
		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
 | 
						|
		goto error0;
 | 
						|
	}
 | 
						|
 | 
						|
	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
 | 
						|
	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
 | 
						|
 | 
						|
	args->wasfromfl = 0;
 | 
						|
	trace_xfs_alloc_exact_done(args);
 | 
						|
	return 0;
 | 
						|
 | 
						|
not_found:
 | 
						|
	/* Didn't find it, return null. */
 | 
						|
	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
 | 
						|
	args->agbno = NULLAGBLOCK;
 | 
						|
	trace_xfs_alloc_exact_notfound(args);
 | 
						|
	return 0;
 | 
						|
 | 
						|
error0:
 | 
						|
	xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
 | 
						|
	trace_xfs_alloc_exact_error(args);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Search a given number of btree records in a given direction. Check each
 | 
						|
 * record against the good extent we've already found.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xfs_alloc_walk_iter(
 | 
						|
	struct xfs_alloc_arg	*args,
 | 
						|
	struct xfs_alloc_cur	*acur,
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	bool			increment,
 | 
						|
	bool			find_one, /* quit on first candidate */
 | 
						|
	int			count,    /* rec count (-1 for infinite) */
 | 
						|
	int			*stat)
 | 
						|
{
 | 
						|
	int			error;
 | 
						|
	int			i;
 | 
						|
 | 
						|
	*stat = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Search so long as the cursor is active or we find a better extent.
 | 
						|
	 * The cursor is deactivated if it extends beyond the range of the
 | 
						|
	 * current allocation candidate.
 | 
						|
	 */
 | 
						|
	while (xfs_alloc_cur_active(cur) && count) {
 | 
						|
		error = xfs_alloc_cur_check(args, acur, cur, &i);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
		if (i == 1) {
 | 
						|
			*stat = 1;
 | 
						|
			if (find_one)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		if (!xfs_alloc_cur_active(cur))
 | 
						|
			break;
 | 
						|
 | 
						|
		if (increment)
 | 
						|
			error = xfs_btree_increment(cur, 0, &i);
 | 
						|
		else
 | 
						|
			error = xfs_btree_decrement(cur, 0, &i);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
		if (i == 0)
 | 
						|
			cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
 | 
						|
 | 
						|
		if (count > 0)
 | 
						|
			count--;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Search the by-bno and by-size btrees in parallel in search of an extent with
 | 
						|
 * ideal locality based on the NEAR mode ->agbno locality hint.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xfs_alloc_ag_vextent_locality(
 | 
						|
	struct xfs_alloc_arg	*args,
 | 
						|
	struct xfs_alloc_cur	*acur,
 | 
						|
	int			*stat)
 | 
						|
{
 | 
						|
	struct xfs_btree_cur	*fbcur = NULL;
 | 
						|
	int			error;
 | 
						|
	int			i;
 | 
						|
	bool			fbinc;
 | 
						|
 | 
						|
	ASSERT(acur->len == 0);
 | 
						|
 | 
						|
	*stat = 0;
 | 
						|
 | 
						|
	error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
	error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
	error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Search the bnobt and cntbt in parallel. Search the bnobt left and
 | 
						|
	 * right and lookup the closest extent to the locality hint for each
 | 
						|
	 * extent size key in the cntbt. The entire search terminates
 | 
						|
	 * immediately on a bnobt hit because that means we've found best case
 | 
						|
	 * locality. Otherwise the search continues until the cntbt cursor runs
 | 
						|
	 * off the end of the tree. If no allocation candidate is found at this
 | 
						|
	 * point, give up on locality, walk backwards from the end of the cntbt
 | 
						|
	 * and take the first available extent.
 | 
						|
	 *
 | 
						|
	 * The parallel tree searches balance each other out to provide fairly
 | 
						|
	 * consistent performance for various situations. The bnobt search can
 | 
						|
	 * have pathological behavior in the worst case scenario of larger
 | 
						|
	 * allocation requests and fragmented free space. On the other hand, the
 | 
						|
	 * bnobt is able to satisfy most smaller allocation requests much more
 | 
						|
	 * quickly than the cntbt. The cntbt search can sift through fragmented
 | 
						|
	 * free space and sets of free extents for larger allocation requests
 | 
						|
	 * more quickly than the bnobt. Since the locality hint is just a hint
 | 
						|
	 * and we don't want to scan the entire bnobt for perfect locality, the
 | 
						|
	 * cntbt search essentially bounds the bnobt search such that we can
 | 
						|
	 * find good enough locality at reasonable performance in most cases.
 | 
						|
	 */
 | 
						|
	while (xfs_alloc_cur_active(acur->bnolt) ||
 | 
						|
	       xfs_alloc_cur_active(acur->bnogt) ||
 | 
						|
	       xfs_alloc_cur_active(acur->cnt)) {
 | 
						|
 | 
						|
		trace_xfs_alloc_cur_lookup(args);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Search the bnobt left and right. In the case of a hit, finish
 | 
						|
		 * the search in the opposite direction and we're done.
 | 
						|
		 */
 | 
						|
		error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
 | 
						|
					    true, 1, &i);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
		if (i == 1) {
 | 
						|
			trace_xfs_alloc_cur_left(args);
 | 
						|
			fbcur = acur->bnogt;
 | 
						|
			fbinc = true;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
 | 
						|
					    1, &i);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
		if (i == 1) {
 | 
						|
			trace_xfs_alloc_cur_right(args);
 | 
						|
			fbcur = acur->bnolt;
 | 
						|
			fbinc = false;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Check the extent with best locality based on the current
 | 
						|
		 * extent size search key and keep track of the best candidate.
 | 
						|
		 */
 | 
						|
		error = xfs_alloc_cntbt_iter(args, acur);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
		if (!xfs_alloc_cur_active(acur->cnt)) {
 | 
						|
			trace_xfs_alloc_cur_lookup_done(args);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we failed to find anything due to busy extents, return empty
 | 
						|
	 * handed so the caller can flush and retry. If no busy extents were
 | 
						|
	 * found, walk backwards from the end of the cntbt as a last resort.
 | 
						|
	 */
 | 
						|
	if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
 | 
						|
		error = xfs_btree_decrement(acur->cnt, 0, &i);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
		if (i) {
 | 
						|
			acur->cnt->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE;
 | 
						|
			fbcur = acur->cnt;
 | 
						|
			fbinc = false;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Search in the opposite direction for a better entry in the case of
 | 
						|
	 * a bnobt hit or walk backwards from the end of the cntbt.
 | 
						|
	 */
 | 
						|
	if (fbcur) {
 | 
						|
		error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
 | 
						|
					    &i);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
	}
 | 
						|
 | 
						|
	if (acur->len)
 | 
						|
		*stat = 1;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Check the last block of the cnt btree for allocations. */
 | 
						|
static int
 | 
						|
xfs_alloc_ag_vextent_lastblock(
 | 
						|
	struct xfs_alloc_arg	*args,
 | 
						|
	struct xfs_alloc_cur	*acur,
 | 
						|
	xfs_agblock_t		*bno,
 | 
						|
	xfs_extlen_t		*len,
 | 
						|
	bool			*allocated)
 | 
						|
{
 | 
						|
	int			error;
 | 
						|
	int			i;
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
	/* Randomly don't execute the first algorithm. */
 | 
						|
	if (get_random_u32_below(2))
 | 
						|
		return 0;
 | 
						|
#endif
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Start from the entry that lookup found, sequence through all larger
 | 
						|
	 * free blocks.  If we're actually pointing at a record smaller than
 | 
						|
	 * maxlen, go to the start of this block, and skip all those smaller
 | 
						|
	 * than minlen.
 | 
						|
	 */
 | 
						|
	if (*len || args->alignment > 1) {
 | 
						|
		acur->cnt->bc_levels[0].ptr = 1;
 | 
						|
		do {
 | 
						|
			error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
 | 
						|
			if (error)
 | 
						|
				return error;
 | 
						|
			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 | 
						|
				xfs_btree_mark_sick(acur->cnt);
 | 
						|
				return -EFSCORRUPTED;
 | 
						|
			}
 | 
						|
			if (*len >= args->minlen)
 | 
						|
				break;
 | 
						|
			error = xfs_btree_increment(acur->cnt, 0, &i);
 | 
						|
			if (error)
 | 
						|
				return error;
 | 
						|
		} while (i);
 | 
						|
		ASSERT(*len >= args->minlen);
 | 
						|
		if (!i)
 | 
						|
			return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It didn't work.  We COULD be in a case where there's a good record
 | 
						|
	 * somewhere, so try again.
 | 
						|
	 */
 | 
						|
	if (acur->len == 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	trace_xfs_alloc_near_first(args);
 | 
						|
	*allocated = true;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate a variable extent near bno in the allocation group agno.
 | 
						|
 * Extent's length (returned in len) will be between minlen and maxlen,
 | 
						|
 * and of the form k * prod + mod unless there's nothing that large.
 | 
						|
 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xfs_alloc_ag_vextent_near(
 | 
						|
	struct xfs_alloc_arg	*args,
 | 
						|
	uint32_t		alloc_flags)
 | 
						|
{
 | 
						|
	struct xfs_alloc_cur	acur = {};
 | 
						|
	int			error;		/* error code */
 | 
						|
	int			i;		/* result code, temporary */
 | 
						|
	xfs_agblock_t		bno;
 | 
						|
	xfs_extlen_t		len;
 | 
						|
 | 
						|
	/* handle uninitialized agbno range so caller doesn't have to */
 | 
						|
	if (!args->min_agbno && !args->max_agbno)
 | 
						|
		args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
 | 
						|
	ASSERT(args->min_agbno <= args->max_agbno);
 | 
						|
 | 
						|
	/* clamp agbno to the range if it's outside */
 | 
						|
	if (args->agbno < args->min_agbno)
 | 
						|
		args->agbno = args->min_agbno;
 | 
						|
	if (args->agbno > args->max_agbno)
 | 
						|
		args->agbno = args->max_agbno;
 | 
						|
 | 
						|
	/* Retry once quickly if we find busy extents before blocking. */
 | 
						|
	alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
 | 
						|
restart:
 | 
						|
	len = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set up cursors and see if there are any free extents as big as
 | 
						|
	 * maxlen. If not, pick the last entry in the tree unless the tree is
 | 
						|
	 * empty.
 | 
						|
	 */
 | 
						|
	error = xfs_alloc_cur_setup(args, &acur);
 | 
						|
	if (error == -ENOSPC) {
 | 
						|
		error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
 | 
						|
				&len, &i);
 | 
						|
		if (error)
 | 
						|
			goto out;
 | 
						|
		if (i == 0 || len == 0) {
 | 
						|
			trace_xfs_alloc_near_noentry(args);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		ASSERT(i == 1);
 | 
						|
	} else if (error) {
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * First algorithm.
 | 
						|
	 * If the requested extent is large wrt the freespaces available
 | 
						|
	 * in this a.g., then the cursor will be pointing to a btree entry
 | 
						|
	 * near the right edge of the tree.  If it's in the last btree leaf
 | 
						|
	 * block, then we just examine all the entries in that block
 | 
						|
	 * that are big enough, and pick the best one.
 | 
						|
	 */
 | 
						|
	if (xfs_btree_islastblock(acur.cnt, 0)) {
 | 
						|
		bool		allocated = false;
 | 
						|
 | 
						|
		error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
 | 
						|
				&allocated);
 | 
						|
		if (error)
 | 
						|
			goto out;
 | 
						|
		if (allocated)
 | 
						|
			goto alloc_finish;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Second algorithm. Combined cntbt and bnobt search to find ideal
 | 
						|
	 * locality.
 | 
						|
	 */
 | 
						|
	error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
 | 
						|
	if (error)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we couldn't get anything, give up.
 | 
						|
	 */
 | 
						|
	if (!acur.len) {
 | 
						|
		if (acur.busy) {
 | 
						|
			/*
 | 
						|
			 * Our only valid extents must have been busy. Flush and
 | 
						|
			 * retry the allocation again. If we get an -EAGAIN
 | 
						|
			 * error, we're being told that a deadlock was avoided
 | 
						|
			 * and the current transaction needs committing before
 | 
						|
			 * the allocation can be retried.
 | 
						|
			 */
 | 
						|
			trace_xfs_alloc_near_busy(args);
 | 
						|
			error = xfs_extent_busy_flush(args->tp,
 | 
						|
					pag_group(args->pag), acur.busy_gen,
 | 
						|
					alloc_flags);
 | 
						|
			if (error)
 | 
						|
				goto out;
 | 
						|
 | 
						|
			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
 | 
						|
			goto restart;
 | 
						|
		}
 | 
						|
		trace_xfs_alloc_size_neither(args);
 | 
						|
		args->agbno = NULLAGBLOCK;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
alloc_finish:
 | 
						|
	/* fix up btrees on a successful allocation */
 | 
						|
	error = xfs_alloc_cur_finish(args, &acur);
 | 
						|
 | 
						|
out:
 | 
						|
	xfs_alloc_cur_close(&acur, error);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate a variable extent anywhere in the allocation group agno.
 | 
						|
 * Extent's length (returned in len) will be between minlen and maxlen,
 | 
						|
 * and of the form k * prod + mod unless there's nothing that large.
 | 
						|
 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
 | 
						|
 */
 | 
						|
static int
 | 
						|
xfs_alloc_ag_vextent_size(
 | 
						|
	struct xfs_alloc_arg	*args,
 | 
						|
	uint32_t		alloc_flags)
 | 
						|
{
 | 
						|
	struct xfs_agf		*agf = args->agbp->b_addr;
 | 
						|
	struct xfs_btree_cur	*bno_cur;
 | 
						|
	struct xfs_btree_cur	*cnt_cur;
 | 
						|
	xfs_agblock_t		fbno;		/* start of found freespace */
 | 
						|
	xfs_extlen_t		flen;		/* length of found freespace */
 | 
						|
	xfs_agblock_t		rbno;		/* returned block number */
 | 
						|
	xfs_extlen_t		rlen;		/* length of returned extent */
 | 
						|
	bool			busy;
 | 
						|
	unsigned		busy_gen;
 | 
						|
	int			error;
 | 
						|
	int			i;
 | 
						|
 | 
						|
	/* Retry once quickly if we find busy extents before blocking. */
 | 
						|
	alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
 | 
						|
restart:
 | 
						|
	/*
 | 
						|
	 * Allocate and initialize a cursor for the by-size btree.
 | 
						|
	 */
 | 
						|
	cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp,
 | 
						|
					args->pag);
 | 
						|
	bno_cur = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Look for an entry >= maxlen+alignment-1 blocks.
 | 
						|
	 */
 | 
						|
	if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
 | 
						|
			args->maxlen + args->alignment - 1, &i)))
 | 
						|
		goto error0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If none then we have to settle for a smaller extent. In the case that
 | 
						|
	 * there are no large extents, this will return the last entry in the
 | 
						|
	 * tree unless the tree is empty. In the case that there are only busy
 | 
						|
	 * large extents, this will return the largest small extent unless there
 | 
						|
	 * are no smaller extents available.
 | 
						|
	 */
 | 
						|
	if (!i) {
 | 
						|
		error = xfs_alloc_ag_vextent_small(args, cnt_cur,
 | 
						|
						   &fbno, &flen, &i);
 | 
						|
		if (error)
 | 
						|
			goto error0;
 | 
						|
		if (i == 0 || flen == 0) {
 | 
						|
			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
 | 
						|
			trace_xfs_alloc_size_noentry(args);
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
		ASSERT(i == 1);
 | 
						|
		busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
 | 
						|
				&rlen, &busy_gen);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * Search for a non-busy extent that is large enough.
 | 
						|
		 */
 | 
						|
		for (;;) {
 | 
						|
			error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
 | 
						|
			if (error)
 | 
						|
				goto error0;
 | 
						|
			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 | 
						|
				xfs_btree_mark_sick(cnt_cur);
 | 
						|
				error = -EFSCORRUPTED;
 | 
						|
				goto error0;
 | 
						|
			}
 | 
						|
 | 
						|
			busy = xfs_alloc_compute_aligned(args, fbno, flen,
 | 
						|
					&rbno, &rlen, &busy_gen);
 | 
						|
 | 
						|
			if (rlen >= args->maxlen)
 | 
						|
				break;
 | 
						|
 | 
						|
			error = xfs_btree_increment(cnt_cur, 0, &i);
 | 
						|
			if (error)
 | 
						|
				goto error0;
 | 
						|
			if (i)
 | 
						|
				continue;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Our only valid extents must have been busy. Flush and
 | 
						|
			 * retry the allocation again. If we get an -EAGAIN
 | 
						|
			 * error, we're being told that a deadlock was avoided
 | 
						|
			 * and the current transaction needs committing before
 | 
						|
			 * the allocation can be retried.
 | 
						|
			 */
 | 
						|
			trace_xfs_alloc_size_busy(args);
 | 
						|
			error = xfs_extent_busy_flush(args->tp,
 | 
						|
					pag_group(args->pag), busy_gen,
 | 
						|
					alloc_flags);
 | 
						|
			if (error)
 | 
						|
				goto error0;
 | 
						|
 | 
						|
			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
 | 
						|
			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
 | 
						|
			goto restart;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In the first case above, we got the last entry in the
 | 
						|
	 * by-size btree.  Now we check to see if the space hits maxlen
 | 
						|
	 * once aligned; if not, we search left for something better.
 | 
						|
	 * This can't happen in the second case above.
 | 
						|
	 */
 | 
						|
	rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
 | 
						|
	if (XFS_IS_CORRUPT(args->mp,
 | 
						|
			   rlen != 0 &&
 | 
						|
			   (rlen > flen ||
 | 
						|
			    rbno + rlen > fbno + flen))) {
 | 
						|
		xfs_btree_mark_sick(cnt_cur);
 | 
						|
		error = -EFSCORRUPTED;
 | 
						|
		goto error0;
 | 
						|
	}
 | 
						|
	if (rlen < args->maxlen) {
 | 
						|
		xfs_agblock_t	bestfbno;
 | 
						|
		xfs_extlen_t	bestflen;
 | 
						|
		xfs_agblock_t	bestrbno;
 | 
						|
		xfs_extlen_t	bestrlen;
 | 
						|
 | 
						|
		bestrlen = rlen;
 | 
						|
		bestrbno = rbno;
 | 
						|
		bestflen = flen;
 | 
						|
		bestfbno = fbno;
 | 
						|
		for (;;) {
 | 
						|
			if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
 | 
						|
				goto error0;
 | 
						|
			if (i == 0)
 | 
						|
				break;
 | 
						|
			if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
 | 
						|
					&i)))
 | 
						|
				goto error0;
 | 
						|
			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 | 
						|
				xfs_btree_mark_sick(cnt_cur);
 | 
						|
				error = -EFSCORRUPTED;
 | 
						|
				goto error0;
 | 
						|
			}
 | 
						|
			if (flen <= bestrlen)
 | 
						|
				break;
 | 
						|
			busy = xfs_alloc_compute_aligned(args, fbno, flen,
 | 
						|
					&rbno, &rlen, &busy_gen);
 | 
						|
			rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
 | 
						|
			if (XFS_IS_CORRUPT(args->mp,
 | 
						|
					   rlen != 0 &&
 | 
						|
					   (rlen > flen ||
 | 
						|
					    rbno + rlen > fbno + flen))) {
 | 
						|
				xfs_btree_mark_sick(cnt_cur);
 | 
						|
				error = -EFSCORRUPTED;
 | 
						|
				goto error0;
 | 
						|
			}
 | 
						|
			if (rlen > bestrlen) {
 | 
						|
				bestrlen = rlen;
 | 
						|
				bestrbno = rbno;
 | 
						|
				bestflen = flen;
 | 
						|
				bestfbno = fbno;
 | 
						|
				if (rlen == args->maxlen)
 | 
						|
					break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
 | 
						|
				&i)))
 | 
						|
			goto error0;
 | 
						|
		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(cnt_cur);
 | 
						|
			error = -EFSCORRUPTED;
 | 
						|
			goto error0;
 | 
						|
		}
 | 
						|
		rlen = bestrlen;
 | 
						|
		rbno = bestrbno;
 | 
						|
		flen = bestflen;
 | 
						|
		fbno = bestfbno;
 | 
						|
	}
 | 
						|
	args->wasfromfl = 0;
 | 
						|
	/*
 | 
						|
	 * Fix up the length.
 | 
						|
	 */
 | 
						|
	args->len = rlen;
 | 
						|
	if (rlen < args->minlen) {
 | 
						|
		if (busy) {
 | 
						|
			/*
 | 
						|
			 * Our only valid extents must have been busy. Flush and
 | 
						|
			 * retry the allocation again. If we get an -EAGAIN
 | 
						|
			 * error, we're being told that a deadlock was avoided
 | 
						|
			 * and the current transaction needs committing before
 | 
						|
			 * the allocation can be retried.
 | 
						|
			 */
 | 
						|
			trace_xfs_alloc_size_busy(args);
 | 
						|
			error = xfs_extent_busy_flush(args->tp,
 | 
						|
					pag_group(args->pag), busy_gen,
 | 
						|
					alloc_flags);
 | 
						|
			if (error)
 | 
						|
				goto error0;
 | 
						|
 | 
						|
			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
 | 
						|
			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
 | 
						|
			goto restart;
 | 
						|
		}
 | 
						|
		goto out_nominleft;
 | 
						|
	}
 | 
						|
	xfs_alloc_fix_len(args);
 | 
						|
 | 
						|
	rlen = args->len;
 | 
						|
	if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
 | 
						|
		xfs_btree_mark_sick(cnt_cur);
 | 
						|
		error = -EFSCORRUPTED;
 | 
						|
		goto error0;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Allocate and initialize a cursor for the by-block tree.
 | 
						|
	 */
 | 
						|
	bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp,
 | 
						|
					args->pag);
 | 
						|
	if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
 | 
						|
			rbno, rlen, XFSA_FIXUP_CNT_OK)))
 | 
						|
		goto error0;
 | 
						|
	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
 | 
						|
	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
 | 
						|
	cnt_cur = bno_cur = NULL;
 | 
						|
	args->len = rlen;
 | 
						|
	args->agbno = rbno;
 | 
						|
	if (XFS_IS_CORRUPT(args->mp,
 | 
						|
			   args->agbno + args->len >
 | 
						|
			   be32_to_cpu(agf->agf_length))) {
 | 
						|
		xfs_ag_mark_sick(args->pag, XFS_SICK_AG_BNOBT);
 | 
						|
		error = -EFSCORRUPTED;
 | 
						|
		goto error0;
 | 
						|
	}
 | 
						|
	trace_xfs_alloc_size_done(args);
 | 
						|
	return 0;
 | 
						|
 | 
						|
error0:
 | 
						|
	trace_xfs_alloc_size_error(args);
 | 
						|
	if (cnt_cur)
 | 
						|
		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
 | 
						|
	if (bno_cur)
 | 
						|
		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
 | 
						|
	return error;
 | 
						|
 | 
						|
out_nominleft:
 | 
						|
	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
 | 
						|
	trace_xfs_alloc_size_nominleft(args);
 | 
						|
	args->agbno = NULLAGBLOCK;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free the extent starting at agno/bno for length.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_free_ag_extent(
 | 
						|
	struct xfs_trans		*tp,
 | 
						|
	struct xfs_buf			*agbp,
 | 
						|
	xfs_agblock_t			bno,
 | 
						|
	xfs_extlen_t			len,
 | 
						|
	const struct xfs_owner_info	*oinfo,
 | 
						|
	enum xfs_ag_resv_type		type)
 | 
						|
{
 | 
						|
	struct xfs_mount		*mp;
 | 
						|
	struct xfs_btree_cur		*bno_cur;
 | 
						|
	struct xfs_btree_cur		*cnt_cur;
 | 
						|
	xfs_agblock_t			gtbno; /* start of right neighbor */
 | 
						|
	xfs_extlen_t			gtlen; /* length of right neighbor */
 | 
						|
	xfs_agblock_t			ltbno; /* start of left neighbor */
 | 
						|
	xfs_extlen_t			ltlen; /* length of left neighbor */
 | 
						|
	xfs_agblock_t			nbno; /* new starting block of freesp */
 | 
						|
	xfs_extlen_t			nlen; /* new length of freespace */
 | 
						|
	int				haveleft; /* have a left neighbor */
 | 
						|
	int				haveright; /* have a right neighbor */
 | 
						|
	int				i;
 | 
						|
	int				error;
 | 
						|
	struct xfs_perag		*pag = agbp->b_pag;
 | 
						|
	bool				fixup_longest = false;
 | 
						|
 | 
						|
	bno_cur = cnt_cur = NULL;
 | 
						|
	mp = tp->t_mountp;
 | 
						|
 | 
						|
	if (!xfs_rmap_should_skip_owner_update(oinfo)) {
 | 
						|
		error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
 | 
						|
		if (error)
 | 
						|
			goto error0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allocate and initialize a cursor for the by-block btree.
 | 
						|
	 */
 | 
						|
	bno_cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag);
 | 
						|
	/*
 | 
						|
	 * Look for a neighboring block on the left (lower block numbers)
 | 
						|
	 * that is contiguous with this space.
 | 
						|
	 */
 | 
						|
	if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
 | 
						|
		goto error0;
 | 
						|
	if (haveleft) {
 | 
						|
		/*
 | 
						|
		 * There is a block to our left.
 | 
						|
		 */
 | 
						|
		if ((error = xfs_alloc_get_rec(bno_cur, <bno, <len, &i)))
 | 
						|
			goto error0;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(bno_cur);
 | 
						|
			error = -EFSCORRUPTED;
 | 
						|
			goto error0;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * It's not contiguous, though.
 | 
						|
		 */
 | 
						|
		if (ltbno + ltlen < bno)
 | 
						|
			haveleft = 0;
 | 
						|
		else {
 | 
						|
			/*
 | 
						|
			 * If this failure happens the request to free this
 | 
						|
			 * space was invalid, it's (partly) already free.
 | 
						|
			 * Very bad.
 | 
						|
			 */
 | 
						|
			if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
 | 
						|
				xfs_btree_mark_sick(bno_cur);
 | 
						|
				error = -EFSCORRUPTED;
 | 
						|
				goto error0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Look for a neighboring block on the right (higher block numbers)
 | 
						|
	 * that is contiguous with this space.
 | 
						|
	 */
 | 
						|
	if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
 | 
						|
		goto error0;
 | 
						|
	if (haveright) {
 | 
						|
		/*
 | 
						|
		 * There is a block to our right.
 | 
						|
		 */
 | 
						|
		if ((error = xfs_alloc_get_rec(bno_cur, >bno, >len, &i)))
 | 
						|
			goto error0;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(bno_cur);
 | 
						|
			error = -EFSCORRUPTED;
 | 
						|
			goto error0;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * It's not contiguous, though.
 | 
						|
		 */
 | 
						|
		if (bno + len < gtbno)
 | 
						|
			haveright = 0;
 | 
						|
		else {
 | 
						|
			/*
 | 
						|
			 * If this failure happens the request to free this
 | 
						|
			 * space was invalid, it's (partly) already free.
 | 
						|
			 * Very bad.
 | 
						|
			 */
 | 
						|
			if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
 | 
						|
				xfs_btree_mark_sick(bno_cur);
 | 
						|
				error = -EFSCORRUPTED;
 | 
						|
				goto error0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Now allocate and initialize a cursor for the by-size tree.
 | 
						|
	 */
 | 
						|
	cnt_cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
 | 
						|
	/*
 | 
						|
	 * Have both left and right contiguous neighbors.
 | 
						|
	 * Merge all three into a single free block.
 | 
						|
	 */
 | 
						|
	if (haveleft && haveright) {
 | 
						|
		/*
 | 
						|
		 * Delete the old by-size entry on the left.
 | 
						|
		 */
 | 
						|
		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
 | 
						|
			goto error0;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(cnt_cur);
 | 
						|
			error = -EFSCORRUPTED;
 | 
						|
			goto error0;
 | 
						|
		}
 | 
						|
		if ((error = xfs_btree_delete(cnt_cur, &i)))
 | 
						|
			goto error0;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(cnt_cur);
 | 
						|
			error = -EFSCORRUPTED;
 | 
						|
			goto error0;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * Delete the old by-size entry on the right.
 | 
						|
		 */
 | 
						|
		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
 | 
						|
			goto error0;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(cnt_cur);
 | 
						|
			error = -EFSCORRUPTED;
 | 
						|
			goto error0;
 | 
						|
		}
 | 
						|
		if ((error = xfs_btree_delete(cnt_cur, &i)))
 | 
						|
			goto error0;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(cnt_cur);
 | 
						|
			error = -EFSCORRUPTED;
 | 
						|
			goto error0;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * Delete the old by-block entry for the right block.
 | 
						|
		 */
 | 
						|
		if ((error = xfs_btree_delete(bno_cur, &i)))
 | 
						|
			goto error0;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(bno_cur);
 | 
						|
			error = -EFSCORRUPTED;
 | 
						|
			goto error0;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * Move the by-block cursor back to the left neighbor.
 | 
						|
		 */
 | 
						|
		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
 | 
						|
			goto error0;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(bno_cur);
 | 
						|
			error = -EFSCORRUPTED;
 | 
						|
			goto error0;
 | 
						|
		}
 | 
						|
#ifdef DEBUG
 | 
						|
		/*
 | 
						|
		 * Check that this is the right record: delete didn't
 | 
						|
		 * mangle the cursor.
 | 
						|
		 */
 | 
						|
		{
 | 
						|
			xfs_agblock_t	xxbno;
 | 
						|
			xfs_extlen_t	xxlen;
 | 
						|
 | 
						|
			if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
 | 
						|
					&i)))
 | 
						|
				goto error0;
 | 
						|
			if (XFS_IS_CORRUPT(mp,
 | 
						|
					   i != 1 ||
 | 
						|
					   xxbno != ltbno ||
 | 
						|
					   xxlen != ltlen)) {
 | 
						|
				xfs_btree_mark_sick(bno_cur);
 | 
						|
				error = -EFSCORRUPTED;
 | 
						|
				goto error0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
#endif
 | 
						|
		/*
 | 
						|
		 * Update remaining by-block entry to the new, joined block.
 | 
						|
		 */
 | 
						|
		nbno = ltbno;
 | 
						|
		nlen = len + ltlen + gtlen;
 | 
						|
		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
 | 
						|
			goto error0;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Have only a left contiguous neighbor.
 | 
						|
	 * Merge it together with the new freespace.
 | 
						|
	 */
 | 
						|
	else if (haveleft) {
 | 
						|
		/*
 | 
						|
		 * Delete the old by-size entry on the left.
 | 
						|
		 */
 | 
						|
		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
 | 
						|
			goto error0;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(cnt_cur);
 | 
						|
			error = -EFSCORRUPTED;
 | 
						|
			goto error0;
 | 
						|
		}
 | 
						|
		if ((error = xfs_btree_delete(cnt_cur, &i)))
 | 
						|
			goto error0;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(cnt_cur);
 | 
						|
			error = -EFSCORRUPTED;
 | 
						|
			goto error0;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * Back up the by-block cursor to the left neighbor, and
 | 
						|
		 * update its length.
 | 
						|
		 */
 | 
						|
		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
 | 
						|
			goto error0;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(bno_cur);
 | 
						|
			error = -EFSCORRUPTED;
 | 
						|
			goto error0;
 | 
						|
		}
 | 
						|
		nbno = ltbno;
 | 
						|
		nlen = len + ltlen;
 | 
						|
		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
 | 
						|
			goto error0;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Have only a right contiguous neighbor.
 | 
						|
	 * Merge it together with the new freespace.
 | 
						|
	 */
 | 
						|
	else if (haveright) {
 | 
						|
		/*
 | 
						|
		 * Delete the old by-size entry on the right.
 | 
						|
		 */
 | 
						|
		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
 | 
						|
			goto error0;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(cnt_cur);
 | 
						|
			error = -EFSCORRUPTED;
 | 
						|
			goto error0;
 | 
						|
		}
 | 
						|
		if ((error = xfs_btree_delete(cnt_cur, &i)))
 | 
						|
			goto error0;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(cnt_cur);
 | 
						|
			error = -EFSCORRUPTED;
 | 
						|
			goto error0;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * Update the starting block and length of the right
 | 
						|
		 * neighbor in the by-block tree.
 | 
						|
		 */
 | 
						|
		nbno = bno;
 | 
						|
		nlen = len + gtlen;
 | 
						|
		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
 | 
						|
			goto error0;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * No contiguous neighbors.
 | 
						|
	 * Insert the new freespace into the by-block tree.
 | 
						|
	 */
 | 
						|
	else {
 | 
						|
		nbno = bno;
 | 
						|
		nlen = len;
 | 
						|
		if ((error = xfs_btree_insert(bno_cur, &i)))
 | 
						|
			goto error0;
 | 
						|
		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
			xfs_btree_mark_sick(bno_cur);
 | 
						|
			error = -EFSCORRUPTED;
 | 
						|
			goto error0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
 | 
						|
	bno_cur = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In all cases we need to insert the new freespace in the by-size tree.
 | 
						|
	 *
 | 
						|
	 * If this new freespace is being inserted in the block that contains
 | 
						|
	 * the largest free space in the btree, make sure we also fix up the
 | 
						|
	 * agf->agf-longest tracker field.
 | 
						|
	 */
 | 
						|
	if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
 | 
						|
		goto error0;
 | 
						|
	if (XFS_IS_CORRUPT(mp, i != 0)) {
 | 
						|
		xfs_btree_mark_sick(cnt_cur);
 | 
						|
		error = -EFSCORRUPTED;
 | 
						|
		goto error0;
 | 
						|
	}
 | 
						|
	if (xfs_alloc_cursor_at_lastrec(cnt_cur))
 | 
						|
		fixup_longest = true;
 | 
						|
	if ((error = xfs_btree_insert(cnt_cur, &i)))
 | 
						|
		goto error0;
 | 
						|
	if (XFS_IS_CORRUPT(mp, i != 1)) {
 | 
						|
		xfs_btree_mark_sick(cnt_cur);
 | 
						|
		error = -EFSCORRUPTED;
 | 
						|
		goto error0;
 | 
						|
	}
 | 
						|
	if (fixup_longest) {
 | 
						|
		error = xfs_alloc_fixup_longest(cnt_cur);
 | 
						|
		if (error)
 | 
						|
			goto error0;
 | 
						|
	}
 | 
						|
 | 
						|
	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
 | 
						|
	cnt_cur = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Update the freespace totals in the ag and superblock.
 | 
						|
	 */
 | 
						|
	error = xfs_alloc_update_counters(tp, agbp, len);
 | 
						|
	xfs_ag_resv_free_extent(pag, type, tp, len);
 | 
						|
	if (error)
 | 
						|
		goto error0;
 | 
						|
 | 
						|
	XFS_STATS_INC(mp, xs_freex);
 | 
						|
	XFS_STATS_ADD(mp, xs_freeb, len);
 | 
						|
 | 
						|
	trace_xfs_free_extent(pag, bno, len, type, haveleft, haveright);
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
 error0:
 | 
						|
	trace_xfs_free_extent(pag, bno, len, type, -1, -1);
 | 
						|
	if (bno_cur)
 | 
						|
		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
 | 
						|
	if (cnt_cur)
 | 
						|
		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Visible (exported) allocation/free functions.
 | 
						|
 * Some of these are used just by xfs_alloc_btree.c and this file.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Compute and fill in value of m_alloc_maxlevels.
 | 
						|
 */
 | 
						|
void
 | 
						|
xfs_alloc_compute_maxlevels(
 | 
						|
	xfs_mount_t	*mp)	/* file system mount structure */
 | 
						|
{
 | 
						|
	mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
 | 
						|
			(mp->m_sb.sb_agblocks + 1) / 2);
 | 
						|
	ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find the length of the longest extent in an AG.  The 'need' parameter
 | 
						|
 * specifies how much space we're going to need for the AGFL and the
 | 
						|
 * 'reserved' parameter tells us how many blocks in this AG are reserved for
 | 
						|
 * other callers.
 | 
						|
 */
 | 
						|
xfs_extlen_t
 | 
						|
xfs_alloc_longest_free_extent(
 | 
						|
	struct xfs_perag	*pag,
 | 
						|
	xfs_extlen_t		need,
 | 
						|
	xfs_extlen_t		reserved)
 | 
						|
{
 | 
						|
	xfs_extlen_t		delta = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the AGFL needs a recharge, we'll have to subtract that from the
 | 
						|
	 * longest extent.
 | 
						|
	 */
 | 
						|
	if (need > pag->pagf_flcount)
 | 
						|
		delta = need - pag->pagf_flcount;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we cannot maintain others' reservations with space from the
 | 
						|
	 * not-longest freesp extents, we'll have to subtract /that/ from
 | 
						|
	 * the longest extent too.
 | 
						|
	 */
 | 
						|
	if (pag->pagf_freeblks - pag->pagf_longest < reserved)
 | 
						|
		delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the longest extent is long enough to satisfy all the
 | 
						|
	 * reservations and AGFL rules in place, we can return this extent.
 | 
						|
	 */
 | 
						|
	if (pag->pagf_longest > delta)
 | 
						|
		return min_t(xfs_extlen_t, pag_mount(pag)->m_ag_max_usable,
 | 
						|
				pag->pagf_longest - delta);
 | 
						|
 | 
						|
	/* Otherwise, let the caller try for 1 block if there's space. */
 | 
						|
	return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Compute the minimum length of the AGFL in the given AG.  If @pag is NULL,
 | 
						|
 * return the largest possible minimum length.
 | 
						|
 */
 | 
						|
unsigned int
 | 
						|
xfs_alloc_min_freelist(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	struct xfs_perag	*pag)
 | 
						|
{
 | 
						|
	/* AG btrees have at least 1 level. */
 | 
						|
	const unsigned int	bno_level = pag ? pag->pagf_bno_level : 1;
 | 
						|
	const unsigned int	cnt_level = pag ? pag->pagf_cnt_level : 1;
 | 
						|
	const unsigned int	rmap_level = pag ? pag->pagf_rmap_level : 1;
 | 
						|
	unsigned int		min_free;
 | 
						|
 | 
						|
	ASSERT(mp->m_alloc_maxlevels > 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For a btree shorter than the maximum height, the worst case is that
 | 
						|
	 * every level gets split and a new level is added, then while inserting
 | 
						|
	 * another entry to refill the AGFL, every level under the old root gets
 | 
						|
	 * split again. This is:
 | 
						|
	 *
 | 
						|
	 *   (full height split reservation) + (AGFL refill split height)
 | 
						|
	 * = (current height + 1) + (current height - 1)
 | 
						|
	 * = (new height) + (new height - 2)
 | 
						|
	 * = 2 * new height - 2
 | 
						|
	 *
 | 
						|
	 * For a btree of maximum height, the worst case is that every level
 | 
						|
	 * under the root gets split, then while inserting another entry to
 | 
						|
	 * refill the AGFL, every level under the root gets split again. This is
 | 
						|
	 * also:
 | 
						|
	 *
 | 
						|
	 *   2 * (current height - 1)
 | 
						|
	 * = 2 * (new height - 1)
 | 
						|
	 * = 2 * new height - 2
 | 
						|
	 */
 | 
						|
 | 
						|
	/* space needed by-bno freespace btree */
 | 
						|
	min_free = min(bno_level + 1, mp->m_alloc_maxlevels) * 2 - 2;
 | 
						|
	/* space needed by-size freespace btree */
 | 
						|
	min_free += min(cnt_level + 1, mp->m_alloc_maxlevels) * 2 - 2;
 | 
						|
	/* space needed reverse mapping used space btree */
 | 
						|
	if (xfs_has_rmapbt(mp))
 | 
						|
		min_free += min(rmap_level + 1, mp->m_rmap_maxlevels) * 2 - 2;
 | 
						|
	return min_free;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check if the operation we are fixing up the freelist for should go ahead or
 | 
						|
 * not. If we are freeing blocks, we always allow it, otherwise the allocation
 | 
						|
 * is dependent on whether the size and shape of free space available will
 | 
						|
 * permit the requested allocation to take place.
 | 
						|
 */
 | 
						|
static bool
 | 
						|
xfs_alloc_space_available(
 | 
						|
	struct xfs_alloc_arg	*args,
 | 
						|
	xfs_extlen_t		min_free,
 | 
						|
	int			flags)
 | 
						|
{
 | 
						|
	struct xfs_perag	*pag = args->pag;
 | 
						|
	xfs_extlen_t		alloc_len, longest;
 | 
						|
	xfs_extlen_t		reservation; /* blocks that are still reserved */
 | 
						|
	int			available;
 | 
						|
	xfs_extlen_t		agflcount;
 | 
						|
 | 
						|
	if (flags & XFS_ALLOC_FLAG_FREEING)
 | 
						|
		return true;
 | 
						|
 | 
						|
	reservation = xfs_ag_resv_needed(pag, args->resv);
 | 
						|
 | 
						|
	/* do we have enough contiguous free space for the allocation? */
 | 
						|
	alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
 | 
						|
	longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
 | 
						|
	if (longest < alloc_len)
 | 
						|
		return false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Do we have enough free space remaining for the allocation? Don't
 | 
						|
	 * account extra agfl blocks because we are about to defer free them,
 | 
						|
	 * making them unavailable until the current transaction commits.
 | 
						|
	 */
 | 
						|
	agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
 | 
						|
	available = (int)(pag->pagf_freeblks + agflcount -
 | 
						|
			  reservation - min_free - args->minleft);
 | 
						|
	if (available < (int)max(args->total, alloc_len))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Clamp maxlen to the amount of free space available for the actual
 | 
						|
	 * extent allocation.
 | 
						|
	 */
 | 
						|
	if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
 | 
						|
		args->maxlen = available;
 | 
						|
		ASSERT(args->maxlen > 0);
 | 
						|
		ASSERT(args->maxlen >= args->minlen);
 | 
						|
	}
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check the agfl fields of the agf for inconsistency or corruption.
 | 
						|
 *
 | 
						|
 * The original purpose was to detect an agfl header padding mismatch between
 | 
						|
 * current and early v5 kernels. This problem manifests as a 1-slot size
 | 
						|
 * difference between the on-disk flcount and the active [first, last] range of
 | 
						|
 * a wrapped agfl.
 | 
						|
 *
 | 
						|
 * However, we need to use these same checks to catch agfl count corruptions
 | 
						|
 * unrelated to padding. This could occur on any v4 or v5 filesystem, so either
 | 
						|
 * way, we need to reset the agfl and warn the user.
 | 
						|
 *
 | 
						|
 * Return true if a reset is required before the agfl can be used, false
 | 
						|
 * otherwise.
 | 
						|
 */
 | 
						|
static bool
 | 
						|
xfs_agfl_needs_reset(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	struct xfs_agf		*agf)
 | 
						|
{
 | 
						|
	uint32_t		f = be32_to_cpu(agf->agf_flfirst);
 | 
						|
	uint32_t		l = be32_to_cpu(agf->agf_fllast);
 | 
						|
	uint32_t		c = be32_to_cpu(agf->agf_flcount);
 | 
						|
	int			agfl_size = xfs_agfl_size(mp);
 | 
						|
	int			active;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The agf read verifier catches severe corruption of these fields.
 | 
						|
	 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
 | 
						|
	 * the verifier allows it.
 | 
						|
	 */
 | 
						|
	if (f >= agfl_size || l >= agfl_size)
 | 
						|
		return true;
 | 
						|
	if (c > agfl_size)
 | 
						|
		return true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check consistency between the on-disk count and the active range. An
 | 
						|
	 * agfl padding mismatch manifests as an inconsistent flcount.
 | 
						|
	 */
 | 
						|
	if (c && l >= f)
 | 
						|
		active = l - f + 1;
 | 
						|
	else if (c)
 | 
						|
		active = agfl_size - f + l + 1;
 | 
						|
	else
 | 
						|
		active = 0;
 | 
						|
 | 
						|
	return active != c;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
 | 
						|
 * agfl content cannot be trusted. Warn the user that a repair is required to
 | 
						|
 * recover leaked blocks.
 | 
						|
 *
 | 
						|
 * The purpose of this mechanism is to handle filesystems affected by the agfl
 | 
						|
 * header padding mismatch problem. A reset keeps the filesystem online with a
 | 
						|
 * relatively minor free space accounting inconsistency rather than suffer the
 | 
						|
 * inevitable crash from use of an invalid agfl block.
 | 
						|
 */
 | 
						|
static void
 | 
						|
xfs_agfl_reset(
 | 
						|
	struct xfs_trans	*tp,
 | 
						|
	struct xfs_buf		*agbp,
 | 
						|
	struct xfs_perag	*pag)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = tp->t_mountp;
 | 
						|
	struct xfs_agf		*agf = agbp->b_addr;
 | 
						|
 | 
						|
	ASSERT(xfs_perag_agfl_needs_reset(pag));
 | 
						|
	trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
 | 
						|
 | 
						|
	xfs_warn(mp,
 | 
						|
	       "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
 | 
						|
	       "Please unmount and run xfs_repair.",
 | 
						|
		pag_agno(pag), pag->pagf_flcount);
 | 
						|
 | 
						|
	agf->agf_flfirst = 0;
 | 
						|
	agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
 | 
						|
	agf->agf_flcount = 0;
 | 
						|
	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
 | 
						|
				    XFS_AGF_FLCOUNT);
 | 
						|
 | 
						|
	pag->pagf_flcount = 0;
 | 
						|
	clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add the extent to the list of extents to be free at transaction end.
 | 
						|
 * The list is maintained sorted (by block number).
 | 
						|
 */
 | 
						|
static int
 | 
						|
xfs_defer_extent_free(
 | 
						|
	struct xfs_trans		*tp,
 | 
						|
	xfs_fsblock_t			bno,
 | 
						|
	xfs_filblks_t			len,
 | 
						|
	const struct xfs_owner_info	*oinfo,
 | 
						|
	enum xfs_ag_resv_type		type,
 | 
						|
	unsigned int			free_flags,
 | 
						|
	struct xfs_defer_pending	**dfpp)
 | 
						|
{
 | 
						|
	struct xfs_extent_free_item	*xefi;
 | 
						|
	struct xfs_mount		*mp = tp->t_mountp;
 | 
						|
 | 
						|
	ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
 | 
						|
	ASSERT(!isnullstartblock(bno));
 | 
						|
	ASSERT(!(free_flags & ~XFS_FREE_EXTENT_ALL_FLAGS));
 | 
						|
 | 
						|
	if (free_flags & XFS_FREE_EXTENT_REALTIME) {
 | 
						|
		if (type != XFS_AG_RESV_NONE) {
 | 
						|
			ASSERT(type == XFS_AG_RESV_NONE);
 | 
						|
			return -EFSCORRUPTED;
 | 
						|
		}
 | 
						|
		if (XFS_IS_CORRUPT(mp, !xfs_verify_rtbext(mp, bno, len)))
 | 
						|
			return -EFSCORRUPTED;
 | 
						|
	} else {
 | 
						|
		if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len)))
 | 
						|
			return -EFSCORRUPTED;
 | 
						|
	}
 | 
						|
 | 
						|
	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
 | 
						|
			       GFP_KERNEL | __GFP_NOFAIL);
 | 
						|
	xefi->xefi_startblock = bno;
 | 
						|
	xefi->xefi_blockcount = (xfs_extlen_t)len;
 | 
						|
	xefi->xefi_agresv = type;
 | 
						|
	if (free_flags & XFS_FREE_EXTENT_SKIP_DISCARD)
 | 
						|
		xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD;
 | 
						|
	if (free_flags & XFS_FREE_EXTENT_REALTIME)
 | 
						|
		xefi->xefi_flags |= XFS_EFI_REALTIME;
 | 
						|
	if (oinfo) {
 | 
						|
		ASSERT(oinfo->oi_offset == 0);
 | 
						|
 | 
						|
		if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
 | 
						|
			xefi->xefi_flags |= XFS_EFI_ATTR_FORK;
 | 
						|
		if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
 | 
						|
			xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK;
 | 
						|
		xefi->xefi_owner = oinfo->oi_owner;
 | 
						|
	} else {
 | 
						|
		xefi->xefi_owner = XFS_RMAP_OWN_NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	xfs_extent_free_defer_add(tp, xefi, dfpp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
xfs_free_extent_later(
 | 
						|
	struct xfs_trans		*tp,
 | 
						|
	xfs_fsblock_t			bno,
 | 
						|
	xfs_filblks_t			len,
 | 
						|
	const struct xfs_owner_info	*oinfo,
 | 
						|
	enum xfs_ag_resv_type		type,
 | 
						|
	unsigned int			free_flags)
 | 
						|
{
 | 
						|
	struct xfs_defer_pending	*dontcare = NULL;
 | 
						|
 | 
						|
	return xfs_defer_extent_free(tp, bno, len, oinfo, type, free_flags,
 | 
						|
			&dontcare);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set up automatic freeing of unwritten space in the filesystem.
 | 
						|
 *
 | 
						|
 * This function attached a paused deferred extent free item to the
 | 
						|
 * transaction.  Pausing means that the EFI will be logged in the next
 | 
						|
 * transaction commit, but the pending EFI will not be finished until the
 | 
						|
 * pending item is unpaused.
 | 
						|
 *
 | 
						|
 * If the system goes down after the EFI has been persisted to the log but
 | 
						|
 * before the pending item is unpaused, log recovery will find the EFI, fail to
 | 
						|
 * find the EFD, and free the space.
 | 
						|
 *
 | 
						|
 * If the pending item is unpaused, the next transaction commit will log an EFD
 | 
						|
 * without freeing the space.
 | 
						|
 *
 | 
						|
 * Caller must ensure that the tp, fsbno, len, oinfo, and resv flags of the
 | 
						|
 * @args structure are set to the relevant values.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_alloc_schedule_autoreap(
 | 
						|
	const struct xfs_alloc_arg	*args,
 | 
						|
	unsigned int			free_flags,
 | 
						|
	struct xfs_alloc_autoreap	*aarp)
 | 
						|
{
 | 
						|
	int				error;
 | 
						|
 | 
						|
	error = xfs_defer_extent_free(args->tp, args->fsbno, args->len,
 | 
						|
			&args->oinfo, args->resv, free_flags, &aarp->dfp);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	xfs_defer_item_pause(args->tp, aarp->dfp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Cancel automatic freeing of unwritten space in the filesystem.
 | 
						|
 *
 | 
						|
 * Earlier, we created a paused deferred extent free item and attached it to
 | 
						|
 * this transaction so that we could automatically roll back a new space
 | 
						|
 * allocation if the system went down.  Now we want to cancel the paused work
 | 
						|
 * item by marking the EFI stale so we don't actually free the space, unpausing
 | 
						|
 * the pending item and logging an EFD.
 | 
						|
 *
 | 
						|
 * The caller generally should have already mapped the space into the ondisk
 | 
						|
 * filesystem.  If the reserved space was partially used, the caller must call
 | 
						|
 * xfs_free_extent_later to create a new EFI to free the unused space.
 | 
						|
 */
 | 
						|
void
 | 
						|
xfs_alloc_cancel_autoreap(
 | 
						|
	struct xfs_trans		*tp,
 | 
						|
	struct xfs_alloc_autoreap	*aarp)
 | 
						|
{
 | 
						|
	struct xfs_defer_pending	*dfp = aarp->dfp;
 | 
						|
	struct xfs_extent_free_item	*xefi;
 | 
						|
 | 
						|
	if (!dfp)
 | 
						|
		return;
 | 
						|
 | 
						|
	list_for_each_entry(xefi, &dfp->dfp_work, xefi_list)
 | 
						|
		xefi->xefi_flags |= XFS_EFI_CANCELLED;
 | 
						|
 | 
						|
	xfs_defer_item_unpause(tp, dfp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Commit automatic freeing of unwritten space in the filesystem.
 | 
						|
 *
 | 
						|
 * This unpauses an earlier _schedule_autoreap and commits to freeing the
 | 
						|
 * allocated space.  Call this if none of the reserved space was used.
 | 
						|
 */
 | 
						|
void
 | 
						|
xfs_alloc_commit_autoreap(
 | 
						|
	struct xfs_trans		*tp,
 | 
						|
	struct xfs_alloc_autoreap	*aarp)
 | 
						|
{
 | 
						|
	if (aarp->dfp)
 | 
						|
		xfs_defer_item_unpause(tp, aarp->dfp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check if an AGF has a free extent record whose length is equal to
 | 
						|
 * args->minlen.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xfs_exact_minlen_extent_available(
 | 
						|
	struct xfs_alloc_arg	*args,
 | 
						|
	struct xfs_buf		*agbp,
 | 
						|
	int			*stat)
 | 
						|
{
 | 
						|
	struct xfs_btree_cur	*cnt_cur;
 | 
						|
	xfs_agblock_t		fbno;
 | 
						|
	xfs_extlen_t		flen;
 | 
						|
	int			error = 0;
 | 
						|
 | 
						|
	cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, agbp,
 | 
						|
					args->pag);
 | 
						|
	error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
 | 
						|
	if (error)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (*stat == 0) {
 | 
						|
		xfs_btree_mark_sick(cnt_cur);
 | 
						|
		error = -EFSCORRUPTED;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
 | 
						|
	if (error)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (*stat == 1 && flen != args->minlen)
 | 
						|
		*stat = 0;
 | 
						|
 | 
						|
out:
 | 
						|
	xfs_btree_del_cursor(cnt_cur, error);
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Decide whether to use this allocation group for this allocation.
 | 
						|
 * If so, fix up the btree freelist's size.
 | 
						|
 */
 | 
						|
int			/* error */
 | 
						|
xfs_alloc_fix_freelist(
 | 
						|
	struct xfs_alloc_arg	*args,	/* allocation argument structure */
 | 
						|
	uint32_t		alloc_flags)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = args->mp;
 | 
						|
	struct xfs_perag	*pag = args->pag;
 | 
						|
	struct xfs_trans	*tp = args->tp;
 | 
						|
	struct xfs_buf		*agbp = NULL;
 | 
						|
	struct xfs_buf		*agflbp = NULL;
 | 
						|
	struct xfs_alloc_arg	targs;	/* local allocation arguments */
 | 
						|
	xfs_agblock_t		bno;	/* freelist block */
 | 
						|
	xfs_extlen_t		need;	/* total blocks needed in freelist */
 | 
						|
	int			error = 0;
 | 
						|
 | 
						|
	/* deferred ops (AGFL block frees) require permanent transactions */
 | 
						|
	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 | 
						|
 | 
						|
	if (!xfs_perag_initialised_agf(pag)) {
 | 
						|
		error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
 | 
						|
		if (error) {
 | 
						|
			/* Couldn't lock the AGF so skip this AG. */
 | 
						|
			if (error == -EAGAIN)
 | 
						|
				error = 0;
 | 
						|
			goto out_no_agbp;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this is a metadata preferred pag and we are user data then try
 | 
						|
	 * somewhere else if we are not being asked to try harder at this
 | 
						|
	 * point
 | 
						|
	 */
 | 
						|
	if (xfs_perag_prefers_metadata(pag) &&
 | 
						|
	    (args->datatype & XFS_ALLOC_USERDATA) &&
 | 
						|
	    (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) {
 | 
						|
		ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING));
 | 
						|
		goto out_agbp_relse;
 | 
						|
	}
 | 
						|
 | 
						|
	need = xfs_alloc_min_freelist(mp, pag);
 | 
						|
	if (!xfs_alloc_space_available(args, need, alloc_flags |
 | 
						|
			XFS_ALLOC_FLAG_CHECK))
 | 
						|
		goto out_agbp_relse;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get the a.g. freespace buffer.
 | 
						|
	 * Can fail if we're not blocking on locks, and it's held.
 | 
						|
	 */
 | 
						|
	if (!agbp) {
 | 
						|
		error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
 | 
						|
		if (error) {
 | 
						|
			/* Couldn't lock the AGF so skip this AG. */
 | 
						|
			if (error == -EAGAIN)
 | 
						|
				error = 0;
 | 
						|
			goto out_no_agbp;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* reset a padding mismatched agfl before final free space check */
 | 
						|
	if (xfs_perag_agfl_needs_reset(pag))
 | 
						|
		xfs_agfl_reset(tp, agbp, pag);
 | 
						|
 | 
						|
	/* If there isn't enough total space or single-extent, reject it. */
 | 
						|
	need = xfs_alloc_min_freelist(mp, pag);
 | 
						|
	if (!xfs_alloc_space_available(args, need, alloc_flags))
 | 
						|
		goto out_agbp_relse;
 | 
						|
 | 
						|
	if (IS_ENABLED(CONFIG_XFS_DEBUG) && args->alloc_minlen_only) {
 | 
						|
		int stat;
 | 
						|
 | 
						|
		error = xfs_exact_minlen_extent_available(args, agbp, &stat);
 | 
						|
		if (error || !stat)
 | 
						|
			goto out_agbp_relse;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make the freelist shorter if it's too long.
 | 
						|
	 *
 | 
						|
	 * Note that from this point onwards, we will always release the agf and
 | 
						|
	 * agfl buffers on error. This handles the case where we error out and
 | 
						|
	 * the buffers are clean or may not have been joined to the transaction
 | 
						|
	 * and hence need to be released manually. If they have been joined to
 | 
						|
	 * the transaction, then xfs_trans_brelse() will handle them
 | 
						|
	 * appropriately based on the recursion count and dirty state of the
 | 
						|
	 * buffer.
 | 
						|
	 *
 | 
						|
	 * XXX (dgc): When we have lots of free space, does this buy us
 | 
						|
	 * anything other than extra overhead when we need to put more blocks
 | 
						|
	 * back on the free list? Maybe we should only do this when space is
 | 
						|
	 * getting low or the AGFL is more than half full?
 | 
						|
	 *
 | 
						|
	 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
 | 
						|
	 * big; the NORMAP flag prevents AGFL expand/shrink operations from
 | 
						|
	 * updating the rmapbt.  Both flags are used in xfs_repair while we're
 | 
						|
	 * rebuilding the rmapbt, and neither are used by the kernel.  They're
 | 
						|
	 * both required to ensure that rmaps are correctly recorded for the
 | 
						|
	 * regenerated AGFL, bnobt, and cntbt.  See repair/phase5.c and
 | 
						|
	 * repair/rmap.c in xfsprogs for details.
 | 
						|
	 */
 | 
						|
	memset(&targs, 0, sizeof(targs));
 | 
						|
	/* struct copy below */
 | 
						|
	if (alloc_flags & XFS_ALLOC_FLAG_NORMAP)
 | 
						|
		targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
 | 
						|
	else
 | 
						|
		targs.oinfo = XFS_RMAP_OINFO_AG;
 | 
						|
	while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) &&
 | 
						|
			pag->pagf_flcount > need) {
 | 
						|
		error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
 | 
						|
		if (error)
 | 
						|
			goto out_agbp_relse;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Defer the AGFL block free.
 | 
						|
		 *
 | 
						|
		 * This helps to prevent log reservation overruns due to too
 | 
						|
		 * many allocation operations in a transaction. AGFL frees are
 | 
						|
		 * prone to this problem because for one they are always freed
 | 
						|
		 * one at a time.  Further, an immediate AGFL block free can
 | 
						|
		 * cause a btree join and require another block free before the
 | 
						|
		 * real allocation can proceed.
 | 
						|
		 * Deferring the free disconnects freeing up the AGFL slot from
 | 
						|
		 * freeing the block.
 | 
						|
		 */
 | 
						|
		error = xfs_free_extent_later(tp, xfs_agbno_to_fsb(pag, bno),
 | 
						|
				1, &targs.oinfo, XFS_AG_RESV_AGFL, 0);
 | 
						|
		if (error)
 | 
						|
			goto out_agbp_relse;
 | 
						|
	}
 | 
						|
 | 
						|
	targs.tp = tp;
 | 
						|
	targs.mp = mp;
 | 
						|
	targs.agbp = agbp;
 | 
						|
	targs.agno = args->agno;
 | 
						|
	targs.alignment = targs.minlen = targs.prod = 1;
 | 
						|
	targs.pag = pag;
 | 
						|
	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
 | 
						|
	if (error)
 | 
						|
		goto out_agbp_relse;
 | 
						|
 | 
						|
	/* Make the freelist longer if it's too short. */
 | 
						|
	while (pag->pagf_flcount < need) {
 | 
						|
		targs.agbno = 0;
 | 
						|
		targs.maxlen = need - pag->pagf_flcount;
 | 
						|
		targs.resv = XFS_AG_RESV_AGFL;
 | 
						|
 | 
						|
		/* Allocate as many blocks as possible at once. */
 | 
						|
		error = xfs_alloc_ag_vextent_size(&targs, alloc_flags);
 | 
						|
		if (error)
 | 
						|
			goto out_agflbp_relse;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Stop if we run out.  Won't happen if callers are obeying
 | 
						|
		 * the restrictions correctly.  Can happen for free calls
 | 
						|
		 * on a completely full ag.
 | 
						|
		 */
 | 
						|
		if (targs.agbno == NULLAGBLOCK) {
 | 
						|
			if (alloc_flags & XFS_ALLOC_FLAG_FREEING)
 | 
						|
				break;
 | 
						|
			goto out_agflbp_relse;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) {
 | 
						|
			error = xfs_rmap_alloc(tp, agbp, pag,
 | 
						|
				       targs.agbno, targs.len, &targs.oinfo);
 | 
						|
			if (error)
 | 
						|
				goto out_agflbp_relse;
 | 
						|
		}
 | 
						|
		error = xfs_alloc_update_counters(tp, agbp,
 | 
						|
						  -((long)(targs.len)));
 | 
						|
		if (error)
 | 
						|
			goto out_agflbp_relse;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Put each allocated block on the list.
 | 
						|
		 */
 | 
						|
		for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
 | 
						|
			error = xfs_alloc_put_freelist(pag, tp, agbp,
 | 
						|
							agflbp, bno, 0);
 | 
						|
			if (error)
 | 
						|
				goto out_agflbp_relse;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	xfs_trans_brelse(tp, agflbp);
 | 
						|
	args->agbp = agbp;
 | 
						|
	return 0;
 | 
						|
 | 
						|
out_agflbp_relse:
 | 
						|
	xfs_trans_brelse(tp, agflbp);
 | 
						|
out_agbp_relse:
 | 
						|
	if (agbp)
 | 
						|
		xfs_trans_brelse(tp, agbp);
 | 
						|
out_no_agbp:
 | 
						|
	args->agbp = NULL;
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get a block from the freelist.
 | 
						|
 * Returns with the buffer for the block gotten.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_alloc_get_freelist(
 | 
						|
	struct xfs_perag	*pag,
 | 
						|
	struct xfs_trans	*tp,
 | 
						|
	struct xfs_buf		*agbp,
 | 
						|
	xfs_agblock_t		*bnop,
 | 
						|
	int			btreeblk)
 | 
						|
{
 | 
						|
	struct xfs_agf		*agf = agbp->b_addr;
 | 
						|
	struct xfs_buf		*agflbp;
 | 
						|
	xfs_agblock_t		bno;
 | 
						|
	__be32			*agfl_bno;
 | 
						|
	int			error;
 | 
						|
	uint32_t		logflags;
 | 
						|
	struct xfs_mount	*mp = tp->t_mountp;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Freelist is empty, give up.
 | 
						|
	 */
 | 
						|
	if (!agf->agf_flcount) {
 | 
						|
		*bnop = NULLAGBLOCK;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Read the array of free blocks.
 | 
						|
	 */
 | 
						|
	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get the block number and update the data structures.
 | 
						|
	 */
 | 
						|
	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
 | 
						|
	bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
 | 
						|
	if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno)))
 | 
						|
		return -EFSCORRUPTED;
 | 
						|
 | 
						|
	be32_add_cpu(&agf->agf_flfirst, 1);
 | 
						|
	xfs_trans_brelse(tp, agflbp);
 | 
						|
	if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
 | 
						|
		agf->agf_flfirst = 0;
 | 
						|
 | 
						|
	ASSERT(!xfs_perag_agfl_needs_reset(pag));
 | 
						|
	be32_add_cpu(&agf->agf_flcount, -1);
 | 
						|
	pag->pagf_flcount--;
 | 
						|
 | 
						|
	logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
 | 
						|
	if (btreeblk) {
 | 
						|
		be32_add_cpu(&agf->agf_btreeblks, 1);
 | 
						|
		pag->pagf_btreeblks++;
 | 
						|
		logflags |= XFS_AGF_BTREEBLKS;
 | 
						|
	}
 | 
						|
 | 
						|
	xfs_alloc_log_agf(tp, agbp, logflags);
 | 
						|
	*bnop = bno;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Log the given fields from the agf structure.
 | 
						|
 */
 | 
						|
void
 | 
						|
xfs_alloc_log_agf(
 | 
						|
	struct xfs_trans	*tp,
 | 
						|
	struct xfs_buf		*bp,
 | 
						|
	uint32_t		fields)
 | 
						|
{
 | 
						|
	int	first;		/* first byte offset */
 | 
						|
	int	last;		/* last byte offset */
 | 
						|
	static const short	offsets[] = {
 | 
						|
		offsetof(xfs_agf_t, agf_magicnum),
 | 
						|
		offsetof(xfs_agf_t, agf_versionnum),
 | 
						|
		offsetof(xfs_agf_t, agf_seqno),
 | 
						|
		offsetof(xfs_agf_t, agf_length),
 | 
						|
		offsetof(xfs_agf_t, agf_bno_root),   /* also cnt/rmap root */
 | 
						|
		offsetof(xfs_agf_t, agf_bno_level),  /* also cnt/rmap levels */
 | 
						|
		offsetof(xfs_agf_t, agf_flfirst),
 | 
						|
		offsetof(xfs_agf_t, agf_fllast),
 | 
						|
		offsetof(xfs_agf_t, agf_flcount),
 | 
						|
		offsetof(xfs_agf_t, agf_freeblks),
 | 
						|
		offsetof(xfs_agf_t, agf_longest),
 | 
						|
		offsetof(xfs_agf_t, agf_btreeblks),
 | 
						|
		offsetof(xfs_agf_t, agf_uuid),
 | 
						|
		offsetof(xfs_agf_t, agf_rmap_blocks),
 | 
						|
		offsetof(xfs_agf_t, agf_refcount_blocks),
 | 
						|
		offsetof(xfs_agf_t, agf_refcount_root),
 | 
						|
		offsetof(xfs_agf_t, agf_refcount_level),
 | 
						|
		/* needed so that we don't log the whole rest of the structure: */
 | 
						|
		offsetof(xfs_agf_t, agf_spare64),
 | 
						|
		sizeof(xfs_agf_t)
 | 
						|
	};
 | 
						|
 | 
						|
	trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
 | 
						|
 | 
						|
	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
 | 
						|
 | 
						|
	xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
 | 
						|
	xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Put the block on the freelist for the allocation group.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_alloc_put_freelist(
 | 
						|
	struct xfs_perag	*pag,
 | 
						|
	struct xfs_trans	*tp,
 | 
						|
	struct xfs_buf		*agbp,
 | 
						|
	struct xfs_buf		*agflbp,
 | 
						|
	xfs_agblock_t		bno,
 | 
						|
	int			btreeblk)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = tp->t_mountp;
 | 
						|
	struct xfs_agf		*agf = agbp->b_addr;
 | 
						|
	__be32			*blockp;
 | 
						|
	int			error;
 | 
						|
	uint32_t		logflags;
 | 
						|
	__be32			*agfl_bno;
 | 
						|
	int			startoff;
 | 
						|
 | 
						|
	if (!agflbp) {
 | 
						|
		error = xfs_alloc_read_agfl(pag, tp, &agflbp);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
	}
 | 
						|
 | 
						|
	be32_add_cpu(&agf->agf_fllast, 1);
 | 
						|
	if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
 | 
						|
		agf->agf_fllast = 0;
 | 
						|
 | 
						|
	ASSERT(!xfs_perag_agfl_needs_reset(pag));
 | 
						|
	be32_add_cpu(&agf->agf_flcount, 1);
 | 
						|
	pag->pagf_flcount++;
 | 
						|
 | 
						|
	logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
 | 
						|
	if (btreeblk) {
 | 
						|
		be32_add_cpu(&agf->agf_btreeblks, -1);
 | 
						|
		pag->pagf_btreeblks--;
 | 
						|
		logflags |= XFS_AGF_BTREEBLKS;
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
 | 
						|
 | 
						|
	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
 | 
						|
	blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
 | 
						|
	*blockp = cpu_to_be32(bno);
 | 
						|
	startoff = (char *)blockp - (char *)agflbp->b_addr;
 | 
						|
 | 
						|
	xfs_alloc_log_agf(tp, agbp, logflags);
 | 
						|
 | 
						|
	xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
 | 
						|
	xfs_trans_log_buf(tp, agflbp, startoff,
 | 
						|
			  startoff + sizeof(xfs_agblock_t) - 1);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check that this AGF/AGI header's sequence number and length matches the AG
 | 
						|
 * number and size in fsblocks.
 | 
						|
 */
 | 
						|
xfs_failaddr_t
 | 
						|
xfs_validate_ag_length(
 | 
						|
	struct xfs_buf		*bp,
 | 
						|
	uint32_t		seqno,
 | 
						|
	uint32_t		length)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = bp->b_mount;
 | 
						|
	/*
 | 
						|
	 * During growfs operations, the perag is not fully initialised,
 | 
						|
	 * so we can't use it for any useful checking. growfs ensures we can't
 | 
						|
	 * use it by using uncached buffers that don't have the perag attached
 | 
						|
	 * so we can detect and avoid this problem.
 | 
						|
	 */
 | 
						|
	if (bp->b_pag && seqno != pag_agno(bp->b_pag))
 | 
						|
		return __this_address;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Only the last AG in the filesystem is allowed to be shorter
 | 
						|
	 * than the AG size recorded in the superblock.
 | 
						|
	 */
 | 
						|
	if (length != mp->m_sb.sb_agblocks) {
 | 
						|
		/*
 | 
						|
		 * During growfs, the new last AG can get here before we
 | 
						|
		 * have updated the superblock. Give it a pass on the seqno
 | 
						|
		 * check.
 | 
						|
		 */
 | 
						|
		if (bp->b_pag && seqno != mp->m_sb.sb_agcount - 1)
 | 
						|
			return __this_address;
 | 
						|
		if (length < XFS_MIN_AG_BLOCKS)
 | 
						|
			return __this_address;
 | 
						|
		if (length > mp->m_sb.sb_agblocks)
 | 
						|
			return __this_address;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Verify the AGF is consistent.
 | 
						|
 *
 | 
						|
 * We do not verify the AGFL indexes in the AGF are fully consistent here
 | 
						|
 * because of issues with variable on-disk structure sizes. Instead, we check
 | 
						|
 * the agfl indexes for consistency when we initialise the perag from the AGF
 | 
						|
 * information after a read completes.
 | 
						|
 *
 | 
						|
 * If the index is inconsistent, then we mark the perag as needing an AGFL
 | 
						|
 * reset. The first AGFL update performed then resets the AGFL indexes and
 | 
						|
 * refills the AGFL with known good free blocks, allowing the filesystem to
 | 
						|
 * continue operating normally at the cost of a few leaked free space blocks.
 | 
						|
 */
 | 
						|
static xfs_failaddr_t
 | 
						|
xfs_agf_verify(
 | 
						|
	struct xfs_buf		*bp)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = bp->b_mount;
 | 
						|
	struct xfs_agf		*agf = bp->b_addr;
 | 
						|
	xfs_failaddr_t		fa;
 | 
						|
	uint32_t		agf_seqno = be32_to_cpu(agf->agf_seqno);
 | 
						|
	uint32_t		agf_length = be32_to_cpu(agf->agf_length);
 | 
						|
 | 
						|
	if (xfs_has_crc(mp)) {
 | 
						|
		if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
 | 
						|
			return __this_address;
 | 
						|
		if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
 | 
						|
			return __this_address;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!xfs_verify_magic(bp, agf->agf_magicnum))
 | 
						|
		return __this_address;
 | 
						|
 | 
						|
	if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)))
 | 
						|
		return __this_address;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Both agf_seqno and agf_length need to validated before anything else
 | 
						|
	 * block number related in the AGF or AGFL can be checked.
 | 
						|
	 */
 | 
						|
	fa = xfs_validate_ag_length(bp, agf_seqno, agf_length);
 | 
						|
	if (fa)
 | 
						|
		return fa;
 | 
						|
 | 
						|
	if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp))
 | 
						|
		return __this_address;
 | 
						|
	if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp))
 | 
						|
		return __this_address;
 | 
						|
	if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp))
 | 
						|
		return __this_address;
 | 
						|
 | 
						|
	if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
 | 
						|
	    be32_to_cpu(agf->agf_freeblks) > agf_length)
 | 
						|
		return __this_address;
 | 
						|
 | 
						|
	if (be32_to_cpu(agf->agf_bno_level) < 1 ||
 | 
						|
	    be32_to_cpu(agf->agf_cnt_level) < 1 ||
 | 
						|
	    be32_to_cpu(agf->agf_bno_level) > mp->m_alloc_maxlevels ||
 | 
						|
	    be32_to_cpu(agf->agf_cnt_level) > mp->m_alloc_maxlevels)
 | 
						|
		return __this_address;
 | 
						|
 | 
						|
	if (xfs_has_lazysbcount(mp) &&
 | 
						|
	    be32_to_cpu(agf->agf_btreeblks) > agf_length)
 | 
						|
		return __this_address;
 | 
						|
 | 
						|
	if (xfs_has_rmapbt(mp)) {
 | 
						|
		if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length)
 | 
						|
			return __this_address;
 | 
						|
 | 
						|
		if (be32_to_cpu(agf->agf_rmap_level) < 1 ||
 | 
						|
		    be32_to_cpu(agf->agf_rmap_level) > mp->m_rmap_maxlevels)
 | 
						|
			return __this_address;
 | 
						|
	}
 | 
						|
 | 
						|
	if (xfs_has_reflink(mp)) {
 | 
						|
		if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length)
 | 
						|
			return __this_address;
 | 
						|
 | 
						|
		if (be32_to_cpu(agf->agf_refcount_level) < 1 ||
 | 
						|
		    be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels)
 | 
						|
			return __this_address;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
xfs_agf_read_verify(
 | 
						|
	struct xfs_buf	*bp)
 | 
						|
{
 | 
						|
	struct xfs_mount *mp = bp->b_mount;
 | 
						|
	xfs_failaddr_t	fa;
 | 
						|
 | 
						|
	if (xfs_has_crc(mp) &&
 | 
						|
	    !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
 | 
						|
		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
 | 
						|
	else {
 | 
						|
		fa = xfs_agf_verify(bp);
 | 
						|
		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
 | 
						|
			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
xfs_agf_write_verify(
 | 
						|
	struct xfs_buf	*bp)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = bp->b_mount;
 | 
						|
	struct xfs_buf_log_item	*bip = bp->b_log_item;
 | 
						|
	struct xfs_agf		*agf = bp->b_addr;
 | 
						|
	xfs_failaddr_t		fa;
 | 
						|
 | 
						|
	fa = xfs_agf_verify(bp);
 | 
						|
	if (fa) {
 | 
						|
		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!xfs_has_crc(mp))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (bip)
 | 
						|
		agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 | 
						|
 | 
						|
	xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
 | 
						|
}
 | 
						|
 | 
						|
const struct xfs_buf_ops xfs_agf_buf_ops = {
 | 
						|
	.name = "xfs_agf",
 | 
						|
	.magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
 | 
						|
	.verify_read = xfs_agf_read_verify,
 | 
						|
	.verify_write = xfs_agf_write_verify,
 | 
						|
	.verify_struct = xfs_agf_verify,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Read in the allocation group header (free/alloc section).
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_read_agf(
 | 
						|
	struct xfs_perag	*pag,
 | 
						|
	struct xfs_trans	*tp,
 | 
						|
	int			flags,
 | 
						|
	struct xfs_buf		**agfbpp)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = pag_mount(pag);
 | 
						|
	int			error;
 | 
						|
 | 
						|
	trace_xfs_read_agf(pag);
 | 
						|
 | 
						|
	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
 | 
						|
			XFS_AG_DADDR(mp, pag_agno(pag), XFS_AGF_DADDR(mp)),
 | 
						|
			XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
 | 
						|
	if (xfs_metadata_is_sick(error))
 | 
						|
		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGF);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Read in the allocation group header (free/alloc section) and initialise the
 | 
						|
 * perag structure if necessary. If the caller provides @agfbpp, then return the
 | 
						|
 * locked buffer to the caller, otherwise free it.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_alloc_read_agf(
 | 
						|
	struct xfs_perag	*pag,
 | 
						|
	struct xfs_trans	*tp,
 | 
						|
	int			flags,
 | 
						|
	struct xfs_buf		**agfbpp)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = pag_mount(pag);
 | 
						|
	struct xfs_buf		*agfbp;
 | 
						|
	struct xfs_agf		*agf;
 | 
						|
	int			error;
 | 
						|
	int			allocbt_blks;
 | 
						|
 | 
						|
	trace_xfs_alloc_read_agf(pag);
 | 
						|
 | 
						|
	/* We don't support trylock when freeing. */
 | 
						|
	ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
 | 
						|
			(XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
 | 
						|
	error = xfs_read_agf(pag, tp,
 | 
						|
			(flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
 | 
						|
			&agfbp);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	agf = agfbp->b_addr;
 | 
						|
	if (!xfs_perag_initialised_agf(pag)) {
 | 
						|
		pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
 | 
						|
		pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
 | 
						|
		pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
 | 
						|
		pag->pagf_longest = be32_to_cpu(agf->agf_longest);
 | 
						|
		pag->pagf_bno_level = be32_to_cpu(agf->agf_bno_level);
 | 
						|
		pag->pagf_cnt_level = be32_to_cpu(agf->agf_cnt_level);
 | 
						|
		pag->pagf_rmap_level = be32_to_cpu(agf->agf_rmap_level);
 | 
						|
		pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
 | 
						|
		if (xfs_agfl_needs_reset(mp, agf))
 | 
						|
			set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
 | 
						|
		else
 | 
						|
			clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Update the in-core allocbt counter. Filter out the rmapbt
 | 
						|
		 * subset of the btreeblks counter because the rmapbt is managed
 | 
						|
		 * by perag reservation. Subtract one for the rmapbt root block
 | 
						|
		 * because the rmap counter includes it while the btreeblks
 | 
						|
		 * counter only tracks non-root blocks.
 | 
						|
		 */
 | 
						|
		allocbt_blks = pag->pagf_btreeblks;
 | 
						|
		if (xfs_has_rmapbt(mp))
 | 
						|
			allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
 | 
						|
		if (allocbt_blks > 0)
 | 
						|
			atomic64_add(allocbt_blks, &mp->m_allocbt_blks);
 | 
						|
 | 
						|
		set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
 | 
						|
	}
 | 
						|
#ifdef DEBUG
 | 
						|
	else if (!xfs_is_shutdown(mp)) {
 | 
						|
		ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
 | 
						|
		ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
 | 
						|
		ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
 | 
						|
		ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
 | 
						|
		ASSERT(pag->pagf_bno_level == be32_to_cpu(agf->agf_bno_level));
 | 
						|
		ASSERT(pag->pagf_cnt_level == be32_to_cpu(agf->agf_cnt_level));
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	if (agfbpp)
 | 
						|
		*agfbpp = agfbp;
 | 
						|
	else
 | 
						|
		xfs_trans_brelse(tp, agfbp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Pre-proces allocation arguments to set initial state that we don't require
 | 
						|
 * callers to set up correctly, as well as bounds check the allocation args
 | 
						|
 * that are set up.
 | 
						|
 */
 | 
						|
static int
 | 
						|
xfs_alloc_vextent_check_args(
 | 
						|
	struct xfs_alloc_arg	*args,
 | 
						|
	xfs_fsblock_t		target,
 | 
						|
	xfs_agnumber_t		*minimum_agno)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = args->mp;
 | 
						|
	xfs_agblock_t		agsize;
 | 
						|
 | 
						|
	args->fsbno = NULLFSBLOCK;
 | 
						|
 | 
						|
	*minimum_agno = 0;
 | 
						|
	if (args->tp->t_highest_agno != NULLAGNUMBER)
 | 
						|
		*minimum_agno = args->tp->t_highest_agno;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Just fix this up, for the case where the last a.g. is shorter
 | 
						|
	 * (or there's only one a.g.) and the caller couldn't easily figure
 | 
						|
	 * that out (xfs_bmap_alloc).
 | 
						|
	 */
 | 
						|
	agsize = mp->m_sb.sb_agblocks;
 | 
						|
	if (args->maxlen > agsize)
 | 
						|
		args->maxlen = agsize;
 | 
						|
	if (args->alignment == 0)
 | 
						|
		args->alignment = 1;
 | 
						|
 | 
						|
	ASSERT(args->minlen > 0);
 | 
						|
	ASSERT(args->maxlen > 0);
 | 
						|
	ASSERT(args->alignment > 0);
 | 
						|
	ASSERT(args->resv != XFS_AG_RESV_AGFL);
 | 
						|
 | 
						|
	ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount);
 | 
						|
	ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize);
 | 
						|
	ASSERT(args->minlen <= args->maxlen);
 | 
						|
	ASSERT(args->minlen <= agsize);
 | 
						|
	ASSERT(args->mod < args->prod);
 | 
						|
 | 
						|
	if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount ||
 | 
						|
	    XFS_FSB_TO_AGBNO(mp, target) >= agsize ||
 | 
						|
	    args->minlen > args->maxlen || args->minlen > agsize ||
 | 
						|
	    args->mod >= args->prod) {
 | 
						|
		trace_xfs_alloc_vextent_badargs(args);
 | 
						|
		return -ENOSPC;
 | 
						|
	}
 | 
						|
 | 
						|
	if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) {
 | 
						|
		trace_xfs_alloc_vextent_skip_deadlock(args);
 | 
						|
		return -ENOSPC;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Prepare an AG for allocation. If the AG is not prepared to accept the
 | 
						|
 * allocation, return failure.
 | 
						|
 *
 | 
						|
 * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are
 | 
						|
 * modified to hold their own perag references.
 | 
						|
 */
 | 
						|
static int
 | 
						|
xfs_alloc_vextent_prepare_ag(
 | 
						|
	struct xfs_alloc_arg	*args,
 | 
						|
	uint32_t		alloc_flags)
 | 
						|
{
 | 
						|
	bool			need_pag = !args->pag;
 | 
						|
	int			error;
 | 
						|
 | 
						|
	if (need_pag)
 | 
						|
		args->pag = xfs_perag_get(args->mp, args->agno);
 | 
						|
 | 
						|
	args->agbp = NULL;
 | 
						|
	error = xfs_alloc_fix_freelist(args, alloc_flags);
 | 
						|
	if (error) {
 | 
						|
		trace_xfs_alloc_vextent_nofix(args);
 | 
						|
		if (need_pag)
 | 
						|
			xfs_perag_put(args->pag);
 | 
						|
		args->agbno = NULLAGBLOCK;
 | 
						|
		return error;
 | 
						|
	}
 | 
						|
	if (!args->agbp) {
 | 
						|
		/* cannot allocate in this AG at all */
 | 
						|
		trace_xfs_alloc_vextent_noagbp(args);
 | 
						|
		args->agbno = NULLAGBLOCK;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	args->wasfromfl = 0;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Post-process allocation results to account for the allocation if it succeed
 | 
						|
 * and set the allocated block number correctly for the caller.
 | 
						|
 *
 | 
						|
 * XXX: we should really be returning ENOSPC for ENOSPC, not
 | 
						|
 * hiding it behind a "successful" NULLFSBLOCK allocation.
 | 
						|
 */
 | 
						|
static int
 | 
						|
xfs_alloc_vextent_finish(
 | 
						|
	struct xfs_alloc_arg	*args,
 | 
						|
	xfs_agnumber_t		minimum_agno,
 | 
						|
	int			alloc_error,
 | 
						|
	bool			drop_perag)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = args->mp;
 | 
						|
	int			error = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We can end up here with a locked AGF. If we failed, the caller is
 | 
						|
	 * likely going to try to allocate again with different parameters, and
 | 
						|
	 * that can widen the AGs that are searched for free space. If we have
 | 
						|
	 * to do BMBT block allocation, we have to do a new allocation.
 | 
						|
	 *
 | 
						|
	 * Hence leaving this function with the AGF locked opens up potential
 | 
						|
	 * ABBA AGF deadlocks because a future allocation attempt in this
 | 
						|
	 * transaction may attempt to lock a lower number AGF.
 | 
						|
	 *
 | 
						|
	 * We can't release the AGF until the transaction is commited, so at
 | 
						|
	 * this point we must update the "first allocation" tracker to point at
 | 
						|
	 * this AG if the tracker is empty or points to a lower AG. This allows
 | 
						|
	 * the next allocation attempt to be modified appropriately to avoid
 | 
						|
	 * deadlocks.
 | 
						|
	 */
 | 
						|
	if (args->agbp &&
 | 
						|
	    (args->tp->t_highest_agno == NULLAGNUMBER ||
 | 
						|
	     args->agno > minimum_agno))
 | 
						|
		args->tp->t_highest_agno = args->agno;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the allocation failed with an error or we had an ENOSPC result,
 | 
						|
	 * preserve the returned error whilst also marking the allocation result
 | 
						|
	 * as "no extent allocated". This ensures that callers that fail to
 | 
						|
	 * capture the error will still treat it as a failed allocation.
 | 
						|
	 */
 | 
						|
	if (alloc_error || args->agbno == NULLAGBLOCK) {
 | 
						|
		args->fsbno = NULLFSBLOCK;
 | 
						|
		error = alloc_error;
 | 
						|
		goto out_drop_perag;
 | 
						|
	}
 | 
						|
 | 
						|
	args->fsbno = xfs_agbno_to_fsb(args->pag, args->agbno);
 | 
						|
 | 
						|
	ASSERT(args->len >= args->minlen);
 | 
						|
	ASSERT(args->len <= args->maxlen);
 | 
						|
	ASSERT(args->agbno % args->alignment == 0);
 | 
						|
	XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len);
 | 
						|
 | 
						|
	/* if not file data, insert new block into the reverse map btree */
 | 
						|
	if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
 | 
						|
		error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
 | 
						|
				       args->agbno, args->len, &args->oinfo);
 | 
						|
		if (error)
 | 
						|
			goto out_drop_perag;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!args->wasfromfl) {
 | 
						|
		error = xfs_alloc_update_counters(args->tp, args->agbp,
 | 
						|
						  -((long)(args->len)));
 | 
						|
		if (error)
 | 
						|
			goto out_drop_perag;
 | 
						|
 | 
						|
		ASSERT(!xfs_extent_busy_search(pag_group(args->pag),
 | 
						|
				args->agbno, args->len));
 | 
						|
	}
 | 
						|
 | 
						|
	xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
 | 
						|
 | 
						|
	XFS_STATS_INC(mp, xs_allocx);
 | 
						|
	XFS_STATS_ADD(mp, xs_allocb, args->len);
 | 
						|
 | 
						|
	trace_xfs_alloc_vextent_finish(args);
 | 
						|
 | 
						|
out_drop_perag:
 | 
						|
	if (drop_perag && args->pag) {
 | 
						|
		xfs_perag_rele(args->pag);
 | 
						|
		args->pag = NULL;
 | 
						|
	}
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate within a single AG only. This uses a best-fit length algorithm so if
 | 
						|
 * you need an exact sized allocation without locality constraints, this is the
 | 
						|
 * fastest way to do it.
 | 
						|
 *
 | 
						|
 * Caller is expected to hold a perag reference in args->pag.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_alloc_vextent_this_ag(
 | 
						|
	struct xfs_alloc_arg	*args,
 | 
						|
	xfs_agnumber_t		agno)
 | 
						|
{
 | 
						|
	xfs_agnumber_t		minimum_agno;
 | 
						|
	uint32_t		alloc_flags = 0;
 | 
						|
	int			error;
 | 
						|
 | 
						|
	ASSERT(args->pag != NULL);
 | 
						|
	ASSERT(pag_agno(args->pag) == agno);
 | 
						|
 | 
						|
	args->agno = agno;
 | 
						|
	args->agbno = 0;
 | 
						|
 | 
						|
	trace_xfs_alloc_vextent_this_ag(args);
 | 
						|
 | 
						|
	error = xfs_alloc_vextent_check_args(args,
 | 
						|
			xfs_agbno_to_fsb(args->pag, 0), &minimum_agno);
 | 
						|
	if (error) {
 | 
						|
		if (error == -ENOSPC)
 | 
						|
			return 0;
 | 
						|
		return error;
 | 
						|
	}
 | 
						|
 | 
						|
	error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
 | 
						|
	if (!error && args->agbp)
 | 
						|
		error = xfs_alloc_ag_vextent_size(args, alloc_flags);
 | 
						|
 | 
						|
	return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Iterate all AGs trying to allocate an extent starting from @start_ag.
 | 
						|
 *
 | 
						|
 * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the
 | 
						|
 * allocation attempts in @start_agno have locality information. If we fail to
 | 
						|
 * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs
 | 
						|
 * we attempt to allocation in as there is no locality optimisation possible for
 | 
						|
 * those allocations.
 | 
						|
 *
 | 
						|
 * On return, args->pag may be left referenced if we finish before the "all
 | 
						|
 * failed" return point. The allocation finish still needs the perag, and
 | 
						|
 * so the caller will release it once they've finished the allocation.
 | 
						|
 *
 | 
						|
 * When we wrap the AG iteration at the end of the filesystem, we have to be
 | 
						|
 * careful not to wrap into AGs below ones we already have locked in the
 | 
						|
 * transaction if we are doing a blocking iteration. This will result in an
 | 
						|
 * out-of-order locking of AGFs and hence can cause deadlocks.
 | 
						|
 */
 | 
						|
static int
 | 
						|
xfs_alloc_vextent_iterate_ags(
 | 
						|
	struct xfs_alloc_arg	*args,
 | 
						|
	xfs_agnumber_t		minimum_agno,
 | 
						|
	xfs_agnumber_t		start_agno,
 | 
						|
	xfs_agblock_t		target_agbno,
 | 
						|
	uint32_t		alloc_flags)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = args->mp;
 | 
						|
	xfs_agnumber_t		restart_agno = minimum_agno;
 | 
						|
	xfs_agnumber_t		agno;
 | 
						|
	int			error = 0;
 | 
						|
 | 
						|
	if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)
 | 
						|
		restart_agno = 0;
 | 
						|
restart:
 | 
						|
	for_each_perag_wrap_range(mp, start_agno, restart_agno,
 | 
						|
			mp->m_sb.sb_agcount, agno, args->pag) {
 | 
						|
		args->agno = agno;
 | 
						|
		error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
 | 
						|
		if (error)
 | 
						|
			break;
 | 
						|
		if (!args->agbp) {
 | 
						|
			trace_xfs_alloc_vextent_loopfailed(args);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Allocation is supposed to succeed now, so break out of the
 | 
						|
		 * loop regardless of whether we succeed or not.
 | 
						|
		 */
 | 
						|
		if (args->agno == start_agno && target_agbno) {
 | 
						|
			args->agbno = target_agbno;
 | 
						|
			error = xfs_alloc_ag_vextent_near(args, alloc_flags);
 | 
						|
		} else {
 | 
						|
			args->agbno = 0;
 | 
						|
			error = xfs_alloc_ag_vextent_size(args, alloc_flags);
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	if (error) {
 | 
						|
		xfs_perag_rele(args->pag);
 | 
						|
		args->pag = NULL;
 | 
						|
		return error;
 | 
						|
	}
 | 
						|
	if (args->agbp)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We didn't find an AG we can alloation from. If we were given
 | 
						|
	 * constraining flags by the caller, drop them and retry the allocation
 | 
						|
	 * without any constraints being set.
 | 
						|
	 */
 | 
						|
	if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) {
 | 
						|
		alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK;
 | 
						|
		restart_agno = minimum_agno;
 | 
						|
		goto restart;
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(args->pag == NULL);
 | 
						|
	trace_xfs_alloc_vextent_allfailed(args);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Iterate from the AGs from the start AG to the end of the filesystem, trying
 | 
						|
 * to allocate blocks. It starts with a near allocation attempt in the initial
 | 
						|
 * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap
 | 
						|
 * back to zero if allowed by previous allocations in this transaction,
 | 
						|
 * otherwise will wrap back to the start AG and run a second blocking pass to
 | 
						|
 * the end of the filesystem.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_alloc_vextent_start_ag(
 | 
						|
	struct xfs_alloc_arg	*args,
 | 
						|
	xfs_fsblock_t		target)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = args->mp;
 | 
						|
	xfs_agnumber_t		minimum_agno;
 | 
						|
	xfs_agnumber_t		start_agno;
 | 
						|
	xfs_agnumber_t		rotorstep = xfs_rotorstep;
 | 
						|
	bool			bump_rotor = false;
 | 
						|
	uint32_t		alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
 | 
						|
	int			error;
 | 
						|
 | 
						|
	ASSERT(args->pag == NULL);
 | 
						|
 | 
						|
	args->agno = NULLAGNUMBER;
 | 
						|
	args->agbno = NULLAGBLOCK;
 | 
						|
 | 
						|
	trace_xfs_alloc_vextent_start_ag(args);
 | 
						|
 | 
						|
	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
 | 
						|
	if (error) {
 | 
						|
		if (error == -ENOSPC)
 | 
						|
			return 0;
 | 
						|
		return error;
 | 
						|
	}
 | 
						|
 | 
						|
	if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
 | 
						|
	    xfs_is_inode32(mp)) {
 | 
						|
		target = XFS_AGB_TO_FSB(mp,
 | 
						|
				((mp->m_agfrotor / rotorstep) %
 | 
						|
				mp->m_sb.sb_agcount), 0);
 | 
						|
		bump_rotor = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
 | 
						|
	error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
 | 
						|
			XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
 | 
						|
 | 
						|
	if (bump_rotor) {
 | 
						|
		if (args->agno == start_agno)
 | 
						|
			mp->m_agfrotor = (mp->m_agfrotor + 1) %
 | 
						|
				(mp->m_sb.sb_agcount * rotorstep);
 | 
						|
		else
 | 
						|
			mp->m_agfrotor = (args->agno * rotorstep + 1) %
 | 
						|
				(mp->m_sb.sb_agcount * rotorstep);
 | 
						|
	}
 | 
						|
 | 
						|
	return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Iterate from the agno indicated via @target through to the end of the
 | 
						|
 * filesystem attempting blocking allocation. This does not wrap or try a second
 | 
						|
 * pass, so will not recurse into AGs lower than indicated by the target.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_alloc_vextent_first_ag(
 | 
						|
	struct xfs_alloc_arg	*args,
 | 
						|
	xfs_fsblock_t		target)
 | 
						|
 {
 | 
						|
	struct xfs_mount	*mp = args->mp;
 | 
						|
	xfs_agnumber_t		minimum_agno;
 | 
						|
	xfs_agnumber_t		start_agno;
 | 
						|
	uint32_t		alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
 | 
						|
	int			error;
 | 
						|
 | 
						|
	ASSERT(args->pag == NULL);
 | 
						|
 | 
						|
	args->agno = NULLAGNUMBER;
 | 
						|
	args->agbno = NULLAGBLOCK;
 | 
						|
 | 
						|
	trace_xfs_alloc_vextent_first_ag(args);
 | 
						|
 | 
						|
	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
 | 
						|
	if (error) {
 | 
						|
		if (error == -ENOSPC)
 | 
						|
			return 0;
 | 
						|
		return error;
 | 
						|
	}
 | 
						|
 | 
						|
	start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
 | 
						|
	error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
 | 
						|
			XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
 | 
						|
	return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate at the exact block target or fail. Caller is expected to hold a
 | 
						|
 * perag reference in args->pag.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_alloc_vextent_exact_bno(
 | 
						|
	struct xfs_alloc_arg	*args,
 | 
						|
	xfs_fsblock_t		target)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = args->mp;
 | 
						|
	xfs_agnumber_t		minimum_agno;
 | 
						|
	int			error;
 | 
						|
 | 
						|
	ASSERT(args->pag != NULL);
 | 
						|
	ASSERT(pag_agno(args->pag) == XFS_FSB_TO_AGNO(mp, target));
 | 
						|
 | 
						|
	args->agno = XFS_FSB_TO_AGNO(mp, target);
 | 
						|
	args->agbno = XFS_FSB_TO_AGBNO(mp, target);
 | 
						|
 | 
						|
	trace_xfs_alloc_vextent_exact_bno(args);
 | 
						|
 | 
						|
	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
 | 
						|
	if (error) {
 | 
						|
		if (error == -ENOSPC)
 | 
						|
			return 0;
 | 
						|
		return error;
 | 
						|
	}
 | 
						|
 | 
						|
	error = xfs_alloc_vextent_prepare_ag(args, 0);
 | 
						|
	if (!error && args->agbp)
 | 
						|
		error = xfs_alloc_ag_vextent_exact(args);
 | 
						|
 | 
						|
	return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate an extent as close to the target as possible. If there are not
 | 
						|
 * viable candidates in the AG, then fail the allocation.
 | 
						|
 *
 | 
						|
 * Caller may or may not have a per-ag reference in args->pag.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_alloc_vextent_near_bno(
 | 
						|
	struct xfs_alloc_arg	*args,
 | 
						|
	xfs_fsblock_t		target)
 | 
						|
{
 | 
						|
	struct xfs_mount	*mp = args->mp;
 | 
						|
	xfs_agnumber_t		minimum_agno;
 | 
						|
	bool			needs_perag = args->pag == NULL;
 | 
						|
	uint32_t		alloc_flags = 0;
 | 
						|
	int			error;
 | 
						|
 | 
						|
	if (!needs_perag)
 | 
						|
		ASSERT(pag_agno(args->pag) == XFS_FSB_TO_AGNO(mp, target));
 | 
						|
 | 
						|
	args->agno = XFS_FSB_TO_AGNO(mp, target);
 | 
						|
	args->agbno = XFS_FSB_TO_AGBNO(mp, target);
 | 
						|
 | 
						|
	trace_xfs_alloc_vextent_near_bno(args);
 | 
						|
 | 
						|
	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
 | 
						|
	if (error) {
 | 
						|
		if (error == -ENOSPC)
 | 
						|
			return 0;
 | 
						|
		return error;
 | 
						|
	}
 | 
						|
 | 
						|
	if (needs_perag)
 | 
						|
		args->pag = xfs_perag_grab(mp, args->agno);
 | 
						|
 | 
						|
	error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
 | 
						|
	if (!error && args->agbp)
 | 
						|
		error = xfs_alloc_ag_vextent_near(args, alloc_flags);
 | 
						|
 | 
						|
	return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag);
 | 
						|
}
 | 
						|
 | 
						|
/* Ensure that the freelist is at full capacity. */
 | 
						|
int
 | 
						|
xfs_free_extent_fix_freelist(
 | 
						|
	struct xfs_trans	*tp,
 | 
						|
	struct xfs_perag	*pag,
 | 
						|
	struct xfs_buf		**agbp)
 | 
						|
{
 | 
						|
	struct xfs_alloc_arg	args;
 | 
						|
	int			error;
 | 
						|
 | 
						|
	memset(&args, 0, sizeof(struct xfs_alloc_arg));
 | 
						|
	args.tp = tp;
 | 
						|
	args.mp = tp->t_mountp;
 | 
						|
	args.agno = pag_agno(pag);
 | 
						|
	args.pag = pag;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * validate that the block number is legal - the enables us to detect
 | 
						|
	 * and handle a silent filesystem corruption rather than crashing.
 | 
						|
	 */
 | 
						|
	if (args.agno >= args.mp->m_sb.sb_agcount)
 | 
						|
		return -EFSCORRUPTED;
 | 
						|
 | 
						|
	error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	*agbp = args.agbp;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free an extent.
 | 
						|
 * Just break up the extent address and hand off to xfs_free_ag_extent
 | 
						|
 * after fixing up the freelist.
 | 
						|
 */
 | 
						|
int
 | 
						|
__xfs_free_extent(
 | 
						|
	struct xfs_trans		*tp,
 | 
						|
	struct xfs_perag		*pag,
 | 
						|
	xfs_agblock_t			agbno,
 | 
						|
	xfs_extlen_t			len,
 | 
						|
	const struct xfs_owner_info	*oinfo,
 | 
						|
	enum xfs_ag_resv_type		type,
 | 
						|
	bool				skip_discard)
 | 
						|
{
 | 
						|
	struct xfs_mount		*mp = tp->t_mountp;
 | 
						|
	struct xfs_buf			*agbp;
 | 
						|
	struct xfs_agf			*agf;
 | 
						|
	int				error;
 | 
						|
	unsigned int			busy_flags = 0;
 | 
						|
 | 
						|
	ASSERT(len != 0);
 | 
						|
	ASSERT(type != XFS_AG_RESV_AGFL);
 | 
						|
 | 
						|
	if (XFS_TEST_ERROR(false, mp,
 | 
						|
			XFS_ERRTAG_FREE_EXTENT))
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
 | 
						|
	if (error) {
 | 
						|
		if (xfs_metadata_is_sick(error))
 | 
						|
			xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
 | 
						|
		return error;
 | 
						|
	}
 | 
						|
 | 
						|
	agf = agbp->b_addr;
 | 
						|
 | 
						|
	if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
 | 
						|
		xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
 | 
						|
		error = -EFSCORRUPTED;
 | 
						|
		goto err_release;
 | 
						|
	}
 | 
						|
 | 
						|
	/* validate the extent size is legal now we have the agf locked */
 | 
						|
	if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
 | 
						|
		xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
 | 
						|
		error = -EFSCORRUPTED;
 | 
						|
		goto err_release;
 | 
						|
	}
 | 
						|
 | 
						|
	error = xfs_free_ag_extent(tp, agbp, agbno, len, oinfo, type);
 | 
						|
	if (error)
 | 
						|
		goto err_release;
 | 
						|
 | 
						|
	if (skip_discard)
 | 
						|
		busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
 | 
						|
	xfs_extent_busy_insert(tp, pag_group(pag), agbno, len, busy_flags);
 | 
						|
	return 0;
 | 
						|
 | 
						|
err_release:
 | 
						|
	xfs_trans_brelse(tp, agbp);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
struct xfs_alloc_query_range_info {
 | 
						|
	xfs_alloc_query_range_fn	fn;
 | 
						|
	void				*priv;
 | 
						|
};
 | 
						|
 | 
						|
/* Format btree record and pass to our callback. */
 | 
						|
STATIC int
 | 
						|
xfs_alloc_query_range_helper(
 | 
						|
	struct xfs_btree_cur		*cur,
 | 
						|
	const union xfs_btree_rec	*rec,
 | 
						|
	void				*priv)
 | 
						|
{
 | 
						|
	struct xfs_alloc_query_range_info	*query = priv;
 | 
						|
	struct xfs_alloc_rec_incore		irec;
 | 
						|
	xfs_failaddr_t				fa;
 | 
						|
 | 
						|
	xfs_alloc_btrec_to_irec(rec, &irec);
 | 
						|
	fa = xfs_alloc_check_irec(to_perag(cur->bc_group), &irec);
 | 
						|
	if (fa)
 | 
						|
		return xfs_alloc_complain_bad_rec(cur, fa, &irec);
 | 
						|
 | 
						|
	return query->fn(cur, &irec, query->priv);
 | 
						|
}
 | 
						|
 | 
						|
/* Find all free space within a given range of blocks. */
 | 
						|
int
 | 
						|
xfs_alloc_query_range(
 | 
						|
	struct xfs_btree_cur			*cur,
 | 
						|
	const struct xfs_alloc_rec_incore	*low_rec,
 | 
						|
	const struct xfs_alloc_rec_incore	*high_rec,
 | 
						|
	xfs_alloc_query_range_fn		fn,
 | 
						|
	void					*priv)
 | 
						|
{
 | 
						|
	union xfs_btree_irec			low_brec = { .a = *low_rec };
 | 
						|
	union xfs_btree_irec			high_brec = { .a = *high_rec };
 | 
						|
	struct xfs_alloc_query_range_info	query = { .priv = priv, .fn = fn };
 | 
						|
 | 
						|
	ASSERT(xfs_btree_is_bno(cur->bc_ops));
 | 
						|
	return xfs_btree_query_range(cur, &low_brec, &high_brec,
 | 
						|
			xfs_alloc_query_range_helper, &query);
 | 
						|
}
 | 
						|
 | 
						|
/* Find all free space records. */
 | 
						|
int
 | 
						|
xfs_alloc_query_all(
 | 
						|
	struct xfs_btree_cur			*cur,
 | 
						|
	xfs_alloc_query_range_fn		fn,
 | 
						|
	void					*priv)
 | 
						|
{
 | 
						|
	struct xfs_alloc_query_range_info	query;
 | 
						|
 | 
						|
	ASSERT(xfs_btree_is_bno(cur->bc_ops));
 | 
						|
	query.priv = priv;
 | 
						|
	query.fn = fn;
 | 
						|
	return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Scan part of the keyspace of the free space and tell us if the area has no
 | 
						|
 * records, is fully mapped by records, or is partially filled.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_alloc_has_records(
 | 
						|
	struct xfs_btree_cur	*cur,
 | 
						|
	xfs_agblock_t		bno,
 | 
						|
	xfs_extlen_t		len,
 | 
						|
	enum xbtree_recpacking	*outcome)
 | 
						|
{
 | 
						|
	union xfs_btree_irec	low;
 | 
						|
	union xfs_btree_irec	high;
 | 
						|
 | 
						|
	memset(&low, 0, sizeof(low));
 | 
						|
	low.a.ar_startblock = bno;
 | 
						|
	memset(&high, 0xFF, sizeof(high));
 | 
						|
	high.a.ar_startblock = bno + len - 1;
 | 
						|
 | 
						|
	return xfs_btree_has_records(cur, &low, &high, NULL, outcome);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Walk all the blocks in the AGFL.  The @walk_fn can return any negative
 | 
						|
 * error code or XFS_ITER_*.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfs_agfl_walk(
 | 
						|
	struct xfs_mount	*mp,
 | 
						|
	struct xfs_agf		*agf,
 | 
						|
	struct xfs_buf		*agflbp,
 | 
						|
	xfs_agfl_walk_fn	walk_fn,
 | 
						|
	void			*priv)
 | 
						|
{
 | 
						|
	__be32			*agfl_bno;
 | 
						|
	unsigned int		i;
 | 
						|
	int			error;
 | 
						|
 | 
						|
	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
 | 
						|
	i = be32_to_cpu(agf->agf_flfirst);
 | 
						|
 | 
						|
	/* Nothing to walk in an empty AGFL. */
 | 
						|
	if (agf->agf_flcount == cpu_to_be32(0))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Otherwise, walk from first to last, wrapping as needed. */
 | 
						|
	for (;;) {
 | 
						|
		error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
		if (i == be32_to_cpu(agf->agf_fllast))
 | 
						|
			break;
 | 
						|
		if (++i == xfs_agfl_size(mp))
 | 
						|
			i = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int __init
 | 
						|
xfs_extfree_intent_init_cache(void)
 | 
						|
{
 | 
						|
	xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
 | 
						|
			sizeof(struct xfs_extent_free_item),
 | 
						|
			0, 0, NULL);
 | 
						|
 | 
						|
	return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
xfs_extfree_intent_destroy_cache(void)
 | 
						|
{
 | 
						|
	kmem_cache_destroy(xfs_extfree_item_cache);
 | 
						|
	xfs_extfree_item_cache = NULL;
 | 
						|
}
 |