mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 78d7d407b6
			
		
	
	
		78d7d407b6
		
	
	
	
	
		
			
			Make sure compiler won't do weird things with limits.  E.g.  fetching them
twice may return 2 different values after writable limits are implemented.
I.e.  either use rlimit helpers added in commit 3e10e716ab ("resource:
add helpers for fetching rlimits") or ACCESS_ONCE if not applicable.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: john stultz <johnstul@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			2737 lines
		
	
	
	
		
			68 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2737 lines
		
	
	
	
		
			68 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/kernel/signal.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  *
 | |
|  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
 | |
|  *
 | |
|  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
 | |
|  *		Changes to use preallocated sigqueue structures
 | |
|  *		to allow signals to be sent reliably.
 | |
|  */
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/tty.h>
 | |
| #include <linux/binfmts.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/signalfd.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/tracehook.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/pid_namespace.h>
 | |
| #include <linux/nsproxy.h>
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/signal.h>
 | |
| 
 | |
| #include <asm/param.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/unistd.h>
 | |
| #include <asm/siginfo.h>
 | |
| #include "audit.h"	/* audit_signal_info() */
 | |
| 
 | |
| /*
 | |
|  * SLAB caches for signal bits.
 | |
|  */
 | |
| 
 | |
| static struct kmem_cache *sigqueue_cachep;
 | |
| 
 | |
| int print_fatal_signals __read_mostly;
 | |
| 
 | |
| static void __user *sig_handler(struct task_struct *t, int sig)
 | |
| {
 | |
| 	return t->sighand->action[sig - 1].sa.sa_handler;
 | |
| }
 | |
| 
 | |
| static int sig_handler_ignored(void __user *handler, int sig)
 | |
| {
 | |
| 	/* Is it explicitly or implicitly ignored? */
 | |
| 	return handler == SIG_IGN ||
 | |
| 		(handler == SIG_DFL && sig_kernel_ignore(sig));
 | |
| }
 | |
| 
 | |
| static int sig_task_ignored(struct task_struct *t, int sig,
 | |
| 		int from_ancestor_ns)
 | |
| {
 | |
| 	void __user *handler;
 | |
| 
 | |
| 	handler = sig_handler(t, sig);
 | |
| 
 | |
| 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
 | |
| 			handler == SIG_DFL && !from_ancestor_ns)
 | |
| 		return 1;
 | |
| 
 | |
| 	return sig_handler_ignored(handler, sig);
 | |
| }
 | |
| 
 | |
| static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
 | |
| {
 | |
| 	/*
 | |
| 	 * Blocked signals are never ignored, since the
 | |
| 	 * signal handler may change by the time it is
 | |
| 	 * unblocked.
 | |
| 	 */
 | |
| 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!sig_task_ignored(t, sig, from_ancestor_ns))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Tracers may want to know about even ignored signals.
 | |
| 	 */
 | |
| 	return !tracehook_consider_ignored_signal(t, sig);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Re-calculate pending state from the set of locally pending
 | |
|  * signals, globally pending signals, and blocked signals.
 | |
|  */
 | |
| static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 | |
| {
 | |
| 	unsigned long ready;
 | |
| 	long i;
 | |
| 
 | |
| 	switch (_NSIG_WORDS) {
 | |
| 	default:
 | |
| 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 | |
| 			ready |= signal->sig[i] &~ blocked->sig[i];
 | |
| 		break;
 | |
| 
 | |
| 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 | |
| 		ready |= signal->sig[2] &~ blocked->sig[2];
 | |
| 		ready |= signal->sig[1] &~ blocked->sig[1];
 | |
| 		ready |= signal->sig[0] &~ blocked->sig[0];
 | |
| 		break;
 | |
| 
 | |
| 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 | |
| 		ready |= signal->sig[0] &~ blocked->sig[0];
 | |
| 		break;
 | |
| 
 | |
| 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 | |
| 	}
 | |
| 	return ready !=	0;
 | |
| }
 | |
| 
 | |
| #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 | |
| 
 | |
| static int recalc_sigpending_tsk(struct task_struct *t)
 | |
| {
 | |
| 	if (t->signal->group_stop_count > 0 ||
 | |
| 	    PENDING(&t->pending, &t->blocked) ||
 | |
| 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 | |
| 		set_tsk_thread_flag(t, TIF_SIGPENDING);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * We must never clear the flag in another thread, or in current
 | |
| 	 * when it's possible the current syscall is returning -ERESTART*.
 | |
| 	 * So we don't clear it here, and only callers who know they should do.
 | |
| 	 */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 | |
|  * This is superfluous when called on current, the wakeup is a harmless no-op.
 | |
|  */
 | |
| void recalc_sigpending_and_wake(struct task_struct *t)
 | |
| {
 | |
| 	if (recalc_sigpending_tsk(t))
 | |
| 		signal_wake_up(t, 0);
 | |
| }
 | |
| 
 | |
| void recalc_sigpending(void)
 | |
| {
 | |
| 	if (unlikely(tracehook_force_sigpending()))
 | |
| 		set_thread_flag(TIF_SIGPENDING);
 | |
| 	else if (!recalc_sigpending_tsk(current) && !freezing(current))
 | |
| 		clear_thread_flag(TIF_SIGPENDING);
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Given the mask, find the first available signal that should be serviced. */
 | |
| 
 | |
| #define SYNCHRONOUS_MASK \
 | |
| 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 | |
| 	 sigmask(SIGTRAP) | sigmask(SIGFPE))
 | |
| 
 | |
| int next_signal(struct sigpending *pending, sigset_t *mask)
 | |
| {
 | |
| 	unsigned long i, *s, *m, x;
 | |
| 	int sig = 0;
 | |
| 
 | |
| 	s = pending->signal.sig;
 | |
| 	m = mask->sig;
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle the first word specially: it contains the
 | |
| 	 * synchronous signals that need to be dequeued first.
 | |
| 	 */
 | |
| 	x = *s &~ *m;
 | |
| 	if (x) {
 | |
| 		if (x & SYNCHRONOUS_MASK)
 | |
| 			x &= SYNCHRONOUS_MASK;
 | |
| 		sig = ffz(~x) + 1;
 | |
| 		return sig;
 | |
| 	}
 | |
| 
 | |
| 	switch (_NSIG_WORDS) {
 | |
| 	default:
 | |
| 		for (i = 1; i < _NSIG_WORDS; ++i) {
 | |
| 			x = *++s &~ *++m;
 | |
| 			if (!x)
 | |
| 				continue;
 | |
| 			sig = ffz(~x) + i*_NSIG_BPW + 1;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case 2:
 | |
| 		x = s[1] &~ m[1];
 | |
| 		if (!x)
 | |
| 			break;
 | |
| 		sig = ffz(~x) + _NSIG_BPW + 1;
 | |
| 		break;
 | |
| 
 | |
| 	case 1:
 | |
| 		/* Nothing to do */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return sig;
 | |
| }
 | |
| 
 | |
| static inline void print_dropped_signal(int sig)
 | |
| {
 | |
| 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 | |
| 
 | |
| 	if (!print_fatal_signals)
 | |
| 		return;
 | |
| 
 | |
| 	if (!__ratelimit(&ratelimit_state))
 | |
| 		return;
 | |
| 
 | |
| 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 | |
| 				current->comm, current->pid, sig);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * allocate a new signal queue record
 | |
|  * - this may be called without locks if and only if t == current, otherwise an
 | |
|  *   appopriate lock must be held to stop the target task from exiting
 | |
|  */
 | |
| static struct sigqueue *
 | |
| __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 | |
| {
 | |
| 	struct sigqueue *q = NULL;
 | |
| 	struct user_struct *user;
 | |
| 
 | |
| 	/*
 | |
| 	 * Protect access to @t credentials. This can go away when all
 | |
| 	 * callers hold rcu read lock.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	user = get_uid(__task_cred(t)->user);
 | |
| 	atomic_inc(&user->sigpending);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (override_rlimit ||
 | |
| 	    atomic_read(&user->sigpending) <=
 | |
| 			task_rlimit(t, RLIMIT_SIGPENDING)) {
 | |
| 		q = kmem_cache_alloc(sigqueue_cachep, flags);
 | |
| 	} else {
 | |
| 		print_dropped_signal(sig);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(q == NULL)) {
 | |
| 		atomic_dec(&user->sigpending);
 | |
| 		free_uid(user);
 | |
| 	} else {
 | |
| 		INIT_LIST_HEAD(&q->list);
 | |
| 		q->flags = 0;
 | |
| 		q->user = user;
 | |
| 	}
 | |
| 
 | |
| 	return q;
 | |
| }
 | |
| 
 | |
| static void __sigqueue_free(struct sigqueue *q)
 | |
| {
 | |
| 	if (q->flags & SIGQUEUE_PREALLOC)
 | |
| 		return;
 | |
| 	atomic_dec(&q->user->sigpending);
 | |
| 	free_uid(q->user);
 | |
| 	kmem_cache_free(sigqueue_cachep, q);
 | |
| }
 | |
| 
 | |
| void flush_sigqueue(struct sigpending *queue)
 | |
| {
 | |
| 	struct sigqueue *q;
 | |
| 
 | |
| 	sigemptyset(&queue->signal);
 | |
| 	while (!list_empty(&queue->list)) {
 | |
| 		q = list_entry(queue->list.next, struct sigqueue , list);
 | |
| 		list_del_init(&q->list);
 | |
| 		__sigqueue_free(q);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush all pending signals for a task.
 | |
|  */
 | |
| void __flush_signals(struct task_struct *t)
 | |
| {
 | |
| 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 | |
| 	flush_sigqueue(&t->pending);
 | |
| 	flush_sigqueue(&t->signal->shared_pending);
 | |
| }
 | |
| 
 | |
| void flush_signals(struct task_struct *t)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&t->sighand->siglock, flags);
 | |
| 	__flush_signals(t);
 | |
| 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 | |
| }
 | |
| 
 | |
| static void __flush_itimer_signals(struct sigpending *pending)
 | |
| {
 | |
| 	sigset_t signal, retain;
 | |
| 	struct sigqueue *q, *n;
 | |
| 
 | |
| 	signal = pending->signal;
 | |
| 	sigemptyset(&retain);
 | |
| 
 | |
| 	list_for_each_entry_safe(q, n, &pending->list, list) {
 | |
| 		int sig = q->info.si_signo;
 | |
| 
 | |
| 		if (likely(q->info.si_code != SI_TIMER)) {
 | |
| 			sigaddset(&retain, sig);
 | |
| 		} else {
 | |
| 			sigdelset(&signal, sig);
 | |
| 			list_del_init(&q->list);
 | |
| 			__sigqueue_free(q);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sigorsets(&pending->signal, &signal, &retain);
 | |
| }
 | |
| 
 | |
| void flush_itimer_signals(void)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 | |
| 	__flush_itimer_signals(&tsk->pending);
 | |
| 	__flush_itimer_signals(&tsk->signal->shared_pending);
 | |
| 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 | |
| }
 | |
| 
 | |
| void ignore_signals(struct task_struct *t)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < _NSIG; ++i)
 | |
| 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 | |
| 
 | |
| 	flush_signals(t);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush all handlers for a task.
 | |
|  */
 | |
| 
 | |
| void
 | |
| flush_signal_handlers(struct task_struct *t, int force_default)
 | |
| {
 | |
| 	int i;
 | |
| 	struct k_sigaction *ka = &t->sighand->action[0];
 | |
| 	for (i = _NSIG ; i != 0 ; i--) {
 | |
| 		if (force_default || ka->sa.sa_handler != SIG_IGN)
 | |
| 			ka->sa.sa_handler = SIG_DFL;
 | |
| 		ka->sa.sa_flags = 0;
 | |
| 		sigemptyset(&ka->sa.sa_mask);
 | |
| 		ka++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int unhandled_signal(struct task_struct *tsk, int sig)
 | |
| {
 | |
| 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 | |
| 	if (is_global_init(tsk))
 | |
| 		return 1;
 | |
| 	if (handler != SIG_IGN && handler != SIG_DFL)
 | |
| 		return 0;
 | |
| 	return !tracehook_consider_fatal_signal(tsk, sig);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Notify the system that a driver wants to block all signals for this
 | |
|  * process, and wants to be notified if any signals at all were to be
 | |
|  * sent/acted upon.  If the notifier routine returns non-zero, then the
 | |
|  * signal will be acted upon after all.  If the notifier routine returns 0,
 | |
|  * then then signal will be blocked.  Only one block per process is
 | |
|  * allowed.  priv is a pointer to private data that the notifier routine
 | |
|  * can use to determine if the signal should be blocked or not.  */
 | |
| 
 | |
| void
 | |
| block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(¤t->sighand->siglock, flags);
 | |
| 	current->notifier_mask = mask;
 | |
| 	current->notifier_data = priv;
 | |
| 	current->notifier = notifier;
 | |
| 	spin_unlock_irqrestore(¤t->sighand->siglock, flags);
 | |
| }
 | |
| 
 | |
| /* Notify the system that blocking has ended. */
 | |
| 
 | |
| void
 | |
| unblock_all_signals(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(¤t->sighand->siglock, flags);
 | |
| 	current->notifier = NULL;
 | |
| 	current->notifier_data = NULL;
 | |
| 	recalc_sigpending();
 | |
| 	spin_unlock_irqrestore(¤t->sighand->siglock, flags);
 | |
| }
 | |
| 
 | |
| static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 | |
| {
 | |
| 	struct sigqueue *q, *first = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Collect the siginfo appropriate to this signal.  Check if
 | |
| 	 * there is another siginfo for the same signal.
 | |
| 	*/
 | |
| 	list_for_each_entry(q, &list->list, list) {
 | |
| 		if (q->info.si_signo == sig) {
 | |
| 			if (first)
 | |
| 				goto still_pending;
 | |
| 			first = q;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sigdelset(&list->signal, sig);
 | |
| 
 | |
| 	if (first) {
 | |
| still_pending:
 | |
| 		list_del_init(&first->list);
 | |
| 		copy_siginfo(info, &first->info);
 | |
| 		__sigqueue_free(first);
 | |
| 	} else {
 | |
| 		/* Ok, it wasn't in the queue.  This must be
 | |
| 		   a fast-pathed signal or we must have been
 | |
| 		   out of queue space.  So zero out the info.
 | |
| 		 */
 | |
| 		info->si_signo = sig;
 | |
| 		info->si_errno = 0;
 | |
| 		info->si_code = SI_USER;
 | |
| 		info->si_pid = 0;
 | |
| 		info->si_uid = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 | |
| 			siginfo_t *info)
 | |
| {
 | |
| 	int sig = next_signal(pending, mask);
 | |
| 
 | |
| 	if (sig) {
 | |
| 		if (current->notifier) {
 | |
| 			if (sigismember(current->notifier_mask, sig)) {
 | |
| 				if (!(current->notifier)(current->notifier_data)) {
 | |
| 					clear_thread_flag(TIF_SIGPENDING);
 | |
| 					return 0;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		collect_signal(sig, pending, info);
 | |
| 	}
 | |
| 
 | |
| 	return sig;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dequeue a signal and return the element to the caller, which is 
 | |
|  * expected to free it.
 | |
|  *
 | |
|  * All callers have to hold the siglock.
 | |
|  */
 | |
| int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 | |
| {
 | |
| 	int signr;
 | |
| 
 | |
| 	/* We only dequeue private signals from ourselves, we don't let
 | |
| 	 * signalfd steal them
 | |
| 	 */
 | |
| 	signr = __dequeue_signal(&tsk->pending, mask, info);
 | |
| 	if (!signr) {
 | |
| 		signr = __dequeue_signal(&tsk->signal->shared_pending,
 | |
| 					 mask, info);
 | |
| 		/*
 | |
| 		 * itimer signal ?
 | |
| 		 *
 | |
| 		 * itimers are process shared and we restart periodic
 | |
| 		 * itimers in the signal delivery path to prevent DoS
 | |
| 		 * attacks in the high resolution timer case. This is
 | |
| 		 * compliant with the old way of self restarting
 | |
| 		 * itimers, as the SIGALRM is a legacy signal and only
 | |
| 		 * queued once. Changing the restart behaviour to
 | |
| 		 * restart the timer in the signal dequeue path is
 | |
| 		 * reducing the timer noise on heavy loaded !highres
 | |
| 		 * systems too.
 | |
| 		 */
 | |
| 		if (unlikely(signr == SIGALRM)) {
 | |
| 			struct hrtimer *tmr = &tsk->signal->real_timer;
 | |
| 
 | |
| 			if (!hrtimer_is_queued(tmr) &&
 | |
| 			    tsk->signal->it_real_incr.tv64 != 0) {
 | |
| 				hrtimer_forward(tmr, tmr->base->get_time(),
 | |
| 						tsk->signal->it_real_incr);
 | |
| 				hrtimer_restart(tmr);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	recalc_sigpending();
 | |
| 	if (!signr)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(sig_kernel_stop(signr))) {
 | |
| 		/*
 | |
| 		 * Set a marker that we have dequeued a stop signal.  Our
 | |
| 		 * caller might release the siglock and then the pending
 | |
| 		 * stop signal it is about to process is no longer in the
 | |
| 		 * pending bitmasks, but must still be cleared by a SIGCONT
 | |
| 		 * (and overruled by a SIGKILL).  So those cases clear this
 | |
| 		 * shared flag after we've set it.  Note that this flag may
 | |
| 		 * remain set after the signal we return is ignored or
 | |
| 		 * handled.  That doesn't matter because its only purpose
 | |
| 		 * is to alert stop-signal processing code when another
 | |
| 		 * processor has come along and cleared the flag.
 | |
| 		 */
 | |
| 		tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
 | |
| 	}
 | |
| 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 | |
| 		/*
 | |
| 		 * Release the siglock to ensure proper locking order
 | |
| 		 * of timer locks outside of siglocks.  Note, we leave
 | |
| 		 * irqs disabled here, since the posix-timers code is
 | |
| 		 * about to disable them again anyway.
 | |
| 		 */
 | |
| 		spin_unlock(&tsk->sighand->siglock);
 | |
| 		do_schedule_next_timer(info);
 | |
| 		spin_lock(&tsk->sighand->siglock);
 | |
| 	}
 | |
| 	return signr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tell a process that it has a new active signal..
 | |
|  *
 | |
|  * NOTE! we rely on the previous spin_lock to
 | |
|  * lock interrupts for us! We can only be called with
 | |
|  * "siglock" held, and the local interrupt must
 | |
|  * have been disabled when that got acquired!
 | |
|  *
 | |
|  * No need to set need_resched since signal event passing
 | |
|  * goes through ->blocked
 | |
|  */
 | |
| void signal_wake_up(struct task_struct *t, int resume)
 | |
| {
 | |
| 	unsigned int mask;
 | |
| 
 | |
| 	set_tsk_thread_flag(t, TIF_SIGPENDING);
 | |
| 
 | |
| 	/*
 | |
| 	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
 | |
| 	 * case. We don't check t->state here because there is a race with it
 | |
| 	 * executing another processor and just now entering stopped state.
 | |
| 	 * By using wake_up_state, we ensure the process will wake up and
 | |
| 	 * handle its death signal.
 | |
| 	 */
 | |
| 	mask = TASK_INTERRUPTIBLE;
 | |
| 	if (resume)
 | |
| 		mask |= TASK_WAKEKILL;
 | |
| 	if (!wake_up_state(t, mask))
 | |
| 		kick_process(t);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove signals in mask from the pending set and queue.
 | |
|  * Returns 1 if any signals were found.
 | |
|  *
 | |
|  * All callers must be holding the siglock.
 | |
|  *
 | |
|  * This version takes a sigset mask and looks at all signals,
 | |
|  * not just those in the first mask word.
 | |
|  */
 | |
| static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
 | |
| {
 | |
| 	struct sigqueue *q, *n;
 | |
| 	sigset_t m;
 | |
| 
 | |
| 	sigandsets(&m, mask, &s->signal);
 | |
| 	if (sigisemptyset(&m))
 | |
| 		return 0;
 | |
| 
 | |
| 	signandsets(&s->signal, &s->signal, mask);
 | |
| 	list_for_each_entry_safe(q, n, &s->list, list) {
 | |
| 		if (sigismember(mask, q->info.si_signo)) {
 | |
| 			list_del_init(&q->list);
 | |
| 			__sigqueue_free(q);
 | |
| 		}
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| /*
 | |
|  * Remove signals in mask from the pending set and queue.
 | |
|  * Returns 1 if any signals were found.
 | |
|  *
 | |
|  * All callers must be holding the siglock.
 | |
|  */
 | |
| static int rm_from_queue(unsigned long mask, struct sigpending *s)
 | |
| {
 | |
| 	struct sigqueue *q, *n;
 | |
| 
 | |
| 	if (!sigtestsetmask(&s->signal, mask))
 | |
| 		return 0;
 | |
| 
 | |
| 	sigdelsetmask(&s->signal, mask);
 | |
| 	list_for_each_entry_safe(q, n, &s->list, list) {
 | |
| 		if (q->info.si_signo < SIGRTMIN &&
 | |
| 		    (mask & sigmask(q->info.si_signo))) {
 | |
| 			list_del_init(&q->list);
 | |
| 			__sigqueue_free(q);
 | |
| 		}
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline int is_si_special(const struct siginfo *info)
 | |
| {
 | |
| 	return info <= SEND_SIG_FORCED;
 | |
| }
 | |
| 
 | |
| static inline bool si_fromuser(const struct siginfo *info)
 | |
| {
 | |
| 	return info == SEND_SIG_NOINFO ||
 | |
| 		(!is_si_special(info) && SI_FROMUSER(info));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Bad permissions for sending the signal
 | |
|  * - the caller must hold at least the RCU read lock
 | |
|  */
 | |
| static int check_kill_permission(int sig, struct siginfo *info,
 | |
| 				 struct task_struct *t)
 | |
| {
 | |
| 	const struct cred *cred = current_cred(), *tcred;
 | |
| 	struct pid *sid;
 | |
| 	int error;
 | |
| 
 | |
| 	if (!valid_signal(sig))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!si_fromuser(info))
 | |
| 		return 0;
 | |
| 
 | |
| 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	tcred = __task_cred(t);
 | |
| 	if ((cred->euid ^ tcred->suid) &&
 | |
| 	    (cred->euid ^ tcred->uid) &&
 | |
| 	    (cred->uid  ^ tcred->suid) &&
 | |
| 	    (cred->uid  ^ tcred->uid) &&
 | |
| 	    !capable(CAP_KILL)) {
 | |
| 		switch (sig) {
 | |
| 		case SIGCONT:
 | |
| 			sid = task_session(t);
 | |
| 			/*
 | |
| 			 * We don't return the error if sid == NULL. The
 | |
| 			 * task was unhashed, the caller must notice this.
 | |
| 			 */
 | |
| 			if (!sid || sid == task_session(current))
 | |
| 				break;
 | |
| 		default:
 | |
| 			return -EPERM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return security_task_kill(t, info, sig, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle magic process-wide effects of stop/continue signals. Unlike
 | |
|  * the signal actions, these happen immediately at signal-generation
 | |
|  * time regardless of blocking, ignoring, or handling.  This does the
 | |
|  * actual continuing for SIGCONT, but not the actual stopping for stop
 | |
|  * signals. The process stop is done as a signal action for SIG_DFL.
 | |
|  *
 | |
|  * Returns true if the signal should be actually delivered, otherwise
 | |
|  * it should be dropped.
 | |
|  */
 | |
| static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
 | |
| {
 | |
| 	struct signal_struct *signal = p->signal;
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
 | |
| 		/*
 | |
| 		 * The process is in the middle of dying, nothing to do.
 | |
| 		 */
 | |
| 	} else if (sig_kernel_stop(sig)) {
 | |
| 		/*
 | |
| 		 * This is a stop signal.  Remove SIGCONT from all queues.
 | |
| 		 */
 | |
| 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
 | |
| 		t = p;
 | |
| 		do {
 | |
| 			rm_from_queue(sigmask(SIGCONT), &t->pending);
 | |
| 		} while_each_thread(p, t);
 | |
| 	} else if (sig == SIGCONT) {
 | |
| 		unsigned int why;
 | |
| 		/*
 | |
| 		 * Remove all stop signals from all queues,
 | |
| 		 * and wake all threads.
 | |
| 		 */
 | |
| 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
 | |
| 		t = p;
 | |
| 		do {
 | |
| 			unsigned int state;
 | |
| 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
 | |
| 			/*
 | |
| 			 * If there is a handler for SIGCONT, we must make
 | |
| 			 * sure that no thread returns to user mode before
 | |
| 			 * we post the signal, in case it was the only
 | |
| 			 * thread eligible to run the signal handler--then
 | |
| 			 * it must not do anything between resuming and
 | |
| 			 * running the handler.  With the TIF_SIGPENDING
 | |
| 			 * flag set, the thread will pause and acquire the
 | |
| 			 * siglock that we hold now and until we've queued
 | |
| 			 * the pending signal.
 | |
| 			 *
 | |
| 			 * Wake up the stopped thread _after_ setting
 | |
| 			 * TIF_SIGPENDING
 | |
| 			 */
 | |
| 			state = __TASK_STOPPED;
 | |
| 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
 | |
| 				set_tsk_thread_flag(t, TIF_SIGPENDING);
 | |
| 				state |= TASK_INTERRUPTIBLE;
 | |
| 			}
 | |
| 			wake_up_state(t, state);
 | |
| 		} while_each_thread(p, t);
 | |
| 
 | |
| 		/*
 | |
| 		 * Notify the parent with CLD_CONTINUED if we were stopped.
 | |
| 		 *
 | |
| 		 * If we were in the middle of a group stop, we pretend it
 | |
| 		 * was already finished, and then continued. Since SIGCHLD
 | |
| 		 * doesn't queue we report only CLD_STOPPED, as if the next
 | |
| 		 * CLD_CONTINUED was dropped.
 | |
| 		 */
 | |
| 		why = 0;
 | |
| 		if (signal->flags & SIGNAL_STOP_STOPPED)
 | |
| 			why |= SIGNAL_CLD_CONTINUED;
 | |
| 		else if (signal->group_stop_count)
 | |
| 			why |= SIGNAL_CLD_STOPPED;
 | |
| 
 | |
| 		if (why) {
 | |
| 			/*
 | |
| 			 * The first thread which returns from do_signal_stop()
 | |
| 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 | |
| 			 * notify its parent. See get_signal_to_deliver().
 | |
| 			 */
 | |
| 			signal->flags = why | SIGNAL_STOP_CONTINUED;
 | |
| 			signal->group_stop_count = 0;
 | |
| 			signal->group_exit_code = 0;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * We are not stopped, but there could be a stop
 | |
| 			 * signal in the middle of being processed after
 | |
| 			 * being removed from the queue.  Clear that too.
 | |
| 			 */
 | |
| 			signal->flags &= ~SIGNAL_STOP_DEQUEUED;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return !sig_ignored(p, sig, from_ancestor_ns);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test if P wants to take SIG.  After we've checked all threads with this,
 | |
|  * it's equivalent to finding no threads not blocking SIG.  Any threads not
 | |
|  * blocking SIG were ruled out because they are not running and already
 | |
|  * have pending signals.  Such threads will dequeue from the shared queue
 | |
|  * as soon as they're available, so putting the signal on the shared queue
 | |
|  * will be equivalent to sending it to one such thread.
 | |
|  */
 | |
| static inline int wants_signal(int sig, struct task_struct *p)
 | |
| {
 | |
| 	if (sigismember(&p->blocked, sig))
 | |
| 		return 0;
 | |
| 	if (p->flags & PF_EXITING)
 | |
| 		return 0;
 | |
| 	if (sig == SIGKILL)
 | |
| 		return 1;
 | |
| 	if (task_is_stopped_or_traced(p))
 | |
| 		return 0;
 | |
| 	return task_curr(p) || !signal_pending(p);
 | |
| }
 | |
| 
 | |
| static void complete_signal(int sig, struct task_struct *p, int group)
 | |
| {
 | |
| 	struct signal_struct *signal = p->signal;
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now find a thread we can wake up to take the signal off the queue.
 | |
| 	 *
 | |
| 	 * If the main thread wants the signal, it gets first crack.
 | |
| 	 * Probably the least surprising to the average bear.
 | |
| 	 */
 | |
| 	if (wants_signal(sig, p))
 | |
| 		t = p;
 | |
| 	else if (!group || thread_group_empty(p))
 | |
| 		/*
 | |
| 		 * There is just one thread and it does not need to be woken.
 | |
| 		 * It will dequeue unblocked signals before it runs again.
 | |
| 		 */
 | |
| 		return;
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * Otherwise try to find a suitable thread.
 | |
| 		 */
 | |
| 		t = signal->curr_target;
 | |
| 		while (!wants_signal(sig, t)) {
 | |
| 			t = next_thread(t);
 | |
| 			if (t == signal->curr_target)
 | |
| 				/*
 | |
| 				 * No thread needs to be woken.
 | |
| 				 * Any eligible threads will see
 | |
| 				 * the signal in the queue soon.
 | |
| 				 */
 | |
| 				return;
 | |
| 		}
 | |
| 		signal->curr_target = t;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Found a killable thread.  If the signal will be fatal,
 | |
| 	 * then start taking the whole group down immediately.
 | |
| 	 */
 | |
| 	if (sig_fatal(p, sig) &&
 | |
| 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 | |
| 	    !sigismember(&t->real_blocked, sig) &&
 | |
| 	    (sig == SIGKILL ||
 | |
| 	     !tracehook_consider_fatal_signal(t, sig))) {
 | |
| 		/*
 | |
| 		 * This signal will be fatal to the whole group.
 | |
| 		 */
 | |
| 		if (!sig_kernel_coredump(sig)) {
 | |
| 			/*
 | |
| 			 * Start a group exit and wake everybody up.
 | |
| 			 * This way we don't have other threads
 | |
| 			 * running and doing things after a slower
 | |
| 			 * thread has the fatal signal pending.
 | |
| 			 */
 | |
| 			signal->flags = SIGNAL_GROUP_EXIT;
 | |
| 			signal->group_exit_code = sig;
 | |
| 			signal->group_stop_count = 0;
 | |
| 			t = p;
 | |
| 			do {
 | |
| 				sigaddset(&t->pending.signal, SIGKILL);
 | |
| 				signal_wake_up(t, 1);
 | |
| 			} while_each_thread(p, t);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The signal is already in the shared-pending queue.
 | |
| 	 * Tell the chosen thread to wake up and dequeue it.
 | |
| 	 */
 | |
| 	signal_wake_up(t, sig == SIGKILL);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static inline int legacy_queue(struct sigpending *signals, int sig)
 | |
| {
 | |
| 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
 | |
| }
 | |
| 
 | |
| static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
 | |
| 			int group, int from_ancestor_ns)
 | |
| {
 | |
| 	struct sigpending *pending;
 | |
| 	struct sigqueue *q;
 | |
| 	int override_rlimit;
 | |
| 
 | |
| 	trace_signal_generate(sig, info, t);
 | |
| 
 | |
| 	assert_spin_locked(&t->sighand->siglock);
 | |
| 
 | |
| 	if (!prepare_signal(sig, t, from_ancestor_ns))
 | |
| 		return 0;
 | |
| 
 | |
| 	pending = group ? &t->signal->shared_pending : &t->pending;
 | |
| 	/*
 | |
| 	 * Short-circuit ignored signals and support queuing
 | |
| 	 * exactly one non-rt signal, so that we can get more
 | |
| 	 * detailed information about the cause of the signal.
 | |
| 	 */
 | |
| 	if (legacy_queue(pending, sig))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * fast-pathed signals for kernel-internal things like SIGSTOP
 | |
| 	 * or SIGKILL.
 | |
| 	 */
 | |
| 	if (info == SEND_SIG_FORCED)
 | |
| 		goto out_set;
 | |
| 
 | |
| 	/* Real-time signals must be queued if sent by sigqueue, or
 | |
| 	   some other real-time mechanism.  It is implementation
 | |
| 	   defined whether kill() does so.  We attempt to do so, on
 | |
| 	   the principle of least surprise, but since kill is not
 | |
| 	   allowed to fail with EAGAIN when low on memory we just
 | |
| 	   make sure at least one signal gets delivered and don't
 | |
| 	   pass on the info struct.  */
 | |
| 
 | |
| 	if (sig < SIGRTMIN)
 | |
| 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
 | |
| 	else
 | |
| 		override_rlimit = 0;
 | |
| 
 | |
| 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
 | |
| 		override_rlimit);
 | |
| 	if (q) {
 | |
| 		list_add_tail(&q->list, &pending->list);
 | |
| 		switch ((unsigned long) info) {
 | |
| 		case (unsigned long) SEND_SIG_NOINFO:
 | |
| 			q->info.si_signo = sig;
 | |
| 			q->info.si_errno = 0;
 | |
| 			q->info.si_code = SI_USER;
 | |
| 			q->info.si_pid = task_tgid_nr_ns(current,
 | |
| 							task_active_pid_ns(t));
 | |
| 			q->info.si_uid = current_uid();
 | |
| 			break;
 | |
| 		case (unsigned long) SEND_SIG_PRIV:
 | |
| 			q->info.si_signo = sig;
 | |
| 			q->info.si_errno = 0;
 | |
| 			q->info.si_code = SI_KERNEL;
 | |
| 			q->info.si_pid = 0;
 | |
| 			q->info.si_uid = 0;
 | |
| 			break;
 | |
| 		default:
 | |
| 			copy_siginfo(&q->info, info);
 | |
| 			if (from_ancestor_ns)
 | |
| 				q->info.si_pid = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 	} else if (!is_si_special(info)) {
 | |
| 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
 | |
| 			/*
 | |
| 			 * Queue overflow, abort.  We may abort if the
 | |
| 			 * signal was rt and sent by user using something
 | |
| 			 * other than kill().
 | |
| 			 */
 | |
| 			trace_signal_overflow_fail(sig, group, info);
 | |
| 			return -EAGAIN;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * This is a silent loss of information.  We still
 | |
| 			 * send the signal, but the *info bits are lost.
 | |
| 			 */
 | |
| 			trace_signal_lose_info(sig, group, info);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out_set:
 | |
| 	signalfd_notify(t, sig);
 | |
| 	sigaddset(&pending->signal, sig);
 | |
| 	complete_signal(sig, t, group);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
 | |
| 			int group)
 | |
| {
 | |
| 	int from_ancestor_ns = 0;
 | |
| 
 | |
| #ifdef CONFIG_PID_NS
 | |
| 	from_ancestor_ns = si_fromuser(info) &&
 | |
| 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
 | |
| #endif
 | |
| 
 | |
| 	return __send_signal(sig, info, t, group, from_ancestor_ns);
 | |
| }
 | |
| 
 | |
| static void print_fatal_signal(struct pt_regs *regs, int signr)
 | |
| {
 | |
| 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
 | |
| 		current->comm, task_pid_nr(current), signr);
 | |
| 
 | |
| #if defined(__i386__) && !defined(__arch_um__)
 | |
| 	printk("code at %08lx: ", regs->ip);
 | |
| 	{
 | |
| 		int i;
 | |
| 		for (i = 0; i < 16; i++) {
 | |
| 			unsigned char insn;
 | |
| 
 | |
| 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
 | |
| 				break;
 | |
| 			printk("%02x ", insn);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	printk("\n");
 | |
| 	preempt_disable();
 | |
| 	show_regs(regs);
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static int __init setup_print_fatal_signals(char *str)
 | |
| {
 | |
| 	get_option (&str, &print_fatal_signals);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("print-fatal-signals=", setup_print_fatal_signals);
 | |
| 
 | |
| int
 | |
| __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 | |
| {
 | |
| 	return send_signal(sig, info, p, 1);
 | |
| }
 | |
| 
 | |
| static int
 | |
| specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
 | |
| {
 | |
| 	return send_signal(sig, info, t, 0);
 | |
| }
 | |
| 
 | |
| int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
 | |
| 			bool group)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret = -ESRCH;
 | |
| 
 | |
| 	if (lock_task_sighand(p, &flags)) {
 | |
| 		ret = send_signal(sig, info, p, group);
 | |
| 		unlock_task_sighand(p, &flags);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Force a signal that the process can't ignore: if necessary
 | |
|  * we unblock the signal and change any SIG_IGN to SIG_DFL.
 | |
|  *
 | |
|  * Note: If we unblock the signal, we always reset it to SIG_DFL,
 | |
|  * since we do not want to have a signal handler that was blocked
 | |
|  * be invoked when user space had explicitly blocked it.
 | |
|  *
 | |
|  * We don't want to have recursive SIGSEGV's etc, for example,
 | |
|  * that is why we also clear SIGNAL_UNKILLABLE.
 | |
|  */
 | |
| int
 | |
| force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
 | |
| {
 | |
| 	unsigned long int flags;
 | |
| 	int ret, blocked, ignored;
 | |
| 	struct k_sigaction *action;
 | |
| 
 | |
| 	spin_lock_irqsave(&t->sighand->siglock, flags);
 | |
| 	action = &t->sighand->action[sig-1];
 | |
| 	ignored = action->sa.sa_handler == SIG_IGN;
 | |
| 	blocked = sigismember(&t->blocked, sig);
 | |
| 	if (blocked || ignored) {
 | |
| 		action->sa.sa_handler = SIG_DFL;
 | |
| 		if (blocked) {
 | |
| 			sigdelset(&t->blocked, sig);
 | |
| 			recalc_sigpending_and_wake(t);
 | |
| 		}
 | |
| 	}
 | |
| 	if (action->sa.sa_handler == SIG_DFL)
 | |
| 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
 | |
| 	ret = specific_send_sig_info(sig, info, t);
 | |
| 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Nuke all other threads in the group.
 | |
|  */
 | |
| void zap_other_threads(struct task_struct *p)
 | |
| {
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	p->signal->group_stop_count = 0;
 | |
| 
 | |
| 	for (t = next_thread(p); t != p; t = next_thread(t)) {
 | |
| 		/*
 | |
| 		 * Don't bother with already dead threads
 | |
| 		 */
 | |
| 		if (t->exit_state)
 | |
| 			continue;
 | |
| 
 | |
| 		/* SIGKILL will be handled before any pending SIGSTOP */
 | |
| 		sigaddset(&t->pending.signal, SIGKILL);
 | |
| 		signal_wake_up(t, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
 | |
| {
 | |
| 	struct sighand_struct *sighand;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (;;) {
 | |
| 		sighand = rcu_dereference(tsk->sighand);
 | |
| 		if (unlikely(sighand == NULL))
 | |
| 			break;
 | |
| 
 | |
| 		spin_lock_irqsave(&sighand->siglock, *flags);
 | |
| 		if (likely(sighand == tsk->sighand))
 | |
| 			break;
 | |
| 		spin_unlock_irqrestore(&sighand->siglock, *flags);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return sighand;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * send signal info to all the members of a group
 | |
|  * - the caller must hold the RCU read lock at least
 | |
|  */
 | |
| int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 | |
| {
 | |
| 	int ret = check_kill_permission(sig, info, p);
 | |
| 
 | |
| 	if (!ret && sig)
 | |
| 		ret = do_send_sig_info(sig, info, p, true);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
 | |
|  * control characters do (^C, ^Z etc)
 | |
|  * - the caller must hold at least a readlock on tasklist_lock
 | |
|  */
 | |
| int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
 | |
| {
 | |
| 	struct task_struct *p = NULL;
 | |
| 	int retval, success;
 | |
| 
 | |
| 	success = 0;
 | |
| 	retval = -ESRCH;
 | |
| 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 | |
| 		int err = group_send_sig_info(sig, info, p);
 | |
| 		success |= !err;
 | |
| 		retval = err;
 | |
| 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 | |
| 	return success ? 0 : retval;
 | |
| }
 | |
| 
 | |
| int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
 | |
| {
 | |
| 	int error = -ESRCH;
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| retry:
 | |
| 	p = pid_task(pid, PIDTYPE_PID);
 | |
| 	if (p) {
 | |
| 		error = group_send_sig_info(sig, info, p);
 | |
| 		if (unlikely(error == -ESRCH))
 | |
| 			/*
 | |
| 			 * The task was unhashed in between, try again.
 | |
| 			 * If it is dead, pid_task() will return NULL,
 | |
| 			 * if we race with de_thread() it will find the
 | |
| 			 * new leader.
 | |
| 			 */
 | |
| 			goto retry;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| int
 | |
| kill_proc_info(int sig, struct siginfo *info, pid_t pid)
 | |
| {
 | |
| 	int error;
 | |
| 	rcu_read_lock();
 | |
| 	error = kill_pid_info(sig, info, find_vpid(pid));
 | |
| 	rcu_read_unlock();
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /* like kill_pid_info(), but doesn't use uid/euid of "current" */
 | |
| int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
 | |
| 		      uid_t uid, uid_t euid, u32 secid)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 	struct task_struct *p;
 | |
| 	const struct cred *pcred;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!valid_signal(sig))
 | |
| 		return ret;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	p = pid_task(pid, PIDTYPE_PID);
 | |
| 	if (!p) {
 | |
| 		ret = -ESRCH;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	pcred = __task_cred(p);
 | |
| 	if (si_fromuser(info) &&
 | |
| 	    euid != pcred->suid && euid != pcred->uid &&
 | |
| 	    uid  != pcred->suid && uid  != pcred->uid) {
 | |
| 		ret = -EPERM;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	ret = security_task_kill(p, info, sig, secid);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (sig) {
 | |
| 		if (lock_task_sighand(p, &flags)) {
 | |
| 			ret = __send_signal(sig, info, p, 1, 0);
 | |
| 			unlock_task_sighand(p, &flags);
 | |
| 		} else
 | |
| 			ret = -ESRCH;
 | |
| 	}
 | |
| out_unlock:
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
 | |
| 
 | |
| /*
 | |
|  * kill_something_info() interprets pid in interesting ways just like kill(2).
 | |
|  *
 | |
|  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
 | |
|  * is probably wrong.  Should make it like BSD or SYSV.
 | |
|  */
 | |
| 
 | |
| static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (pid > 0) {
 | |
| 		rcu_read_lock();
 | |
| 		ret = kill_pid_info(sig, info, find_vpid(pid));
 | |
| 		rcu_read_unlock();
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	if (pid != -1) {
 | |
| 		ret = __kill_pgrp_info(sig, info,
 | |
| 				pid ? find_vpid(-pid) : task_pgrp(current));
 | |
| 	} else {
 | |
| 		int retval = 0, count = 0;
 | |
| 		struct task_struct * p;
 | |
| 
 | |
| 		for_each_process(p) {
 | |
| 			if (task_pid_vnr(p) > 1 &&
 | |
| 					!same_thread_group(p, current)) {
 | |
| 				int err = group_send_sig_info(sig, info, p);
 | |
| 				++count;
 | |
| 				if (err != -EPERM)
 | |
| 					retval = err;
 | |
| 			}
 | |
| 		}
 | |
| 		ret = count ? retval : -ESRCH;
 | |
| 	}
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are for backward compatibility with the rest of the kernel source.
 | |
|  */
 | |
| 
 | |
| int
 | |
| send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * Make sure legacy kernel users don't send in bad values
 | |
| 	 * (normal paths check this in check_kill_permission).
 | |
| 	 */
 | |
| 	if (!valid_signal(sig))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return do_send_sig_info(sig, info, p, false);
 | |
| }
 | |
| 
 | |
| #define __si_special(priv) \
 | |
| 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
 | |
| 
 | |
| int
 | |
| send_sig(int sig, struct task_struct *p, int priv)
 | |
| {
 | |
| 	return send_sig_info(sig, __si_special(priv), p);
 | |
| }
 | |
| 
 | |
| void
 | |
| force_sig(int sig, struct task_struct *p)
 | |
| {
 | |
| 	force_sig_info(sig, SEND_SIG_PRIV, p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When things go south during signal handling, we
 | |
|  * will force a SIGSEGV. And if the signal that caused
 | |
|  * the problem was already a SIGSEGV, we'll want to
 | |
|  * make sure we don't even try to deliver the signal..
 | |
|  */
 | |
| int
 | |
| force_sigsegv(int sig, struct task_struct *p)
 | |
| {
 | |
| 	if (sig == SIGSEGV) {
 | |
| 		unsigned long flags;
 | |
| 		spin_lock_irqsave(&p->sighand->siglock, flags);
 | |
| 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
 | |
| 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
 | |
| 	}
 | |
| 	force_sig(SIGSEGV, p);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kill_pgrp(struct pid *pid, int sig, int priv)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kill_pgrp);
 | |
| 
 | |
| int kill_pid(struct pid *pid, int sig, int priv)
 | |
| {
 | |
| 	return kill_pid_info(sig, __si_special(priv), pid);
 | |
| }
 | |
| EXPORT_SYMBOL(kill_pid);
 | |
| 
 | |
| /*
 | |
|  * These functions support sending signals using preallocated sigqueue
 | |
|  * structures.  This is needed "because realtime applications cannot
 | |
|  * afford to lose notifications of asynchronous events, like timer
 | |
|  * expirations or I/O completions".  In the case of Posix Timers
 | |
|  * we allocate the sigqueue structure from the timer_create.  If this
 | |
|  * allocation fails we are able to report the failure to the application
 | |
|  * with an EAGAIN error.
 | |
|  */
 | |
| struct sigqueue *sigqueue_alloc(void)
 | |
| {
 | |
| 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
 | |
| 
 | |
| 	if (q)
 | |
| 		q->flags |= SIGQUEUE_PREALLOC;
 | |
| 
 | |
| 	return q;
 | |
| }
 | |
| 
 | |
| void sigqueue_free(struct sigqueue *q)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	spinlock_t *lock = ¤t->sighand->siglock;
 | |
| 
 | |
| 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
 | |
| 	/*
 | |
| 	 * We must hold ->siglock while testing q->list
 | |
| 	 * to serialize with collect_signal() or with
 | |
| 	 * __exit_signal()->flush_sigqueue().
 | |
| 	 */
 | |
| 	spin_lock_irqsave(lock, flags);
 | |
| 	q->flags &= ~SIGQUEUE_PREALLOC;
 | |
| 	/*
 | |
| 	 * If it is queued it will be freed when dequeued,
 | |
| 	 * like the "regular" sigqueue.
 | |
| 	 */
 | |
| 	if (!list_empty(&q->list))
 | |
| 		q = NULL;
 | |
| 	spin_unlock_irqrestore(lock, flags);
 | |
| 
 | |
| 	if (q)
 | |
| 		__sigqueue_free(q);
 | |
| }
 | |
| 
 | |
| int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
 | |
| {
 | |
| 	int sig = q->info.si_signo;
 | |
| 	struct sigpending *pending;
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
 | |
| 
 | |
| 	ret = -1;
 | |
| 	if (!likely(lock_task_sighand(t, &flags)))
 | |
| 		goto ret;
 | |
| 
 | |
| 	ret = 1; /* the signal is ignored */
 | |
| 	if (!prepare_signal(sig, t, 0))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = 0;
 | |
| 	if (unlikely(!list_empty(&q->list))) {
 | |
| 		/*
 | |
| 		 * If an SI_TIMER entry is already queue just increment
 | |
| 		 * the overrun count.
 | |
| 		 */
 | |
| 		BUG_ON(q->info.si_code != SI_TIMER);
 | |
| 		q->info.si_overrun++;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	q->info.si_overrun = 0;
 | |
| 
 | |
| 	signalfd_notify(t, sig);
 | |
| 	pending = group ? &t->signal->shared_pending : &t->pending;
 | |
| 	list_add_tail(&q->list, &pending->list);
 | |
| 	sigaddset(&pending->signal, sig);
 | |
| 	complete_signal(sig, t, group);
 | |
| out:
 | |
| 	unlock_task_sighand(t, &flags);
 | |
| ret:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Let a parent know about the death of a child.
 | |
|  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
 | |
|  *
 | |
|  * Returns -1 if our parent ignored us and so we've switched to
 | |
|  * self-reaping, or else @sig.
 | |
|  */
 | |
| int do_notify_parent(struct task_struct *tsk, int sig)
 | |
| {
 | |
| 	struct siginfo info;
 | |
| 	unsigned long flags;
 | |
| 	struct sighand_struct *psig;
 | |
| 	int ret = sig;
 | |
| 
 | |
| 	BUG_ON(sig == -1);
 | |
| 
 | |
|  	/* do_notify_parent_cldstop should have been called instead.  */
 | |
|  	BUG_ON(task_is_stopped_or_traced(tsk));
 | |
| 
 | |
| 	BUG_ON(!task_ptrace(tsk) &&
 | |
| 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
 | |
| 
 | |
| 	info.si_signo = sig;
 | |
| 	info.si_errno = 0;
 | |
| 	/*
 | |
| 	 * we are under tasklist_lock here so our parent is tied to
 | |
| 	 * us and cannot exit and release its namespace.
 | |
| 	 *
 | |
| 	 * the only it can is to switch its nsproxy with sys_unshare,
 | |
| 	 * bu uncharing pid namespaces is not allowed, so we'll always
 | |
| 	 * see relevant namespace
 | |
| 	 *
 | |
| 	 * write_lock() currently calls preempt_disable() which is the
 | |
| 	 * same as rcu_read_lock(), but according to Oleg, this is not
 | |
| 	 * correct to rely on this
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
 | |
| 	info.si_uid = __task_cred(tsk)->uid;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
 | |
| 				tsk->signal->utime));
 | |
| 	info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
 | |
| 				tsk->signal->stime));
 | |
| 
 | |
| 	info.si_status = tsk->exit_code & 0x7f;
 | |
| 	if (tsk->exit_code & 0x80)
 | |
| 		info.si_code = CLD_DUMPED;
 | |
| 	else if (tsk->exit_code & 0x7f)
 | |
| 		info.si_code = CLD_KILLED;
 | |
| 	else {
 | |
| 		info.si_code = CLD_EXITED;
 | |
| 		info.si_status = tsk->exit_code >> 8;
 | |
| 	}
 | |
| 
 | |
| 	psig = tsk->parent->sighand;
 | |
| 	spin_lock_irqsave(&psig->siglock, flags);
 | |
| 	if (!task_ptrace(tsk) && sig == SIGCHLD &&
 | |
| 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
 | |
| 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
 | |
| 		/*
 | |
| 		 * We are exiting and our parent doesn't care.  POSIX.1
 | |
| 		 * defines special semantics for setting SIGCHLD to SIG_IGN
 | |
| 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
 | |
| 		 * automatically and not left for our parent's wait4 call.
 | |
| 		 * Rather than having the parent do it as a magic kind of
 | |
| 		 * signal handler, we just set this to tell do_exit that we
 | |
| 		 * can be cleaned up without becoming a zombie.  Note that
 | |
| 		 * we still call __wake_up_parent in this case, because a
 | |
| 		 * blocked sys_wait4 might now return -ECHILD.
 | |
| 		 *
 | |
| 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
 | |
| 		 * is implementation-defined: we do (if you don't want
 | |
| 		 * it, just use SIG_IGN instead).
 | |
| 		 */
 | |
| 		ret = tsk->exit_signal = -1;
 | |
| 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
 | |
| 			sig = -1;
 | |
| 	}
 | |
| 	if (valid_signal(sig) && sig > 0)
 | |
| 		__group_send_sig_info(sig, &info, tsk->parent);
 | |
| 	__wake_up_parent(tsk, tsk->parent);
 | |
| 	spin_unlock_irqrestore(&psig->siglock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
 | |
| {
 | |
| 	struct siginfo info;
 | |
| 	unsigned long flags;
 | |
| 	struct task_struct *parent;
 | |
| 	struct sighand_struct *sighand;
 | |
| 
 | |
| 	if (task_ptrace(tsk))
 | |
| 		parent = tsk->parent;
 | |
| 	else {
 | |
| 		tsk = tsk->group_leader;
 | |
| 		parent = tsk->real_parent;
 | |
| 	}
 | |
| 
 | |
| 	info.si_signo = SIGCHLD;
 | |
| 	info.si_errno = 0;
 | |
| 	/*
 | |
| 	 * see comment in do_notify_parent() abot the following 3 lines
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
 | |
| 	info.si_uid = __task_cred(tsk)->uid;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	info.si_utime = cputime_to_clock_t(tsk->utime);
 | |
| 	info.si_stime = cputime_to_clock_t(tsk->stime);
 | |
| 
 | |
|  	info.si_code = why;
 | |
|  	switch (why) {
 | |
|  	case CLD_CONTINUED:
 | |
|  		info.si_status = SIGCONT;
 | |
|  		break;
 | |
|  	case CLD_STOPPED:
 | |
|  		info.si_status = tsk->signal->group_exit_code & 0x7f;
 | |
|  		break;
 | |
|  	case CLD_TRAPPED:
 | |
|  		info.si_status = tsk->exit_code & 0x7f;
 | |
|  		break;
 | |
|  	default:
 | |
|  		BUG();
 | |
|  	}
 | |
| 
 | |
| 	sighand = parent->sighand;
 | |
| 	spin_lock_irqsave(&sighand->siglock, flags);
 | |
| 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
 | |
| 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
 | |
| 		__group_send_sig_info(SIGCHLD, &info, parent);
 | |
| 	/*
 | |
| 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
 | |
| 	 */
 | |
| 	__wake_up_parent(tsk, parent);
 | |
| 	spin_unlock_irqrestore(&sighand->siglock, flags);
 | |
| }
 | |
| 
 | |
| static inline int may_ptrace_stop(void)
 | |
| {
 | |
| 	if (!likely(task_ptrace(current)))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * Are we in the middle of do_coredump?
 | |
| 	 * If so and our tracer is also part of the coredump stopping
 | |
| 	 * is a deadlock situation, and pointless because our tracer
 | |
| 	 * is dead so don't allow us to stop.
 | |
| 	 * If SIGKILL was already sent before the caller unlocked
 | |
| 	 * ->siglock we must see ->core_state != NULL. Otherwise it
 | |
| 	 * is safe to enter schedule().
 | |
| 	 */
 | |
| 	if (unlikely(current->mm->core_state) &&
 | |
| 	    unlikely(current->mm == current->parent->mm))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return nonzero if there is a SIGKILL that should be waking us up.
 | |
|  * Called with the siglock held.
 | |
|  */
 | |
| static int sigkill_pending(struct task_struct *tsk)
 | |
| {
 | |
| 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
 | |
| 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This must be called with current->sighand->siglock held.
 | |
|  *
 | |
|  * This should be the path for all ptrace stops.
 | |
|  * We always set current->last_siginfo while stopped here.
 | |
|  * That makes it a way to test a stopped process for
 | |
|  * being ptrace-stopped vs being job-control-stopped.
 | |
|  *
 | |
|  * If we actually decide not to stop at all because the tracer
 | |
|  * is gone, we keep current->exit_code unless clear_code.
 | |
|  */
 | |
| static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
 | |
| {
 | |
| 	if (arch_ptrace_stop_needed(exit_code, info)) {
 | |
| 		/*
 | |
| 		 * The arch code has something special to do before a
 | |
| 		 * ptrace stop.  This is allowed to block, e.g. for faults
 | |
| 		 * on user stack pages.  We can't keep the siglock while
 | |
| 		 * calling arch_ptrace_stop, so we must release it now.
 | |
| 		 * To preserve proper semantics, we must do this before
 | |
| 		 * any signal bookkeeping like checking group_stop_count.
 | |
| 		 * Meanwhile, a SIGKILL could come in before we retake the
 | |
| 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
 | |
| 		 * So after regaining the lock, we must check for SIGKILL.
 | |
| 		 */
 | |
| 		spin_unlock_irq(¤t->sighand->siglock);
 | |
| 		arch_ptrace_stop(exit_code, info);
 | |
| 		spin_lock_irq(¤t->sighand->siglock);
 | |
| 		if (sigkill_pending(current))
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is a group stop in progress,
 | |
| 	 * we must participate in the bookkeeping.
 | |
| 	 */
 | |
| 	if (current->signal->group_stop_count > 0)
 | |
| 		--current->signal->group_stop_count;
 | |
| 
 | |
| 	current->last_siginfo = info;
 | |
| 	current->exit_code = exit_code;
 | |
| 
 | |
| 	/* Let the debugger run.  */
 | |
| 	__set_current_state(TASK_TRACED);
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	if (may_ptrace_stop()) {
 | |
| 		do_notify_parent_cldstop(current, CLD_TRAPPED);
 | |
| 		/*
 | |
| 		 * Don't want to allow preemption here, because
 | |
| 		 * sys_ptrace() needs this task to be inactive.
 | |
| 		 *
 | |
| 		 * XXX: implement read_unlock_no_resched().
 | |
| 		 */
 | |
| 		preempt_disable();
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 		preempt_enable_no_resched();
 | |
| 		schedule();
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * By the time we got the lock, our tracer went away.
 | |
| 		 * Don't drop the lock yet, another tracer may come.
 | |
| 		 */
 | |
| 		__set_current_state(TASK_RUNNING);
 | |
| 		if (clear_code)
 | |
| 			current->exit_code = 0;
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * While in TASK_TRACED, we were considered "frozen enough".
 | |
| 	 * Now that we woke up, it's crucial if we're supposed to be
 | |
| 	 * frozen that we freeze now before running anything substantial.
 | |
| 	 */
 | |
| 	try_to_freeze();
 | |
| 
 | |
| 	/*
 | |
| 	 * We are back.  Now reacquire the siglock before touching
 | |
| 	 * last_siginfo, so that we are sure to have synchronized with
 | |
| 	 * any signal-sending on another CPU that wants to examine it.
 | |
| 	 */
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	current->last_siginfo = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Queued signals ignored us while we were stopped for tracing.
 | |
| 	 * So check for any that we should take before resuming user mode.
 | |
| 	 * This sets TIF_SIGPENDING, but never clears it.
 | |
| 	 */
 | |
| 	recalc_sigpending_tsk(current);
 | |
| }
 | |
| 
 | |
| void ptrace_notify(int exit_code)
 | |
| {
 | |
| 	siginfo_t info;
 | |
| 
 | |
| 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
 | |
| 
 | |
| 	memset(&info, 0, sizeof info);
 | |
| 	info.si_signo = SIGTRAP;
 | |
| 	info.si_code = exit_code;
 | |
| 	info.si_pid = task_pid_vnr(current);
 | |
| 	info.si_uid = current_uid();
 | |
| 
 | |
| 	/* Let the debugger run.  */
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	ptrace_stop(exit_code, 1, &info);
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This performs the stopping for SIGSTOP and other stop signals.
 | |
|  * We have to stop all threads in the thread group.
 | |
|  * Returns nonzero if we've actually stopped and released the siglock.
 | |
|  * Returns zero if we didn't stop and still hold the siglock.
 | |
|  */
 | |
| static int do_signal_stop(int signr)
 | |
| {
 | |
| 	struct signal_struct *sig = current->signal;
 | |
| 	int notify;
 | |
| 
 | |
| 	if (!sig->group_stop_count) {
 | |
| 		struct task_struct *t;
 | |
| 
 | |
| 		if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
 | |
| 		    unlikely(signal_group_exit(sig)))
 | |
| 			return 0;
 | |
| 		/*
 | |
| 		 * There is no group stop already in progress.
 | |
| 		 * We must initiate one now.
 | |
| 		 */
 | |
| 		sig->group_exit_code = signr;
 | |
| 
 | |
| 		sig->group_stop_count = 1;
 | |
| 		for (t = next_thread(current); t != current; t = next_thread(t))
 | |
| 			/*
 | |
| 			 * Setting state to TASK_STOPPED for a group
 | |
| 			 * stop is always done with the siglock held,
 | |
| 			 * so this check has no races.
 | |
| 			 */
 | |
| 			if (!(t->flags & PF_EXITING) &&
 | |
| 			    !task_is_stopped_or_traced(t)) {
 | |
| 				sig->group_stop_count++;
 | |
| 				signal_wake_up(t, 0);
 | |
| 			}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * If there are no other threads in the group, or if there is
 | |
| 	 * a group stop in progress and we are the last to stop, report
 | |
| 	 * to the parent.  When ptraced, every thread reports itself.
 | |
| 	 */
 | |
| 	notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0;
 | |
| 	notify = tracehook_notify_jctl(notify, CLD_STOPPED);
 | |
| 	/*
 | |
| 	 * tracehook_notify_jctl() can drop and reacquire siglock, so
 | |
| 	 * we keep ->group_stop_count != 0 before the call. If SIGCONT
 | |
| 	 * or SIGKILL comes in between ->group_stop_count == 0.
 | |
| 	 */
 | |
| 	if (sig->group_stop_count) {
 | |
| 		if (!--sig->group_stop_count)
 | |
| 			sig->flags = SIGNAL_STOP_STOPPED;
 | |
| 		current->exit_code = sig->group_exit_code;
 | |
| 		__set_current_state(TASK_STOPPED);
 | |
| 	}
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 	if (notify) {
 | |
| 		read_lock(&tasklist_lock);
 | |
| 		do_notify_parent_cldstop(current, notify);
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 	}
 | |
| 
 | |
| 	/* Now we don't run again until woken by SIGCONT or SIGKILL */
 | |
| 	do {
 | |
| 		schedule();
 | |
| 	} while (try_to_freeze());
 | |
| 
 | |
| 	tracehook_finish_jctl();
 | |
| 	current->exit_code = 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int ptrace_signal(int signr, siginfo_t *info,
 | |
| 			 struct pt_regs *regs, void *cookie)
 | |
| {
 | |
| 	if (!task_ptrace(current))
 | |
| 		return signr;
 | |
| 
 | |
| 	ptrace_signal_deliver(regs, cookie);
 | |
| 
 | |
| 	/* Let the debugger run.  */
 | |
| 	ptrace_stop(signr, 0, info);
 | |
| 
 | |
| 	/* We're back.  Did the debugger cancel the sig?  */
 | |
| 	signr = current->exit_code;
 | |
| 	if (signr == 0)
 | |
| 		return signr;
 | |
| 
 | |
| 	current->exit_code = 0;
 | |
| 
 | |
| 	/* Update the siginfo structure if the signal has
 | |
| 	   changed.  If the debugger wanted something
 | |
| 	   specific in the siginfo structure then it should
 | |
| 	   have updated *info via PTRACE_SETSIGINFO.  */
 | |
| 	if (signr != info->si_signo) {
 | |
| 		info->si_signo = signr;
 | |
| 		info->si_errno = 0;
 | |
| 		info->si_code = SI_USER;
 | |
| 		info->si_pid = task_pid_vnr(current->parent);
 | |
| 		info->si_uid = task_uid(current->parent);
 | |
| 	}
 | |
| 
 | |
| 	/* If the (new) signal is now blocked, requeue it.  */
 | |
| 	if (sigismember(¤t->blocked, signr)) {
 | |
| 		specific_send_sig_info(signr, info, current);
 | |
| 		signr = 0;
 | |
| 	}
 | |
| 
 | |
| 	return signr;
 | |
| }
 | |
| 
 | |
| int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
 | |
| 			  struct pt_regs *regs, void *cookie)
 | |
| {
 | |
| 	struct sighand_struct *sighand = current->sighand;
 | |
| 	struct signal_struct *signal = current->signal;
 | |
| 	int signr;
 | |
| 
 | |
| relock:
 | |
| 	/*
 | |
| 	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
 | |
| 	 * While in TASK_STOPPED, we were considered "frozen enough".
 | |
| 	 * Now that we woke up, it's crucial if we're supposed to be
 | |
| 	 * frozen that we freeze now before running anything substantial.
 | |
| 	 */
 | |
| 	try_to_freeze();
 | |
| 
 | |
| 	spin_lock_irq(&sighand->siglock);
 | |
| 	/*
 | |
| 	 * Every stopped thread goes here after wakeup. Check to see if
 | |
| 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
 | |
| 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
 | |
| 	 */
 | |
| 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
 | |
| 		int why = (signal->flags & SIGNAL_STOP_CONTINUED)
 | |
| 				? CLD_CONTINUED : CLD_STOPPED;
 | |
| 		signal->flags &= ~SIGNAL_CLD_MASK;
 | |
| 
 | |
| 		why = tracehook_notify_jctl(why, CLD_CONTINUED);
 | |
| 		spin_unlock_irq(&sighand->siglock);
 | |
| 
 | |
| 		if (why) {
 | |
| 			read_lock(&tasklist_lock);
 | |
| 			do_notify_parent_cldstop(current->group_leader, why);
 | |
| 			read_unlock(&tasklist_lock);
 | |
| 		}
 | |
| 		goto relock;
 | |
| 	}
 | |
| 
 | |
| 	for (;;) {
 | |
| 		struct k_sigaction *ka;
 | |
| 		/*
 | |
| 		 * Tracing can induce an artifical signal and choose sigaction.
 | |
| 		 * The return value in @signr determines the default action,
 | |
| 		 * but @info->si_signo is the signal number we will report.
 | |
| 		 */
 | |
| 		signr = tracehook_get_signal(current, regs, info, return_ka);
 | |
| 		if (unlikely(signr < 0))
 | |
| 			goto relock;
 | |
| 		if (unlikely(signr != 0))
 | |
| 			ka = return_ka;
 | |
| 		else {
 | |
| 			if (unlikely(signal->group_stop_count > 0) &&
 | |
| 			    do_signal_stop(0))
 | |
| 				goto relock;
 | |
| 
 | |
| 			signr = dequeue_signal(current, ¤t->blocked,
 | |
| 					       info);
 | |
| 
 | |
| 			if (!signr)
 | |
| 				break; /* will return 0 */
 | |
| 
 | |
| 			if (signr != SIGKILL) {
 | |
| 				signr = ptrace_signal(signr, info,
 | |
| 						      regs, cookie);
 | |
| 				if (!signr)
 | |
| 					continue;
 | |
| 			}
 | |
| 
 | |
| 			ka = &sighand->action[signr-1];
 | |
| 		}
 | |
| 
 | |
| 		/* Trace actually delivered signals. */
 | |
| 		trace_signal_deliver(signr, info, ka);
 | |
| 
 | |
| 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
 | |
| 			continue;
 | |
| 		if (ka->sa.sa_handler != SIG_DFL) {
 | |
| 			/* Run the handler.  */
 | |
| 			*return_ka = *ka;
 | |
| 
 | |
| 			if (ka->sa.sa_flags & SA_ONESHOT)
 | |
| 				ka->sa.sa_handler = SIG_DFL;
 | |
| 
 | |
| 			break; /* will return non-zero "signr" value */
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Now we are doing the default action for this signal.
 | |
| 		 */
 | |
| 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Global init gets no signals it doesn't want.
 | |
| 		 * Container-init gets no signals it doesn't want from same
 | |
| 		 * container.
 | |
| 		 *
 | |
| 		 * Note that if global/container-init sees a sig_kernel_only()
 | |
| 		 * signal here, the signal must have been generated internally
 | |
| 		 * or must have come from an ancestor namespace. In either
 | |
| 		 * case, the signal cannot be dropped.
 | |
| 		 */
 | |
| 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
 | |
| 				!sig_kernel_only(signr))
 | |
| 			continue;
 | |
| 
 | |
| 		if (sig_kernel_stop(signr)) {
 | |
| 			/*
 | |
| 			 * The default action is to stop all threads in
 | |
| 			 * the thread group.  The job control signals
 | |
| 			 * do nothing in an orphaned pgrp, but SIGSTOP
 | |
| 			 * always works.  Note that siglock needs to be
 | |
| 			 * dropped during the call to is_orphaned_pgrp()
 | |
| 			 * because of lock ordering with tasklist_lock.
 | |
| 			 * This allows an intervening SIGCONT to be posted.
 | |
| 			 * We need to check for that and bail out if necessary.
 | |
| 			 */
 | |
| 			if (signr != SIGSTOP) {
 | |
| 				spin_unlock_irq(&sighand->siglock);
 | |
| 
 | |
| 				/* signals can be posted during this window */
 | |
| 
 | |
| 				if (is_current_pgrp_orphaned())
 | |
| 					goto relock;
 | |
| 
 | |
| 				spin_lock_irq(&sighand->siglock);
 | |
| 			}
 | |
| 
 | |
| 			if (likely(do_signal_stop(info->si_signo))) {
 | |
| 				/* It released the siglock.  */
 | |
| 				goto relock;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * We didn't actually stop, due to a race
 | |
| 			 * with SIGCONT or something like that.
 | |
| 			 */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		spin_unlock_irq(&sighand->siglock);
 | |
| 
 | |
| 		/*
 | |
| 		 * Anything else is fatal, maybe with a core dump.
 | |
| 		 */
 | |
| 		current->flags |= PF_SIGNALED;
 | |
| 
 | |
| 		if (sig_kernel_coredump(signr)) {
 | |
| 			if (print_fatal_signals)
 | |
| 				print_fatal_signal(regs, info->si_signo);
 | |
| 			/*
 | |
| 			 * If it was able to dump core, this kills all
 | |
| 			 * other threads in the group and synchronizes with
 | |
| 			 * their demise.  If we lost the race with another
 | |
| 			 * thread getting here, it set group_exit_code
 | |
| 			 * first and our do_group_exit call below will use
 | |
| 			 * that value and ignore the one we pass it.
 | |
| 			 */
 | |
| 			do_coredump(info->si_signo, info->si_signo, regs);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Death signals, no core dump.
 | |
| 		 */
 | |
| 		do_group_exit(info->si_signo);
 | |
| 		/* NOTREACHED */
 | |
| 	}
 | |
| 	spin_unlock_irq(&sighand->siglock);
 | |
| 	return signr;
 | |
| }
 | |
| 
 | |
| void exit_signals(struct task_struct *tsk)
 | |
| {
 | |
| 	int group_stop = 0;
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
 | |
| 		tsk->flags |= PF_EXITING;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irq(&tsk->sighand->siglock);
 | |
| 	/*
 | |
| 	 * From now this task is not visible for group-wide signals,
 | |
| 	 * see wants_signal(), do_signal_stop().
 | |
| 	 */
 | |
| 	tsk->flags |= PF_EXITING;
 | |
| 	if (!signal_pending(tsk))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* It could be that __group_complete_signal() choose us to
 | |
| 	 * notify about group-wide signal. Another thread should be
 | |
| 	 * woken now to take the signal since we will not.
 | |
| 	 */
 | |
| 	for (t = tsk; (t = next_thread(t)) != tsk; )
 | |
| 		if (!signal_pending(t) && !(t->flags & PF_EXITING))
 | |
| 			recalc_sigpending_and_wake(t);
 | |
| 
 | |
| 	if (unlikely(tsk->signal->group_stop_count) &&
 | |
| 			!--tsk->signal->group_stop_count) {
 | |
| 		tsk->signal->flags = SIGNAL_STOP_STOPPED;
 | |
| 		group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED);
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock_irq(&tsk->sighand->siglock);
 | |
| 
 | |
| 	if (unlikely(group_stop)) {
 | |
| 		read_lock(&tasklist_lock);
 | |
| 		do_notify_parent_cldstop(tsk, group_stop);
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(recalc_sigpending);
 | |
| EXPORT_SYMBOL_GPL(dequeue_signal);
 | |
| EXPORT_SYMBOL(flush_signals);
 | |
| EXPORT_SYMBOL(force_sig);
 | |
| EXPORT_SYMBOL(send_sig);
 | |
| EXPORT_SYMBOL(send_sig_info);
 | |
| EXPORT_SYMBOL(sigprocmask);
 | |
| EXPORT_SYMBOL(block_all_signals);
 | |
| EXPORT_SYMBOL(unblock_all_signals);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * System call entry points.
 | |
|  */
 | |
| 
 | |
| SYSCALL_DEFINE0(restart_syscall)
 | |
| {
 | |
| 	struct restart_block *restart = ¤t_thread_info()->restart_block;
 | |
| 	return restart->fn(restart);
 | |
| }
 | |
| 
 | |
| long do_no_restart_syscall(struct restart_block *param)
 | |
| {
 | |
| 	return -EINTR;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We don't need to get the kernel lock - this is all local to this
 | |
|  * particular thread.. (and that's good, because this is _heavily_
 | |
|  * used by various programs)
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This is also useful for kernel threads that want to temporarily
 | |
|  * (or permanently) block certain signals.
 | |
|  *
 | |
|  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
 | |
|  * interface happily blocks "unblockable" signals like SIGKILL
 | |
|  * and friends.
 | |
|  */
 | |
| int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	if (oldset)
 | |
| 		*oldset = current->blocked;
 | |
| 
 | |
| 	error = 0;
 | |
| 	switch (how) {
 | |
| 	case SIG_BLOCK:
 | |
| 		sigorsets(¤t->blocked, ¤t->blocked, set);
 | |
| 		break;
 | |
| 	case SIG_UNBLOCK:
 | |
| 		signandsets(¤t->blocked, ¤t->blocked, set);
 | |
| 		break;
 | |
| 	case SIG_SETMASK:
 | |
| 		current->blocked = *set;
 | |
| 		break;
 | |
| 	default:
 | |
| 		error = -EINVAL;
 | |
| 	}
 | |
| 	recalc_sigpending();
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
 | |
| 		sigset_t __user *, oset, size_t, sigsetsize)
 | |
| {
 | |
| 	int error = -EINVAL;
 | |
| 	sigset_t old_set, new_set;
 | |
| 
 | |
| 	/* XXX: Don't preclude handling different sized sigset_t's.  */
 | |
| 	if (sigsetsize != sizeof(sigset_t))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (set) {
 | |
| 		error = -EFAULT;
 | |
| 		if (copy_from_user(&new_set, set, sizeof(*set)))
 | |
| 			goto out;
 | |
| 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
 | |
| 
 | |
| 		error = sigprocmask(how, &new_set, &old_set);
 | |
| 		if (error)
 | |
| 			goto out;
 | |
| 		if (oset)
 | |
| 			goto set_old;
 | |
| 	} else if (oset) {
 | |
| 		spin_lock_irq(¤t->sighand->siglock);
 | |
| 		old_set = current->blocked;
 | |
| 		spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 	set_old:
 | |
| 		error = -EFAULT;
 | |
| 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
 | |
| 			goto out;
 | |
| 	}
 | |
| 	error = 0;
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| long do_sigpending(void __user *set, unsigned long sigsetsize)
 | |
| {
 | |
| 	long error = -EINVAL;
 | |
| 	sigset_t pending;
 | |
| 
 | |
| 	if (sigsetsize > sizeof(sigset_t))
 | |
| 		goto out;
 | |
| 
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	sigorsets(&pending, ¤t->pending.signal,
 | |
| 		  ¤t->signal->shared_pending.signal);
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 	/* Outside the lock because only this thread touches it.  */
 | |
| 	sigandsets(&pending, ¤t->blocked, &pending);
 | |
| 
 | |
| 	error = -EFAULT;
 | |
| 	if (!copy_to_user(set, &pending, sigsetsize))
 | |
| 		error = 0;
 | |
| 
 | |
| out:
 | |
| 	return error;
 | |
| }	
 | |
| 
 | |
| SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
 | |
| {
 | |
| 	return do_sigpending(set, sigsetsize);
 | |
| }
 | |
| 
 | |
| #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
 | |
| 
 | |
| int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
 | |
| 		return -EFAULT;
 | |
| 	if (from->si_code < 0)
 | |
| 		return __copy_to_user(to, from, sizeof(siginfo_t))
 | |
| 			? -EFAULT : 0;
 | |
| 	/*
 | |
| 	 * If you change siginfo_t structure, please be sure
 | |
| 	 * this code is fixed accordingly.
 | |
| 	 * Please remember to update the signalfd_copyinfo() function
 | |
| 	 * inside fs/signalfd.c too, in case siginfo_t changes.
 | |
| 	 * It should never copy any pad contained in the structure
 | |
| 	 * to avoid security leaks, but must copy the generic
 | |
| 	 * 3 ints plus the relevant union member.
 | |
| 	 */
 | |
| 	err = __put_user(from->si_signo, &to->si_signo);
 | |
| 	err |= __put_user(from->si_errno, &to->si_errno);
 | |
| 	err |= __put_user((short)from->si_code, &to->si_code);
 | |
| 	switch (from->si_code & __SI_MASK) {
 | |
| 	case __SI_KILL:
 | |
| 		err |= __put_user(from->si_pid, &to->si_pid);
 | |
| 		err |= __put_user(from->si_uid, &to->si_uid);
 | |
| 		break;
 | |
| 	case __SI_TIMER:
 | |
| 		 err |= __put_user(from->si_tid, &to->si_tid);
 | |
| 		 err |= __put_user(from->si_overrun, &to->si_overrun);
 | |
| 		 err |= __put_user(from->si_ptr, &to->si_ptr);
 | |
| 		break;
 | |
| 	case __SI_POLL:
 | |
| 		err |= __put_user(from->si_band, &to->si_band);
 | |
| 		err |= __put_user(from->si_fd, &to->si_fd);
 | |
| 		break;
 | |
| 	case __SI_FAULT:
 | |
| 		err |= __put_user(from->si_addr, &to->si_addr);
 | |
| #ifdef __ARCH_SI_TRAPNO
 | |
| 		err |= __put_user(from->si_trapno, &to->si_trapno);
 | |
| #endif
 | |
| 		break;
 | |
| 	case __SI_CHLD:
 | |
| 		err |= __put_user(from->si_pid, &to->si_pid);
 | |
| 		err |= __put_user(from->si_uid, &to->si_uid);
 | |
| 		err |= __put_user(from->si_status, &to->si_status);
 | |
| 		err |= __put_user(from->si_utime, &to->si_utime);
 | |
| 		err |= __put_user(from->si_stime, &to->si_stime);
 | |
| 		break;
 | |
| 	case __SI_RT: /* This is not generated by the kernel as of now. */
 | |
| 	case __SI_MESGQ: /* But this is */
 | |
| 		err |= __put_user(from->si_pid, &to->si_pid);
 | |
| 		err |= __put_user(from->si_uid, &to->si_uid);
 | |
| 		err |= __put_user(from->si_ptr, &to->si_ptr);
 | |
| 		break;
 | |
| 	default: /* this is just in case for now ... */
 | |
| 		err |= __put_user(from->si_pid, &to->si_pid);
 | |
| 		err |= __put_user(from->si_uid, &to->si_uid);
 | |
| 		break;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
 | |
| 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
 | |
| 		size_t, sigsetsize)
 | |
| {
 | |
| 	int ret, sig;
 | |
| 	sigset_t these;
 | |
| 	struct timespec ts;
 | |
| 	siginfo_t info;
 | |
| 	long timeout = 0;
 | |
| 
 | |
| 	/* XXX: Don't preclude handling different sized sigset_t's.  */
 | |
| 	if (sigsetsize != sizeof(sigset_t))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (copy_from_user(&these, uthese, sizeof(these)))
 | |
| 		return -EFAULT;
 | |
| 		
 | |
| 	/*
 | |
| 	 * Invert the set of allowed signals to get those we
 | |
| 	 * want to block.
 | |
| 	 */
 | |
| 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
 | |
| 	signotset(&these);
 | |
| 
 | |
| 	if (uts) {
 | |
| 		if (copy_from_user(&ts, uts, sizeof(ts)))
 | |
| 			return -EFAULT;
 | |
| 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
 | |
| 		    || ts.tv_sec < 0)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	sig = dequeue_signal(current, &these, &info);
 | |
| 	if (!sig) {
 | |
| 		timeout = MAX_SCHEDULE_TIMEOUT;
 | |
| 		if (uts)
 | |
| 			timeout = (timespec_to_jiffies(&ts)
 | |
| 				   + (ts.tv_sec || ts.tv_nsec));
 | |
| 
 | |
| 		if (timeout) {
 | |
| 			/* None ready -- temporarily unblock those we're
 | |
| 			 * interested while we are sleeping in so that we'll
 | |
| 			 * be awakened when they arrive.  */
 | |
| 			current->real_blocked = current->blocked;
 | |
| 			sigandsets(¤t->blocked, ¤t->blocked, &these);
 | |
| 			recalc_sigpending();
 | |
| 			spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 			timeout = schedule_timeout_interruptible(timeout);
 | |
| 
 | |
| 			spin_lock_irq(¤t->sighand->siglock);
 | |
| 			sig = dequeue_signal(current, &these, &info);
 | |
| 			current->blocked = current->real_blocked;
 | |
| 			siginitset(¤t->real_blocked, 0);
 | |
| 			recalc_sigpending();
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 	if (sig) {
 | |
| 		ret = sig;
 | |
| 		if (uinfo) {
 | |
| 			if (copy_siginfo_to_user(uinfo, &info))
 | |
| 				ret = -EFAULT;
 | |
| 		}
 | |
| 	} else {
 | |
| 		ret = -EAGAIN;
 | |
| 		if (timeout)
 | |
| 			ret = -EINTR;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
 | |
| {
 | |
| 	struct siginfo info;
 | |
| 
 | |
| 	info.si_signo = sig;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code = SI_USER;
 | |
| 	info.si_pid = task_tgid_vnr(current);
 | |
| 	info.si_uid = current_uid();
 | |
| 
 | |
| 	return kill_something_info(sig, &info, pid);
 | |
| }
 | |
| 
 | |
| static int
 | |
| do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	int error = -ESRCH;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	p = find_task_by_vpid(pid);
 | |
| 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
 | |
| 		error = check_kill_permission(sig, info, p);
 | |
| 		/*
 | |
| 		 * The null signal is a permissions and process existence
 | |
| 		 * probe.  No signal is actually delivered.
 | |
| 		 */
 | |
| 		if (!error && sig) {
 | |
| 			error = do_send_sig_info(sig, info, p, false);
 | |
| 			/*
 | |
| 			 * If lock_task_sighand() failed we pretend the task
 | |
| 			 * dies after receiving the signal. The window is tiny,
 | |
| 			 * and the signal is private anyway.
 | |
| 			 */
 | |
| 			if (unlikely(error == -ESRCH))
 | |
| 				error = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static int do_tkill(pid_t tgid, pid_t pid, int sig)
 | |
| {
 | |
| 	struct siginfo info;
 | |
| 
 | |
| 	info.si_signo = sig;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code = SI_TKILL;
 | |
| 	info.si_pid = task_tgid_vnr(current);
 | |
| 	info.si_uid = current_uid();
 | |
| 
 | |
| 	return do_send_specific(tgid, pid, sig, &info);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  sys_tgkill - send signal to one specific thread
 | |
|  *  @tgid: the thread group ID of the thread
 | |
|  *  @pid: the PID of the thread
 | |
|  *  @sig: signal to be sent
 | |
|  *
 | |
|  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
 | |
|  *  exists but it's not belonging to the target process anymore. This
 | |
|  *  method solves the problem of threads exiting and PIDs getting reused.
 | |
|  */
 | |
| SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
 | |
| {
 | |
| 	/* This is only valid for single tasks */
 | |
| 	if (pid <= 0 || tgid <= 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return do_tkill(tgid, pid, sig);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
 | |
|  */
 | |
| SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
 | |
| {
 | |
| 	/* This is only valid for single tasks */
 | |
| 	if (pid <= 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return do_tkill(0, pid, sig);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
 | |
| 		siginfo_t __user *, uinfo)
 | |
| {
 | |
| 	siginfo_t info;
 | |
| 
 | |
| 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/* Not even root can pretend to send signals from the kernel.
 | |
| 	   Nor can they impersonate a kill(), which adds source info.  */
 | |
| 	if (info.si_code >= 0)
 | |
| 		return -EPERM;
 | |
| 	info.si_signo = sig;
 | |
| 
 | |
| 	/* POSIX.1b doesn't mention process groups.  */
 | |
| 	return kill_proc_info(sig, &info, pid);
 | |
| }
 | |
| 
 | |
| long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
 | |
| {
 | |
| 	/* This is only valid for single tasks */
 | |
| 	if (pid <= 0 || tgid <= 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Not even root can pretend to send signals from the kernel.
 | |
| 	   Nor can they impersonate a kill(), which adds source info.  */
 | |
| 	if (info->si_code >= 0)
 | |
| 		return -EPERM;
 | |
| 	info->si_signo = sig;
 | |
| 
 | |
| 	return do_send_specific(tgid, pid, sig, info);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
 | |
| 		siginfo_t __user *, uinfo)
 | |
| {
 | |
| 	siginfo_t info;
 | |
| 
 | |
| 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
 | |
| }
 | |
| 
 | |
| int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
 | |
| {
 | |
| 	struct task_struct *t = current;
 | |
| 	struct k_sigaction *k;
 | |
| 	sigset_t mask;
 | |
| 
 | |
| 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	k = &t->sighand->action[sig-1];
 | |
| 
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	if (oact)
 | |
| 		*oact = *k;
 | |
| 
 | |
| 	if (act) {
 | |
| 		sigdelsetmask(&act->sa.sa_mask,
 | |
| 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
 | |
| 		*k = *act;
 | |
| 		/*
 | |
| 		 * POSIX 3.3.1.3:
 | |
| 		 *  "Setting a signal action to SIG_IGN for a signal that is
 | |
| 		 *   pending shall cause the pending signal to be discarded,
 | |
| 		 *   whether or not it is blocked."
 | |
| 		 *
 | |
| 		 *  "Setting a signal action to SIG_DFL for a signal that is
 | |
| 		 *   pending and whose default action is to ignore the signal
 | |
| 		 *   (for example, SIGCHLD), shall cause the pending signal to
 | |
| 		 *   be discarded, whether or not it is blocked"
 | |
| 		 */
 | |
| 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
 | |
| 			sigemptyset(&mask);
 | |
| 			sigaddset(&mask, sig);
 | |
| 			rm_from_queue_full(&mask, &t->signal->shared_pending);
 | |
| 			do {
 | |
| 				rm_from_queue_full(&mask, &t->pending);
 | |
| 				t = next_thread(t);
 | |
| 			} while (t != current);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int 
 | |
| do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
 | |
| {
 | |
| 	stack_t oss;
 | |
| 	int error;
 | |
| 
 | |
| 	oss.ss_sp = (void __user *) current->sas_ss_sp;
 | |
| 	oss.ss_size = current->sas_ss_size;
 | |
| 	oss.ss_flags = sas_ss_flags(sp);
 | |
| 
 | |
| 	if (uss) {
 | |
| 		void __user *ss_sp;
 | |
| 		size_t ss_size;
 | |
| 		int ss_flags;
 | |
| 
 | |
| 		error = -EFAULT;
 | |
| 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
 | |
| 			goto out;
 | |
| 		error = __get_user(ss_sp, &uss->ss_sp) |
 | |
| 			__get_user(ss_flags, &uss->ss_flags) |
 | |
| 			__get_user(ss_size, &uss->ss_size);
 | |
| 		if (error)
 | |
| 			goto out;
 | |
| 
 | |
| 		error = -EPERM;
 | |
| 		if (on_sig_stack(sp))
 | |
| 			goto out;
 | |
| 
 | |
| 		error = -EINVAL;
 | |
| 		/*
 | |
| 		 *
 | |
| 		 * Note - this code used to test ss_flags incorrectly
 | |
| 		 *  	  old code may have been written using ss_flags==0
 | |
| 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
 | |
| 		 *	  way that worked) - this fix preserves that older
 | |
| 		 *	  mechanism
 | |
| 		 */
 | |
| 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (ss_flags == SS_DISABLE) {
 | |
| 			ss_size = 0;
 | |
| 			ss_sp = NULL;
 | |
| 		} else {
 | |
| 			error = -ENOMEM;
 | |
| 			if (ss_size < MINSIGSTKSZ)
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		current->sas_ss_sp = (unsigned long) ss_sp;
 | |
| 		current->sas_ss_size = ss_size;
 | |
| 	}
 | |
| 
 | |
| 	error = 0;
 | |
| 	if (uoss) {
 | |
| 		error = -EFAULT;
 | |
| 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
 | |
| 			goto out;
 | |
| 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
 | |
| 			__put_user(oss.ss_size, &uoss->ss_size) |
 | |
| 			__put_user(oss.ss_flags, &uoss->ss_flags);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_SIGPENDING
 | |
| 
 | |
| SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
 | |
| {
 | |
| 	return do_sigpending(set, sizeof(*set));
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_SIGPROCMASK
 | |
| /* Some platforms have their own version with special arguments others
 | |
|    support only sys_rt_sigprocmask.  */
 | |
| 
 | |
| SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
 | |
| 		old_sigset_t __user *, oset)
 | |
| {
 | |
| 	int error;
 | |
| 	old_sigset_t old_set, new_set;
 | |
| 
 | |
| 	if (set) {
 | |
| 		error = -EFAULT;
 | |
| 		if (copy_from_user(&new_set, set, sizeof(*set)))
 | |
| 			goto out;
 | |
| 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
 | |
| 
 | |
| 		spin_lock_irq(¤t->sighand->siglock);
 | |
| 		old_set = current->blocked.sig[0];
 | |
| 
 | |
| 		error = 0;
 | |
| 		switch (how) {
 | |
| 		default:
 | |
| 			error = -EINVAL;
 | |
| 			break;
 | |
| 		case SIG_BLOCK:
 | |
| 			sigaddsetmask(¤t->blocked, new_set);
 | |
| 			break;
 | |
| 		case SIG_UNBLOCK:
 | |
| 			sigdelsetmask(¤t->blocked, new_set);
 | |
| 			break;
 | |
| 		case SIG_SETMASK:
 | |
| 			current->blocked.sig[0] = new_set;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		recalc_sigpending();
 | |
| 		spin_unlock_irq(¤t->sighand->siglock);
 | |
| 		if (error)
 | |
| 			goto out;
 | |
| 		if (oset)
 | |
| 			goto set_old;
 | |
| 	} else if (oset) {
 | |
| 		old_set = current->blocked.sig[0];
 | |
| 	set_old:
 | |
| 		error = -EFAULT;
 | |
| 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
 | |
| 			goto out;
 | |
| 	}
 | |
| 	error = 0;
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_RT_SIGACTION
 | |
| SYSCALL_DEFINE4(rt_sigaction, int, sig,
 | |
| 		const struct sigaction __user *, act,
 | |
| 		struct sigaction __user *, oact,
 | |
| 		size_t, sigsetsize)
 | |
| {
 | |
| 	struct k_sigaction new_sa, old_sa;
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	/* XXX: Don't preclude handling different sized sigset_t's.  */
 | |
| 	if (sigsetsize != sizeof(sigset_t))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (act) {
 | |
| 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
 | |
| 
 | |
| 	if (!ret && oact) {
 | |
| 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_SGETMASK
 | |
| 
 | |
| /*
 | |
|  * For backwards compatibility.  Functionality superseded by sigprocmask.
 | |
|  */
 | |
| SYSCALL_DEFINE0(sgetmask)
 | |
| {
 | |
| 	/* SMP safe */
 | |
| 	return current->blocked.sig[0];
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(ssetmask, int, newmask)
 | |
| {
 | |
| 	int old;
 | |
| 
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	old = current->blocked.sig[0];
 | |
| 
 | |
| 	siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)|
 | |
| 						  sigmask(SIGSTOP)));
 | |
| 	recalc_sigpending();
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 	return old;
 | |
| }
 | |
| #endif /* __ARCH_WANT_SGETMASK */
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_SIGNAL
 | |
| /*
 | |
|  * For backwards compatibility.  Functionality superseded by sigaction.
 | |
|  */
 | |
| SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
 | |
| {
 | |
| 	struct k_sigaction new_sa, old_sa;
 | |
| 	int ret;
 | |
| 
 | |
| 	new_sa.sa.sa_handler = handler;
 | |
| 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
 | |
| 	sigemptyset(&new_sa.sa.sa_mask);
 | |
| 
 | |
| 	ret = do_sigaction(sig, &new_sa, &old_sa);
 | |
| 
 | |
| 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
 | |
| }
 | |
| #endif /* __ARCH_WANT_SYS_SIGNAL */
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_PAUSE
 | |
| 
 | |
| SYSCALL_DEFINE0(pause)
 | |
| {
 | |
| 	current->state = TASK_INTERRUPTIBLE;
 | |
| 	schedule();
 | |
| 	return -ERESTARTNOHAND;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
 | |
| SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
 | |
| {
 | |
| 	sigset_t newset;
 | |
| 
 | |
| 	/* XXX: Don't preclude handling different sized sigset_t's.  */
 | |
| 	if (sigsetsize != sizeof(sigset_t))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (copy_from_user(&newset, unewset, sizeof(newset)))
 | |
| 		return -EFAULT;
 | |
| 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
 | |
| 
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	current->saved_sigmask = current->blocked;
 | |
| 	current->blocked = newset;
 | |
| 	recalc_sigpending();
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 	current->state = TASK_INTERRUPTIBLE;
 | |
| 	schedule();
 | |
| 	set_restore_sigmask();
 | |
| 	return -ERESTARTNOHAND;
 | |
| }
 | |
| #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
 | |
| 
 | |
| __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void __init signals_init(void)
 | |
| {
 | |
| 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
 | |
| }
 |