mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	commit4eeec8c89a("mm: move hugetlb specific things in folio to page[3]") shifted hugetlb specific stuff, and now mapping overlaps _hugetlb_cgroup field. Upon restoring the vmemmap for HVO, only the first two tail pages are reset, and this causes the check in free_tail_page_prepare() to fail as it finds an unexpected mapping value in some tails. Increment the number of pages to be reset to 4 (head + 3 tail pages) Link: https://lkml.kernel.org/r/20250415111859.376302-1-osalvador@suse.de Fixes:4eeec8c89a("mm: move hugetlb specific things in folio to page[3]") Signed-off-by: Oscar Salvador <osalvador@suse.de> Suggested-by: David Hildenbrand <david@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			914 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			914 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * HugeTLB Vmemmap Optimization (HVO)
 | 
						|
 *
 | 
						|
 * Copyright (c) 2020, ByteDance. All rights reserved.
 | 
						|
 *
 | 
						|
 *     Author: Muchun Song <songmuchun@bytedance.com>
 | 
						|
 *
 | 
						|
 * See Documentation/mm/vmemmap_dedup.rst
 | 
						|
 */
 | 
						|
#define pr_fmt(fmt)	"HugeTLB: " fmt
 | 
						|
 | 
						|
#include <linux/pgtable.h>
 | 
						|
#include <linux/moduleparam.h>
 | 
						|
#include <linux/bootmem_info.h>
 | 
						|
#include <linux/mmdebug.h>
 | 
						|
#include <linux/pagewalk.h>
 | 
						|
#include <asm/pgalloc.h>
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
#include "hugetlb_vmemmap.h"
 | 
						|
 | 
						|
/**
 | 
						|
 * struct vmemmap_remap_walk - walk vmemmap page table
 | 
						|
 *
 | 
						|
 * @remap_pte:		called for each lowest-level entry (PTE).
 | 
						|
 * @nr_walked:		the number of walked pte.
 | 
						|
 * @reuse_page:		the page which is reused for the tail vmemmap pages.
 | 
						|
 * @reuse_addr:		the virtual address of the @reuse_page page.
 | 
						|
 * @vmemmap_pages:	the list head of the vmemmap pages that can be freed
 | 
						|
 *			or is mapped from.
 | 
						|
 * @flags:		used to modify behavior in vmemmap page table walking
 | 
						|
 *			operations.
 | 
						|
 */
 | 
						|
struct vmemmap_remap_walk {
 | 
						|
	void			(*remap_pte)(pte_t *pte, unsigned long addr,
 | 
						|
					     struct vmemmap_remap_walk *walk);
 | 
						|
	unsigned long		nr_walked;
 | 
						|
	struct page		*reuse_page;
 | 
						|
	unsigned long		reuse_addr;
 | 
						|
	struct list_head	*vmemmap_pages;
 | 
						|
 | 
						|
/* Skip the TLB flush when we split the PMD */
 | 
						|
#define VMEMMAP_SPLIT_NO_TLB_FLUSH	BIT(0)
 | 
						|
/* Skip the TLB flush when we remap the PTE */
 | 
						|
#define VMEMMAP_REMAP_NO_TLB_FLUSH	BIT(1)
 | 
						|
/* synchronize_rcu() to avoid writes from page_ref_add_unless() */
 | 
						|
#define VMEMMAP_SYNCHRONIZE_RCU		BIT(2)
 | 
						|
	unsigned long		flags;
 | 
						|
};
 | 
						|
 | 
						|
static int vmemmap_split_pmd(pmd_t *pmd, struct page *head, unsigned long start,
 | 
						|
			     struct vmemmap_remap_walk *walk)
 | 
						|
{
 | 
						|
	pmd_t __pmd;
 | 
						|
	int i;
 | 
						|
	unsigned long addr = start;
 | 
						|
	pte_t *pgtable;
 | 
						|
 | 
						|
	pgtable = pte_alloc_one_kernel(&init_mm);
 | 
						|
	if (!pgtable)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	pmd_populate_kernel(&init_mm, &__pmd, pgtable);
 | 
						|
 | 
						|
	for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
 | 
						|
		pte_t entry, *pte;
 | 
						|
		pgprot_t pgprot = PAGE_KERNEL;
 | 
						|
 | 
						|
		entry = mk_pte(head + i, pgprot);
 | 
						|
		pte = pte_offset_kernel(&__pmd, addr);
 | 
						|
		set_pte_at(&init_mm, addr, pte, entry);
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&init_mm.page_table_lock);
 | 
						|
	if (likely(pmd_leaf(*pmd))) {
 | 
						|
		/*
 | 
						|
		 * Higher order allocations from buddy allocator must be able to
 | 
						|
		 * be treated as indepdenent small pages (as they can be freed
 | 
						|
		 * individually).
 | 
						|
		 */
 | 
						|
		if (!PageReserved(head))
 | 
						|
			split_page(head, get_order(PMD_SIZE));
 | 
						|
 | 
						|
		/* Make pte visible before pmd. See comment in pmd_install(). */
 | 
						|
		smp_wmb();
 | 
						|
		pmd_populate_kernel(&init_mm, pmd, pgtable);
 | 
						|
		if (!(walk->flags & VMEMMAP_SPLIT_NO_TLB_FLUSH))
 | 
						|
			flush_tlb_kernel_range(start, start + PMD_SIZE);
 | 
						|
	} else {
 | 
						|
		pte_free_kernel(&init_mm, pgtable);
 | 
						|
	}
 | 
						|
	spin_unlock(&init_mm.page_table_lock);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int vmemmap_pmd_entry(pmd_t *pmd, unsigned long addr,
 | 
						|
			     unsigned long next, struct mm_walk *walk)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	struct page *head;
 | 
						|
	struct vmemmap_remap_walk *vmemmap_walk = walk->private;
 | 
						|
 | 
						|
	/* Only splitting, not remapping the vmemmap pages. */
 | 
						|
	if (!vmemmap_walk->remap_pte)
 | 
						|
		walk->action = ACTION_CONTINUE;
 | 
						|
 | 
						|
	spin_lock(&init_mm.page_table_lock);
 | 
						|
	head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
 | 
						|
	/*
 | 
						|
	 * Due to HugeTLB alignment requirements and the vmemmap
 | 
						|
	 * pages being at the start of the hotplugged memory
 | 
						|
	 * region in memory_hotplug.memmap_on_memory case. Checking
 | 
						|
	 * the vmemmap page associated with the first vmemmap page
 | 
						|
	 * if it is self-hosted is sufficient.
 | 
						|
	 *
 | 
						|
	 * [                  hotplugged memory                  ]
 | 
						|
	 * [        section        ][...][        section        ]
 | 
						|
	 * [ vmemmap ][              usable memory               ]
 | 
						|
	 *   ^  | ^                        |
 | 
						|
	 *   +--+ |                        |
 | 
						|
	 *        +------------------------+
 | 
						|
	 */
 | 
						|
	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && unlikely(!vmemmap_walk->nr_walked)) {
 | 
						|
		struct page *page = head ? head + pte_index(addr) :
 | 
						|
				    pte_page(ptep_get(pte_offset_kernel(pmd, addr)));
 | 
						|
 | 
						|
		if (PageVmemmapSelfHosted(page))
 | 
						|
			ret = -ENOTSUPP;
 | 
						|
	}
 | 
						|
	spin_unlock(&init_mm.page_table_lock);
 | 
						|
	if (!head || ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	return vmemmap_split_pmd(pmd, head, addr & PMD_MASK, vmemmap_walk);
 | 
						|
}
 | 
						|
 | 
						|
static int vmemmap_pte_entry(pte_t *pte, unsigned long addr,
 | 
						|
			     unsigned long next, struct mm_walk *walk)
 | 
						|
{
 | 
						|
	struct vmemmap_remap_walk *vmemmap_walk = walk->private;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The reuse_page is found 'first' in page table walking before
 | 
						|
	 * starting remapping.
 | 
						|
	 */
 | 
						|
	if (!vmemmap_walk->reuse_page)
 | 
						|
		vmemmap_walk->reuse_page = pte_page(ptep_get(pte));
 | 
						|
	else
 | 
						|
		vmemmap_walk->remap_pte(pte, addr, vmemmap_walk);
 | 
						|
	vmemmap_walk->nr_walked++;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const struct mm_walk_ops vmemmap_remap_ops = {
 | 
						|
	.pmd_entry	= vmemmap_pmd_entry,
 | 
						|
	.pte_entry	= vmemmap_pte_entry,
 | 
						|
};
 | 
						|
 | 
						|
static int vmemmap_remap_range(unsigned long start, unsigned long end,
 | 
						|
			       struct vmemmap_remap_walk *walk)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	VM_BUG_ON(!PAGE_ALIGNED(start | end));
 | 
						|
 | 
						|
	mmap_read_lock(&init_mm);
 | 
						|
	ret = walk_page_range_novma(&init_mm, start, end, &vmemmap_remap_ops,
 | 
						|
				    NULL, walk);
 | 
						|
	mmap_read_unlock(&init_mm);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (walk->remap_pte && !(walk->flags & VMEMMAP_REMAP_NO_TLB_FLUSH))
 | 
						|
		flush_tlb_kernel_range(start, end);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free a vmemmap page. A vmemmap page can be allocated from the memblock
 | 
						|
 * allocator or buddy allocator. If the PG_reserved flag is set, it means
 | 
						|
 * that it allocated from the memblock allocator, just free it via the
 | 
						|
 * free_bootmem_page(). Otherwise, use __free_page().
 | 
						|
 */
 | 
						|
static inline void free_vmemmap_page(struct page *page)
 | 
						|
{
 | 
						|
	if (PageReserved(page)) {
 | 
						|
		memmap_boot_pages_add(-1);
 | 
						|
		free_bootmem_page(page);
 | 
						|
	} else {
 | 
						|
		memmap_pages_add(-1);
 | 
						|
		__free_page(page);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Free a list of the vmemmap pages */
 | 
						|
static void free_vmemmap_page_list(struct list_head *list)
 | 
						|
{
 | 
						|
	struct page *page, *next;
 | 
						|
 | 
						|
	list_for_each_entry_safe(page, next, list, lru)
 | 
						|
		free_vmemmap_page(page);
 | 
						|
}
 | 
						|
 | 
						|
static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
 | 
						|
			      struct vmemmap_remap_walk *walk)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Remap the tail pages as read-only to catch illegal write operation
 | 
						|
	 * to the tail pages.
 | 
						|
	 */
 | 
						|
	pgprot_t pgprot = PAGE_KERNEL_RO;
 | 
						|
	struct page *page = pte_page(ptep_get(pte));
 | 
						|
	pte_t entry;
 | 
						|
 | 
						|
	/* Remapping the head page requires r/w */
 | 
						|
	if (unlikely(addr == walk->reuse_addr)) {
 | 
						|
		pgprot = PAGE_KERNEL;
 | 
						|
		list_del(&walk->reuse_page->lru);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Makes sure that preceding stores to the page contents from
 | 
						|
		 * vmemmap_remap_free() become visible before the set_pte_at()
 | 
						|
		 * write.
 | 
						|
		 */
 | 
						|
		smp_wmb();
 | 
						|
	}
 | 
						|
 | 
						|
	entry = mk_pte(walk->reuse_page, pgprot);
 | 
						|
	list_add(&page->lru, walk->vmemmap_pages);
 | 
						|
	set_pte_at(&init_mm, addr, pte, entry);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * How many struct page structs need to be reset. When we reuse the head
 | 
						|
 * struct page, the special metadata (e.g. page->flags or page->mapping)
 | 
						|
 * cannot copy to the tail struct page structs. The invalid value will be
 | 
						|
 * checked in the free_tail_page_prepare(). In order to avoid the message
 | 
						|
 * of "corrupted mapping in tail page". We need to reset at least 4 (one
 | 
						|
 * head struct page struct and three tail struct page structs) struct page
 | 
						|
 * structs.
 | 
						|
 */
 | 
						|
#define NR_RESET_STRUCT_PAGE		4
 | 
						|
 | 
						|
static inline void reset_struct_pages(struct page *start)
 | 
						|
{
 | 
						|
	struct page *from = start + NR_RESET_STRUCT_PAGE;
 | 
						|
 | 
						|
	BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
 | 
						|
	memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
 | 
						|
}
 | 
						|
 | 
						|
static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
 | 
						|
				struct vmemmap_remap_walk *walk)
 | 
						|
{
 | 
						|
	pgprot_t pgprot = PAGE_KERNEL;
 | 
						|
	struct page *page;
 | 
						|
	void *to;
 | 
						|
 | 
						|
	BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page);
 | 
						|
 | 
						|
	page = list_first_entry(walk->vmemmap_pages, struct page, lru);
 | 
						|
	list_del(&page->lru);
 | 
						|
	to = page_to_virt(page);
 | 
						|
	copy_page(to, (void *)walk->reuse_addr);
 | 
						|
	reset_struct_pages(to);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Makes sure that preceding stores to the page contents become visible
 | 
						|
	 * before the set_pte_at() write.
 | 
						|
	 */
 | 
						|
	smp_wmb();
 | 
						|
	set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * vmemmap_remap_split - split the vmemmap virtual address range [@start, @end)
 | 
						|
 *                      backing PMDs of the directmap into PTEs
 | 
						|
 * @start:     start address of the vmemmap virtual address range that we want
 | 
						|
 *             to remap.
 | 
						|
 * @end:       end address of the vmemmap virtual address range that we want to
 | 
						|
 *             remap.
 | 
						|
 * @reuse:     reuse address.
 | 
						|
 *
 | 
						|
 * Return: %0 on success, negative error code otherwise.
 | 
						|
 */
 | 
						|
static int vmemmap_remap_split(unsigned long start, unsigned long end,
 | 
						|
			       unsigned long reuse)
 | 
						|
{
 | 
						|
	struct vmemmap_remap_walk walk = {
 | 
						|
		.remap_pte	= NULL,
 | 
						|
		.flags		= VMEMMAP_SPLIT_NO_TLB_FLUSH,
 | 
						|
	};
 | 
						|
 | 
						|
	/* See the comment in the vmemmap_remap_free(). */
 | 
						|
	BUG_ON(start - reuse != PAGE_SIZE);
 | 
						|
 | 
						|
	return vmemmap_remap_range(reuse, end, &walk);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
 | 
						|
 *			to the page which @reuse is mapped to, then free vmemmap
 | 
						|
 *			which the range are mapped to.
 | 
						|
 * @start:	start address of the vmemmap virtual address range that we want
 | 
						|
 *		to remap.
 | 
						|
 * @end:	end address of the vmemmap virtual address range that we want to
 | 
						|
 *		remap.
 | 
						|
 * @reuse:	reuse address.
 | 
						|
 * @vmemmap_pages: list to deposit vmemmap pages to be freed.  It is callers
 | 
						|
 *		responsibility to free pages.
 | 
						|
 * @flags:	modifications to vmemmap_remap_walk flags
 | 
						|
 *
 | 
						|
 * Return: %0 on success, negative error code otherwise.
 | 
						|
 */
 | 
						|
static int vmemmap_remap_free(unsigned long start, unsigned long end,
 | 
						|
			      unsigned long reuse,
 | 
						|
			      struct list_head *vmemmap_pages,
 | 
						|
			      unsigned long flags)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct vmemmap_remap_walk walk = {
 | 
						|
		.remap_pte	= vmemmap_remap_pte,
 | 
						|
		.reuse_addr	= reuse,
 | 
						|
		.vmemmap_pages	= vmemmap_pages,
 | 
						|
		.flags		= flags,
 | 
						|
	};
 | 
						|
	int nid = page_to_nid((struct page *)reuse);
 | 
						|
	gfp_t gfp_mask = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allocate a new head vmemmap page to avoid breaking a contiguous
 | 
						|
	 * block of struct page memory when freeing it back to page allocator
 | 
						|
	 * in free_vmemmap_page_list(). This will allow the likely contiguous
 | 
						|
	 * struct page backing memory to be kept contiguous and allowing for
 | 
						|
	 * more allocations of hugepages. Fallback to the currently
 | 
						|
	 * mapped head page in case should it fail to allocate.
 | 
						|
	 */
 | 
						|
	walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
 | 
						|
	if (walk.reuse_page) {
 | 
						|
		copy_page(page_to_virt(walk.reuse_page),
 | 
						|
			  (void *)walk.reuse_addr);
 | 
						|
		list_add(&walk.reuse_page->lru, vmemmap_pages);
 | 
						|
		memmap_pages_add(1);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In order to make remapping routine most efficient for the huge pages,
 | 
						|
	 * the routine of vmemmap page table walking has the following rules
 | 
						|
	 * (see more details from the vmemmap_pte_range()):
 | 
						|
	 *
 | 
						|
	 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
 | 
						|
	 *   should be continuous.
 | 
						|
	 * - The @reuse address is part of the range [@reuse, @end) that we are
 | 
						|
	 *   walking which is passed to vmemmap_remap_range().
 | 
						|
	 * - The @reuse address is the first in the complete range.
 | 
						|
	 *
 | 
						|
	 * So we need to make sure that @start and @reuse meet the above rules.
 | 
						|
	 */
 | 
						|
	BUG_ON(start - reuse != PAGE_SIZE);
 | 
						|
 | 
						|
	ret = vmemmap_remap_range(reuse, end, &walk);
 | 
						|
	if (ret && walk.nr_walked) {
 | 
						|
		end = reuse + walk.nr_walked * PAGE_SIZE;
 | 
						|
		/*
 | 
						|
		 * vmemmap_pages contains pages from the previous
 | 
						|
		 * vmemmap_remap_range call which failed.  These
 | 
						|
		 * are pages which were removed from the vmemmap.
 | 
						|
		 * They will be restored in the following call.
 | 
						|
		 */
 | 
						|
		walk = (struct vmemmap_remap_walk) {
 | 
						|
			.remap_pte	= vmemmap_restore_pte,
 | 
						|
			.reuse_addr	= reuse,
 | 
						|
			.vmemmap_pages	= vmemmap_pages,
 | 
						|
			.flags		= 0,
 | 
						|
		};
 | 
						|
 | 
						|
		vmemmap_remap_range(reuse, end, &walk);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
 | 
						|
				   struct list_head *list)
 | 
						|
{
 | 
						|
	gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
 | 
						|
	unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
 | 
						|
	int nid = page_to_nid((struct page *)start);
 | 
						|
	struct page *page, *next;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < nr_pages; i++) {
 | 
						|
		page = alloc_pages_node(nid, gfp_mask, 0);
 | 
						|
		if (!page)
 | 
						|
			goto out;
 | 
						|
		list_add(&page->lru, list);
 | 
						|
	}
 | 
						|
	memmap_pages_add(nr_pages);
 | 
						|
 | 
						|
	return 0;
 | 
						|
out:
 | 
						|
	list_for_each_entry_safe(page, next, list, lru)
 | 
						|
		__free_page(page);
 | 
						|
	return -ENOMEM;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
 | 
						|
 *			 to the page which is from the @vmemmap_pages
 | 
						|
 *			 respectively.
 | 
						|
 * @start:	start address of the vmemmap virtual address range that we want
 | 
						|
 *		to remap.
 | 
						|
 * @end:	end address of the vmemmap virtual address range that we want to
 | 
						|
 *		remap.
 | 
						|
 * @reuse:	reuse address.
 | 
						|
 * @flags:	modifications to vmemmap_remap_walk flags
 | 
						|
 *
 | 
						|
 * Return: %0 on success, negative error code otherwise.
 | 
						|
 */
 | 
						|
static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
 | 
						|
			       unsigned long reuse, unsigned long flags)
 | 
						|
{
 | 
						|
	LIST_HEAD(vmemmap_pages);
 | 
						|
	struct vmemmap_remap_walk walk = {
 | 
						|
		.remap_pte	= vmemmap_restore_pte,
 | 
						|
		.reuse_addr	= reuse,
 | 
						|
		.vmemmap_pages	= &vmemmap_pages,
 | 
						|
		.flags		= flags,
 | 
						|
	};
 | 
						|
 | 
						|
	/* See the comment in the vmemmap_remap_free(). */
 | 
						|
	BUG_ON(start - reuse != PAGE_SIZE);
 | 
						|
 | 
						|
	if (alloc_vmemmap_page_list(start, end, &vmemmap_pages))
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	return vmemmap_remap_range(reuse, end, &walk);
 | 
						|
}
 | 
						|
 | 
						|
DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
 | 
						|
EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
 | 
						|
 | 
						|
static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
 | 
						|
static int __init hugetlb_vmemmap_optimize_param(char *buf)
 | 
						|
{
 | 
						|
	return kstrtobool(buf, &vmemmap_optimize_enabled);
 | 
						|
}
 | 
						|
early_param("hugetlb_free_vmemmap", hugetlb_vmemmap_optimize_param);
 | 
						|
 | 
						|
static int __hugetlb_vmemmap_restore_folio(const struct hstate *h,
 | 
						|
					   struct folio *folio, unsigned long flags)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
 | 
						|
	unsigned long vmemmap_reuse;
 | 
						|
 | 
						|
	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
 | 
						|
	VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio);
 | 
						|
 | 
						|
	if (!folio_test_hugetlb_vmemmap_optimized(folio))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (flags & VMEMMAP_SYNCHRONIZE_RCU)
 | 
						|
		synchronize_rcu();
 | 
						|
 | 
						|
	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
 | 
						|
	vmemmap_reuse	= vmemmap_start;
 | 
						|
	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The pages which the vmemmap virtual address range [@vmemmap_start,
 | 
						|
	 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
 | 
						|
	 * the range is mapped to the page which @vmemmap_reuse is mapped to.
 | 
						|
	 * When a HugeTLB page is freed to the buddy allocator, previously
 | 
						|
	 * discarded vmemmap pages must be allocated and remapping.
 | 
						|
	 */
 | 
						|
	ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, flags);
 | 
						|
	if (!ret) {
 | 
						|
		folio_clear_hugetlb_vmemmap_optimized(folio);
 | 
						|
		static_branch_dec(&hugetlb_optimize_vmemmap_key);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * hugetlb_vmemmap_restore_folio - restore previously optimized (by
 | 
						|
 *				hugetlb_vmemmap_optimize_folio()) vmemmap pages which
 | 
						|
 *				will be reallocated and remapped.
 | 
						|
 * @h:		struct hstate.
 | 
						|
 * @folio:     the folio whose vmemmap pages will be restored.
 | 
						|
 *
 | 
						|
 * Return: %0 if @folio's vmemmap pages have been reallocated and remapped,
 | 
						|
 * negative error code otherwise.
 | 
						|
 */
 | 
						|
int hugetlb_vmemmap_restore_folio(const struct hstate *h, struct folio *folio)
 | 
						|
{
 | 
						|
	return __hugetlb_vmemmap_restore_folio(h, folio, VMEMMAP_SYNCHRONIZE_RCU);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * hugetlb_vmemmap_restore_folios - restore vmemmap for every folio on the list.
 | 
						|
 * @h:			hstate.
 | 
						|
 * @folio_list:		list of folios.
 | 
						|
 * @non_hvo_folios:	Output list of folios for which vmemmap exists.
 | 
						|
 *
 | 
						|
 * Return: number of folios for which vmemmap was restored, or an error code
 | 
						|
 *		if an error was encountered restoring vmemmap for a folio.
 | 
						|
 *		Folios that have vmemmap are moved to the non_hvo_folios
 | 
						|
 *		list.  Processing of entries stops when the first error is
 | 
						|
 *		encountered. The folio that experienced the error and all
 | 
						|
 *		non-processed folios will remain on folio_list.
 | 
						|
 */
 | 
						|
long hugetlb_vmemmap_restore_folios(const struct hstate *h,
 | 
						|
					struct list_head *folio_list,
 | 
						|
					struct list_head *non_hvo_folios)
 | 
						|
{
 | 
						|
	struct folio *folio, *t_folio;
 | 
						|
	long restored = 0;
 | 
						|
	long ret = 0;
 | 
						|
	unsigned long flags = VMEMMAP_REMAP_NO_TLB_FLUSH | VMEMMAP_SYNCHRONIZE_RCU;
 | 
						|
 | 
						|
	list_for_each_entry_safe(folio, t_folio, folio_list, lru) {
 | 
						|
		if (folio_test_hugetlb_vmemmap_optimized(folio)) {
 | 
						|
			ret = __hugetlb_vmemmap_restore_folio(h, folio, flags);
 | 
						|
			/* only need to synchronize_rcu() once for each batch */
 | 
						|
			flags &= ~VMEMMAP_SYNCHRONIZE_RCU;
 | 
						|
 | 
						|
			if (ret)
 | 
						|
				break;
 | 
						|
			restored++;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Add non-optimized folios to output list */
 | 
						|
		list_move(&folio->lru, non_hvo_folios);
 | 
						|
	}
 | 
						|
 | 
						|
	if (restored)
 | 
						|
		flush_tlb_all();
 | 
						|
	if (!ret)
 | 
						|
		ret = restored;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
 | 
						|
static bool vmemmap_should_optimize_folio(const struct hstate *h, struct folio *folio)
 | 
						|
{
 | 
						|
	if (folio_test_hugetlb_vmemmap_optimized(folio))
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (!READ_ONCE(vmemmap_optimize_enabled))
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (!hugetlb_vmemmap_optimizable(h))
 | 
						|
		return false;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static int __hugetlb_vmemmap_optimize_folio(const struct hstate *h,
 | 
						|
					    struct folio *folio,
 | 
						|
					    struct list_head *vmemmap_pages,
 | 
						|
					    unsigned long flags)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
 | 
						|
	unsigned long vmemmap_reuse;
 | 
						|
 | 
						|
	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
 | 
						|
	VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio);
 | 
						|
 | 
						|
	if (!vmemmap_should_optimize_folio(h, folio))
 | 
						|
		return ret;
 | 
						|
 | 
						|
	static_branch_inc(&hugetlb_optimize_vmemmap_key);
 | 
						|
 | 
						|
	if (flags & VMEMMAP_SYNCHRONIZE_RCU)
 | 
						|
		synchronize_rcu();
 | 
						|
	/*
 | 
						|
	 * Very Subtle
 | 
						|
	 * If VMEMMAP_REMAP_NO_TLB_FLUSH is set, TLB flushing is not performed
 | 
						|
	 * immediately after remapping.  As a result, subsequent accesses
 | 
						|
	 * and modifications to struct pages associated with the hugetlb
 | 
						|
	 * page could be to the OLD struct pages.  Set the vmemmap optimized
 | 
						|
	 * flag here so that it is copied to the new head page.  This keeps
 | 
						|
	 * the old and new struct pages in sync.
 | 
						|
	 * If there is an error during optimization, we will immediately FLUSH
 | 
						|
	 * the TLB and clear the flag below.
 | 
						|
	 */
 | 
						|
	folio_set_hugetlb_vmemmap_optimized(folio);
 | 
						|
 | 
						|
	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
 | 
						|
	vmemmap_reuse	= vmemmap_start;
 | 
						|
	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
 | 
						|
	 * to the page which @vmemmap_reuse is mapped to.  Add pages previously
 | 
						|
	 * mapping the range to vmemmap_pages list so that they can be freed by
 | 
						|
	 * the caller.
 | 
						|
	 */
 | 
						|
	ret = vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse,
 | 
						|
				 vmemmap_pages, flags);
 | 
						|
	if (ret) {
 | 
						|
		static_branch_dec(&hugetlb_optimize_vmemmap_key);
 | 
						|
		folio_clear_hugetlb_vmemmap_optimized(folio);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * hugetlb_vmemmap_optimize_folio - optimize @folio's vmemmap pages.
 | 
						|
 * @h:		struct hstate.
 | 
						|
 * @folio:     the folio whose vmemmap pages will be optimized.
 | 
						|
 *
 | 
						|
 * This function only tries to optimize @folio's vmemmap pages and does not
 | 
						|
 * guarantee that the optimization will succeed after it returns. The caller
 | 
						|
 * can use folio_test_hugetlb_vmemmap_optimized(@folio) to detect if @folio's
 | 
						|
 * vmemmap pages have been optimized.
 | 
						|
 */
 | 
						|
void hugetlb_vmemmap_optimize_folio(const struct hstate *h, struct folio *folio)
 | 
						|
{
 | 
						|
	LIST_HEAD(vmemmap_pages);
 | 
						|
 | 
						|
	__hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, VMEMMAP_SYNCHRONIZE_RCU);
 | 
						|
	free_vmemmap_page_list(&vmemmap_pages);
 | 
						|
}
 | 
						|
 | 
						|
static int hugetlb_vmemmap_split_folio(const struct hstate *h, struct folio *folio)
 | 
						|
{
 | 
						|
	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
 | 
						|
	unsigned long vmemmap_reuse;
 | 
						|
 | 
						|
	if (!vmemmap_should_optimize_folio(h, folio))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
 | 
						|
	vmemmap_reuse	= vmemmap_start;
 | 
						|
	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Split PMDs on the vmemmap virtual address range [@vmemmap_start,
 | 
						|
	 * @vmemmap_end]
 | 
						|
	 */
 | 
						|
	return vmemmap_remap_split(vmemmap_start, vmemmap_end, vmemmap_reuse);
 | 
						|
}
 | 
						|
 | 
						|
static void __hugetlb_vmemmap_optimize_folios(struct hstate *h,
 | 
						|
					      struct list_head *folio_list,
 | 
						|
					      bool boot)
 | 
						|
{
 | 
						|
	struct folio *folio;
 | 
						|
	int nr_to_optimize;
 | 
						|
	LIST_HEAD(vmemmap_pages);
 | 
						|
	unsigned long flags = VMEMMAP_REMAP_NO_TLB_FLUSH | VMEMMAP_SYNCHRONIZE_RCU;
 | 
						|
 | 
						|
	nr_to_optimize = 0;
 | 
						|
	list_for_each_entry(folio, folio_list, lru) {
 | 
						|
		int ret;
 | 
						|
		unsigned long spfn, epfn;
 | 
						|
 | 
						|
		if (boot && folio_test_hugetlb_vmemmap_optimized(folio)) {
 | 
						|
			/*
 | 
						|
			 * Already optimized by pre-HVO, just map the
 | 
						|
			 * mirrored tail page structs RO.
 | 
						|
			 */
 | 
						|
			spfn = (unsigned long)&folio->page;
 | 
						|
			epfn = spfn + pages_per_huge_page(h);
 | 
						|
			vmemmap_wrprotect_hvo(spfn, epfn, folio_nid(folio),
 | 
						|
					HUGETLB_VMEMMAP_RESERVE_SIZE);
 | 
						|
			register_page_bootmem_memmap(pfn_to_section_nr(spfn),
 | 
						|
					&folio->page,
 | 
						|
					HUGETLB_VMEMMAP_RESERVE_SIZE);
 | 
						|
			static_branch_inc(&hugetlb_optimize_vmemmap_key);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		nr_to_optimize++;
 | 
						|
 | 
						|
		ret = hugetlb_vmemmap_split_folio(h, folio);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Spliting the PMD requires allocating a page, thus lets fail
 | 
						|
		 * early once we encounter the first OOM. No point in retrying
 | 
						|
		 * as it can be dynamically done on remap with the memory
 | 
						|
		 * we get back from the vmemmap deduplication.
 | 
						|
		 */
 | 
						|
		if (ret == -ENOMEM)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!nr_to_optimize)
 | 
						|
		/*
 | 
						|
		 * All pre-HVO folios, nothing left to do. It's ok if
 | 
						|
		 * there is a mix of pre-HVO and not yet HVO-ed folios
 | 
						|
		 * here, as __hugetlb_vmemmap_optimize_folio() will
 | 
						|
		 * skip any folios that already have the optimized flag
 | 
						|
		 * set, see vmemmap_should_optimize_folio().
 | 
						|
		 */
 | 
						|
		goto out;
 | 
						|
 | 
						|
	flush_tlb_all();
 | 
						|
 | 
						|
	list_for_each_entry(folio, folio_list, lru) {
 | 
						|
		int ret;
 | 
						|
 | 
						|
		ret = __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, flags);
 | 
						|
		/* only need to synchronize_rcu() once for each batch */
 | 
						|
		flags &= ~VMEMMAP_SYNCHRONIZE_RCU;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Pages to be freed may have been accumulated.  If we
 | 
						|
		 * encounter an ENOMEM,  free what we have and try again.
 | 
						|
		 * This can occur in the case that both spliting fails
 | 
						|
		 * halfway and head page allocation also failed. In this
 | 
						|
		 * case __hugetlb_vmemmap_optimize_folio() would free memory
 | 
						|
		 * allowing more vmemmap remaps to occur.
 | 
						|
		 */
 | 
						|
		if (ret == -ENOMEM && !list_empty(&vmemmap_pages)) {
 | 
						|
			flush_tlb_all();
 | 
						|
			free_vmemmap_page_list(&vmemmap_pages);
 | 
						|
			INIT_LIST_HEAD(&vmemmap_pages);
 | 
						|
			__hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, flags);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	flush_tlb_all();
 | 
						|
	free_vmemmap_page_list(&vmemmap_pages);
 | 
						|
}
 | 
						|
 | 
						|
void hugetlb_vmemmap_optimize_folios(struct hstate *h, struct list_head *folio_list)
 | 
						|
{
 | 
						|
	__hugetlb_vmemmap_optimize_folios(h, folio_list, false);
 | 
						|
}
 | 
						|
 | 
						|
void hugetlb_vmemmap_optimize_bootmem_folios(struct hstate *h, struct list_head *folio_list)
 | 
						|
{
 | 
						|
	__hugetlb_vmemmap_optimize_folios(h, folio_list, true);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
 | 
						|
 | 
						|
/* Return true of a bootmem allocated HugeTLB page should be pre-HVO-ed */
 | 
						|
static bool vmemmap_should_optimize_bootmem_page(struct huge_bootmem_page *m)
 | 
						|
{
 | 
						|
	unsigned long section_size, psize, pmd_vmemmap_size;
 | 
						|
	phys_addr_t paddr;
 | 
						|
 | 
						|
	if (!READ_ONCE(vmemmap_optimize_enabled))
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (!hugetlb_vmemmap_optimizable(m->hstate))
 | 
						|
		return false;
 | 
						|
 | 
						|
	psize = huge_page_size(m->hstate);
 | 
						|
	paddr = virt_to_phys(m);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Pre-HVO only works if the bootmem huge page
 | 
						|
	 * is aligned to the section size.
 | 
						|
	 */
 | 
						|
	section_size = (1UL << PA_SECTION_SHIFT);
 | 
						|
	if (!IS_ALIGNED(paddr, section_size) ||
 | 
						|
	    !IS_ALIGNED(psize, section_size))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The pre-HVO code does not deal with splitting PMDS,
 | 
						|
	 * so the bootmem page must be aligned to the number
 | 
						|
	 * of base pages that can be mapped with one vmemmap PMD.
 | 
						|
	 */
 | 
						|
	pmd_vmemmap_size = (PMD_SIZE / (sizeof(struct page))) << PAGE_SHIFT;
 | 
						|
	if (!IS_ALIGNED(paddr, pmd_vmemmap_size) ||
 | 
						|
	    !IS_ALIGNED(psize, pmd_vmemmap_size))
 | 
						|
		return false;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize memmap section for a gigantic page, HVO-style.
 | 
						|
 */
 | 
						|
void __init hugetlb_vmemmap_init_early(int nid)
 | 
						|
{
 | 
						|
	unsigned long psize, paddr, section_size;
 | 
						|
	unsigned long ns, i, pnum, pfn, nr_pages;
 | 
						|
	unsigned long start, end;
 | 
						|
	struct huge_bootmem_page *m = NULL;
 | 
						|
	void *map;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Noting to do if bootmem pages were not allocated
 | 
						|
	 * early in boot, or if HVO wasn't enabled in the
 | 
						|
	 * first place.
 | 
						|
	 */
 | 
						|
	if (!hugetlb_bootmem_allocated())
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!READ_ONCE(vmemmap_optimize_enabled))
 | 
						|
		return;
 | 
						|
 | 
						|
	section_size = (1UL << PA_SECTION_SHIFT);
 | 
						|
 | 
						|
	list_for_each_entry(m, &huge_boot_pages[nid], list) {
 | 
						|
		if (!vmemmap_should_optimize_bootmem_page(m))
 | 
						|
			continue;
 | 
						|
 | 
						|
		nr_pages = pages_per_huge_page(m->hstate);
 | 
						|
		psize = nr_pages << PAGE_SHIFT;
 | 
						|
		paddr = virt_to_phys(m);
 | 
						|
		pfn = PHYS_PFN(paddr);
 | 
						|
		map = pfn_to_page(pfn);
 | 
						|
		start = (unsigned long)map;
 | 
						|
		end = start + nr_pages * sizeof(struct page);
 | 
						|
 | 
						|
		if (vmemmap_populate_hvo(start, end, nid,
 | 
						|
					HUGETLB_VMEMMAP_RESERVE_SIZE) < 0)
 | 
						|
			continue;
 | 
						|
 | 
						|
		memmap_boot_pages_add(HUGETLB_VMEMMAP_RESERVE_SIZE / PAGE_SIZE);
 | 
						|
 | 
						|
		pnum = pfn_to_section_nr(pfn);
 | 
						|
		ns = psize / section_size;
 | 
						|
 | 
						|
		for (i = 0; i < ns; i++) {
 | 
						|
			sparse_init_early_section(nid, map, pnum,
 | 
						|
					SECTION_IS_VMEMMAP_PREINIT);
 | 
						|
			map += section_map_size();
 | 
						|
			pnum++;
 | 
						|
		}
 | 
						|
 | 
						|
		m->flags |= HUGE_BOOTMEM_HVO;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void __init hugetlb_vmemmap_init_late(int nid)
 | 
						|
{
 | 
						|
	struct huge_bootmem_page *m, *tm;
 | 
						|
	unsigned long phys, nr_pages, start, end;
 | 
						|
	unsigned long pfn, nr_mmap;
 | 
						|
	struct hstate *h;
 | 
						|
	void *map;
 | 
						|
 | 
						|
	if (!hugetlb_bootmem_allocated())
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!READ_ONCE(vmemmap_optimize_enabled))
 | 
						|
		return;
 | 
						|
 | 
						|
	list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
 | 
						|
		if (!(m->flags & HUGE_BOOTMEM_HVO))
 | 
						|
			continue;
 | 
						|
 | 
						|
		phys = virt_to_phys(m);
 | 
						|
		h = m->hstate;
 | 
						|
		pfn = PHYS_PFN(phys);
 | 
						|
		nr_pages = pages_per_huge_page(h);
 | 
						|
 | 
						|
		if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
 | 
						|
			/*
 | 
						|
			 * Oops, the hugetlb page spans multiple zones.
 | 
						|
			 * Remove it from the list, and undo HVO.
 | 
						|
			 */
 | 
						|
			list_del(&m->list);
 | 
						|
 | 
						|
			map = pfn_to_page(pfn);
 | 
						|
 | 
						|
			start = (unsigned long)map;
 | 
						|
			end = start + nr_pages * sizeof(struct page);
 | 
						|
 | 
						|
			vmemmap_undo_hvo(start, end, nid,
 | 
						|
					 HUGETLB_VMEMMAP_RESERVE_SIZE);
 | 
						|
			nr_mmap = end - start - HUGETLB_VMEMMAP_RESERVE_SIZE;
 | 
						|
			memmap_boot_pages_add(DIV_ROUND_UP(nr_mmap, PAGE_SIZE));
 | 
						|
 | 
						|
			memblock_phys_free(phys, huge_page_size(h));
 | 
						|
			continue;
 | 
						|
		} else
 | 
						|
			m->flags |= HUGE_BOOTMEM_ZONES_VALID;
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static const struct ctl_table hugetlb_vmemmap_sysctls[] = {
 | 
						|
	{
 | 
						|
		.procname	= "hugetlb_optimize_vmemmap",
 | 
						|
		.data		= &vmemmap_optimize_enabled,
 | 
						|
		.maxlen		= sizeof(vmemmap_optimize_enabled),
 | 
						|
		.mode		= 0644,
 | 
						|
		.proc_handler	= proc_dobool,
 | 
						|
	},
 | 
						|
};
 | 
						|
 | 
						|
static int __init hugetlb_vmemmap_init(void)
 | 
						|
{
 | 
						|
	const struct hstate *h;
 | 
						|
 | 
						|
	/* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
 | 
						|
	BUILD_BUG_ON(__NR_USED_SUBPAGE > HUGETLB_VMEMMAP_RESERVE_PAGES);
 | 
						|
 | 
						|
	for_each_hstate(h) {
 | 
						|
		if (hugetlb_vmemmap_optimizable(h)) {
 | 
						|
			register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
late_initcall(hugetlb_vmemmap_init);
 |