mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 80a186074e
			
		
	
	
		80a186074e
		
	
	
	
	
		
			
			* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: sched: Fix pick_next_highest_task_rt() for cgroups sched: Cleanup: remove unused variable in try_to_wake_up() x86: Fix sched_clock_cpu for systems with unsynchronized TSC
		
			
				
	
	
		
			1778 lines
		
	
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1778 lines
		
	
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 | |
|  * policies)
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 
 | |
| #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 | |
| 
 | |
| static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 | |
| #endif
 | |
| 	return container_of(rt_se, struct task_struct, rt);
 | |
| }
 | |
| 
 | |
| static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	return rt_rq->rq;
 | |
| }
 | |
| 
 | |
| static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	return rt_se->rt_rq;
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_RT_GROUP_SCHED */
 | |
| 
 | |
| #define rt_entity_is_task(rt_se) (1)
 | |
| 
 | |
| static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	return container_of(rt_se, struct task_struct, rt);
 | |
| }
 | |
| 
 | |
| static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	return container_of(rt_rq, struct rq, rt);
 | |
| }
 | |
| 
 | |
| static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	struct task_struct *p = rt_task_of(rt_se);
 | |
| 	struct rq *rq = task_rq(p);
 | |
| 
 | |
| 	return &rq->rt;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_RT_GROUP_SCHED */
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static inline int rt_overloaded(struct rq *rq)
 | |
| {
 | |
| 	return atomic_read(&rq->rd->rto_count);
 | |
| }
 | |
| 
 | |
| static inline void rt_set_overload(struct rq *rq)
 | |
| {
 | |
| 	if (!rq->online)
 | |
| 		return;
 | |
| 
 | |
| 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 | |
| 	/*
 | |
| 	 * Make sure the mask is visible before we set
 | |
| 	 * the overload count. That is checked to determine
 | |
| 	 * if we should look at the mask. It would be a shame
 | |
| 	 * if we looked at the mask, but the mask was not
 | |
| 	 * updated yet.
 | |
| 	 */
 | |
| 	wmb();
 | |
| 	atomic_inc(&rq->rd->rto_count);
 | |
| }
 | |
| 
 | |
| static inline void rt_clear_overload(struct rq *rq)
 | |
| {
 | |
| 	if (!rq->online)
 | |
| 		return;
 | |
| 
 | |
| 	/* the order here really doesn't matter */
 | |
| 	atomic_dec(&rq->rd->rto_count);
 | |
| 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 | |
| }
 | |
| 
 | |
| static void update_rt_migration(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
 | |
| 		if (!rt_rq->overloaded) {
 | |
| 			rt_set_overload(rq_of_rt_rq(rt_rq));
 | |
| 			rt_rq->overloaded = 1;
 | |
| 		}
 | |
| 	} else if (rt_rq->overloaded) {
 | |
| 		rt_clear_overload(rq_of_rt_rq(rt_rq));
 | |
| 		rt_rq->overloaded = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | |
| {
 | |
| 	if (!rt_entity_is_task(rt_se))
 | |
| 		return;
 | |
| 
 | |
| 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 | |
| 
 | |
| 	rt_rq->rt_nr_total++;
 | |
| 	if (rt_se->nr_cpus_allowed > 1)
 | |
| 		rt_rq->rt_nr_migratory++;
 | |
| 
 | |
| 	update_rt_migration(rt_rq);
 | |
| }
 | |
| 
 | |
| static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | |
| {
 | |
| 	if (!rt_entity_is_task(rt_se))
 | |
| 		return;
 | |
| 
 | |
| 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 | |
| 
 | |
| 	rt_rq->rt_nr_total--;
 | |
| 	if (rt_se->nr_cpus_allowed > 1)
 | |
| 		rt_rq->rt_nr_migratory--;
 | |
| 
 | |
| 	update_rt_migration(rt_rq);
 | |
| }
 | |
| 
 | |
| static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 | |
| 	plist_node_init(&p->pushable_tasks, p->prio);
 | |
| 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 | |
| }
 | |
| 
 | |
| static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 | |
| }
 | |
| 
 | |
| static inline int has_pushable_tasks(struct rq *rq)
 | |
| {
 | |
| 	return !plist_head_empty(&rq->rt.pushable_tasks);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	return !list_empty(&rt_se->run_list);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 
 | |
| static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	if (!rt_rq->tg)
 | |
| 		return RUNTIME_INF;
 | |
| 
 | |
| 	return rt_rq->rt_runtime;
 | |
| }
 | |
| 
 | |
| static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 | |
| }
 | |
| 
 | |
| #define for_each_leaf_rt_rq(rt_rq, rq) \
 | |
| 	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
 | |
| 
 | |
| #define for_each_sched_rt_entity(rt_se) \
 | |
| 	for (; rt_se; rt_se = rt_se->parent)
 | |
| 
 | |
| static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	return rt_se->my_q;
 | |
| }
 | |
| 
 | |
| static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
 | |
| static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
 | |
| 
 | |
| static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	int this_cpu = smp_processor_id();
 | |
| 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 | |
| 	struct sched_rt_entity *rt_se;
 | |
| 
 | |
| 	rt_se = rt_rq->tg->rt_se[this_cpu];
 | |
| 
 | |
| 	if (rt_rq->rt_nr_running) {
 | |
| 		if (rt_se && !on_rt_rq(rt_se))
 | |
| 			enqueue_rt_entity(rt_se, false);
 | |
| 		if (rt_rq->highest_prio.curr < curr->prio)
 | |
| 			resched_task(curr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	int this_cpu = smp_processor_id();
 | |
| 	struct sched_rt_entity *rt_se;
 | |
| 
 | |
| 	rt_se = rt_rq->tg->rt_se[this_cpu];
 | |
| 
 | |
| 	if (rt_se && on_rt_rq(rt_se))
 | |
| 		dequeue_rt_entity(rt_se);
 | |
| }
 | |
| 
 | |
| static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 | |
| }
 | |
| 
 | |
| static int rt_se_boosted(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	if (rt_rq)
 | |
| 		return !!rt_rq->rt_nr_boosted;
 | |
| 
 | |
| 	p = rt_task_of(rt_se);
 | |
| 	return p->prio != p->normal_prio;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static inline const struct cpumask *sched_rt_period_mask(void)
 | |
| {
 | |
| 	return cpu_rq(smp_processor_id())->rd->span;
 | |
| }
 | |
| #else
 | |
| static inline const struct cpumask *sched_rt_period_mask(void)
 | |
| {
 | |
| 	return cpu_online_mask;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline
 | |
| struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 | |
| {
 | |
| 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 | |
| }
 | |
| 
 | |
| static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	return &rt_rq->tg->rt_bandwidth;
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_RT_GROUP_SCHED */
 | |
| 
 | |
| static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	return rt_rq->rt_runtime;
 | |
| }
 | |
| 
 | |
| static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	return ktime_to_ns(def_rt_bandwidth.rt_period);
 | |
| }
 | |
| 
 | |
| #define for_each_leaf_rt_rq(rt_rq, rq) \
 | |
| 	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 | |
| 
 | |
| #define for_each_sched_rt_entity(rt_se) \
 | |
| 	for (; rt_se; rt_se = NULL)
 | |
| 
 | |
| static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	if (rt_rq->rt_nr_running)
 | |
| 		resched_task(rq_of_rt_rq(rt_rq)->curr);
 | |
| }
 | |
| 
 | |
| static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	return rt_rq->rt_throttled;
 | |
| }
 | |
| 
 | |
| static inline const struct cpumask *sched_rt_period_mask(void)
 | |
| {
 | |
| 	return cpu_online_mask;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 | |
| {
 | |
| 	return &cpu_rq(cpu)->rt;
 | |
| }
 | |
| 
 | |
| static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	return &def_rt_bandwidth;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_RT_GROUP_SCHED */
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /*
 | |
|  * We ran out of runtime, see if we can borrow some from our neighbours.
 | |
|  */
 | |
| static int do_balance_runtime(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 | |
| 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
 | |
| 	int i, weight, more = 0;
 | |
| 	u64 rt_period;
 | |
| 
 | |
| 	weight = cpumask_weight(rd->span);
 | |
| 
 | |
| 	raw_spin_lock(&rt_b->rt_runtime_lock);
 | |
| 	rt_period = ktime_to_ns(rt_b->rt_period);
 | |
| 	for_each_cpu(i, rd->span) {
 | |
| 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 | |
| 		s64 diff;
 | |
| 
 | |
| 		if (iter == rt_rq)
 | |
| 			continue;
 | |
| 
 | |
| 		raw_spin_lock(&iter->rt_runtime_lock);
 | |
| 		/*
 | |
| 		 * Either all rqs have inf runtime and there's nothing to steal
 | |
| 		 * or __disable_runtime() below sets a specific rq to inf to
 | |
| 		 * indicate its been disabled and disalow stealing.
 | |
| 		 */
 | |
| 		if (iter->rt_runtime == RUNTIME_INF)
 | |
| 			goto next;
 | |
| 
 | |
| 		/*
 | |
| 		 * From runqueues with spare time, take 1/n part of their
 | |
| 		 * spare time, but no more than our period.
 | |
| 		 */
 | |
| 		diff = iter->rt_runtime - iter->rt_time;
 | |
| 		if (diff > 0) {
 | |
| 			diff = div_u64((u64)diff, weight);
 | |
| 			if (rt_rq->rt_runtime + diff > rt_period)
 | |
| 				diff = rt_period - rt_rq->rt_runtime;
 | |
| 			iter->rt_runtime -= diff;
 | |
| 			rt_rq->rt_runtime += diff;
 | |
| 			more = 1;
 | |
| 			if (rt_rq->rt_runtime == rt_period) {
 | |
| 				raw_spin_unlock(&iter->rt_runtime_lock);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| next:
 | |
| 		raw_spin_unlock(&iter->rt_runtime_lock);
 | |
| 	}
 | |
| 	raw_spin_unlock(&rt_b->rt_runtime_lock);
 | |
| 
 | |
| 	return more;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ensure this RQ takes back all the runtime it lend to its neighbours.
 | |
|  */
 | |
| static void __disable_runtime(struct rq *rq)
 | |
| {
 | |
| 	struct root_domain *rd = rq->rd;
 | |
| 	struct rt_rq *rt_rq;
 | |
| 
 | |
| 	if (unlikely(!scheduler_running))
 | |
| 		return;
 | |
| 
 | |
| 	for_each_leaf_rt_rq(rt_rq, rq) {
 | |
| 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 | |
| 		s64 want;
 | |
| 		int i;
 | |
| 
 | |
| 		raw_spin_lock(&rt_b->rt_runtime_lock);
 | |
| 		raw_spin_lock(&rt_rq->rt_runtime_lock);
 | |
| 		/*
 | |
| 		 * Either we're all inf and nobody needs to borrow, or we're
 | |
| 		 * already disabled and thus have nothing to do, or we have
 | |
| 		 * exactly the right amount of runtime to take out.
 | |
| 		 */
 | |
| 		if (rt_rq->rt_runtime == RUNTIME_INF ||
 | |
| 				rt_rq->rt_runtime == rt_b->rt_runtime)
 | |
| 			goto balanced;
 | |
| 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * Calculate the difference between what we started out with
 | |
| 		 * and what we current have, that's the amount of runtime
 | |
| 		 * we lend and now have to reclaim.
 | |
| 		 */
 | |
| 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
 | |
| 
 | |
| 		/*
 | |
| 		 * Greedy reclaim, take back as much as we can.
 | |
| 		 */
 | |
| 		for_each_cpu(i, rd->span) {
 | |
| 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 | |
| 			s64 diff;
 | |
| 
 | |
| 			/*
 | |
| 			 * Can't reclaim from ourselves or disabled runqueues.
 | |
| 			 */
 | |
| 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 | |
| 				continue;
 | |
| 
 | |
| 			raw_spin_lock(&iter->rt_runtime_lock);
 | |
| 			if (want > 0) {
 | |
| 				diff = min_t(s64, iter->rt_runtime, want);
 | |
| 				iter->rt_runtime -= diff;
 | |
| 				want -= diff;
 | |
| 			} else {
 | |
| 				iter->rt_runtime -= want;
 | |
| 				want -= want;
 | |
| 			}
 | |
| 			raw_spin_unlock(&iter->rt_runtime_lock);
 | |
| 
 | |
| 			if (!want)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		raw_spin_lock(&rt_rq->rt_runtime_lock);
 | |
| 		/*
 | |
| 		 * We cannot be left wanting - that would mean some runtime
 | |
| 		 * leaked out of the system.
 | |
| 		 */
 | |
| 		BUG_ON(want);
 | |
| balanced:
 | |
| 		/*
 | |
| 		 * Disable all the borrow logic by pretending we have inf
 | |
| 		 * runtime - in which case borrowing doesn't make sense.
 | |
| 		 */
 | |
| 		rt_rq->rt_runtime = RUNTIME_INF;
 | |
| 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | |
| 		raw_spin_unlock(&rt_b->rt_runtime_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void disable_runtime(struct rq *rq)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rq->lock, flags);
 | |
| 	__disable_runtime(rq);
 | |
| 	raw_spin_unlock_irqrestore(&rq->lock, flags);
 | |
| }
 | |
| 
 | |
| static void __enable_runtime(struct rq *rq)
 | |
| {
 | |
| 	struct rt_rq *rt_rq;
 | |
| 
 | |
| 	if (unlikely(!scheduler_running))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reset each runqueue's bandwidth settings
 | |
| 	 */
 | |
| 	for_each_leaf_rt_rq(rt_rq, rq) {
 | |
| 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 | |
| 
 | |
| 		raw_spin_lock(&rt_b->rt_runtime_lock);
 | |
| 		raw_spin_lock(&rt_rq->rt_runtime_lock);
 | |
| 		rt_rq->rt_runtime = rt_b->rt_runtime;
 | |
| 		rt_rq->rt_time = 0;
 | |
| 		rt_rq->rt_throttled = 0;
 | |
| 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | |
| 		raw_spin_unlock(&rt_b->rt_runtime_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void enable_runtime(struct rq *rq)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rq->lock, flags);
 | |
| 	__enable_runtime(rq);
 | |
| 	raw_spin_unlock_irqrestore(&rq->lock, flags);
 | |
| }
 | |
| 
 | |
| static int balance_runtime(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	int more = 0;
 | |
| 
 | |
| 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
 | |
| 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | |
| 		more = do_balance_runtime(rt_rq);
 | |
| 		raw_spin_lock(&rt_rq->rt_runtime_lock);
 | |
| 	}
 | |
| 
 | |
| 	return more;
 | |
| }
 | |
| #else /* !CONFIG_SMP */
 | |
| static inline int balance_runtime(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 | |
| {
 | |
| 	int i, idle = 1;
 | |
| 	const struct cpumask *span;
 | |
| 
 | |
| 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
 | |
| 		return 1;
 | |
| 
 | |
| 	span = sched_rt_period_mask();
 | |
| 	for_each_cpu(i, span) {
 | |
| 		int enqueue = 0;
 | |
| 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 | |
| 		struct rq *rq = rq_of_rt_rq(rt_rq);
 | |
| 
 | |
| 		raw_spin_lock(&rq->lock);
 | |
| 		if (rt_rq->rt_time) {
 | |
| 			u64 runtime;
 | |
| 
 | |
| 			raw_spin_lock(&rt_rq->rt_runtime_lock);
 | |
| 			if (rt_rq->rt_throttled)
 | |
| 				balance_runtime(rt_rq);
 | |
| 			runtime = rt_rq->rt_runtime;
 | |
| 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 | |
| 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 | |
| 				rt_rq->rt_throttled = 0;
 | |
| 				enqueue = 1;
 | |
| 			}
 | |
| 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
 | |
| 				idle = 0;
 | |
| 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | |
| 		} else if (rt_rq->rt_nr_running)
 | |
| 			idle = 0;
 | |
| 
 | |
| 		if (enqueue)
 | |
| 			sched_rt_rq_enqueue(rt_rq);
 | |
| 		raw_spin_unlock(&rq->lock);
 | |
| 	}
 | |
| 
 | |
| 	return idle;
 | |
| }
 | |
| 
 | |
| static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 | |
| 
 | |
| 	if (rt_rq)
 | |
| 		return rt_rq->highest_prio.curr;
 | |
| #endif
 | |
| 
 | |
| 	return rt_task_of(rt_se)->prio;
 | |
| }
 | |
| 
 | |
| static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 | |
| {
 | |
| 	u64 runtime = sched_rt_runtime(rt_rq);
 | |
| 
 | |
| 	if (rt_rq->rt_throttled)
 | |
| 		return rt_rq_throttled(rt_rq);
 | |
| 
 | |
| 	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
 | |
| 		return 0;
 | |
| 
 | |
| 	balance_runtime(rt_rq);
 | |
| 	runtime = sched_rt_runtime(rt_rq);
 | |
| 	if (runtime == RUNTIME_INF)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (rt_rq->rt_time > runtime) {
 | |
| 		rt_rq->rt_throttled = 1;
 | |
| 		if (rt_rq_throttled(rt_rq)) {
 | |
| 			sched_rt_rq_dequeue(rt_rq);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the current task's runtime statistics. Skip current tasks that
 | |
|  * are not in our scheduling class.
 | |
|  */
 | |
| static void update_curr_rt(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *curr = rq->curr;
 | |
| 	struct sched_rt_entity *rt_se = &curr->rt;
 | |
| 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 | |
| 	u64 delta_exec;
 | |
| 
 | |
| 	if (!task_has_rt_policy(curr))
 | |
| 		return;
 | |
| 
 | |
| 	delta_exec = rq->clock - curr->se.exec_start;
 | |
| 	if (unlikely((s64)delta_exec < 0))
 | |
| 		delta_exec = 0;
 | |
| 
 | |
| 	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
 | |
| 
 | |
| 	curr->se.sum_exec_runtime += delta_exec;
 | |
| 	account_group_exec_runtime(curr, delta_exec);
 | |
| 
 | |
| 	curr->se.exec_start = rq->clock;
 | |
| 	cpuacct_charge(curr, delta_exec);
 | |
| 
 | |
| 	sched_rt_avg_update(rq, delta_exec);
 | |
| 
 | |
| 	if (!rt_bandwidth_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	for_each_sched_rt_entity(rt_se) {
 | |
| 		rt_rq = rt_rq_of_se(rt_se);
 | |
| 
 | |
| 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
 | |
| 			raw_spin_lock(&rt_rq->rt_runtime_lock);
 | |
| 			rt_rq->rt_time += delta_exec;
 | |
| 			if (sched_rt_runtime_exceeded(rt_rq))
 | |
| 				resched_task(curr);
 | |
| 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #if defined CONFIG_SMP
 | |
| 
 | |
| static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
 | |
| 
 | |
| static inline int next_prio(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
 | |
| 
 | |
| 	if (next && rt_prio(next->prio))
 | |
| 		return next->prio;
 | |
| 	else
 | |
| 		return MAX_RT_PRIO;
 | |
| }
 | |
| 
 | |
| static void
 | |
| inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
 | |
| {
 | |
| 	struct rq *rq = rq_of_rt_rq(rt_rq);
 | |
| 
 | |
| 	if (prio < prev_prio) {
 | |
| 
 | |
| 		/*
 | |
| 		 * If the new task is higher in priority than anything on the
 | |
| 		 * run-queue, we know that the previous high becomes our
 | |
| 		 * next-highest.
 | |
| 		 */
 | |
| 		rt_rq->highest_prio.next = prev_prio;
 | |
| 
 | |
| 		if (rq->online)
 | |
| 			cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
 | |
| 
 | |
| 	} else if (prio == rt_rq->highest_prio.curr)
 | |
| 		/*
 | |
| 		 * If the next task is equal in priority to the highest on
 | |
| 		 * the run-queue, then we implicitly know that the next highest
 | |
| 		 * task cannot be any lower than current
 | |
| 		 */
 | |
| 		rt_rq->highest_prio.next = prio;
 | |
| 	else if (prio < rt_rq->highest_prio.next)
 | |
| 		/*
 | |
| 		 * Otherwise, we need to recompute next-highest
 | |
| 		 */
 | |
| 		rt_rq->highest_prio.next = next_prio(rq);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
 | |
| {
 | |
| 	struct rq *rq = rq_of_rt_rq(rt_rq);
 | |
| 
 | |
| 	if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
 | |
| 		rt_rq->highest_prio.next = next_prio(rq);
 | |
| 
 | |
| 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
 | |
| 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_SMP */
 | |
| 
 | |
| static inline
 | |
| void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
 | |
| static inline
 | |
| void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 | |
| static void
 | |
| inc_rt_prio(struct rt_rq *rt_rq, int prio)
 | |
| {
 | |
| 	int prev_prio = rt_rq->highest_prio.curr;
 | |
| 
 | |
| 	if (prio < prev_prio)
 | |
| 		rt_rq->highest_prio.curr = prio;
 | |
| 
 | |
| 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dec_rt_prio(struct rt_rq *rt_rq, int prio)
 | |
| {
 | |
| 	int prev_prio = rt_rq->highest_prio.curr;
 | |
| 
 | |
| 	if (rt_rq->rt_nr_running) {
 | |
| 
 | |
| 		WARN_ON(prio < prev_prio);
 | |
| 
 | |
| 		/*
 | |
| 		 * This may have been our highest task, and therefore
 | |
| 		 * we may have some recomputation to do
 | |
| 		 */
 | |
| 		if (prio == prev_prio) {
 | |
| 			struct rt_prio_array *array = &rt_rq->active;
 | |
| 
 | |
| 			rt_rq->highest_prio.curr =
 | |
| 				sched_find_first_bit(array->bitmap);
 | |
| 		}
 | |
| 
 | |
| 	} else
 | |
| 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
 | |
| 
 | |
| 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
 | |
| static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
 | |
| 
 | |
| #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
 | |
| 
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 
 | |
| static void
 | |
| inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | |
| {
 | |
| 	if (rt_se_boosted(rt_se))
 | |
| 		rt_rq->rt_nr_boosted++;
 | |
| 
 | |
| 	if (rt_rq->tg)
 | |
| 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | |
| {
 | |
| 	if (rt_se_boosted(rt_se))
 | |
| 		rt_rq->rt_nr_boosted--;
 | |
| 
 | |
| 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_RT_GROUP_SCHED */
 | |
| 
 | |
| static void
 | |
| inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | |
| {
 | |
| 	start_rt_bandwidth(&def_rt_bandwidth);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
 | |
| 
 | |
| #endif /* CONFIG_RT_GROUP_SCHED */
 | |
| 
 | |
| static inline
 | |
| void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | |
| {
 | |
| 	int prio = rt_se_prio(rt_se);
 | |
| 
 | |
| 	WARN_ON(!rt_prio(prio));
 | |
| 	rt_rq->rt_nr_running++;
 | |
| 
 | |
| 	inc_rt_prio(rt_rq, prio);
 | |
| 	inc_rt_migration(rt_se, rt_rq);
 | |
| 	inc_rt_group(rt_se, rt_rq);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | |
| {
 | |
| 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
 | |
| 	WARN_ON(!rt_rq->rt_nr_running);
 | |
| 	rt_rq->rt_nr_running--;
 | |
| 
 | |
| 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
 | |
| 	dec_rt_migration(rt_se, rt_rq);
 | |
| 	dec_rt_group(rt_se, rt_rq);
 | |
| }
 | |
| 
 | |
| static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
 | |
| {
 | |
| 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 | |
| 	struct rt_prio_array *array = &rt_rq->active;
 | |
| 	struct rt_rq *group_rq = group_rt_rq(rt_se);
 | |
| 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't enqueue the group if its throttled, or when empty.
 | |
| 	 * The latter is a consequence of the former when a child group
 | |
| 	 * get throttled and the current group doesn't have any other
 | |
| 	 * active members.
 | |
| 	 */
 | |
| 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
 | |
| 		return;
 | |
| 
 | |
| 	if (head)
 | |
| 		list_add(&rt_se->run_list, queue);
 | |
| 	else
 | |
| 		list_add_tail(&rt_se->run_list, queue);
 | |
| 	__set_bit(rt_se_prio(rt_se), array->bitmap);
 | |
| 
 | |
| 	inc_rt_tasks(rt_se, rt_rq);
 | |
| }
 | |
| 
 | |
| static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 | |
| 	struct rt_prio_array *array = &rt_rq->active;
 | |
| 
 | |
| 	list_del_init(&rt_se->run_list);
 | |
| 	if (list_empty(array->queue + rt_se_prio(rt_se)))
 | |
| 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
 | |
| 
 | |
| 	dec_rt_tasks(rt_se, rt_rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Because the prio of an upper entry depends on the lower
 | |
|  * entries, we must remove entries top - down.
 | |
|  */
 | |
| static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	struct sched_rt_entity *back = NULL;
 | |
| 
 | |
| 	for_each_sched_rt_entity(rt_se) {
 | |
| 		rt_se->back = back;
 | |
| 		back = rt_se;
 | |
| 	}
 | |
| 
 | |
| 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
 | |
| 		if (on_rt_rq(rt_se))
 | |
| 			__dequeue_rt_entity(rt_se);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
 | |
| {
 | |
| 	dequeue_rt_stack(rt_se);
 | |
| 	for_each_sched_rt_entity(rt_se)
 | |
| 		__enqueue_rt_entity(rt_se, head);
 | |
| }
 | |
| 
 | |
| static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
 | |
| {
 | |
| 	dequeue_rt_stack(rt_se);
 | |
| 
 | |
| 	for_each_sched_rt_entity(rt_se) {
 | |
| 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
 | |
| 
 | |
| 		if (rt_rq && rt_rq->rt_nr_running)
 | |
| 			__enqueue_rt_entity(rt_se, false);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adding/removing a task to/from a priority array:
 | |
|  */
 | |
| static void
 | |
| enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, bool head)
 | |
| {
 | |
| 	struct sched_rt_entity *rt_se = &p->rt;
 | |
| 
 | |
| 	if (wakeup)
 | |
| 		rt_se->timeout = 0;
 | |
| 
 | |
| 	enqueue_rt_entity(rt_se, head);
 | |
| 
 | |
| 	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
 | |
| 		enqueue_pushable_task(rq, p);
 | |
| }
 | |
| 
 | |
| static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
 | |
| {
 | |
| 	struct sched_rt_entity *rt_se = &p->rt;
 | |
| 
 | |
| 	update_curr_rt(rq);
 | |
| 	dequeue_rt_entity(rt_se);
 | |
| 
 | |
| 	dequeue_pushable_task(rq, p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Put task to the end of the run list without the overhead of dequeue
 | |
|  * followed by enqueue.
 | |
|  */
 | |
| static void
 | |
| requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
 | |
| {
 | |
| 	if (on_rt_rq(rt_se)) {
 | |
| 		struct rt_prio_array *array = &rt_rq->active;
 | |
| 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
 | |
| 
 | |
| 		if (head)
 | |
| 			list_move(&rt_se->run_list, queue);
 | |
| 		else
 | |
| 			list_move_tail(&rt_se->run_list, queue);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
 | |
| {
 | |
| 	struct sched_rt_entity *rt_se = &p->rt;
 | |
| 	struct rt_rq *rt_rq;
 | |
| 
 | |
| 	for_each_sched_rt_entity(rt_se) {
 | |
| 		rt_rq = rt_rq_of_se(rt_se);
 | |
| 		requeue_rt_entity(rt_rq, rt_se, head);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void yield_task_rt(struct rq *rq)
 | |
| {
 | |
| 	requeue_task_rt(rq, rq->curr, 0);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static int find_lowest_rq(struct task_struct *task);
 | |
| 
 | |
| static int select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
 | |
| {
 | |
| 	struct rq *rq = task_rq(p);
 | |
| 
 | |
| 	if (sd_flag != SD_BALANCE_WAKE)
 | |
| 		return smp_processor_id();
 | |
| 
 | |
| 	/*
 | |
| 	 * If the current task is an RT task, then
 | |
| 	 * try to see if we can wake this RT task up on another
 | |
| 	 * runqueue. Otherwise simply start this RT task
 | |
| 	 * on its current runqueue.
 | |
| 	 *
 | |
| 	 * We want to avoid overloading runqueues. Even if
 | |
| 	 * the RT task is of higher priority than the current RT task.
 | |
| 	 * RT tasks behave differently than other tasks. If
 | |
| 	 * one gets preempted, we try to push it off to another queue.
 | |
| 	 * So trying to keep a preempting RT task on the same
 | |
| 	 * cache hot CPU will force the running RT task to
 | |
| 	 * a cold CPU. So we waste all the cache for the lower
 | |
| 	 * RT task in hopes of saving some of a RT task
 | |
| 	 * that is just being woken and probably will have
 | |
| 	 * cold cache anyway.
 | |
| 	 */
 | |
| 	if (unlikely(rt_task(rq->curr)) &&
 | |
| 	    (p->rt.nr_cpus_allowed > 1)) {
 | |
| 		int cpu = find_lowest_rq(p);
 | |
| 
 | |
| 		return (cpu == -1) ? task_cpu(p) : cpu;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Otherwise, just let it ride on the affined RQ and the
 | |
| 	 * post-schedule router will push the preempted task away
 | |
| 	 */
 | |
| 	return task_cpu(p);
 | |
| }
 | |
| 
 | |
| static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	if (rq->curr->rt.nr_cpus_allowed == 1)
 | |
| 		return;
 | |
| 
 | |
| 	if (p->rt.nr_cpus_allowed != 1
 | |
| 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
 | |
| 		return;
 | |
| 
 | |
| 	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * There appears to be other cpus that can accept
 | |
| 	 * current and none to run 'p', so lets reschedule
 | |
| 	 * to try and push current away:
 | |
| 	 */
 | |
| 	requeue_task_rt(rq, p, 1);
 | |
| 	resched_task(rq->curr);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * Preempt the current task with a newly woken task if needed:
 | |
|  */
 | |
| static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
 | |
| {
 | |
| 	if (p->prio < rq->curr->prio) {
 | |
| 		resched_task(rq->curr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * If:
 | |
| 	 *
 | |
| 	 * - the newly woken task is of equal priority to the current task
 | |
| 	 * - the newly woken task is non-migratable while current is migratable
 | |
| 	 * - current will be preempted on the next reschedule
 | |
| 	 *
 | |
| 	 * we should check to see if current can readily move to a different
 | |
| 	 * cpu.  If so, we will reschedule to allow the push logic to try
 | |
| 	 * to move current somewhere else, making room for our non-migratable
 | |
| 	 * task.
 | |
| 	 */
 | |
| 	if (p->prio == rq->curr->prio && !need_resched())
 | |
| 		check_preempt_equal_prio(rq, p);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
 | |
| 						   struct rt_rq *rt_rq)
 | |
| {
 | |
| 	struct rt_prio_array *array = &rt_rq->active;
 | |
| 	struct sched_rt_entity *next = NULL;
 | |
| 	struct list_head *queue;
 | |
| 	int idx;
 | |
| 
 | |
| 	idx = sched_find_first_bit(array->bitmap);
 | |
| 	BUG_ON(idx >= MAX_RT_PRIO);
 | |
| 
 | |
| 	queue = array->queue + idx;
 | |
| 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
 | |
| 
 | |
| 	return next;
 | |
| }
 | |
| 
 | |
| static struct task_struct *_pick_next_task_rt(struct rq *rq)
 | |
| {
 | |
| 	struct sched_rt_entity *rt_se;
 | |
| 	struct task_struct *p;
 | |
| 	struct rt_rq *rt_rq;
 | |
| 
 | |
| 	rt_rq = &rq->rt;
 | |
| 
 | |
| 	if (unlikely(!rt_rq->rt_nr_running))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (rt_rq_throttled(rt_rq))
 | |
| 		return NULL;
 | |
| 
 | |
| 	do {
 | |
| 		rt_se = pick_next_rt_entity(rq, rt_rq);
 | |
| 		BUG_ON(!rt_se);
 | |
| 		rt_rq = group_rt_rq(rt_se);
 | |
| 	} while (rt_rq);
 | |
| 
 | |
| 	p = rt_task_of(rt_se);
 | |
| 	p->se.exec_start = rq->clock;
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static struct task_struct *pick_next_task_rt(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *p = _pick_next_task_rt(rq);
 | |
| 
 | |
| 	/* The running task is never eligible for pushing */
 | |
| 	if (p)
 | |
| 		dequeue_pushable_task(rq, p);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * We detect this state here so that we can avoid taking the RQ
 | |
| 	 * lock again later if there is no need to push
 | |
| 	 */
 | |
| 	rq->post_schedule = has_pushable_tasks(rq);
 | |
| #endif
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	update_curr_rt(rq);
 | |
| 	p->se.exec_start = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The previous task needs to be made eligible for pushing
 | |
| 	 * if it is still active
 | |
| 	 */
 | |
| 	if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
 | |
| 		enqueue_pushable_task(rq, p);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| /* Only try algorithms three times */
 | |
| #define RT_MAX_TRIES 3
 | |
| 
 | |
| static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
 | |
| 
 | |
| static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
 | |
| {
 | |
| 	if (!task_running(rq, p) &&
 | |
| 	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
 | |
| 	    (p->rt.nr_cpus_allowed > 1))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Return the second highest RT task, NULL otherwise */
 | |
| static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
 | |
| {
 | |
| 	struct task_struct *next = NULL;
 | |
| 	struct sched_rt_entity *rt_se;
 | |
| 	struct rt_prio_array *array;
 | |
| 	struct rt_rq *rt_rq;
 | |
| 	int idx;
 | |
| 
 | |
| 	for_each_leaf_rt_rq(rt_rq, rq) {
 | |
| 		array = &rt_rq->active;
 | |
| 		idx = sched_find_first_bit(array->bitmap);
 | |
|  next_idx:
 | |
| 		if (idx >= MAX_RT_PRIO)
 | |
| 			continue;
 | |
| 		if (next && next->prio < idx)
 | |
| 			continue;
 | |
| 		list_for_each_entry(rt_se, array->queue + idx, run_list) {
 | |
| 			struct task_struct *p;
 | |
| 
 | |
| 			if (!rt_entity_is_task(rt_se))
 | |
| 				continue;
 | |
| 
 | |
| 			p = rt_task_of(rt_se);
 | |
| 			if (pick_rt_task(rq, p, cpu)) {
 | |
| 				next = p;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!next) {
 | |
| 			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
 | |
| 			goto next_idx;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return next;
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
 | |
| 
 | |
| static int find_lowest_rq(struct task_struct *task)
 | |
| {
 | |
| 	struct sched_domain *sd;
 | |
| 	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
 | |
| 	int this_cpu = smp_processor_id();
 | |
| 	int cpu      = task_cpu(task);
 | |
| 
 | |
| 	if (task->rt.nr_cpus_allowed == 1)
 | |
| 		return -1; /* No other targets possible */
 | |
| 
 | |
| 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
 | |
| 		return -1; /* No targets found */
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point we have built a mask of cpus representing the
 | |
| 	 * lowest priority tasks in the system.  Now we want to elect
 | |
| 	 * the best one based on our affinity and topology.
 | |
| 	 *
 | |
| 	 * We prioritize the last cpu that the task executed on since
 | |
| 	 * it is most likely cache-hot in that location.
 | |
| 	 */
 | |
| 	if (cpumask_test_cpu(cpu, lowest_mask))
 | |
| 		return cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Otherwise, we consult the sched_domains span maps to figure
 | |
| 	 * out which cpu is logically closest to our hot cache data.
 | |
| 	 */
 | |
| 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
 | |
| 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
 | |
| 
 | |
| 	for_each_domain(cpu, sd) {
 | |
| 		if (sd->flags & SD_WAKE_AFFINE) {
 | |
| 			int best_cpu;
 | |
| 
 | |
| 			/*
 | |
| 			 * "this_cpu" is cheaper to preempt than a
 | |
| 			 * remote processor.
 | |
| 			 */
 | |
| 			if (this_cpu != -1 &&
 | |
| 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd)))
 | |
| 				return this_cpu;
 | |
| 
 | |
| 			best_cpu = cpumask_first_and(lowest_mask,
 | |
| 						     sched_domain_span(sd));
 | |
| 			if (best_cpu < nr_cpu_ids)
 | |
| 				return best_cpu;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * And finally, if there were no matches within the domains
 | |
| 	 * just give the caller *something* to work with from the compatible
 | |
| 	 * locations.
 | |
| 	 */
 | |
| 	if (this_cpu != -1)
 | |
| 		return this_cpu;
 | |
| 
 | |
| 	cpu = cpumask_any(lowest_mask);
 | |
| 	if (cpu < nr_cpu_ids)
 | |
| 		return cpu;
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* Will lock the rq it finds */
 | |
| static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
 | |
| {
 | |
| 	struct rq *lowest_rq = NULL;
 | |
| 	int tries;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
 | |
| 		cpu = find_lowest_rq(task);
 | |
| 
 | |
| 		if ((cpu == -1) || (cpu == rq->cpu))
 | |
| 			break;
 | |
| 
 | |
| 		lowest_rq = cpu_rq(cpu);
 | |
| 
 | |
| 		/* if the prio of this runqueue changed, try again */
 | |
| 		if (double_lock_balance(rq, lowest_rq)) {
 | |
| 			/*
 | |
| 			 * We had to unlock the run queue. In
 | |
| 			 * the mean time, task could have
 | |
| 			 * migrated already or had its affinity changed.
 | |
| 			 * Also make sure that it wasn't scheduled on its rq.
 | |
| 			 */
 | |
| 			if (unlikely(task_rq(task) != rq ||
 | |
| 				     !cpumask_test_cpu(lowest_rq->cpu,
 | |
| 						       &task->cpus_allowed) ||
 | |
| 				     task_running(rq, task) ||
 | |
| 				     !task->se.on_rq)) {
 | |
| 
 | |
| 				raw_spin_unlock(&lowest_rq->lock);
 | |
| 				lowest_rq = NULL;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* If this rq is still suitable use it. */
 | |
| 		if (lowest_rq->rt.highest_prio.curr > task->prio)
 | |
| 			break;
 | |
| 
 | |
| 		/* try again */
 | |
| 		double_unlock_balance(rq, lowest_rq);
 | |
| 		lowest_rq = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return lowest_rq;
 | |
| }
 | |
| 
 | |
| static struct task_struct *pick_next_pushable_task(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	if (!has_pushable_tasks(rq))
 | |
| 		return NULL;
 | |
| 
 | |
| 	p = plist_first_entry(&rq->rt.pushable_tasks,
 | |
| 			      struct task_struct, pushable_tasks);
 | |
| 
 | |
| 	BUG_ON(rq->cpu != task_cpu(p));
 | |
| 	BUG_ON(task_current(rq, p));
 | |
| 	BUG_ON(p->rt.nr_cpus_allowed <= 1);
 | |
| 
 | |
| 	BUG_ON(!p->se.on_rq);
 | |
| 	BUG_ON(!rt_task(p));
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the current CPU has more than one RT task, see if the non
 | |
|  * running task can migrate over to a CPU that is running a task
 | |
|  * of lesser priority.
 | |
|  */
 | |
| static int push_rt_task(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *next_task;
 | |
| 	struct rq *lowest_rq;
 | |
| 
 | |
| 	if (!rq->rt.overloaded)
 | |
| 		return 0;
 | |
| 
 | |
| 	next_task = pick_next_pushable_task(rq);
 | |
| 	if (!next_task)
 | |
| 		return 0;
 | |
| 
 | |
|  retry:
 | |
| 	if (unlikely(next_task == rq->curr)) {
 | |
| 		WARN_ON(1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It's possible that the next_task slipped in of
 | |
| 	 * higher priority than current. If that's the case
 | |
| 	 * just reschedule current.
 | |
| 	 */
 | |
| 	if (unlikely(next_task->prio < rq->curr->prio)) {
 | |
| 		resched_task(rq->curr);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* We might release rq lock */
 | |
| 	get_task_struct(next_task);
 | |
| 
 | |
| 	/* find_lock_lowest_rq locks the rq if found */
 | |
| 	lowest_rq = find_lock_lowest_rq(next_task, rq);
 | |
| 	if (!lowest_rq) {
 | |
| 		struct task_struct *task;
 | |
| 		/*
 | |
| 		 * find lock_lowest_rq releases rq->lock
 | |
| 		 * so it is possible that next_task has migrated.
 | |
| 		 *
 | |
| 		 * We need to make sure that the task is still on the same
 | |
| 		 * run-queue and is also still the next task eligible for
 | |
| 		 * pushing.
 | |
| 		 */
 | |
| 		task = pick_next_pushable_task(rq);
 | |
| 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
 | |
| 			/*
 | |
| 			 * If we get here, the task hasnt moved at all, but
 | |
| 			 * it has failed to push.  We will not try again,
 | |
| 			 * since the other cpus will pull from us when they
 | |
| 			 * are ready.
 | |
| 			 */
 | |
| 			dequeue_pushable_task(rq, next_task);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (!task)
 | |
| 			/* No more tasks, just exit */
 | |
| 			goto out;
 | |
| 
 | |
| 		/*
 | |
| 		 * Something has shifted, try again.
 | |
| 		 */
 | |
| 		put_task_struct(next_task);
 | |
| 		next_task = task;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	deactivate_task(rq, next_task, 0);
 | |
| 	set_task_cpu(next_task, lowest_rq->cpu);
 | |
| 	activate_task(lowest_rq, next_task, 0);
 | |
| 
 | |
| 	resched_task(lowest_rq->curr);
 | |
| 
 | |
| 	double_unlock_balance(rq, lowest_rq);
 | |
| 
 | |
| out:
 | |
| 	put_task_struct(next_task);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void push_rt_tasks(struct rq *rq)
 | |
| {
 | |
| 	/* push_rt_task will return true if it moved an RT */
 | |
| 	while (push_rt_task(rq))
 | |
| 		;
 | |
| }
 | |
| 
 | |
| static int pull_rt_task(struct rq *this_rq)
 | |
| {
 | |
| 	int this_cpu = this_rq->cpu, ret = 0, cpu;
 | |
| 	struct task_struct *p;
 | |
| 	struct rq *src_rq;
 | |
| 
 | |
| 	if (likely(!rt_overloaded(this_rq)))
 | |
| 		return 0;
 | |
| 
 | |
| 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
 | |
| 		if (this_cpu == cpu)
 | |
| 			continue;
 | |
| 
 | |
| 		src_rq = cpu_rq(cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't bother taking the src_rq->lock if the next highest
 | |
| 		 * task is known to be lower-priority than our current task.
 | |
| 		 * This may look racy, but if this value is about to go
 | |
| 		 * logically higher, the src_rq will push this task away.
 | |
| 		 * And if its going logically lower, we do not care
 | |
| 		 */
 | |
| 		if (src_rq->rt.highest_prio.next >=
 | |
| 		    this_rq->rt.highest_prio.curr)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * We can potentially drop this_rq's lock in
 | |
| 		 * double_lock_balance, and another CPU could
 | |
| 		 * alter this_rq
 | |
| 		 */
 | |
| 		double_lock_balance(this_rq, src_rq);
 | |
| 
 | |
| 		/*
 | |
| 		 * Are there still pullable RT tasks?
 | |
| 		 */
 | |
| 		if (src_rq->rt.rt_nr_running <= 1)
 | |
| 			goto skip;
 | |
| 
 | |
| 		p = pick_next_highest_task_rt(src_rq, this_cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Do we have an RT task that preempts
 | |
| 		 * the to-be-scheduled task?
 | |
| 		 */
 | |
| 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
 | |
| 			WARN_ON(p == src_rq->curr);
 | |
| 			WARN_ON(!p->se.on_rq);
 | |
| 
 | |
| 			/*
 | |
| 			 * There's a chance that p is higher in priority
 | |
| 			 * than what's currently running on its cpu.
 | |
| 			 * This is just that p is wakeing up and hasn't
 | |
| 			 * had a chance to schedule. We only pull
 | |
| 			 * p if it is lower in priority than the
 | |
| 			 * current task on the run queue
 | |
| 			 */
 | |
| 			if (p->prio < src_rq->curr->prio)
 | |
| 				goto skip;
 | |
| 
 | |
| 			ret = 1;
 | |
| 
 | |
| 			deactivate_task(src_rq, p, 0);
 | |
| 			set_task_cpu(p, this_cpu);
 | |
| 			activate_task(this_rq, p, 0);
 | |
| 			/*
 | |
| 			 * We continue with the search, just in
 | |
| 			 * case there's an even higher prio task
 | |
| 			 * in another runqueue. (low likelyhood
 | |
| 			 * but possible)
 | |
| 			 */
 | |
| 		}
 | |
|  skip:
 | |
| 		double_unlock_balance(this_rq, src_rq);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| 	/* Try to pull RT tasks here if we lower this rq's prio */
 | |
| 	if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
 | |
| 		pull_rt_task(rq);
 | |
| }
 | |
| 
 | |
| static void post_schedule_rt(struct rq *rq)
 | |
| {
 | |
| 	push_rt_tasks(rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we are not running and we are not going to reschedule soon, we should
 | |
|  * try to push tasks away now
 | |
|  */
 | |
| static void task_woken_rt(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	if (!task_running(rq, p) &&
 | |
| 	    !test_tsk_need_resched(rq->curr) &&
 | |
| 	    has_pushable_tasks(rq) &&
 | |
| 	    p->rt.nr_cpus_allowed > 1)
 | |
| 		push_rt_tasks(rq);
 | |
| }
 | |
| 
 | |
| static void set_cpus_allowed_rt(struct task_struct *p,
 | |
| 				const struct cpumask *new_mask)
 | |
| {
 | |
| 	int weight = cpumask_weight(new_mask);
 | |
| 
 | |
| 	BUG_ON(!rt_task(p));
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the migration status of the RQ if we have an RT task
 | |
| 	 * which is running AND changing its weight value.
 | |
| 	 */
 | |
| 	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
 | |
| 		struct rq *rq = task_rq(p);
 | |
| 
 | |
| 		if (!task_current(rq, p)) {
 | |
| 			/*
 | |
| 			 * Make sure we dequeue this task from the pushable list
 | |
| 			 * before going further.  It will either remain off of
 | |
| 			 * the list because we are no longer pushable, or it
 | |
| 			 * will be requeued.
 | |
| 			 */
 | |
| 			if (p->rt.nr_cpus_allowed > 1)
 | |
| 				dequeue_pushable_task(rq, p);
 | |
| 
 | |
| 			/*
 | |
| 			 * Requeue if our weight is changing and still > 1
 | |
| 			 */
 | |
| 			if (weight > 1)
 | |
| 				enqueue_pushable_task(rq, p);
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
 | |
| 			rq->rt.rt_nr_migratory++;
 | |
| 		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
 | |
| 			BUG_ON(!rq->rt.rt_nr_migratory);
 | |
| 			rq->rt.rt_nr_migratory--;
 | |
| 		}
 | |
| 
 | |
| 		update_rt_migration(&rq->rt);
 | |
| 	}
 | |
| 
 | |
| 	cpumask_copy(&p->cpus_allowed, new_mask);
 | |
| 	p->rt.nr_cpus_allowed = weight;
 | |
| }
 | |
| 
 | |
| /* Assumes rq->lock is held */
 | |
| static void rq_online_rt(struct rq *rq)
 | |
| {
 | |
| 	if (rq->rt.overloaded)
 | |
| 		rt_set_overload(rq);
 | |
| 
 | |
| 	__enable_runtime(rq);
 | |
| 
 | |
| 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
 | |
| }
 | |
| 
 | |
| /* Assumes rq->lock is held */
 | |
| static void rq_offline_rt(struct rq *rq)
 | |
| {
 | |
| 	if (rq->rt.overloaded)
 | |
| 		rt_clear_overload(rq);
 | |
| 
 | |
| 	__disable_runtime(rq);
 | |
| 
 | |
| 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When switch from the rt queue, we bring ourselves to a position
 | |
|  * that we might want to pull RT tasks from other runqueues.
 | |
|  */
 | |
| static void switched_from_rt(struct rq *rq, struct task_struct *p,
 | |
| 			   int running)
 | |
| {
 | |
| 	/*
 | |
| 	 * If there are other RT tasks then we will reschedule
 | |
| 	 * and the scheduling of the other RT tasks will handle
 | |
| 	 * the balancing. But if we are the last RT task
 | |
| 	 * we may need to handle the pulling of RT tasks
 | |
| 	 * now.
 | |
| 	 */
 | |
| 	if (!rq->rt.rt_nr_running)
 | |
| 		pull_rt_task(rq);
 | |
| }
 | |
| 
 | |
| static inline void init_sched_rt_class(void)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for_each_possible_cpu(i)
 | |
| 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
 | |
| 					GFP_KERNEL, cpu_to_node(i));
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * When switching a task to RT, we may overload the runqueue
 | |
|  * with RT tasks. In this case we try to push them off to
 | |
|  * other runqueues.
 | |
|  */
 | |
| static void switched_to_rt(struct rq *rq, struct task_struct *p,
 | |
| 			   int running)
 | |
| {
 | |
| 	int check_resched = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are already running, then there's nothing
 | |
| 	 * that needs to be done. But if we are not running
 | |
| 	 * we may need to preempt the current running task.
 | |
| 	 * If that current running task is also an RT task
 | |
| 	 * then see if we can move to another run queue.
 | |
| 	 */
 | |
| 	if (!running) {
 | |
| #ifdef CONFIG_SMP
 | |
| 		if (rq->rt.overloaded && push_rt_task(rq) &&
 | |
| 		    /* Don't resched if we changed runqueues */
 | |
| 		    rq != task_rq(p))
 | |
| 			check_resched = 0;
 | |
| #endif /* CONFIG_SMP */
 | |
| 		if (check_resched && p->prio < rq->curr->prio)
 | |
| 			resched_task(rq->curr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Priority of the task has changed. This may cause
 | |
|  * us to initiate a push or pull.
 | |
|  */
 | |
| static void prio_changed_rt(struct rq *rq, struct task_struct *p,
 | |
| 			    int oldprio, int running)
 | |
| {
 | |
| 	if (running) {
 | |
| #ifdef CONFIG_SMP
 | |
| 		/*
 | |
| 		 * If our priority decreases while running, we
 | |
| 		 * may need to pull tasks to this runqueue.
 | |
| 		 */
 | |
| 		if (oldprio < p->prio)
 | |
| 			pull_rt_task(rq);
 | |
| 		/*
 | |
| 		 * If there's a higher priority task waiting to run
 | |
| 		 * then reschedule. Note, the above pull_rt_task
 | |
| 		 * can release the rq lock and p could migrate.
 | |
| 		 * Only reschedule if p is still on the same runqueue.
 | |
| 		 */
 | |
| 		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
 | |
| 			resched_task(p);
 | |
| #else
 | |
| 		/* For UP simply resched on drop of prio */
 | |
| 		if (oldprio < p->prio)
 | |
| 			resched_task(p);
 | |
| #endif /* CONFIG_SMP */
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * This task is not running, but if it is
 | |
| 		 * greater than the current running task
 | |
| 		 * then reschedule.
 | |
| 		 */
 | |
| 		if (p->prio < rq->curr->prio)
 | |
| 			resched_task(rq->curr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void watchdog(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	unsigned long soft, hard;
 | |
| 
 | |
| 	if (!p->signal)
 | |
| 		return;
 | |
| 
 | |
| 	/* max may change after cur was read, this will be fixed next tick */
 | |
| 	soft = task_rlimit(p, RLIMIT_RTTIME);
 | |
| 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
 | |
| 
 | |
| 	if (soft != RLIM_INFINITY) {
 | |
| 		unsigned long next;
 | |
| 
 | |
| 		p->rt.timeout++;
 | |
| 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
 | |
| 		if (p->rt.timeout > next)
 | |
| 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
 | |
| {
 | |
| 	update_curr_rt(rq);
 | |
| 
 | |
| 	watchdog(rq, p);
 | |
| 
 | |
| 	/*
 | |
| 	 * RR tasks need a special form of timeslice management.
 | |
| 	 * FIFO tasks have no timeslices.
 | |
| 	 */
 | |
| 	if (p->policy != SCHED_RR)
 | |
| 		return;
 | |
| 
 | |
| 	if (--p->rt.time_slice)
 | |
| 		return;
 | |
| 
 | |
| 	p->rt.time_slice = DEF_TIMESLICE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Requeue to the end of queue if we are not the only element
 | |
| 	 * on the queue:
 | |
| 	 */
 | |
| 	if (p->rt.run_list.prev != p->rt.run_list.next) {
 | |
| 		requeue_task_rt(rq, p, 0);
 | |
| 		set_tsk_need_resched(p);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_curr_task_rt(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *p = rq->curr;
 | |
| 
 | |
| 	p->se.exec_start = rq->clock;
 | |
| 
 | |
| 	/* The running task is never eligible for pushing */
 | |
| 	dequeue_pushable_task(rq, p);
 | |
| }
 | |
| 
 | |
| static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
 | |
| {
 | |
| 	/*
 | |
| 	 * Time slice is 0 for SCHED_FIFO tasks
 | |
| 	 */
 | |
| 	if (task->policy == SCHED_RR)
 | |
| 		return DEF_TIMESLICE;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| static const struct sched_class rt_sched_class = {
 | |
| 	.next			= &fair_sched_class,
 | |
| 	.enqueue_task		= enqueue_task_rt,
 | |
| 	.dequeue_task		= dequeue_task_rt,
 | |
| 	.yield_task		= yield_task_rt,
 | |
| 
 | |
| 	.check_preempt_curr	= check_preempt_curr_rt,
 | |
| 
 | |
| 	.pick_next_task		= pick_next_task_rt,
 | |
| 	.put_prev_task		= put_prev_task_rt,
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	.select_task_rq		= select_task_rq_rt,
 | |
| 
 | |
| 	.set_cpus_allowed       = set_cpus_allowed_rt,
 | |
| 	.rq_online              = rq_online_rt,
 | |
| 	.rq_offline             = rq_offline_rt,
 | |
| 	.pre_schedule		= pre_schedule_rt,
 | |
| 	.post_schedule		= post_schedule_rt,
 | |
| 	.task_woken		= task_woken_rt,
 | |
| 	.switched_from		= switched_from_rt,
 | |
| #endif
 | |
| 
 | |
| 	.set_curr_task          = set_curr_task_rt,
 | |
| 	.task_tick		= task_tick_rt,
 | |
| 
 | |
| 	.get_rr_interval	= get_rr_interval_rt,
 | |
| 
 | |
| 	.prio_changed		= prio_changed_rt,
 | |
| 	.switched_to		= switched_to_rt,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
 | |
| 
 | |
| static void print_rt_stats(struct seq_file *m, int cpu)
 | |
| {
 | |
| 	struct rt_rq *rt_rq;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
 | |
| 		print_rt_rq(m, cpu, rt_rq);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| #endif /* CONFIG_SCHED_DEBUG */
 | |
| 
 |